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Abstract

Quantifying Parkinson’s disease (PD) symptoms’ presence is challenging as it may

manifest di↵erently depending on various factors. With the use of modern wearable

sensors and machine learning techniques, it has become easier to monitor motor fluctu-

ations during the daily lives of Parkinson’s disease patients. This work identifies which

sensor placement and daily life activity combinations better predict Parkinson’s disease

symptoms. A wide range of results was achieved by implementing Random Forest and

Decision Tree classifiers using the data from a wearable smartwatch and a smartphone,

and the results are compared. Optimal placements of a single wearable sensor and daily

life activity combinations per symptom are proposed for quantifying Parkinson’s disease

symptoms. In some cases, average accuracy scores of up to 75% were achieved, while

in other cases, one sensor proved insu�cient for objective outcomes. The results were

validated with a grouped nested 10-fold cross-validation approach.
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1 Introduction

Movement is one of the most important aspects of our nervous system. Motor neurons are
among the largest neurons in the central nervous system and are the final common pathway
through which the brain controls all of our skeletal muscle movement [25]. Due to our complex
nervous system, humans can achieve far more variation in movement, and di↵erent types and
speeds of movements than any other animal in the animal kingdom can perform. These nerve
cells, or neurons, produce an important brain chemical called dopamine. Dopamine drives us
to do the things that we do. It is closely associated with motivation, desire, and craving, and it
relates to satisfaction and our feelings of well-being. However, our nervous system is not perfect.
Diseases such as depression, schizophrenia, and Parkinson’s disease are linked to, among other
things, extreme changes in dopamine levels in the brain. On one hand, schizophrenia involves
elevated levels of dopamine. On the other hand, Parkinson’s disease is caused by a loss of
dopaminergic neurons in the part of the brain called the substantia nigra [14].

Parkinson’s disease (PD) is a neurological disorder characterized by uncontrollable or
unintended movements, as well as complications in the mental health. People initially start
to quake, cannot generate smooth movements, have issues with speed, and lose the sense of
coordination and balance. It is a progressive disease caused mainly by a lack of dopamine in the
brain. People with Parkinson’s (PwP) disease also develop behavioral and mental issues such
as depression, anxiety, fatigue, sleep problems, and memory di�culties. Parkinson’s disease is
progressive in nature and gets worse over time, a↵ecting more than 10 million people globally.
People with Parkinson’s disease may not always get all the symptoms; it is very challenging
to identify how bad the symptoms will be and how fast the disease will progress. It is hard
to pinpoint precisely how it will progress as the symptoms vary tremendously from person to
person, and early signs may be unnoticeable. For example, some people may only have minor
shaking in their hands (tremor) which does not bother them in their daily life activities, whereas
others may be a↵ected so much that they cannot drink a glass of water on their own. The same
issue relates to non-motor symptoms. Some individuals may have severe tremors but no issues
with memory or thinking, while others may not have any motor movement complications but
su↵er from dementia. Overall, there are many gray areas when defining Parkinson’s disease,
but the usual motor symptoms include tremor, bradykinesia, dyskinesia, gait impediments,
posture instability, freezing of gait, and rigidity.
A tremor (shaking) is an involuntary movement or twitching of a limb. Tremor is rhythmic to
a certain degree and often begins in a limb such as a hand or fingers, but it can also a↵ect
the chin, lips, face, and legs [20]. There are two types of tremor — resting tremor and action
tremor. Resting tremor occurs in a body part that is entirely supported against gravity, for
example, someone sitting while resting their hands on the arms of the couch. On the other
hand, an action tremor arises when an individual is trying to contract a muscle voluntarily
and includes postural and kinetic tremors. A postural tremor is any tremor that is produced
while a person is trying to maintain a position, such as standing still. Moreover, kinetic tremor
occurs during any voluntary movement and may include guided movements, which may turn
into a task-specific tremor [4]. Task-specific tremors are essentially kinetic tremors that usually
appear during specific activities or movements.
Furthermore, tremor is not the only symptom that limits the movements of people with Parkin-
son’s disease. One of the cardinal symptoms of Parkinson’s disease diagnosis is bradykinesia,
which is usually described as slowness of movements. Weakness, tremor, and rigidity may con-
tribute to but do not fully explain bradykinesia [3]. In Parkinson’s, the slowness or weakness may
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happen in various ways, such as fewer facial expressions, di�culty initiating movements, and
reduced automatic movements such as swinging the arms when walking. Moreover, bradykine-
sia is very unpredictable. It is possible to walk normally without any issues and then suddenly
freeze or need help to move further. This happens because of overactivity in the lateral premo-
tor areas during task performance, and movements can be speeded by giving sensory cues to
people with severe bradykinesia [3]. It was also shown that there is a decrease in performance
(slowness of movements or freezing) in patients with Parkinson’s who may be executing two
tasks simultaneously, especially fine motor movements[3].
Motor/non-motor fluctuations and dyskinesia are common serious late e↵ects of dopaminergic
therapy in PD. Most people at mid-and advanced stages of the disease experience these motor
complications. Dyskinesias are abnormal, involuntary movements of di↵erent body parts that,
in many cases, occur during the peak e↵ect when patients take Levodopa or any medication of
kind [16]. It is a byproduct of using Levodopa to help alleviate tremor severity. Doctors usually
refer to it as ON state when someone takes such medication and OFF state if not taken
anything. Almost all people with Parkinson’s disease take some derivative of the medication
to help them with the symptoms. However, dosing the medication is very tricky and often
leads to having too much dopamine in the brain, which leads to dyskinesia. After several years
of smooth and stable response to Levodopa, motor fluctuations from on to o↵ states are
experienced as Levodopa wears o↵ between doses and the PD symptoms reappear. Levodopa
is a prodrug that is converted to dopamine by DOPA decarboxylase and can cross the blood-
brain barrier. Levodopa still remains the gold standard for the treatment of motor symptoms
of PD in advanced stage [41].

Making an accurate diagnosis of Parkinson’s disease can be complicated because of the
complexity of the symptoms. No specific test (e.g., a blood test) can give a definite result.
Instead, the physical symptoms mentioned above must be present to diagnose the disease and
its severity, and doctors heavily rely on manual visual examinations and assessment procedures.
In the early 19th century, James Parkinson published his essay on “The Shaking Palsy,” in
which he described in detail the clinical features of what is now known the Parkinson’s disease.
He mentions that the disease is of long duration and that long-term follow-ups are needed
to accurately detect it and estimate the severity [30]. However, no formal diagnostic guide-
lines were proposed before the last three decades. Subsequently, United Kingdom Parkinson’s
Disease Society Brain Bank1 and other diagnostic criteria were introduced later in the hopes
of ameliorating the diagnostic accuracy. Giovanni Rizzo et al. published a meta-analysis in
2016 with the primary objective of evaluating the diagnostic accuracy of Parkinson’s disease
[37]. They looked into published documents during 1988-2014 and selected 20 studies that
report diagnostic parameters regarding clinical diagnosis of PD. The authors concluded that
the overall validity of clinical diagnosis accuracy did not significantly improve in the last 25
years.

Conversely, The International Parkinson and Movement Disorder Society (MDS)2 pub-
lished clinical diagnostic criteria to measure the disease severity and named it the Unified
Parkinson’s Disease Rating Scale (UPDRS). The UPDRS includes a questionnaire consisting
of 65 items and has four parts: non-motor experiences of daily living, namely sleep problems,
mood swings, fatigue along with others; motor experiences of daily living, such as speech,
eating, dressing, and so on; motor examination, such as toe-tapping, arising from a chair, gait

1Parkinson’s UK Brain Bank, https://www.parkinsons.org.uk/research/parkinsons-uk-brain-bank
2International Parkinson and Movement Disorder Society (MDS),

https://www.movementdisorders.org/
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and more; and motor complications such as time spend with dyskinesias, time spent in the
OFF state, and so forth [17]. All tasks and questions are scored in the range of 0-4: 0 for
normal (no symptom/problem), 1 for minimal problems, 2 for mild problems, 3 for moderate
problems, and 4 being severe, meaning the patient was unable to do some activity (for example
wearing clothes or getting out of bed). Ultimately, doctors sum those scores for all questions
and give the patients a final severity score. Ronald B Postuma et al. published a validation
study showing that the MDS-UPDRS clinical diagnostic criteria demonstrated high sensitivity
and specificity compared to the United Kingdom Brain Bank criteria [34].

As mentioned earlier, Parkinson’s disease symptoms vary from person to person. Two
people may have the same UPDRS score, yet it does not mean they have the same daily life
challenges. On the one hand, doctors may be inattentive during manual examinations and miss
out on visual cues that would otherwise identify a symptom. On the other hand, Parkinson’s
disease symptoms fluctuate based on many things such as medication intake, diet, good night’s
sleep, and overall stress. A patient going through a check-up may feel anxious and perform
worse than the symptom during everyday living. Therefore, frequent and objective assessment
of the symptoms is critical to manage the health of people with Parkinson’s disease e↵ectively.
Most research focuses on identifying the symptoms during daily living with various machine
learning techniques. Rightly so, since the best way of knowing how badly the disease a↵ects
people is to see if they have issues in their daily life. Nevertheless, people are di↵erent, and
their daily activities may vary a lot, depending on where they live and what kind of lifestyle
they have. Thus continuous, accessible, and long-term monitoring of the disease can be very
helpful in obtaining information even from the very beginning of the disease. For this reason,
growing research involves the assessment of the disease and its intensity through sensor devices,
namely, smartwatches, smartphones, inertial measurement units (IMU), and gyroscopes.

The goal of this research is two folds. First, specific daily life activities are thoroughly
analyzed, and two machine learning classifiers are implemented to determine which activities
are good predictors of Parkinson’s disease symptoms. The results are then compared and
the best performing model is mentioned based on the accuracy over all activities. This was
achieved by looking at activity-level data instead of unknown sensor data from the whole
day. Secondly, the positioning of wearable sensors are investigated to learn its impacts on
the accuracy of these predictions. To encapsulate this work, the results of both classifiers are
compared — optimal placements of a single wearable sensor and daily life activity combinations
per symptom are proposed for quantifying Parkinson’s disease symptoms using a combination
of signal processing and machine learning techniques.

The rest of this paper is structured as follows. Section 2 discusses related work, namely the
literature surrounding sensor use in Parkinson’s disease estimation, the most common machine
learning techniques used and recent advancements, and the contributions of this research in
more detail. Section 3 talks about the methods used in this research, namely, data description
(3.1), data preprocessing (3.2), overview of the generated features (3.3), finishing with model
training and internal validation of the machine learning techniques (3.4). Section 4 includes
tables of the final results, and Section 5 discusses the findings and limitations of this research.
Section 6 concludes the paper.
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2 Related Work

2.1 Quantification of Parkinson’s disease

Quantifying Parkinson’s disease symptoms or severity has been around for a while. To this day,
these assessments mainly happen during periodic in-person visits to the clinic. However, these
in-clinic assessments can be subjective. Silvia Del Din and colleagues have done a rigorous
review and analysis of the possibilities of free-living monitoring of Parkinson’s disease [13].
Their research’s main goal was to determine the feasibility of utilizing wearable technology
and sensors in estimating and monitoring Parkinson’s disease. They explicitly mention that
this is important because symptoms are often triggered by task and free-living challenges that
cannot be replicated in clinics or controlled environments.

The practicality of utilizing accelerometer data to assess severity and motor complications
in patients with Parkinson’s disease has been shown by multiple papers such as [43][7][28]. Sur-
face EMG is the most common method for diagnosing tremor, but it is generally inappropriate
for constant monitoring and lacks certainty and accuracy [42]. On the contrary, needle EMG is
highly accurate yet costly and invasive [12]. Inertial sensing based on Micro-Electro-Mechanical
Systems (MEMS) is also very common for measuring tremors; however, the accuracy that is
achieved using MEMS is much lower than any type of EMG signal analysis [20]. MEMS sensors
can achieve high levels of functionality and reliability, yet most MEMS devices contain movable
parts, and long-term repeated use will decrease the device reliability [45].

A review published in 2010 compared the pros and cons of quantifying and monitoring
tremor using the most commonly used sensors such as accelerometers, gyroscopes, video,
EMGs (including surface, needle, fine-wire EMGs), and force transducers [19]. Conventional
accelerometers are the most commonly used sensors because of their practical size, price,
and ease of use [43]. For that reason, an increasing number of research works indicate that
portable systems such as body sensors are helpful for GAIT analysis in medical applications, for
example, monitoring patients’ recovery after a treatment [28]. Jorge Cancela et al. showed the
feasibility of using a Body Network Area (BAN) of wireless accelerometers in real environments
[7]. The analysis mostly focused on validating the system performance of continuous gait
monitoring of PD patients. They attached a gyroscope to the belt of patients and a set of
four tri-axial accelerometers, one on each limb. They found that despite being able to achieve
a good understanding of the pathology in the patients, context information is crucial for
making accurate classifications. The lack of context makes working with free-living data a
very challenging task, and there is a need for more accurate activity recognizers.

While sensor usage can be beneficial, most studies focusing on symptom estimation and
severity assessment from sensors are applied in clinical environments, which may not be a true
representation of everyday symptoms. However, Clinicians mostly rely on patient recalls for
out-of-clinic symptoms [29], which is fault-prone, especially for motor fluctuations arising from
medication intake [33]; self-reported data can be inaccurate, biased, and is hard to fill in every
few hours. For example, a study focused on measuring patient activity, gait, and tremor inside
and outside the clinic found that tremor was only present for 1.6 [0.4–5.9] hours (median
[range]) per day in most-a↵ected hands and only 0.5 [0.3–2.3] hours per day in less-a↵ected
hands [1]. Regardless, Christopher W Hess and colleagues recruited seven Parkinson’s disease
patients to look at the possibility of using inertial sensors for feedback on medication e↵ects
to examine rest, postural, and action tremors [20]. The authors validated their sensor-based
method by comparing it to an EMG motion tracking system and concluded that sensor-based
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technologies could achieve reasonable tremor quantification and severity monitoring.

2.2 Machine learning and Parkinson’s disease

The analysis focused on continuous monitoring of patients performing a variety of free body
movements observed that a good combination of machine learning algorithms and wearable
sensors can be a good estimator of Parkinsonian tremors in their natural environment [22].
A pilot study done in 2009 showed the feasibility of using accelerometer data to estimate
motor complications in Parkinson’s disease [31]. They also showed how the window length
and the selection of di↵erent motor tasks a↵ect the estimates of clinical movement scores
(UPDRS) derived via analysis of the accelerometer data. The study achieved this by using the
data of 8 SHIMMER3 accelerometers on the upper and lower extremities of patients (2 on
each limb) and a support vector machine (SVM) classifier [39]. A recent longitudinal study
tried to continuously track fluctuations in resting tremor and dyskinesia for Parkinson’s disease
patients by using only an Apple Watch4 and mapping the sensor reading to the MDS-UPDRS
ratings of these patients [35]. They employed data of 343 participants with PD, of which 225
were from a study lasting six months. It was found that this approach correlated greatly to
clinical evaluations of tremor severity and was roughly accurate to expert ratings of dyskinesia
presence during in-clinic tasks. However, the authors mention that the accuracy of severity
assessment of the proposed monitoring system has limited use because the assessments are
rated by the MDS-UPDRS scale.

Some researchers [18] [27] [38] have applied a linear regression model to estimate dyski-
nesia severity scores (MD-UPDRS or mAIMS) from daily life using the signals one or two worn
sensors (wrist, ankle, wrist, and ankle) using various estimation intervals lasting from 5s to 30
minutes. Rodriguez-Molinero et al. [38] concluded that the magnitude of dyskinesia measured
by a waist-worn sensor correlates well with that observed by a physician. Moreover, Mera et
al. [27] suggest that only one wrist-worn sensor is enough to predict dyskinesia severity when
the arms are resing or in extended positions. Despite all of them using a unified scoring system
as their gold standard, they all came up with strong conclusions. Furthermore, a recent study
published in 2021 showed promising results with a bidirectional LSTM [10] model estimation
of dyskinesia severity scores by using readings of two IMU sensors (wrist, ipsilateral ankle) [23].
The authors showed the medication ON/OFF state e↵ects on the total mAIMS score of various
daily life activities. Another study proposed using statistical and spatiotemporal gait features
from wearable sensors to automatically detect the medication (ON/OFF) state validated and
found out that the Random Forest classifier [6] outperformed other classifiers [2]. The study
was done on 20 PD patients with two knee-worn tri-axial accelerometer sensors who were asked
to perform a walking task, once in the ON state and once in the OFF state. Furthermore,
Hyoseon Jeon et al. ran a rigorous research on estimating tremor from only one wrist-worn
smart watch, and found that the Decision Tree classifier showed the highest accuracy and the
lowest RMSE compared to other classifiers [24].

3SHIMMER Research Website, https://shimmersensing.com
4Apple Official Website, https://www.apple.com
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2.3 Limitations and Contributions

Robust accuracy and validity metrics for various types of signals have been reported throughout
all reviewed studies. These findings allow for wearable technologies to be used in specific cases.
However, testing and validating the developed algorithms and metrics on a big group of subjects
has still not been done and is required to have fully robust applications. One limitation of
previous research is the emphasis on a single motor complication or symptom. Moreover, most
studies use the MDS-UPDRS or similar unified scoring ratings, yet these severity rating scales
also include mental symptom scores, and sensors cannot accurately estimate these symptoms.
It is well known that the MDS-UPDRS is not a uniformly reliable tool to measure the severity
of motor and non-motor symptoms [36][15]. All in all, it is worth mentioning that no single
best-performing algorithm or the best placement of a sensor for overall good performance
is possible — there are many variables in the disease as well as in the daily lives of people
with Parkinson’s. This work fills the gap of which sensor placement and daily life activity
combinations are the better predictors of Parkinson’s disease symptoms by using only one
wearable sensor and symptom presence scores for each limb per activity rated by clinicians in
real time.
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3 Methods

3.1 Data

The Michael J. Fox Foundation5 is an organization committed to finding a cure for Parkin-
son’s disease by funding research and ensuring the development of improved therapies for
people with the disease. A few years back, they supported conducting a study named The
Levodopa Response Study, which aimed to collect wearable sensor data from individuals with
Parkinson’s Disease (PD). They have done this to estimate clinically relevant measures of the
severity of Parkinson’s disease symptoms, including motor symptom fluctuations. After the
data collection the data was published for public use. It is freely available on Synapse6, which
is a collaborative, open-source research platform aiming to support scientific collaborations
centered around shared biomedical data sets. The website is operated by the nonprofit orga-
nization Sage Bionetworks7, which is partnering with institutions such as the U.S. National
Heart, Lung, and Blood Institute8, U.S. National Institute of Mental Health9, Children’s Tumor
Foundation10, and more.

Figure 1: Timeline of the locations and relevant procedures during data collection.

The data was collected from two clinical sites — New York City and Boston. Subjects
were monitored for four days, two days in-clinic, and two days at home. Figure 1 shows the
timeline and the relevant activities performed during these days. On Day 1 of data collection
(Visit 1), the participants went to the laboratory in an ON state for initial data collection,
such as demographic and clinical data, then went through the MDS-UPDRS assessment. The
study includes 28 participants fitted with either 3 or 8 sensors throughout their body. All
subjects were fitted with the same three sensors; meanwhile, only a subset of participants had
the five additional sensors. Since the study cohort had a small number of participants, this
research looks at the data from the three sensors all participants wore during data collection.
The participants were 19 male and 9 female Parkinson’s disease patients, with an average age

5The Michael J. Fox Foundation for Parkinson’s Research, https://www.michaeljfox.org
6Synapse, https://www.synapse.org
7Sage Bionetworks, https://sagebionetworks.org
8U.S. National Heart, Lung, and Blood Institute, https://www.nhlbi.nih.gov
9U.S. National Institute of Mental Health, https://www.nimh.nih.gov

10Children’s Tumor Foundation, https://www.ctf.org
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of 69.5 ± 8.96 (mean±std) and an average score of 2.25 ± 0.59 (mean±std) on the Hoehn
and Yahr scale [21]. The initial data collection also includes a general symptom occurrence
questionnaire, where patients specify which symptoms are usually present in daily life. Figure
2 shows the distribution of each symptom occurrence from the initial questionnaire and the
number of patients who reported these symptoms.

Figure 2: Symptom occurrence distribution among patients.

Afterwards, the participants were fitted with the sensors to start the in-clinic activities.
These activities can be divided into 4 categories — functional, clinical, gross motor movements,
and fine motor movements. Clinical tasks include standard tests such as a finger-to-nose test
with each hand for 15s and alternating hand movements (repeated arm movement) with each
hand for 15s. Functional movements include standing, sit to stand, walking in a straight line
for 30s, walking in a straight line for 30s while counting backwards, and walking through a
narrow corridor. Gross motor movements include pouring water from a bottle and drinking
three times, arranging sheets of paper in a folder twice, and folding towels for three times.
Fine motor movements include drawing on a piece of paper, typing on a computer keyboard
for 30s, and assembling nuts and bolts for 30s. For three movements, sitting, going upstairs,
and going downstairs, there were not enough repetitions and clinical labels for the symptoms,
therefore the data for these movements were discarded in this study. The battery of tasks
were completed one after another, which lasted around 20 minutes, then repeated 6-8 times
(depending on the participant) at 30-minute intervals. After completing the first day of the
set of tasks in the clinic, participants went home and conducted their usual unscripted daily
activities without additional instructions from the doctors. On Day 4 (Visit 2), subjects visited
the laboratory in an OFF state and performed the same battery of motor tasks in the same
way as on Day 1 (Visit 1). After completing the set of tasks once, the subjects took their
medication and continued performing the battery of tasks.

For all participants, limb-specific (right arm, left arm, lower limbs) scores for each task
repetition were provided during both laboratory visits. Severity scores from 0-4 were provided
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for tremor, whereas for bradykinesia and dyskinesia, only the presence or absence of the phe-
notype. The scores of this scale correlate with the MDS-UPDRS severity scoring system scale
(0-4), with 0 being no symptoms and 4 being severe.

Figure 3: Sensor locations on participants. A - GENEActiv raw data accelerometer,
B - Pebble Smartwatch, C - Samsung Galaxy Mini. NOTE: The sensors on left
and right wrists were interchangeably used depending on the most a↵ected side of
the patient.

All participants wore the GENEActiv11 raw data accelerometer on the wrist of the most
a↵ected arm, a Pebble12 smartwatch on the wrist of the least a↵ected arm, and a Samsung
Galaxy Mini13 smartphone in a fanny pack worn in front at the waist. Figure 3 shows the
wearable sensors and their respective locations. The dataset includes raw signal files from
these wearable sensors, separate for each day. All participants had the sensors attached to
their bodies at all times while completing the set of tasks in the laboratory and at home.
Sensor data includes the raw X�Y �Z wearable acceleration signals in m/s2, the magnitude
(norm) of the signal, and timestamps in the UNIX time system. UNIX time system is the
number of seconds that have passed since the UNIX epoch. The UNIX epoch is 00:00:00
UTC on 1 January 197014. Signals were recorded in 50Hz, meaning that the data records 50

11GENEActiv Website, https://activinsights.com/technology/geneactiv/
12Pebble Smartwatch Wiki, https://en.wikipedia.org/wiki/Pebble (watch)
13Samsung Official Galaxy Mini Overview, https://www.samsung.com/galaxyace/mini overview.html
14UNIX Timestamp, https://www.unixtimestamp.com
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readings of the sensor for each second. In total, 12 raw files are accessible per participant —
readings of 3 sensors over 4 days. Figure 4 shows an example of raw signals in X � Y � Z
axis and the magnitude of that signal from one of the samples of the “walking straight” task.

Figure 4: Raw acceleration signals from one instance of an in-clinic task. The top
plot shows raw X � Y � Z signals in blue, purple, and yellow, respectively; the
bottom plot (red) shows the magnitude of those signals.

In order to label the raw accelerometer data, a task score sheet was provided, which
includes subject IDs, visit, session and repetition numbers, task codes, timestamp start and
end, and clinical labels for every phenotype (tremor, bradykinesia, dyskinesia) severity/presence
for each limb. Table 1 shows a part of the task score sheet. Activity start and end times are
given in the UNIX time system. Some of the information mentioned previously is not added in
Table 1 to preserve space; however, the table is similar to the real dataset used in this analysis.
The data in the task score table is randomized due to data privacy issues. A separate file of
task code dictionary 2 is also provided.

Subject ID Task Code Timestamp Start Timestamp End Tremor

49 BOS stndg 1003000344.96 1003000377.94 1

100 BOS wlkgs 1040000416.96 1040000449.94 0

63 NYC wlkgc 1000440499.96 1000440532.94 1

32 BOS drawg 1000120696.96 1000120721.94 2

55 NYC ntblt 1234000733.96 1234000766.94 0

Table 1: Sample task score sheet. NOTE: This sample table only replicates a part
of the actual table.
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Task Code Task Name

ftnr Finger to nose – right arm

ftnl Finger to nose – left arm

ramr Repeated arm movement – right arm

raml Repeated arm movement – left arm

stndg Standing

ststd Sit to stand

wlkgs Walking in a straight line

wlkgc Walking in a straight line while counting backwards

wlkgp Walking through a narrow passage

drnkg Pouring water from a bottle and drinking

orgpa Organizing sheets in a folder

fldng Folding towels

drawg Drawing and writing on a paper

typng Typing on a computer keyboard

ntblt Assembling nuts and bolts

Table 2: Task code dictionary. The rules in between the activities show the di↵erent
categories of the tasks.

3.2 Pre-Processing

For each subject and repetition of each activity, the raw accelerometer signals were times-
tamped and extracted per activity by using the timestamp start and end and the clinical labels
from the task score sheet. This was achieved by using the activity start and end times from
the task score sheet, looping over the raw files, and taking the signal values between the
timestamps. As previously mentioned, the battery of tasks completed in the clinic have spe-
cific durations, for example, 30 seconds for walking in a straight line. However, upon closer
inspection, it was found that the durations do not hold for any of the activities in the actual
dataset. Table 3 shows the tasks, and the average time it took to perform that activity.
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Task/Activity Average time sec.(std)

Finger-to-nose – right arm 18.56 (0.80)

Finger-to-nose – left arm 18.58 (0.72)

Repeated arm movement – right arm 18.50 (0.75)

Repeated arm movement – left arm 18.54 (0.64)

Standing 33.63 (0.75)

Sit to stand 18.38 (6.68)

Walking in a straight line 33.64 (0.70)

Walking in a straight line while counting backwards 33.37 (1.24)

Walking through a narrow passage 43.98 (15.45)

Pouring water from a bottle and drinking 36.26 (8.21)

Organizing sheets in a folder 36.96 (9.29)

Folding a towel 36.55 (10.35)

Drawing and writing on a paper 43.00 (19.49)

Typing on a computer keyboard 33.78 (1.29)

Assembling nuts and bolts 34.48 (2.64)

Table 3: Activity duration analysis. The rules in between the activities show the
di↵erent categories of the tasks.

The times are averaged over all participants and all repetitions. These di↵erences in
activity durations could be due to various manifestations of the symptoms and severities
— some patients took longer to complete a task than others; hence the duration of task
completion is not uniform.

Moreover, the counts of symptoms were analyzed from the data of the task score table,
where clinicians scored the symptoms of participants per each limb per each repetition of an
activity. It was found that the reported symptom occurrence mentioned in the initial question-
naire is not very accurate (Figure 2). A simple analysis showed that symptoms reported during
a one-time clinical questionnaire is not an accurate assessment of the disease. The plots in
Figure 5 show the actual distribution of symptoms labeled by clinicians during in-clinic task
repetitions.
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(a) Task counts for tremor severity per body part.

(b) Task counts for dyskinesia presence per body part.

(c) Task counts for bradykinesia presence per body part.

Figure 5: Symptom task counts per body part. Figures 5a 5b and 5c show the
amount of tasks where tremor, dyskinesia, and bradykinesia were present accord-
ingly.

It is clear from Figure 5 that the distribution of symptoms is very imbalanced. Most of the
clinical labels given to participants during the activities mention that there was no symptom,
either “Not Present” for bradykinesia and dyskinesia, or 0 for tremor severity. In total, 20733
clinical labels were given per body part, out of which 15969 was no tremor, 17947 was no/not
applicable bradykinesia, and no dyskinesia present in 17761 cases.

Moreover, symptom severity/presence are plotted per activity repetition to identify how
much each activity contributed to the symptom presence estimation. For tremor severity, it is
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noticeable from Figure 5a that tremor was not present during the completion of most activities,
and severe tremor was only present in very few cases (labels 3 or 4). This indicates very few
true positive labels, especially for severe tremor. The plot in Figure 6 shows the disproportional
distribution of severity scores per task.

Figure 6: Tremor labels per task repetition count before severity aggregation.

For this reason, clinical labels for tremor are aggregated and transformed into “Present”/“Not
Present” (1/0) labels, just like other symptoms. This was done by keeping all the labels for
0 severity (“Not Present”) and changing other severity scores into 1 (“Present”), given by
equation 1:

tremor =

(
0, if severity = 0

1, otherwise.
(1)

This aggregation step resulted in a new distribution of labels, changing severity scores to
symptom presence scores, as visualized in Figure 7.

18



Figure 7: Tremor labels per task repetition count after severity aggregation. The
severity scores were aggregated into one score, which indicates tremor presence.

Moreover, some movements do not include the motion of particular body parts; hence
the label “Not Applicable” was given for bradykinesia. For example, drawing does not include
any movement from the lower body since the participants were sitting during that activity.
Therefore, there could not be any slowness of movements in the lower limbs, and these were
labeled as “Not Applicable.” As visualized in Figure 8, there are many task repetitions where
bradykinesia is not applicable. For this reason, the data for the “Not Applicable” label for
bradykinesia was discarded since these labels do not hold any value. Figure 9 shows the data
distribution after removing the not applicable data.

Figure 8: Bradykinesia labels per task repetition count before the removal of not
applicable data.

19



Figure 9: Bradykinesia labels per task repetition count after the removal of not
applicable data.

No data manipulations are needed for dyskinesia since there is only data for symptom
presence and absence. Figure 10 shows the distribution of symptom presence/absence per
activity repetition count for dyskinesia.

Figure 10: Dyskinesia labels per task repetition count.

This research looks into a combination of one activity and one sensor; therefore, only the
data from the sensor of the dominant hand (right hand) and the phone in the fanny pack are
considered. The choice of using the right-hand sensor lies in the assumption that the dominant
hand of most participants (except one) is the right hand, meaning that most participants will
give priority to doing daily life activities with their right hand. Although only one sensor is used
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at a time, the goal is to detect symptoms in body parts to which a sensor is not attached.
This was achieved using a logical disjunction operator (_) to aggregate the symptom labels
from di↵erent body parts. In other words, the symptom label for an activity is “Present” if
at least one body part has symptom presence. The symptom labels were combined for each
activity and are given by the logical formulas 2 and 3,

score(L�R) = µ _ ⌫, (2)

score(L�R� LO) = (µ _ ⌫) _ ⌘, (3)

where µ and ⌫ are the clinical labels for the right and left hands accordingly, and ⌘ is the
clinical label for the lower limbs during an activity. The logical operation returns the truth value
“Present” unless all of its arguments are false (“Not Present”). First, only clinical scores from
the right hand were used to match the data from the right-hand and phone sensors, resulting
in 15 datasets for each task/sensor combination (30 total). Next, the clinical labels for the
right and left hands were aggregated into one score 2 to label the sensor data, creating 30
new datasets. In addition, the clinical score of the lower limbs and left-right hand combination
were aggregated into one label 3, creating 30 additional datasets with the combination of three
labels. These labels are then matched with both timestamped right hand and phone sensor
readings, thus totaling 90 datasets for the classification task.

During signal timestamping, it was noticed that some signals were much shorter than
the average duration analysis mentioned in Table 3. After visual inspection, it was found that
the dataset contained raw sensor files full of NaN values in between the sensor readings, and
some were even completely filled with NaNs. This resulted in issues when pre-processing the
signals.

Figure 11: Example of a signal with missing data.

Figure 11 shows an example of a signal with missing data of an activity from the right-hand
sensor. As it can be seen, the signal is 30 seconds long, but the readings make “jumps”
because of missing values in between. Such faulty signals were 3% of the overall dataset
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and were carefully inspected and removed for further analysis. Some signals also had missing
values in the duration of the activity but were not as extreme. Any signal with more than 10%
missing values was removed from the dataset because these are unsuitable for this research.
Furthermore, raw data from wearable devices usually have sensor noise and must be pre-
processed. For this reason, each accelerometer signal X � Y � Z was smoothed separately
with a second-order Butterworth band-pass filter given by Equation 4.

↵, �, � = fButter(X, Y, Z, ,�) (4)

Band-pass filters are designed to pass frequencies within a specific range and attenuate fre-
quencies outside that range. The lower bound was set to  = 0.1Hz to eliminate sensor drift,
and the upper bound was set to � = 20Hz to smooth noise and gross body movements. In
addition, vector magnitude k · k of smoothed signals ↵, �, � is then calculated by Equation
5 to acquire a scalar signal, which will not be dependent on the orientation and placement of
the sensor.

M =
��p↵2 + �2 + �2

�� (5)

All subsequent feature extraction is performed on the magnitude (M) of the signals.

3.3 Features

Two sets of features were generated in the feature engineering step — statistical features
and Fast Fourier Transform (FFT) features. The features were extracted using the tsfresh
library [9]. Statistical features are the most common features used in the literature, whereas
FFT features are additionally added for this research. Fast Fourier Transform is the discrete
Fourier transform of a sequence. The amplitude of the FFT can be used to calculate the power
spectrum of a time series, which converts the signal from the time domain into the frequency
domain by describing the distribution of power into frequency components composing that
signal. The power spectral density is defined as the discrete-time Fourier transform of the
covariance sequence [40]. The symptoms of Parkinson’s disease have specific intervals (bands)
in the frequency domain. Tremor typically occurs with a detected peak within the range of
3.5 � 12Hz frequency band [26]. Meanwhile, it was shown that bradykinesia and dyskinesia
are mostly present in the 0.5 � 1.17Hz and 1 � 4Hz frequency bands, respectively [11][38].
Therefore, the FFT features are expected to have some predictive power.

Due to varying signal and activity lengths, no windowing techniques were used. As a
result, all features are generated from the magnitude (M) of the full-length signal data of each
unique task repetition, and ground truth was labeled based on scores given by the clinicians
(+ combination scores). Table 4 lists all relevant features and their descriptions.
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Feature Description

Standard Deviation Standard deviation of the time series

Root Mean Square Root mean square (RMS) of the time series

Skewness Sample skewness of the time series

Kurtosis Kurtosis of the time series

Maximum Highest value of the time series

Mean Absolute Change Average over first di↵erences

Mean 10 Absolute Max Arithmetic mean of the 10 absolute maximum values

Mean Second Derivative Central Mean value of a central approx. of the 2nd derivative

First Location of Maximum The first location of the maximum value

Last Location of Maximum The last location of the maximum value

FFT Centroid (mean) Spectral centroid of the Fourier transform spectrum

FFT Variance Variance of the Fourier transform spectrum

FFT Skew Skew of the Fourier transform spectrum

FFT Kurtosis Kurtosis of the Fourier transform spectrum

Table 4: Feature table with descriptions.

3.4 Model Training and Validation

As visualized in Figures 7, 9, 10, the dataset is extremely non-uniformly distributed. Therefore,
before the model training, the majority class (no symptom) was randomly undersampled to
have equal parts of symptom presence and absence. This was done to have the same percentage
of samples for each class and keep the dataset balanced. Several techniques were used for the
process of model training. For the classification models, a Random Forest classifier [6] and a
Decision Trees classifier [44] were implemented for the estimation of symptom presence using
the scikit� learn library [32]. These algorithms were chosen for a few reasons. First, Jeon et
al. [24] showed that decision trees outperformed other methods when using only one wearable
sensor on the wrist, including SVMs with various kernels. Discriminant Analysis model was very
close in performance followed by a Random Forest classifier. Second, a recent paper [2] showed
that Random Forest outperformed other classifiers such as SVMs, K-nearest neighbour, and
Näıve Bayes for estimating dyskinesia in 20 subjects. Many researchers compare their results
with the SVMs for the estimation of the symptoms, yet their sample size is always limited
to only a few subjects or features. In this case, even though the study cohort was not very
small, the dataset did not consist of many severe cases; thus a mild-state and a no-symptom
state may not be linearly separable. For non-linear SVM classifiers, the complexity of the
algorithm is exponential. Kernelized SVMs compute the distance function between each point
in the dataset, and storing all of these distances will generally require between O(n2) to
O(n3) comparisons [5]. However, the time complexity for a Decision Tree classifier is in the
range of O(n)-O(n2) and it is O(nlogn) for a Random Forest classifier. Some comparisons
for the classifiers implemented in the studies mentioned in Related Work 2 showed that tree
based models outperformed other methods in performance and speed, and for that reason the
classifiers which need less computational power were chosen. Furthermore, the classifiers were
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used in combination with 10-fold nested cross-validation, which has an inner and outer loop.
Nested cross-validation was chosen to train the model on 10-folds of train/validation/test set
splits, and to optimize the hyperparameters simultaneously with a grid search technique using
the scikit�learn library [32]. The outer loop is the commonly known standard evaluation loop
of a cross-validation, which trains each split with optimal hyperparameters and averages test
errors for each split to properly evaluate the generalization performance. In the meantime, the
inner loop is responsible for maximizing the score by fitting the model to each training set, and
selecting the hyperparameters during the training on the validation set. In other words, during
each fold, each set of hyperparameters are evaluated by using the 10-fold cross-validation
that splits the train dataset into 10 folds and the accuracy for the best performing model is
chosen. In the end, the mean accuracy from all folds is calculated. Tables 5 and 6 lists the
hyperparameters for the classifiers and their values used for optimization. It is worth mentioning
that not all hyperparameters were taken into account for the minimization of model training
time and that may have resulted in slightly worse model performance.

Hyperparameter Values

Number of trees in the forest 5, 10, 20, 30, 40, 45, 50, 100, 200, 400, 500

Number of features to consider
when looking for the best split

’sqrt’, ’log2’

Table 5: The range of hyperparameter values for the Random Forest classifier.

Hyperparameter Values

Minimum number of samples to
split an internal node

2, 3, 5, 10, 20, 50, 100

Number of features to consider
when looking for the best split

’sqrt’, ’log2’

Criterion (quality of the split) ’gini’, ’entropy’, ’log loss’

Table 6: The range of hyperparameter values for the Decision Trees classifier.

Since there were many repetitions of the same activity by the same participant, there
was a possibility of data leakage. Using the same participant’s data in any of the train-
ing/test/validation sets will result in overfitting even though those are di↵erent repetitions
of the same movement. Therefore, the algorithm could potentially learn the movement pat-
tern of the participant, and for this reason, grouping was introduced inside the nested cross-
validation. The grouping procedure would return non-overlapping ID’s of the participants to
the cross-validation step, such that the same group (participant) does not appear in two
di↵erent train/validation/test set splits. The algorithm performance was evaluated by consid-
ering the average accuracy and standard deviation over the 10 folds retrieved from the nested
cross-validation step.
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4 Results

The Random Forest and Decision Trees algorithms both provided interesting results in deter-
mining a good combination of sensor and activity. The results are divided into two subsections,
one for each classifier, and the result tables are divided into six parts. For each sensor and
phenotype pair, a separate table is made stating the sensor, clinical label for the phenotype
(right, right+left, right+left+lower), tasks, and their respective mean accuracy scores and
standard deviations over ten folds. In some cases, “No Data” is reported in the tables for
dyskinesia. This is because there were not enough positive clinical labels for these activities,
making the 10-fold cross-validation meaningless. Any activity with less than 25 samples per
class has been discarded and thus marked as ”No Data.” Moreover, the “Not Applicable” label
was used instead of an accuracy score in the case of bradykinesia. In the case of ”finger to
nose left” and “repeated arm movement left,” there potentially could not be any slowness of
movements in the right hand since the right hand was not being used during those tasks. On
the other hand, ”standing” is a stationary task; therefore, no slowness of movements is possi-
ble. It is assumed that the participants were stationary during the completion of most tasks,
either sitting or standing. For this reason, lower limbs do not play any role in non-functional
movements; thus, the reported accuracy scores for the combination labels are the same in
some cases. Ultimately, two final tables are created for each classifier to emphasize the results.
No statistical tests were performed during this analysis and accuracy scores in bold show the
best performing scores (> 70%) for clarity.
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4.1 Results - Random Forest

Task
Accuracy % (std) per body part

R R-L R-L-LO

Finger to nose Left 52.17 (15.05) 40.18 (6.74) 46.45 (10.51)

Finger to nose Right 55.40 (11.57) 58.18 (13.43) 59.14 (13.26)

Repeated arm movement Left 51.54 (12.61) 52.13 (12.88) 48.49 (10.27)

Repeated arm movement Right 47.19 (15.90) 52.88 (15.88) 51.18 (20.53)

Standing 71.76 (12.60) 67.55 (8.56) 65.09 (12.35)

Sit to Stand 68.23 (16.46) 61.02 (13.79) 62.18 (12.81)

Walking straight 75.72 (12.38) 73.95 (19.67) 74.11 (17.83)

Walking counting 75.68 (22.20) 61.25 (22.38) 66.38 (18.37)

Walking narrow passage 63.24 (18.61) 61.56 (19.98) 63.67 (11.56)

Drinking 64.48 (16.12) 57.49 (14.39) 52.58 (5.49)

Organizing papers 55.35 (12.77) 64.21 (15.82) 59.49 (8.99)

Folding a towel 63.23 (18.29) 71.31 (13.47) 73.74 (21.03)

Drawing 77.12 (9.75) 67.16 (24.40) 62.28 (14.65)

Typing 55.90 (12.04) 51.64 (8.68) 50.06 (14.86)

Nuts and bolts 41.60 (11.23) 49.95 (13.01) 55.84 (10.14)

Table 7: Random Forest: results for detecting tremor per body part per task us-
ing the right hand sensor. R — Right hand ground truth; L-R — Right/Left hands
combined ground truth; R-L-LO — Right/Left/Lower body combined ground
truth. Accuracy scores higher than 70% are in bold typeface.
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Task
Accuracy % (std) per body part

R R-L R-L-LO

Finger to nose Left 40.26 (18.03) 42.75 (9.36) 43.85 (13.17)

Finger to nose Right 43.95 (12.33) 47.28 (19.88) 56.13 (18.26)

Repeated arm movement Left 53.77 (19.54) 48.40 (14.86) 51.85 (15.26)

Repeated arm movement Right 55.77 (15.40) 54.85 (17.63) 62.08 (18.27)

Standing 53.35 (20.85) 59.82 (9.89) 60.66 (9.36)

Sit to Stand 43.51 (34.12) 32.23 (24.31) 43.79 (23.22)

Walking straight 41.97 (17.09) 43.01 (31.19) 49.06 (29.52)

Walking counting 59.41 (29.58) 46.51 (24.20) 44.12 (25.00)

Walking narrow passage 48.26 (23.47) 44.99 (23.26) 46.99 (24.61)

Drinking 72.76 (17.80) 73.27 (12.75) 73.48 (19.29)

Organizing papers 59.73 (11.86) 57.03 (13.88) 71.25 (12.17)

Folding a towel 57.27 (11.10) 59.97 (23.28) 53.03 (11.25)

Drawing 60.67 (21.56) 63.37 (19.41) 61.38 (14.33)

Typing 59.42 (17.08) 63.05 (17.76) 59.43 (12.54)

Nuts and bolts 50.05 (19.03) 63.12 (14.87) 60.17 (16.93)

Table 8: Random Forest: results for detecting tremor per body part per task
using the lower body sensor. R — Right hand ground truth; L-R — Right/Left
hands combined ground truth; R-L-LO — Right/Left/Lower body combined
ground truth. Accuracy scores higher than 70% are in bold typeface.
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Task
Accuracy % (std) per body part

R R-L R-L-LO

Finger to nose Left 75.52 (11.67) 71.24 (14.17) 70.23 (8.92)

Finger to nose Right 52.81 (33.64) 49.04 (19.78) 53.67 (8.34)

Repeated arm movement Left 58.40 (19.33) 64.07 (15.14) 55.54 (13.60)

Repeated arm movement Right 55.33 (20.09) 52.67 (14.94) 49.33 (11.07)

Standing 62.53 (18.99) 31.34 (15.31) 51.87 (15.43)

Sit to Stand 59.81 (22.01) 54.00 (23.66) 57.88 (20.26)

Walking straight 55.51 (14.96) 49.01 (20.17) 49.01 (20.17)

Walking counting 53.75 (13.24) 56.98 (9.68) 50.99 (14.56)

Walking narrow passage 55.99 (19.36) 51.87 (14.00) 46.78 (15.99)

Drinking 70.24 (38.67) 70.52 (19.66) 61.25 (9.78)

Organizing papers 77.50 (26.89) 63.00 (38.43) 48.09 (14.36)

Folding a towel 62.56 (34.43) 55.36 (25.20) 59.17 (12.72)

Drawing No Data 63.17 (31.19) 62.12 (14.77)

Typing No Data No Data 45.03 (14.47)

Nuts and bolts 52.08 (38.34) 52.08 (38.34) 51.33 (5.10)

Table 9: Random Forest: results for detecting dyskinesia per body part per
task using the right hand sensor. R — Right hand ground truth; L-R —
Right/Left hands combined ground truth; R-L-LO — Right/Left/Lower body com-
bined ground truth. Accuracy scores higher than 70% are in bold typeface.
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Task
Accuracy % (std) per body part

R R-L R-L-LO

Finger to nose Left 62.76 (20.30) 47.93 (25.91) 50.38 (8.67)

Finger to nose Right 77.45 (29.18) 60.54 (18.51) 58.20 (6.24)

Repeated arm movement Left 57.49 (17.83) 60.87 (12.73) 59.31 (20.00)

Repeated arm movement Right 61.96 (27.48) 55.18 (18.03) 59.14 (14.60)

Standing 57.33 (41.97) 56.25 (22.92) 50.44 (22.15)

Sit to Stand 52.79 (42.21) 57.19 (29.10) 58.58 (30.02)

Walking straight 57.69 (23.94) 58.63 (25.93) 58.63 (25.93)

Walking counting 37.97 (20.74) 42.35 (16.51) 42.35 (16.51)

Walking narrow passage 51.85 (22.27) 49.47 (23.07) 58.65 (19.95)

Drinking 51.67 (42.46) 56.75 (36.95) 57.97 (13.39)

Organizing papers No Data No Data 43.30 (9.97)

Folding a towel No Data No Data 60.30 (13.35)

Drawing No Data 61.67 (43.49) 57.15 (19.63)

Typing No Data No Data 50.79 (15.49)

Nuts and bolts 74.17 (26.99) 74.17 (26.99) 50.50 (15.70)

Table 10: Random Forest: results for detecting dyskinesia per body part per
task using the lower body sensor. R — Right hand ground truth; L-R —
Right/Left hands combined ground truth; R-L-LO — Right/Left/Lower body com-
bined ground truth. Accuracy scores higher than 70% are in bold typeface.
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Task
Accuracy % (std) per body part

R R-L R-L-LO

Finger to nose Left Not Applicable 53.11 (7.31) 53.11 (7.31)

Finger to nose Right 77.10 (11.45) 77.10 (11.45) 77.10 (11.45)

Repeated arm movement Left Not Applicable 57.02 (13.28) 57.02 (13.28)

Repeated arm movement Right 46.07 (18.00) 46.07 (18.00) 46.07 (18.00)

Standing Not Applicable Not Applicable Not Applicable

Sit to Stand 54.52 (12.46) 55.46 (15.02) 55.91 (12.59)

Walking straight 70.25 (13.14) 58.04 (14.08) 61.23 (15.79)

Walking counting 67.81 (14.66) 60.04 (13.21) 60.93 (17.04)

Walking narrow passage 62.85 (14.19) 60.59 (15.50) 63.16 (7.47)

Drinking 64.83 (19.85) 70.04 (13.86) 70.04 (13.86)

Organizing papers 72.12 (22.98) 72.12 (22.98) 72.12 (22.98)

Folding a towel 59.13 (21.21) 62.44 (9.61) 62.44 (9.61)

Drawing 75.38 (15.41) 61.84 (18.96) 61.84 (18.96)

Typing 77.71 (30.42) 73.24 (27.34) 73.24 (27.34)

Nuts and bolts 88.11 (14.44) 92.21 (9.97) 92.21 (9.97)

Table 11: Random Forest: results for detecting bradykinesia per body part
per task using the right hand sensor. R — Right hand ground truth; L-R —
Right/Left hands combined ground truth; R-L-LO — Right/Left/Lower body com-
bined ground truth. Accuracy scores higher than 70% are in bold typeface.
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Task
Accuracy % (std) per body part

R R-L R-L-LO

Finger to nose Left Not Applicable 56.78 (27.08) 56.78 (27.08)

Finger to nose Right 79.96 (16.24) 79.96 (16.24) 79.96 (16.24)

Repeated arm movement Left Not Applicable 49.71 (25.17) 49.71 (25.17)

Repeated arm movement Right 58.17 (18.74) 58.17 (18.74) 58.17 (18.74)

Standing Not Applicable Not Applicable Not Applicable

Sit to Stand 35.20 (21.24) 35.20 (21.24) 46.35 (27.88)

Walking straight 56.39 (20.53) 57.57 (9.79) 63.72 (16.64)

Walking counting 67.88 (19.43) 59.48 (18.72) 60.04 (23.28)

Walking narrow passage 68.49 (22.69) 62.50 (16.67) 60.39 (12.70)

Drinking 57.88 (36.64) 57.88 (36.64) 57.88 (36.64)

Organizing papers 72.89 (16.17) 72.89 (16.17) 72.89 (16.17)

Folding a towel 58.77 (30.98) 67.27 (23.83) 67.27 (23.83)

Drawing 78.18 (21.99) 52.34 (17.38) 52.34 (17.38)

Typing 50.69 (41.50) 50.69 (41.50) 50.69 (41.50)

Nuts and bolts 36.38 (32.14) 36.38 (32.14) 36.38 (32.14)

Table 12: Random Forest: results for detecting bradykinesia per body part
per task using the lower body sensor. R — Right hand ground truth; L-R —
Right/Left hands combined ground truth; R-L-LO — Right/Left/Lower body com-
bined ground truth. Accuracy scores higher than 70% are in bold typeface.
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4.2 Results - Decision Trees

Task
Accuracy % (std) per body part

R R-L R-L-LO

Finger to nose Left 54.89 (12.83) 44.62 (9.53) 46.15 (11.85)

Finger to nose Right 52.49 (9.80) 50.57 (12.83) 54.60 (14.84)

Repeated arm movement Left 49.28 (15.53) 52.24 (11.88) 50.11 (9.67)

Repeated arm movement Right 50.73 (8.31) 47.52 (12.57) 45.21 (16.16)

Standing 63.10 (10.15) 61.50 (10.74) 58.92 (10.81)

Sit to Stand 73.79 (17.91) 65.88 (20.04) 55.79 (17.77)

Walking straight 66.76 (13.99) 76.74 (24.93) 76.74 (24.93)

Walking counting 71.59 (21.40) 61.97 (16.33) 61.97 (16.33)

Walking narrow passage 65.01 (15.59) 62.21 (17.02) 60.73 (16.95)

Drinking 61.73 (8.58) 61.17 (13.62) 50.61 (10.39)

Organizing papers 57.08 (14.31) 59.92 (17.09) 52.34 (13.75)

Folding a towel 61.49 (19.62) 70.76 (12.83) 71.17 (17.77)

Drawing 65.01 (16.39) 56.94 (18.29) 63.93 (8.32)

Typing 46.65 (12.99) 49.46 (8.81) 47.47 (9.83)

Nuts and bolts 49.77 (15.46) 54.68 (12.78) 53.42 (9.29)

Table 13: Decision Trees: results for detecting tremor per body part per task us-
ing the right hand sensor. R — Right hand ground truth; L-R — Right/Left hands
combined ground truth; R-L-LO — Right/Left/Lower body combined ground
truth. Accuracy scores higher than 70% are in bold typeface.
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Task
Accuracy % (std) per body part

R R-L R-L-LO

Finger to nose Left 51.31 (11.30) 49.86 (11.78) 53.79 (13.31)

Finger to nose Right 43.42 (11.64) 49.75 (16.00) 56.45 (19.33)

Repeated arm movement Left 54.21 (18.40) 47.88 (10.16) 53.72 (10.08)

Repeated arm movement Right 56.05 (10.46) 51.35 (12.67) 59.21 (14.88)

Standing 46.32 (16.81) 59.77 (12.12) 54.22 (7.13)

Sit to Stand 56.01 (34.28) 37.49 (27.82) 45.20 (28.31)

Walking straight 51.09 (30.42) 47.41 (20.66) 47.41 (20.66)

Walking counting 49.32 (19.80) 43.33 (18.05) 43.33 (18.05)

Walking narrow passage 47.23 (27.24) 41.67 (20.34) 41.67 (20.34)

Drinking 64.48 (14.87) 66.16 (15.11) 65.02 (16.31)

Organizing papers 64.48 (16.21) 42.36 (9.93) 64.13 (8.42)

Folding a towel 60.35 (11.73) 64.14 (14.49) 56.77 (12.48)

Drawing 63.08 (20.33) 60.68 (18.46) 68.41 (16.12)

Typing 49.70 (12.20) 57.20 (18.89) 59.64 (15.80)

Nuts and bolts 48.82 (19.41) 58.75 (19.43) 69.55 (18.57)

Table 14: Decision Trees: results for detecting tremor per body part per
task using the lower body sensor. R — Right hand ground truth; L-R —
Right/Left hands combined ground truth; R-L-LO — Right/Left/Lower body com-
bined ground truth. Accuracy scores higher than 70% are in bold typeface.
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Task
Accuracy % (std) per body part

R R-L R-L-LO

Finger to nose Left 70.64 (11.67) 66.44 (17.48) 63.88 (10.68)

Finger to nose Right 34.10 (30.66) 52.86 (11.09) 48.03 (12.79)

Repeated arm movement Left 53.43 (13.96) 59.51 (15.39) 52.32 (17.73)

Repeated arm movement Right 59.61 (18.44) 54.19 (13.53) 51.09 (8.60)

Standing 51.41 (25.06) 44.90 (18.97) 50.40 (18.37)

Sit to Stand 57.92 (26.45) 52.95 (21.95) 51.73 (16.46)

Walking straight 61.52 (18.00) 36.30 (16.92) 36.30 (16.92)

Walking counting 53.50 (9.64) 53.53 (11.50) 49.74 (13.17)

Walking narrow passage 52.69 (20.43) 54.74 (9.32) 54.08 (17.76)

Drinking 58.99 (37.45) 67.40 (18.56) 56.64 (13.87)

Organizing papers 62.67 (30.37) 47.00 (36.28) 48.82 (8.52)

Folding a towel 55.06 (33.62) 47.62 (32.27) 46.69 (10.45)

Drawing 31.83 (38.99) 57.72 (34.29) 53.84 (12.98)

Typing No Data No Data 42.49 (11.72)

Nuts and bolts 47.92 (36.38) 47.92 (36.38) 49.34 (9.11)

Table 15: Decision Trees: results for detecting dyskinesia per body part per
task using the right hand sensor. R — Right hand ground truth; L-R —
Right/Left hands combined ground truth; R-L-LO — Right/Left/Lower body com-
bined ground truth. Accuracy scores higher than 70% are in bold typeface.
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Task
Accuracy % (std) per body part

R R-L R-L-LO

Finger to nose Left 61.18 (23.83) 45.81 (24.12) 46.96 (13.00)

Finger to nose Right 68.12 (30.67) 62.65 (17.64) 62.82 (11.08)

Repeated arm movement Left 53.49 (20.01) 59.13 (9.02) 67.54 (17.77)

Repeated arm movement Right 65.46 (28.46) 48.96 (19.20) 55.74 (13.11)

Standing 61.02 (32.01) 58.33 (30.33) 70.07 (26.34)

Sit to Stand 71.27 (34.13) 62.24 (26.61) 59.36 (29.14)

Walking straight 57.44 (28.96) 51.87 (26.67) 51.87 (26.67)

Walking counting 48.94 (17.13) 37.38 (19.92) 37.38 (19.92)

Walking narrow passage 51.13 (26.44) 61.44 (22.34) 57.13 (29.24)

Drinking 55.00 (42.20) 68.75 (32.13) 57.44 (9.39)

Organizing papers No Data No Data 47.20 (16.53)

Folding a towel No Data No Data 57.89 (12.58)

Drawing No Data 53.33 (39.30) 48.23 (26.32)

Typing No Data No Data 56.40 (10.61)

Nuts and bolts 71.67 (24.78) 71.67 (24.78) 46.96 (13.00)

Table 16: Decision Trees: results for detecting dyskinesia per body part per
task using the lower body sensor. R — Right hand ground truth; L-R —
Right/Left hands combined ground truth; R-L-LO — Right/Left/Lower body com-
bined ground truth. Accuracy scores higher than 70% are in bold typeface.
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Task
Accuracy % (std) per body part

R R-L R-L-LO

Finger to nose Left Not Applicable 51.09 (14.52) 51.09 (14.52)

Finger to nose Right 66.51 (11.75) 66.51 (11.75) 66.51 (11.75)

Repeated arm movement Left Not Applicable 54.10 (16.35) 54.10 (16.35)

Repeated arm movement Right 52.26 (13.70) 52.26 (13.70) 52.26 (13.70)

Standing Not Applicable Not Applicable Not Applicable

Sit to Stand 64.34 (26.56) 64.34 (26.56) 64.77 (11.67)

Walking straight 67.18 (16.07) 60.30 (10.51) 58.36 (15.54)

Walking counting 61.38 (15.11) 55.24 (11.31) 56.67 (18.73)

Walking narrow passage 57.85 (19.89) 58.30 (10.78) 51.89 (15.42)

Drinking 69.50 (20.62) 69.50 (20.62) 69.50 (20.62)

Organizing papers 70.64 (15.29) 70.64 (15.29) 70.64 (15.29)

Folding a towel 70.31 (19.90) 74.68 (13.45) 74.68 (13.45)

Drawing 62.92 (18.60) 56.26 (10.93) 56.26 (10.93)

Typing 74.29 (30.05) 46.06 (30.14) 46.06 (30.14)

Nuts and bolts 72.40 (30.77) 76.36 (29.64) 76.36 (29.64)

Table 17: Decision Trees: results for detecting bradykinesia per body part
per task using the right hand sensor. R — Right hand ground truth; L-R —
Right/Left hands combined ground truth; R-L-LO — Right/Left/Lower body com-
bined ground truth. Accuracy scores higher than 70% are in bold typeface.

36



Task
Accuracy % (std) per body part

R R-L R-L-LO

Finger to nose Left Not Applicable 64.93 (11.05) 64.93 (11.05)

Finger to nose Right 78.18 (12.92) 78.18 (12.92) 78.18 (12.92)

Repeated arm movement Left Not Applicable 43.36 (20.24) 43.36 (20.24)

Repeated arm movement Right 47.65 (22.64) 47.65 (22.64) 47.65 (22.64)

Standing Not Applicable Not Applicable Not Applicable

Sit to Stand 37.73 (24.92) 37.73 (24.92) 38.64 (26.74)

Walking straight 46.16 (16.95) 48.62 (7.90) 52.19 (20.39)

Walking counting 55.36 (22.61) 64.72 (16.82) 68.24 (17.93)

Walking narrow passage 56.39 (22.46) 56.23 (21.03) 50.93 (17.23)

Drinking 72.28 (26.41) 72.28 (26.41) 72.28 (26.41)

Organizing papers 75.88 (18.38) 75.88 (18.38) 75.88 (18.38)

Folding a towel 52.41 (30.67) 56.35 (27.85) 56.35 (27.85)

Drawing 67.43 (21.50) 56.49 (25.91) 56.49 (25.91)

Typing 58.28 (42.18) 58.28 (42.18) 58.28 (42.18)

Nuts and bolts 38.53 (32.27) 38.53 (32.27) 38.53 (32.27)

Table 18: Decision Trees: results for detecting bradykinesia per body part
per task using the lower body sensor. R — Right hand ground truth; L-R —
Right/Left hands combined ground truth; R-L-LO — Right/Left/Lower body com-
bined ground truth. Accuracy scores higher than 70% are in bold typeface.
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4.3 Results - Review

Task
Right Hand Sensor

R R-L R-L-LO

Finger to nose Left X X X
Finger to nose Right X
Standing X
Walking straight XX X X
Walking counting X
Drinking X X X
Organizing papers X X
Folding a towel X X
Drawing XX
Typing X X
Nuts and bolts X X

Table 19: Final results for the likelihood (> 70% accuracy) of symptom detection
with the Random Forest classifier using the right hand sensor. X — Tremor; X
— Dyskinesia; X — Bradykinesia. The notation of ground truth columns is the
same as in all other result tables.

Task
Lower Body Sensor

R R-L R-L-LO

Finger to nose Right XX
Drinking X X X
Organizing papers X
Drawing X
Nuts and bolts X

Table 20: Final results for the likelihood (> 70% accuracy) of symptom detection
with the Random Forest classifier using the lower body sensor. X — Tremor; X
— Dyskinesia; X — Bradykinesia. The notation of ground truth columns is the
same as in all other result tables.
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Task
Right Hand Sensor

R R-L R-L-LO

Finger to nose Left X
Sit to Stand X
Walking straight X
Walking counting X
Organizing papers X
Folding a towel X XX X
Typing X
Nuts and bolts X X

Table 21: Final results for the likelihood (> 70% accuracy) of symptom detection
with the Decision Trees classifier using the right hand sensor. X — Tremor; X
— Dyskinesia; X — Bradykinesia. The notation of ground truth columns is the
same as in all other result tables.

Task
Lower Body Sensor

R R-L R-L-LO

Finger to nose Right X
Standing X
Sit to Stand X
Drinking X
Organizing papers X
Nuts and bolts X

Table 22: Final results for the likelihood (> 70% accuracy) of symptom detection
with the Decision Trees classifier using the lower body sensor. X — Tremor; X
— Dyskinesia; X — Bradykinesia. The notation of ground truth columns is the
same as in all other result tables.
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5 Discussion

Various Parkinson’s disease symptom detection techniques have been investigated in many
works included in the Related Work section of this research. Some studies have employed
models to estimate the disease with the help of two or more sensors for one symptom only
[23][22]. However, it is very impractical for people to have multiple sensors on their bodies all
day. This research aimed to discover the possibility of detecting Parkinson’s disease symptoms
using only one sensor and acquiring information about which daily activities are good predictors
of the presence of each symptom. Daily task observations, such as those mentioned in this
study, allow us to look at the symptoms from the perspective of known body movements
instead of unknown daily data. The models used to achieve these results were the same
Random Forest and Decision Tree classifier models for all tasks and symptoms, with minor
adjustments in the hyperparameters that were optimized during the nested cross-validation.
Two aggregated tables are created to emphasize the results for each algorithm — Table 19
and 21 for the right hand sensor and Table 20 22 for the lower body sensor results. All tables
indicate which motor tasks are good predictors of the presence of Parkinson’s disease symptoms
per activity per body part. Each symptom is marked with a colored check mark to highlight
the model’s e↵ectiveness for the mentioned task, body part, and symptom. Only the activities
having at least 70% accuracy are mentioned with colored ticks. The orange tick represents
tremor; red tick represents dyskinesia; blue tick represents bradykinesia. Comparing the results
from these summarized tables, it is obvious that the sensor on the dominant hand is superior
in detecting Parkinson’s disease symptoms in the upper extremities of the body compared to
results from the lower body sensor. Notably, the right-hand sensor could detect dyskinesia and
tremor in the lower body in some cases, whereas the lower-body sensor only in one case for
both classifiers. In the case of the Decision Tree classifier, the detection of dyskinesia su↵ered
while some of the fine and gross motor movements showed similar results to the Random
Forest algorithm. Unfortunately, the Decision Tree algorithm was not able to detect tremor in
any of the cases using lower body sensor. However, these results are not significant to conclude
that using the right-hand sensor will always be accurate enough to detect symptoms in the
body’s lower extremities.

5.1 Tremor

Tables 7 and 8 show the results of the right hand and lower body sensors for detecting
tremor using the Random Forest classifier. Considering the fact that before the pre-processing
step most common tremor severity label was 1 (slight tremor), the results are not surprising.
Accuracy scores above 70% are reached in some activities for detecting tremor in the right hand
using the right-hand sensor. These activities include “standing”, “walking counting”, “walking
straight”, “drawing” with accuracy scores of 71.76%, 75.68%, 75.72%, 77.12% respectively.
On the other hand, the right-hand sensor data did not perform as well in detecting tremor on
the other parts of the body, except when the participants performed the “walking straight” and
“folding a towel” activities with mean accuracy scores ranging from 71% up to 74%. In the
“walking straight” task, the high accuracy score could be because the activity is usually done
in a controlled manner. However, as seen in all walking tasks, the accuracy scores improved
and had a lower standard deviation when the symptom presence score of the lower limbs was
aggregated to the ground truth. This shows that the right-hand sensor can detect tremor in
the lower extremities with better accuracy than on the left hand. In the case of the lower
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body sensor, some interesting results have emerged. While the lower body sensor showed poor
results for most activities, the “drinking” task showed 73% accuracy for detecting tremor
anywhere in the body. This is because pouring water and drinking it from glass requires
immense concentration and balance, so the water does not get spilled. We can speculate that
tremor manifests in the whole body, and the body trembles when bringing the arm close to
the body, for example, when drinking water. Other performed tasks are more or less free body
movements. For example, dropping a towel or a piece of paper is not as crucial as dropping
a glass of water; thus, such free movement activities have more room for error. For this
reason, tremor did not manifest in the signals of the lower body sensor in most activities.
Moreover, the Decision Tree classifier showed similar results for “sit to stand” and “walking
counting” activities, with accuracy scores of 73.79% and 71.59% respectively to detect tremor
in the right-hand using the right hand sensor. These results are represented in the Tables 13
and 14. In the case of detecting tremor on the other parts of the body with the right hand
sensor, “walking straight” and “folding a towel” activities performed relatively well in detecting
tremor in any of the upper extremities of the body with accuracy scores of 76.74% and 70.76%
accordingly. Meanwhile, the Decision Tree classifier was able to detect tremor in the lower body
only during the “folding a towel” activity with a mean accuracy score of 71.17% when using
the right-hand sensor. Unfortunately, the Decision Tree classifier showed no consistent results
in accurately detecting tremor using the lower body sensor; however, some promising results
in detecting tremor when performing gross body movements such as “drinking”, “organizing
papers” and “folding a towel” activities. Generally, the Random Forest classifier showed to be
e↵ective in detecting tremor during more activities than the Decision Tree classifier when using
the right-hand sensor. The Decision Tree classifier showed no promising results in detecting
tremor when using the lower body sensor.

5.2 Dyskinesia

For dyskinesia presence detection with the Random Forest classifier, right-hand and lower-body
sensor results are interpreted from Tables 9 and 10 accordingly. For the right-hand sensor, only
three activities showed promising results — “finger to nose left,” “drinking,” and “organizing
papers.” It was explicitly mentioned in one of the studies that only one wrist-worn sensor is
enough to predict dyskinesia when the arms are in extended positions [27]. The “finger to nose
left” task involves the extension of the left arm, and the acquired results for this task validate
the findings of previous researchers. Accuracy of 75% was achieved for detecting dyskinesia
on the right hand, 71% if we consider both hands, and 70% if we consider dyskinesia presence
in the lower body too. However, no such results are achieved for the same task with the right
hand (“finger to nose right”). If we follow the logic, the extension of the right hand triggers
dyskinesia in the left hand, but since the right-hand sensor is far from the left hand, the sensor
did not record those symptom manifestations. Furthermore, the model performed relatively well
when assessing the gross motor skills with an accuracy score of 77.50% for the “organizing
papers” task. For the “drinking” activity, the right-hand sensor showed similar results of 70%
accuracy in detecting dyskinesia in the right hand and the left hand. However, the standard
deviation changed from 38.67 for only the right hand to 19.66 for both hands, showing that
the right-hand sensor is a good sensor placement for detecting dyskinesia in the upper limbs
of the body when drinking water. In addition, the lower-body sensor shows interesting results
in detecting dyskinesia in the upper body. In this case, the “finger to nose” movements again
showed high accuracies, with 62.76% and 77.45% accuracy for the left and right hands. This
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result shows that the lower-body sensor can detect dyskinesia in the upper extremities when
the limbs are fully extended. However, the accuracy is much higher during the extension of the
dominant hand (“finger to nose right”). Moreover, the lower body sensor showed an accuracy
score of 74.14% in detecting dyskinesia in the upper limbs during the “assembling nuts and
bolts” task, which requires fine motor skills. Once more, we may speculate that dyskinesia
can manifest anywhere in the body during fine motor movements. Unfortunately, the model
showed no potential results in dyskinesia presence detection in the lower extremities of the
body. Furthermore, Tables 15 and 16 show the mean accuracy scores for the Decision Tree
classifier results. Most notably, the “finger to nose left” task accuracy for the right hand
was very close to the Random Forest classifier with an accuracy score of 70.64%. However,
detecting dyskinesia in the other parts of the body with the right-hand sensor for the same
activity, although similar, was not as successful with this algorithm. Accuracy score of 66.44%
was achieved if we consider both hands, and 63.88% if we consider dyskinesia presence in
the lower body. In general, the Decision Tree classifier performed poorly during other tasks
compared to the Random Forest classifier. Moreover, in the case of the lower-body sensor,
mean accuracy scores of 71.27% and 71.67% were achieved for detecting dyskinesia in the
right hand during the “sit to stand” and “nuts and bolts” tasks accordingly. No such results
were achieved in other movements, yet the combination of the lower-body sensor and the
Decision Tree classifier was able to detect dyskinesia in the lower body of the participants
when they were performing the “standing” activity with an accuracy score of 70.07%. What’s
more, accuracy scores ranging from 62.65% to 68.12% were achieved for various body parts
when performing the “finger to nose right” movement, and an accuracy score of 68.75%
was achieved for detecting dyskinesia in both hands during the “drinking” task. In general,
the Random Forest classifier outperformed the Decision Tree classifier when using the right
hand sensor. However, although the accuracy scores for some tasks were better when using
the Random Forest classifier, the Decision Tree classifier showed more consistent results in
detecting dyskinesia using the lower-body sensor.

5.3 Bradykinesia

Bradykinesia results for the Randoom Forest classifier are represented in the tables 11 and 12.
The tables indicate that the model performed best in detecting bradykinesia using the right-
hand sensor. The best results are achieved during the execution of gross and fine motor skills
tasks such as “drinking,” “organizing papers,” “drawing,” “typing,” and “assembling nuts
and bolts.” Accuracy of 77.10% was achieved for the “finger to nose right” task using the
right-hand sensor and the right hand score. These results are expected since this clinical task is
a very controlled movement, and the sensor on the limb will register any distorted movement
patterns. For the fine motor skills, accuracy results of 75.38% for “drawing,” 88.11% for
“assembling nuts and bolts,” and 77.71% for “typing” were achieved in detecting bradykinesia
in the right hand. For gross motor skills, accuracy results of 64.83% for “drinking” and 72.12%
for “organizing papers” were achieved. Additionally, taking into account the symptom presence
in the left hand increased the accuracy of bradykinesia detection to 92.21% while doing the
“assembling nuts and bolts” activity, and to 70.04% for the “drinking” task. Fair accuracy
was also achieved during the walking movements with 70.25% for “walking straight,” 67.81%
for “walking while counting,” and 62.85% for “walking through a narrow passage” tasks.
The accuracy decreased in all other cases when left- and right-hand scores were combined;
however, there was a slight increase when the score for the lower body was also taken into
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account. In the case of the lower body sensor, although with a slightly increased standard
deviation, similar results were achieved for the activities “finger to nose right,” “organizing
papers,” and “drawing,” with accuracy scores of 79.96%, 72.89%, 78.18% accordingly. These
results show that slowness of movements in the upper limbs may be possible to detect using
a sensor located in the lower body of the patient. It is worth mentioning that the lower body
was inactive during non-functional movements. Therefore, the scores reported in the third
column (R-L-LO) are not considered practical results. The same principle is applied to the
second column of results tables (R-L) because, in some cases, these tasks were performed only
with the right hand. Overall, these results show that slowness of movements (bradykinesia)
is most detectable with the right-hand sensor when performing fine motor movements, which
need attention to detail. For the Decision Tree classifier, Tables 17 and 18 show the results
for detecting bradykinesia using the right-hand sensor and the lower-body sensor accordingly.
Although some of the results are comparable to the Random Forest classifier, the Decision Tree
classifier performed worse in most cases. In detail, the performance for detecting bradykinesia
in the right hand for “finger to nose right”, “organizing papers”, “typing” and “nuts and
bolts” tasks got worse by a couple percent with accuracy scores of 66.51%, 70.64%, 74.29%,
72.40% accordingly. The “walking straight” tasks performed similarly but worse, resulting in
a sub-70% accuracy for this task. The “drinking” task showed more consistent results with
the use of the Decision Tree classifier. However, accuracy scores of 70.31% and 74.68% were
achieved for the “folding a towel” task when considering bradykinesia in the right hand and
both hands accordingly, using the right-hand sensor. In the case of the lower-body sensor, the
results are mixed. The Decision Tree classifier showed similar results for the “finger to nose
right” and “organizing papers” tasks with accuracy scores of 78.18% and 75.88% for detecting
bradykinesia in the right hand respectively. However, the Decision Tree classifier outperformed
Random Forest on the “drinking” task for the right hand with an accuracy score of 72.28%.
As a whole, the results of the two algorithms for bradykinesia, both resulted in comparable
accuracy scores for most tasks. Although the Decision Tree classifier performed similarly to
the Random Forest classifier for the lower-body sensor, overall, the Random Forest classifier
could detect bradykinesia during more activities when the right-hand sensor was used.

5.4 Summary

To summarize the results of both classifiers, the Random Forest classifier showed robust results
in detecting Parkinson’s disease symptoms during more activities compared to the Decision
Tree classifier. The average accuracy scores for both classifiers for all tasks per ground truth
were fairly similar yet the Random Forest classifier had higher average accuracy. Both clas-
sifiers showed consistent results in detecting bradykinesia when the patients were performing
fine or gross motor movements. What’s more, both classifiers had comparable results for
detecting tremor when the patients were performing functional tasks such as walking or stand-
ing. However, the Random Forest classifier could detect all symptoms in more diverse cases
(tasks). Furthermore, the Decision Tree classifier was unable to detect tremor when using the
lower-body sensor. All in all, the Random Forest classifier showed to be superior in detecting
Parkinson’s disease symptoms with overall higher accuracy scores.
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5.5 Limitations and Future Work

Several limitations of this study should be noted. Not all hyperparameters were optimized
for both algorithms during model training, thus resulting in not consistent results in some
cases where for some activities there was a big gap in accuracy scores when comparing both
classifiers. Accuracy is the main evaluation metric of the algorithm performance used in this
work because the majority class was undersampled, resulting in a balanced dataset. Having
the same amount of classes makes accuracy a valid metric to use. However, no statistical
significance testing was done. Accuracy may not be useful in clinical conditions, and sensitivity
and specificity may be better metrics for a general approach. In most cases, the specificity
trade-o↵ was too high because most symptom manifestations were very slight. These metrics
could potentially be improved by recruiting a cohort with more severe cases, depending on
the clinical use of this method. Furthermore, this study looks at only one sensor/task pair,
and the observations of a task were limited to a single wearable sensor. The left-hand sensor
was not used in this research on account of the assumption that all participants (except one)
are right-handed, and they are more likely to perform activities with their right hand. As a
result, poor accuracy scores were achieved in particular scenarios to detect the symptoms,
especially those not present on the limb where the sensor is located. Wearing more than one
sensor on the body may be inconvenient for some people with Parkinson’s disease. However,
many people these days have both a smartphone in their pocket and a smartwatch worn on
their wrist. Future work may combine smartphone and smartwatch observations for a more
robust symptom presence classification method. Additionally, there are many similarities in the
activities mentioned in this work, such as the walking tasks and gross/fine motor movement
activities. It is possible to use the similarities of these activities by learning the tasks in parallel,
and this could be achieved by using a multitask learning approach [8].
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6 Conclusion

To conclude, this research attempted to discover the possibility of detecting Parkinson’s disease
symptoms in di↵erent body parts using only one sensor, either on the dominant hand (right
hand) or a phone. In addition, daily life activities were used to identify during which activities
the symptoms are most probably to manifest. The data for this research included clinical scores
for each limb, labeled by clinicians while those activities were performed. The accuracy of both
implemented classifiers were compared and it was observed that the Random Forest classifier
outperformed the Decision Tree classifier. All things considered, the acquired results state that
not all daily life activities are good predictors of tremor, dyskinesia, or bradykinesia presence.
For example, good results were achieved for bradykinesia and tremor detection in the upper
limbs during fine and gross motor movement tasks using the right-hand sensor. However, in
most cases, estimating the presence of dyskinesia showed to be inaccurate with this method
and additional steps may be needed. All in all, no one daily activity and sensor combination
proved to be superior in detecting all symptoms in every part of the body, and an individual
approach may be needed depending on clinical and patient needs.
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