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Abstract

The aim of this research is to find an algorithm that detects points of interest (POIs) from
small-scale GPS data. Small-scale GPS data is GPS data collected in a small area. The data
used in this research is simulated data that aims to represent GPS data recorded in real life.
The simulation is based of the Vossenberg Park in Kaatsheuvel. The simulation allows us
the generate a large dataset. The Vosssenberg Park belongs to the adjacent retirement home.
Therefore it is often used by elderly with dementia. The detected points of interest can be
used when designing a park that is used by these people. The park is relatively small scale for
GPS research. This makes it more difficult since GPS data is not always perfectly accurate.
The data will most likely contain noise. To stay as close as possible to reality, this noise is
also simulated.

We detect POIs using staypoints. Staypoints are places where the holder of a GPS tracker is
located for an extended period of time. These staypoints can be seen as POIs for an individual
GPS trace. After combining staypoints from multiple traces, we will obtain the POIs we are
looking for. We will compare the C-DBSCAN algorithm to a baseline algorithm using three
performance indicators. Firstly, the average percentage of correctly found POIs. This is the
percentage of the ground truth POIs that the algorithm found. Secondly, the average deviation
of the correctly detected POIs to the ground truth POIs. This is measured in meters and tells
us about the accuracy of the algorithm. Lastly, the average number of false positives. A false
positive is a detected point that does not exist in the ground truth. The experiments suggest
that the C-DBSCAN algoritm finds more actual POIs at the cost of producing more false
positives. Therefore the use of either of the two methods depends on the situation.
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1 Introduction

This thesis focuses on a park called Vossenberg Park. See Figure 1 for an overview of the park.
This park is mainly used by elderly with dementia from the adjacent care home. The goal is to
find out how these people use this park. By studying the behaviour of the elderly we can obtain
insight in how to design parks for these people in the future. We will be looking at points of interest
(POIs) specifically. These POIs are hotspots, meaning they are often visited by different people.
They show what areas of the park the elderly use and what parts they do not use. It might be that
some benches are used frequently, while others are never used. The frequently used bench will be
a POI in this case. This gives insight in what the optimal position for a bench is. For example,
not too far from the entrance of the park or vice versa. All of this information can help to design
dementia-friendly parks in the future.

We will be looking at point of interest (POI) extraction from small-scale GPS data. Small-scale
GPS data is collected within a small area. We define a small area to be smaller than a city block or
a neighborhood. This small scale is a challenge since GPS data is not always very accurate. GPS
data can contain a lot of noise. We want to find an algorithm that can be used to find points of
interest in the Vossenberg park in Kaatsheuvel. This algorithm should be able to handle the noise
that comes with GPS data.
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Figure 1: Park Vossenberg

The process of finding POIs consists of two main steps. First we need to extract staypoints from
the individual walkers. These staypoints can be seen as POIs for a single walker. After this we
create clusters from these staypoints. The resulting clusters are the detected POls.



This means we are dealing with a clustering problem. We want to find a place that multiple
people visit. Clustering is unsupervised, meaning it does not train on a dataset with labels. A
popular clustering algorithm that can handle noise is the ”Density-based spatial clustering of
applications with noise” algorithm. This algorithm was presented by Martin Ester et al. in 1996
[ ]. We will be using an extension of this algorithm called C-DBSCAN as introduced by
Gong et al. | ]. This extension also takes the direction change and time sequence of the data
into consideration. These extension are designed to improve the DBSCAN algorithm for finding
POIs. Although DBSCAN is an older algorithm, it is still considered very useful | ]. We will
compare the C-DBSCAN algorithm with our own baseline algorithm. This baseline algorithm looks
at the distances between measurements. When the distance between two measurements, that are
for example 30 seconds apart, is smaller than a certain threshold, the algorithm will mark these
measurements and the measurements in between as a staypoint.

For our research we will use simulated data. This data represents visitors moving through a
park with predetermined POIs. We will call these simulated visitors ”walkers”. The size of the
simulated park is based of the Vossenberg park. We use simulated data to obtain a larger sample
size than we would be able to obtain using real data. This large sample size gives us more confidence
in our findings. The simulated walker starts at the park entrance and walks towards a random
selection of POIs. When the walker is in range of a POI it stays in this range for a random number
of seconds. After this it moves on to the next POI. This continues until the walker has visited all
the POIs. After visiting the last POI the walker moves towards the exit of the park.

Both methods will be compared based on three performance indicators. The first indicator is
the percentage of correctly found POIls. This indicator shows the percentage of POIs that the
method found out of all the generated POIs. The second indicator is the average deviation from
the actual POI. This indicator shows the average distance from the detected the POI to the
actual POI. The third and final indicator is the number of false positives. This shows the average
number of falsely detected POIs. Apart from these performance indicators we will also look at the
Davies-Bouldin Index. This index rates the produced clusters based on spacing and density. It does
not take any context into consideration. Therefore it will only tell us about the shape of a cluster.
High scoring clusters can be an indication of a good clustering method. We expect that clusters are
densely formed around POls.

Real GPS trackers produce noise. This noise is replicated in the simulation. After the simu-
lation is done a noise pass is applied to the data. All data points are shifted in a random direction
by up to five meters. Research by van Diggelen and Enge shows that the GPS of a smartphone
under an open sky is typically accurate within a 4.9 meter radius | ]. We assume that the
trackers used in real data collection are similar to the GPS systems found in smartphones. We
therefore think this random shift up to 5 meters replicates real noise closely.

1.1 Research questions

The main challenge in this research is the small scale of the Vossenberg park. This makes it harder
to work with GPS data inside the park, since GPS data will always suffer from inaccuracy. Using
algorithms that consider noise we want to see if it is still possible to find POlIs in this small scale



data. Therefore we have to following research question:
e What algorithm can be used for finding POIs from GPS data according to previous research?
e Is this algorithm suitable for detecting POIs from the GPS data collected in Kaatsheuvel?

We will answer the first question by looking at earlier research and literature. Once we have found
an algorithm we will compare it to a baseline algorithm. If the found algorithm outperforms the
baseline it is suited for the small scale data collected in Kaatsheuvel.

1.2 Thesis overview

We will shortly discuss the contents of this thesis. This chapter contains the introduction to the
problem and experiments and the research questions. In the next chapter, Chapter 2, we look
at background information regarding our topic of detecting POIs. We explain definitions used
throughout the paper and look at related research. Chapter 3 explains the methods used to compare
the two algorithms. In this chapter we also look at the results of the experiments. The final chapter
is Chapter 4. In this chapter we answer the research questions defined in this introduction.

This bachelor thesis is made under supervision of Matthijs van Leeuwen and Daniela Gawehns for
my bachelor course at LIACS.

2 Background

2.1 Definitions

Staypoint

Existing research regarding POI mining uses staypoints to detect points of interest (Khetarpaul,
Subramaniam & Nambiar, 2011). When a tracker is in a certain area for a certain amount of time,
this place is marked as staypoint. The size of the area and the amount of time the tracker needs to
stay in this area can be adjusted. A staypoint can be seen as a POI for a single GPS trace. The
exact definition of a staypoint depends on the staypoint detection method.

Point of Interest

A point of interest (POI) represents a place in the real world that is often visited by different people.
In this research we consider a POI to be a cluster of staypoints. The size of this cluster can be
adjusted by tweaking the (hyper)parameters of the used algorithms. Therefore the exact definition
of a POI depends on the algorithm used.

Simulated park

A simulated park, or park, is the representation of a real world park that is used in the simulation
of the data. The size of the park is consistent between the different parks. The simulated park is
240 meters long and has a width of 150 meters. For simplicity reasons, the park is rectangular. A
park contains POIs. The number of POIs that a park contains is random. The minimum number
of POIs in a park is 1 and the maximum is 7. In other words, a park P is a set of POIs, where
1< |P|<T.



Simulated walker

A simulated walker represents a visitor moving through a park. The simulated walker starts at the
entrance of the park and will move towards POIs. The POIs that a walker will visit are randomly
selected before the simulation starts. Every second a measurement is taken. The walker will always
stay within the boundaries of the park. When the walker has visited all the POlIs it needed to
visit, it will start moving towards the exit of the park. When the walker reaches the exit, the
measurements are stopped. Suppose P is the set of POIs in a particular park, and R C P. Then a
simulated walker is a path between the elements of R.

2.2 Related Work
2.2.1 Staypoints

Existing research uses staypoints to detect POIs | |. The aim of this research was to analyze
aggregate GPS information of multiple users to mine a list of interesting locations and rank them.
Interesting locations are geographical locations visited by several users. For example, an office,
university, historical place, restaurant, shopping complex, stadium, etc. Various relational algebra
and statistical operations were applied to the GPS data of multiple users. The information extracted
from the GPS data can be used for planning billboard locations, traffic planning and various other
city planning related tasks. The algorithm used is similar to our baseline method. It also uses the
distance between the measurements along with the time between these measurements. We will
discuss our baseline method later.

2.2.2 DBSCAN

Throughout this paper we will use the DBSCAN algorithm. DBSCAN is a clustering algorithm. It
was presented by Martin Ester et al in their paper called ” A density-based algorithm for discovering
clusters in large spatial databases with noise” [ ]. Tt was created to solve the following
requirements for clustering algorithms: minimal requirements of domain knowledge to determine the
input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases.
The well-known clustering algorithms at the time did not offer a solution to the combination of
these requirements.

The paper called "DBSCAN Revisited: Mis-Claim, Un-Fixability, and Approximation” [ ]
from 2015 by Gan and Tao addresses a mis-claim from the original DBSCAN paper. In 2017 Erich
Schubert et al. | ] pointed out some innaccuracies in the way DBSCAN was represented in
the 2015 paper. This 2017 paper also discusses why and how DBSCAN should still be used. So even
though DBSCAN is an older algorithm, it is still relevant. We explain how the DBSCAN algorithm
works in Section 3.3.1.

2.2.3 C-DBSCAN

C-DBSCAN is an extension of the DBSCAN algorithm. It introduces two constraints over the
original DBSCAN algorithm. Firstly, a time sequence constraint. This means that the algorithm
will take the time sequence of the GPS measurements into consideration. Secondly, a direction
change constraint. This constraint looks at the average direction change of the GPS measurements.



It assumes this average is different within the range of a POI compared to outside this range. We
use the implementation as discussed by Gong et al in the paper ”Identification of activity stop
locations in GPS trajectories by density-based clustering method combined with support vector
machines” | |. The GPS data they collected for their research was of a way larger scale.
The data was recorded in the Nagoya area in Japan. The city of Nagoya has a size of 326,43 km?
[ ]. This is significantly larger than the Vossenberg park.

3 Methods & Results

We will detect staypoints using two different methods. The first method is the baseline method. The
second method uses the C-DBSCAN algorithm. These two methods will both generate staypoints.
These staypoints need to be clustered into POIs. For both methods we will use the DBSCAN
clustering algorithm to cluster the staypoints into POIs. After this we can compare both methods
with the ground truth from the simulated data.

3.1 Data simulation

Without a ground truth, measuring performance is difficult. Therefore we will use simulated data.
With this simulated data we have a base truth. We know the number and location of the different
POIs beforehand. This way we have a form of labels in an otherwise unsupervised task.

The simulated data consists of multiple 'parks’ with POIs located in them. A ’park’ has a collection
of simulated walkers. The size of the different parks will be the same. The number of POlIs is
different between the parks, with a maximum of seven POIs and a minumum of one. We will not
consider parks with more than seven POIs in this research, since we do not expect parks of this
size to have more than seven POIs in reality. After a visual inspection of the Vossenberg park, we
believe that seven POls is realistically the maximum number of POls in a park of this size. We
want to find an algorithm that works well whether a park contains a small or large number of POlIs.
In the simulation a POI is represented by a center point with a 5 meter radius around it. If the
simulated walker is inside this radius, we consider the walker to be visiting the POI. The location
of the POls is also random, except for the restriction that POIs cannot overlap. Since if two POIs
would overlap in real life, we would consider this to be a single POI. The parks will be around
the same size as the Vossenberg park (240 meter in height and 150 meters in width). We keep all
parks the same size to more easily compare the methods. Since the main aim is to find POlIs in the
Vossenberg park, we use the scale of this park.

3.1.1 Assumptions

Before we start generating the data we need to do some assumptions. Firstly we assume that POIs
are stationary. We also assume that the simulated park has no obstacles, no paths and is flat. This
means there is no elevation change. We make this assumption because there might be cases where
the altitude can have an effect on the detection of POIs. If a park has a spiral staircase for example.
If we look at the latitude and longitude of someone using these stairs, it might look like they are
staying in roughly the same position. This might cause us to think that this is a POI, when in
reality this is not the case. Since most public parks in The Netherlands are relatively flat, like for
example the Vossenberg park, we make the assumption that the park is flat in our data simulation.



3.1.2 How does it work?

The first step is to set a simulated park. This park contains a random number of POIs between one
and seven. The POIs are randomly located throughout the park. The size of the park has been set
before running the algorithm. This park will be used to generate a set number of walkers. These
walkers will visit POIs. The POIs that a route visits are randomly decided, since a real person
will not always visit all the available POIs. They might only visit some POls, while they are not
interested by others. The amount of time the walker stays within the range of a POI is random
between thirty seconds and five minutes. A walker is considered to be in range of a POI, when it is
within a five meter radius of the center of the POI. The walker starts at a predefined entrance and
leaves at a predefined exit. The predefined entry and exit are the same for each park.

When the algorithm starts the walker is at the entrance. The algorithm will now calculate the
exact angle in which the walker needs to travel to reach the POI. A random angle between -90 and
90 degrees is calculated and added to the calculated angle. This way the walker move roughly in
the direction of the POI, but will not travel straight to it. In reality a person will most likely not
travel to their next destination in a perfectly straight line either. With every new measurement, the
walker travels 1.1 meters. If we consider that every measurement represents a second, the walker
moves at a speed of 4 km/h. This process is repeated until the walker eventually reaches a POI. At
this point the algorithm will notice this. The walker will now stay within the range of the POI for
30 seconds to five minutes.

This repeats itself until the walker has reached the exit. The walker moves to the exit in the same
way as it walks towards POIs. Once the walker has reached the exit the route is completed and
saved in .csv format.

3.1.3 Pseudo-code

Algorithm 1 shows the pseudo-code for the data simulation algorithm. Where POIs_on_route is a
list of POIs the simulated walker will visit. This also includes the exit of the park. POI is the POI
the walker is currently traveling to. The function getAngle returns the angle from the walker to the
given position. The addAngle function adds a random angle to the given angle. To get this random
angle we first randomize a number between —7 and . This number will be z in the following
formula: y = 23 * ﬂ% This formula is plotted in Figure 2. The resulting value of y will be added to
the angle calculated by the getAngle function. In most cases y will be less than the randomized
value of . This means the simulated walker is biased to walk in the direction of the next POI.
The move function moves the simulated walker along the calculated angle by updating the current

location. The start location and every location update are measurements in the dataset.



Algorithm 1 Data simulation algorithm:

1: currentLocation = entrance
2:
3: while num_POlIs_visited < POIs_on_route do
4:
5: POI = getNextPOI(POIs_on_route)
6
7 while getDistance(POI, currentLocation) > 5 do
8 angle = getAngle(currentLocation, POI)
9: angle = addAngle(angle)
10: while Next step is not within park boundaries do
11: Add different value to angle
12: move(angle)
13:
14: // Walker is now in range of the POI
15:
16: while currentTime < POI_duration do
17: angle = getAngle()
18: angle = addAngle(angle)
19: while Next step is not within park boundaries do
20: Add different value to angle
21: move(angle)
3.14
> 0 s
—-3.14 :
—3.14 0 3.14
x
Figure 2: Plot of formula: y = 2° x #

3.1.4 How much data will we use

Since we work with simulated data we can generate as much data as we want. But we need to set
a limit to the amount of data we generate. We can not keep generating data forever. The size of
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our total dataset is determined by two parameters. Firstly, the number of parks we generate. And
secondly, the number of routes that each park contains.

To determine the number of walkers, or in other words: the number of people that visit the park,
we need to specify the time period. If we specify this period to be one day, we would, based on our
observation in the Vossenberg park, have around 150 daily visitors.

We will simulate 150 parks. This number ensures we have a large enough sample size to use
statistical tests. Figure 3 shows the number of parks per group. Each group consists of all the parks
with the same number of POls.
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Figure 3: Number of parks per number of actual POlIs.

3.1.5 Noise

To better represent real GPS data, we will add artificial noise. This is done by slightly shifting
every point. We shift every point by a random distance between zero and five meters. We chose 5
meters, because a GPS systems are usually accurate within 5 meters | ].

3.2 Performance indicators

Average deviation from ground truth POI

We use three performance indicators. The first one is the average deviation from the ground truth
POI. In the simulation we assumed a POI to be a centre point with a radius of 5 meters around it.
We can compare how far the centre point of the detected POI is off from the ground truth POI.
With this performance indicator we are only looking at the predicted POIs that have detected a
ground truth POI. This means the predicted POI is inside the 5 meter radius of a ground truth
POL. If we were to look at all the predictions, there is no clear way to determine what predictions
belong to what ground truth POIs. We might have more predictions than POIs or vice versa. We
can note this performance indicator as shown below:
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Average deviation from ground truth POI =

Where D is the distance between the centers of the predicted and ground truth POIs. The number
of detected POIs is n.

Number of correctly detected POls

The second indicator is the number of correctly detected POIs. This indicator shows the number
of POIs that have been predicted correctly. A ground truth POI has been correctly found, if the
center of a predicted POI lies within five meters of the center of this ground truth POI. So D < 5,
where D is the distance between the centers of the predicted and ground truth POIs. A ground
truth POI can also only be detected by one predicted POI. If there are two predicted POIs within
the range of a ground truth POI, one of the predicted POIs will be labeled as a false positive.

CD={peP|D, <5}
Number of correctly detected POIs = |C'D|

Where CD is the set of correctly detected POIs. D, is the distance between a ground truth POI
and the nearest predicted POI. And P is the set of predicted POlIs.

False positives
The number of false positives is the last performance indicator. These are all the predicted POIs
that are not within a 5 meter radius of an undiscovered ground truth POIL.

FP={peP|D,> 5}
Number of false positives = |F'P|

Where F'P is the set of false positives. D, is the distance between the center of the predicted POI
and the nearest open ground truth POI. An open ground truth POI is a ground truth POI, that
has not been detected yet by a predicted POI. P is the set of predicted POlIs.

3.3 Clustering staypoints with DBSCAN

First we extract the staypoints from the individual walkers. Then we want to cluster these staypoints
to find POIs. The formed clusters are the POIs. To cluster the staypoints we use the DBSCAN
algorithm.

3.3.1 How does it work?

The DBSCAN is a clustering algorithm. DBSCAN is short for "Density-based spatial clustering
of applications with noise’. It is a non-parametric algorithm. It groups together points that are
close to each other. Points that are not near other points are marked as outliers. [ | The
algorithm works by counting the number of points that surround a point. The size of the radius in
which points are counted can be adjusted by setting a threshold value. A second threshold value
determines how many points need to be in the radius for a point to be marked as part of a cluster.
The DBSCAN algorithm does not require the user to specify the number of clusters beforehand.
As the name implies, the algorithm is designed to deal with noise. | | Since our data contains
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artificial noise, this algorithm is a good fit.

We will be using the DBSCAN algorithm to cluster the detected staypoints into POIs for both
staypoint detection methods. The functionality of this part of the algorithm will be the same
regardless of the staypoint detection method used. This ensures a fair comparison between the two
methods.

3.3.2 DBSCAN hyperparameters

The DBSCAN algorithm requires the user to set two threshold values. To ensure a fair comparison
between the two methods, we used the same threshold values in both tests. We used the Scikit
Learn implementation of the DBSCAN algorithm [sci]. In the table below you can find the threshold
values that were used in our experiments.

eps 0.0000172
min_samples )
metric haversine

Table 1: Threshold values for Scikit Learn DBSCAN algorithm.

Eps is the maximum distance between two samples for one to be considered as in the neighborhood
of the other. The average human walking speed is about 5 km/h | |. Therefore the value we
have chosen equals about four meters. This means that the measurements taken when someone is
walking from POI to POI, will most likely not be considered. This is desirable, since we want to
find the POIs and are not interested in the routes in between.

Min_samples is the number of samples in a neighborhood for a point to considered as a core point.
A core point is a point that has at least min_pts within a distance of eps of itself | ]. The
min_points threshold also includes the point itself. This means in our case there should be at least
four other points within 4 meters, to label a point as a core point. This is the default value of the
sci-kit learn implementation of the algorithm [sci]. More experimenting would be needed to find
the optimal value. However this is outside the scope of this research.

The metric parameter determines the metric to use when calculating distances. Since we are working
with geographic coordinates, we use the haversine metric. This is the metric used when calculating
distances between geographic coordinates | ].

3.4 Baseline Algorithm for detecting Staypoints
3.4.1 How does it work?

For every measurement the algorithm looks ahead a predefined amount of time. For example 30
seconds. It then checks the distance between these two points. If the distance is smaller than a
predefined threshold it takes the average of these two points and saves this as a staypoint. The
staypoints are clustered into POIs using the DBSCAN algorithm.

Algorithm 2 shows the pseudo-code for the baseline algorithm, where point is the current measured
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location of the simulated walker. The predefined threshold values for the time between measure-
ments and the distance between these points, are defined as threshold_time and threshold_distance
respectively. The staypoint;ist contains all staypoints found in the current park.

Algorithm 2 Baseline algorithm:

1: for each park do

2 staypoint_list = [ ] // Create an empty list for the current park.

3 for each walker do

4 point = 0 // Start at the first measurement.

5 while point + threshold_time < measurement_time do

6: if getDistance(point, point + threshold time) < threshold distance then
7: staypoint_list = getAverage(point, point + threshold_time)

8
9

point += 1 // Go to the next measurement.
DBSCAN(staypoint_list) // Cluster staypoints to get POIs for the current park.

3.4.2 Measuring performance

In this section we will look at the performance of the baseline method, using the performance
indicators. We used two different threshold values for the baseline algorithm. One where the
threshold was set to 35 seconds, and one with the threshold set to 20 seconds. Since the results
with the 35 seconds threshold were better, we will use these scores moving forward. Average scores
of the baseline method with the threshold set to 20 seconds can be found in Table 2.

Average deviation from actual POI

Figure 4a shows the deviation of the predicted POI from the actual POIs. The lower the score the
closer the predicted POIs are to the actual ones. The deviation is measured in meters. We assign
predicted POIs to an actual POI by looking at the distance between the two. If a predicted POI
lies within 5 meters of an actual one, we will check the deviation. We consider these POIs "found’.
We can only look at predictions that found an actual POI, because the other predictions are false
positives. There is no good way to assign these false positives to an actual POI. If the algorithm
considered some noise to be a POI, we could assign this detected point to the closest actual point.
But this would be incorrect, since the noise cluster and closest actual point might not be related
at all. This means that these results should only be considered in combination with the average
percentage of correctly found POIs and false positives. Otherwise it might be that only one point
was correctly detected, while 5 others were missed. In this case the deviation could still show a
good score. While the algorithm did not perform well.

11
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Figure 4: Average deviation and average percentage of correctly detected POlIs for baseline method.
Where parks are grouped by number of POIs.

When the number of POIs in a park increases, the average deviation also increases slightly. This
could be due to the park being busier with POIs. Which could cause the algorithm to struggle.
A bigger difference can be seen between the maximum extremes. The first three groups have a
relatively small maximum. While the maximums of the last three groups are much larger. Again
this could be caused by the parks being busier with POIs in the last three groups. The worst
prediction happened in the group with five POIs. The prediction was around 2.4 meters off.

The average deviation over all groups is 0.87 meters. This means that on average when a POI
has been correctly detected, it has been detected with an accuracy of 0.87. We assume that this
accuracy is good enough for most practical implementations. Therefore we consider this to be a
good score.

Percentage of correctly found POlIs

Figure 4b shows the average percentage of correctly found POIs. A correctly detected POI is one
that lies within five meters of an actual POI. Furthermore, there can only be one detected POI per
actual POI. A second detected POI inside the same 5 meter radius will be marked as false positive.
In this case the min-max range also shows the reliability of the algorithm.

The figure shows that the average performance of the baseline method slightly decreases when a
park contains more POlIs. In the group with one POI there has been at least one case in which
the algorithm did not find the POI correctly. Therefore we have a minimum score of zero percent
in this group. If there is only one POI to find, the chances of finding zero percent are larger than
when there are seven POls in the park. Because if you miss the only chance of finding the POI, you
have found zero percent.

The best performing group is the group with two POIs per park, with an average score of 100
percent. The worst performing group is the group with 6 POIs per park, with a score of 86.84
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percent. This is a difference of 13.16 percentage points. The average score over all groups is 92.38
percent. This means that on average 92 percent of the actual POIs will be found using the baseline
method.

False positives

The third and final performance indicator is the number of false positives. False positives are the
points that have been incorrectly detected. It is important to take these into consideration. The
average percentage of correctly found POIs might be very good, but with a lot of false positives.
This could mean that we just predicted so much POIs, we found the actual POIs by chance. When
doing POI detecting in a real scenario, we only want to find real POIs. Therefore the number of
false positives gives valuable information about the performance of the method.

In short, a false positive is a point that was detected, but was not correctly detected. Meaning it
was not inside a 5 meter range of an actual POI that had not been detected yet.

Figure 5 shows the number of false positives the baseline method produced on the simulated dataset.

6 |- ] 1
e average
m max

® min

Number of false positives

Number of actual POlIs

Figure 5: Average number of false positives, using baseline method, per group of parks. Where
parks are grouped by number of POls.

The figure shows that the group with one POI per park has the lowest number of false positives.
This can be explained by the fact that there is only one actual POI. This means that there is less
possibility for the detection of false positives. Thus leading to a lower number of false positives.
We can see the opposite for the last two groups. Here the number of false positives is highest.
These are the groups with six or seven POIs per park. Therefore there is are more opportunities
to incorrectly detect POIs. The group with 5 POIs is an outlier. Since there is no information to
suggest otherwise, we think this is just purely because of chance.

The overall average of falsely detected POIs by the baseline method is 0.58. We would consider this
to be a pretty good score. Since this score means that on average the baseline method detects less
than one point incorrectly.
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We have to keep in mind however, that the scores for the groups of one and five POIs bring this
average down considerably. If we ignore this outlier, we would see a better score. Also, we could
question if it is realistic to have parks with only one POI.

3.5 C-DBSCAN Algorithm for detecting staypoints
3.5.1 How does it work?

C-DBSCAN adds two constraints to the original DBSCAN algorithm to avoid potential errors in
staypoint detection. The first constraint is all points in a cluster should be temporally sequential.
This means the sequential order should increase one by one and no ’sudden increase’ is allowed
in the cluster. If such a ’sudden increase’ is found, the cluster will be divided into two potential
clusters at the point of sudden increase and each one will be tested to see if it satisfies the condition
of minimum number of points in one cluster. The second constraint is that the percentage (PCT) of
abnormal points in a cluster should not exceed a given threshold. Where PCT = |AP|/|C|, |AP)| is
the number of abnormal points in the cluster and |C] is the total number of points in the same cluster.

A point is marked as abnormal when the direction change coefficient (DCC) is close to or equal
to 1. To find the DCC, we look at the direction changes of points in a cluster. Suppose we have
three consequent points. We form two rays. The first one between the first and second point. The
second one between the second and third point. The direction change of the middle point is the
angle between these two rays. This angle is Aa. To get the DCC we take the cosine value of Aa.
Because we are using the cosine value it does not matter whether A« is positive or negative.
Within the range of a POI we expect the points to be scattered all across the area. This would
lead to an even distribution of direction changes within the cluster. This means that the DCC of
these points should differ from 1. Points with a DCC of 1, might represent a point along a straight
line. We only expect straight lines when a walker is moving between POIs. Therefore points with a
DCC close or equal to 1 are marked as abnormal points. Noted below is the formal definition of an
abnormal point. Where DC'Cyp is used to denote the approximation to 1. | ]

Abnormal point = {x € Cluster | DCC(z) < DCCyp}.

A benefit of this more complex C-DBSCAN algorithm comes from the small scale nature of
our data. Since we are working on a small scale it is more likely that two different POls are very
close to each other. The first, time sequence, constraint of the C-DBSCAN algorithm helps to
differentiate between POIs when they are close together.

The second constraint helps us avoid detecting POIs when in reality a walker is moving from
POI to POI. Usually a walker would be walking in a relatively straight path towards their next
destination/POI. We do not want to detect any POIs during this time. Here the second constraint
comes in. When the walker is walking in a relatively straight path, the DCC of these points will be
close to 1. Therefore this straight path will not be considered a POI.

3.5.2 Measuring performance

Since we want to have an equal comparison between the two methods for finding staypoints, we
will use the same plots as we used when measuring the performance of the baseline method.
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Figure 6: Average deviation and average percentage of correctly detected POlIs for C-DBSCAN
method. Where parks are grouped by number of POlIs.

Average deviation from actual POI

Figure 6a shows that as there are more points in the park the deviation increases. This increase is
not large however. The best performing group, the group with 1 POI, has an average deviation of
0.72 meters. The worst performing group, the group with 7 POIs, has an average deviation of 1.03
meters. The difference between these groups is only 0.31 meters. This difference would probably be
barely noticeable in any practical implementation of the algorithm.

The average deviation over all groups is 0.87 meters. This is the same score as the baseline method.
As discussed before, in the baseline section, we consider this a good score.

Percentage of correctly found POIs

Figure 6b shows that the performance seems to get slightly worse when there are more POIs in the
park. In parks with 1 or 2 POI all POIs were found correctly. However the performance decrease
is very small. The group of parks with 5 POIs shows the worst average performance with 92.38
percent.

The average over all groups is 96.31 percent. This means that on average less than 4 percent of
POIs are missed by the C-DBSCAN algorithm.

False positives
Figure 7 shows the average number of false positives per group that the C-DBSCAN method
produces.
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Figure 7: Average number of false positives, using C-DBSCAN method, per group of parks. Where
parks are grouped by number of POlIs.

The plot does not seem to show any trend. This suggests the performance is unrelated to the
number of POIs that a park contains. The only exception is the group with one POI. This group has
a considerably lower average detection of false positives. This is similar to what we see when using
the baseline method. Therefore we again think this has to do with the number of opportunities to
find incorrect points. The algorithm probably has an easier time with one POI in the park since
there is less noise coming from other actual POIs.

We also again see that the group with five POlIs is a bit of an outlier. Apart from the first group it
is the only group to have a average score below one. This group is an outlier using both methods.
Therefore we assume that the dataset for this group is 'easier’. Meaning the noise has generated in
such a way that it is easier to find the actual POIs. Where to other groups have a less optimal
generation of noise.

The average number of falsely detected points over the entire dataset is: 1.04. This means that, on
average, this method produces just over one falsely detected POI.

3.6 Comparison between baseline and C-DBSCAN

In this section we will compare the two staypoint detection methods. Firstly we will look at the
performance indicators. Secondly we will compare the Davies-Bouldin indexes. We also perform
statistical tests to confirm that the differences are significant.

3.6.1 Performance comparison

Now that we have measured the performance of both methods, we can compare the results. We can
ask the question if reliability is more important than mean accuracy or vice versa. A summary of
the performance indicator can be found in Table 2, where T is the threshold value used for the
baseline algorithm. This threshold determines how much time is between the two measurements
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the algorithm looks at.

% Correctly Found | Deviation | False Positives
Baseline with 7' = 20 66.38 0.79 16.67
Baseline with 7' = 35 92.38 0.87 0.58
C-DBSCAN 96.31 0.87 1.04

Table 2: Summary of performance indicators for baseline and C-DBSCAN methods.

The baseline algorithm with 7" = 20 scores worse than with 7" = 35. Therefore we will disregard
the scores of the baseline method with 7" = 20 from now on.

Number of POIs per park

The graphs do not show a clear trend when it comes to the number of POIs per park. Parks with
different number of POIs seem to result in the same performance. Therefore we will not look further
into these different groups from now on.

Percentage of correctly found POls

If we look at all groups together, the overall average of correctly found POIs using the baseline
method is 92.38 percent. The C-DBSCAN method has an average score of 96.31 percent. So
using this performance indicator, the C-DBSCAN method performs the best. Meaning that the
C-DBSCAN method will, on average, find more of the actual POlIs.

Average deviation from actual POI

The average deviation over all groups for the baseline method is 0.87 meters. For the C-DBSCAN
method the average is also 0.87 meters. There is no difference between the two methods for this
performance indicator. Meaning they are both equally accurate when a POI has been correctly
found. As discussed before, we consider an accuracy of 0.87 meters a good score. In practice an
accuracy of less than 1 meter should be good enough for most implementations.

False positives

When looking at the overall score, the comparison on false positives is quite clear. The baseline
method outperforms the C-DBSCAN method. The average for the baseline method is 0.58 compared
to the 1.04 score of the C-DBSCAN method. Where the baseline method produces a false positive
roughly every two parks, the C-DBSCAN produces one roughly every park. The C-DBSCAN also
has larger maximum values. Meaning that a bad extreme is worse for C-DBSCAN predictions than
it is for predictions made with the baseline method. Therefore the baseline method seems to be the
clear winner for this performance indicator.

Statistical tests

To determine if the differences between the two methods are significant, we use a statistical test.
Our null hypothesis will be: The baseline and C-DBSCAN methods will perform equally on the
two performance indicators.

To choose the correct statistical test we need to know what kind of variables we are dealing with.
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We want to answer the question: What is the effect of using two different algorithms on the average
accuracy score using the same dataset. In this case the predictor variable is the two different
algorithms. Which is a categorical variable. The outcome variable is the average accuracy score.
This is a quantitative variable. | | This means we could use a paired t-test as our statistical
test. We will use the paired t-test for both performance indicators. It is important to note that we
do not make a distinction between parks with a different number of POIs like we did in the plots
shown earlier. We look at the accuracy over the entire dataset.

The paired t-test does not need a specific minimum number of samples. A rule of thumb is that a
minimum of 30 samples is used. One "park’ is one sample. We have 150 parks, so our sample size is
large enough.

For the statistical test we will define a to be 0.05. Our null hypotheses are that there is no difference
between the scores. We used SPSS to calculate the outcomes of the paired t-test. Results are shown
in Table 3. The t-distribution value is the value found in the Student T-table where, o = 0.05 and
df = 149.

t df | Two-sided p | t-distribution
% correctly found | 3.28 | 149 0.001 1.98
False positives 3.72 | 149 < 0.001 1.98

Table 3: Test statistic and t-value for both statistical tests.

In both cases t is larger than the t-distribution value. This means the differences are significant.
Therefore we can reject our null hypothesis. Meaning the C-DBSCAN algorithm outperforms
the baseline method on the percentage of correctly found POIs performance indicator. While the
baseline method outperforms C-DBSCAN when it comes to avoiding false positives.

Performance indicators conclusion

Looking at the three performance indicators, we can disregard the deviation indicator. Both method
produce score the same on this indicator. We are left with the percentage of correctly found POIs
and the number of false positives. The C-DBSCAN method has a better percentage of correctly
found POIs, while the baseline generates less false positives. This essentially means that, on average,
the C-DBSCAN method finds more actual POIs at the cost of producing more false positives.
The performance indicators do not give us a clear winner. Both methods could be useful depending
on the task at hand. If it is very important that all POIs are found, the C-DBSCAN method might
be more useful. Vice versa, if accuracy is more important and you do not want to find false positives,
the baseline method is the best.

3.6.2 Davies-Bouldin Index

The Davies-Bouldin (DB) index captures the intuition that clusters that are well-spaced from each
other and themselves very dense are likely a good clustering | |. This metric would be useful
since we expect a cluster of staypoints to be densely concentrated around an actual point of interest.
We also expect the POIs to have some distance between them. So an algorithm that finds POIs
that are well-spaced from each other is likely a good algorithm.

The minimum score of the Davies-Bouldin Index is zero. The lower the score the better. Keep in
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mind that the index does not take the ground truth in consideration. It only looks at the structure
of the clusters and their relative position.

Davies-Bouldin Index
Baseline 0.8290296727267201
C-DBSCAN 1.176628263618832

Table 4: Davies-Bouldin Index scores for baseline and C-DBSCAN methods.

Table 4 shows the baseline method scores the best. Meaning the clusters formed by the baseline
method are denser and better spaced out. These clusters consist of staypoints. Meaning the
staypoints generated by the baseline method are denser and spaced out better. This suggests that
the baseline method has a higher accuracy, since there are fewer points that are further away from
the actual POI. However, we found earlier that the percentage of correctly found POIs is lower
using the baseline method. Meaning that if the baseline detects an actual POI, this detection should
have a lower deviation to the center of the actual POI than when using the C-DBSCAN method.
However we have already seen that the baseline and C-DBSCAN perform equally in this deviation
test.

We can conclude that this index shows us that the baseline method should be more tidy. Therefore
we would expect a greater accuracy. However, the index is not based on ground truth. Its outcome
is also not explainable using earlier observations. Therefore we should value this index less than
the performance indicators.

Figure 8 shows a comparison between the best and worst scoring predictions using the C-DBSCAN
method according to the Davies-Bouldin index. The best scoring prediction shows one very compact
cluster. The worst scoring prediction shows multiple less compact clusters. These two extremes
give a little insight in how the Davies-Bouldin Index works. It is interesting to note that the best
performing clustering only contains one cluster, while the worst performing clustering has the
maximum number of clusters. It seems to be easier to get a good score with fewer clusters. Probably
because there are less potential clusters that can worsen the score. The chances of getting one good
cluster out of one, is larger than getting 7 good clusters out of 7. This suggests that the number of
clusters has an effect on the Davies-Bouldin Index.
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Figure 8: Comparison between best and worst staypoint clustering using the C-DBSCAN method
according to the Davies-Bouldin Index.

4 Conclusions and Further Research

4.1 Discussion & further research

In some graphs we see a slight trend. If the number of POIs go up, the algorithms start to struggle.
The trend in the graphs is so small, we considered it insignificant. However, we do not know what
happens when parks can generate with more than 7 POIs. The trend might continue and become
significant.

In this thesis we have not experimented with the hyper-parameters of the DBSCAN and C-DBSCAN
algorithms. Perhaps another configuration of these parameters gives us different results. It might
be possible to minimize the number of false positives, making the algorithm more viable.

Since we did not have real world data for our experiments, we used simulated data. We tried to
create a simulation that is close to reality. But is still a simulation nonetheless. Visitors of the park
might show different behaviours as to what we expected when creating the simulation. Therefore
running the experiments with real world data might give different insights.
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4.2 Conclusion

We wanted to find an algorithm that can detect POIs from GPS data. We have found out that
although the DBSCAN algorithm is an older algorithm, it still holds up today. As pointed out by
Schubert et al | |. DBSCAN is not specifically focused on GPS data, therefore we used an
extension called C-DBSCAN. This algorithm was specifically designed to be used with GPS data
as described by Gong et al | ]

So to answer our first research question: The C-DBSCAN is a state of the art clustering algorithm
for GPS data.

Secondly, we wanted to find out if the algorithm is suited for use in the Vossenberg park. To test the
performance of the C-DBSCAN algorithm on small scale GPS data, we compared it to a baseline
method. We found out that the C-DBSCAN method is very similar in performance to the baseline
method. We concluded that both methods can have its uses. With the C-DBSCAN method finding
more POIs at the cost of producing more false positives.

So is the C-DBSCAN algorithm suited for the type of data collected in Kaatsheuvel? That depends
on the situation and requirements of the user. It found most of the POIs with great accuracy. The
only drawback is the frequent detection of false positives. The C-DBSCAN algortihm produces an
average of 1.04 false positive per park. This means you get at least one false positive every time
you run the algorithm. In the case of the Vossenberg Park this might lead to misinformation. Areas
might be labeled as POIs while they are not. If they a park is designed based on this misinformation,
investments might end up in the wrong area. This would be unfortunate since the funds invested in
this area of the park could have been invested in another area. If detecting false positives is not
a problem, or if a human expert is available to filter out the false positives, the algorithm works
great. Otherwise you might be better off looking for another solution.
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