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Application of deep learning in lead optimization for
improving activity of drug molecules

ABSTRACT
Machine learning techniques have been applied to optimize
properties of potential drug-like molecules, such activity, fat
solubility and toxicity. Machine translation models, espe-
cially recurrent neural networks (RNNs), sequence-to-sequence
(seq2seq), and the transformer model, have been shown to
have a great capacity of generating novel drug-like com-
pounds or optimizing properties of a promising candidate
drug. Improving the activity of a promising candidate drug
is an essential task in lead optimization. Inspired by suc-
cessful applications of deep learning approaches in machine
translation, we innovatively regarded the task of improv-
ing the activity of a candidate drug as a machine transla-
tion problem by applying the seq2seq model and the trans-
former model, trained end-to-end and totally data-driven.
We demonstrate that the transformer model outperforms
the seq2seq model in the task of improving the activity of a
candidate compound. It is reasonable to infer that the trans-
former model has great potential to design better drugs.
Keywords: Drug activity, Seq2seq, The transformer model

1. INTRODUCTION
The human adenosine A2A receptor (A2AR), a member of
the G-protein-coupled receptor (GPCR), has been widely
investigated over the last several decades because it has
been shown to be a attractive and promising therapeutic
target for regulating myocardial oxygen demand and in-
creasing coronary circulation by vasodilation [1]. Due to the
enormous body of knowledge and multiple research meth-
ods accessible, the adenosine A2A receptor is an enticing
topic for medicinal chemists to investigate. Considering the
data accessible in the public ChEMBL database, deep learn-
ing methods were employed to improve biological activity of
drug-like molecules.
During the last decade, deep learning approaches have gained
significant progress in a variety of artificial intelligence re-
search fields. This technique, which evolved from prior re-
search on artificial neural networks, has better performance
than existing traditional machine learning algorithms in im-
age and speech recognition, natural language processing,
and other applications [2]. In several fields, applications of
cutting-edge deep learning models outperform humans. [3].
New drug development, which aims to introduce a new effec-
tive pharmacological molecule into clinical practice, is costly
and time-consuming. Every drug company with an research
and development department has taken a variety of steps
to accelerate the drug development process [4]. The suc-
cessful applications of deep learning in these data-rich fields

have also sparked chemists’ imagination in pharmaceutical
research. As a highly imaginative landing scenario for deep
learning, drug development is being continuously changed
with the effort of scientists. Diverse challenging problems
were addressed with the help of deep learning, including
compound property and activity prediction, generation of
new chemical structures, reactions and retrosynthetic anal-
ysis and so on [2].
In drug discovery, A lead compound is a chemical molecule
that exhibits pharmacological or biological action that has
the potential to be therapeutically effective, but whose struc-
ture is suboptimal and requires change in order to better
match the target. It may not be developed directly as a new
drug due to limitations, such as low activity, low selectiv-
ity, poor pharmacokinetics, or high toxicity. The chemical
structure of a lead compound serves as a starting point for
modifying it chemically to enhance its qualities. [5].
Optimization of the lead structure is a way to improve its ac-
tivity strength. Deep learning methods can be employed to
modify the chemical structures of existing compounds, aim-
ing to improve the chemical properties of drug-like molecules.
Deep learning approach has been proven to be a novel method
to generate chemical structures [6, 7]. The seq2seq model
and the transformer model, mapping a sequence to another
sequence, have had significant success in foreign speech trans-
lation [8], paraphrase generation [9] and retrosynthetic re-
action prediction [10]. Considering the powerful learning
capability of the seq2seq model and the transformer model,
we exploited these two models as an editing approaches to
tweak and optimize the activity of existing compounds.
In our work, improving the activity of candidate drugs is
considered a machine translation problem, translating an
existing nonactive compound to a new active drug-like com-
pound. The seq2seq model and the transformer model were
employed to improve the activity of candidate drugs. Each
compound was represented in the Simplified Molecular-Input
Line-Entry system (SMILE). The seq2seq model and the
transformer model were constructed to learn the syntax of
SMILES notation and recognize patterns between inactive
compounds and active drug-like molecules. Meanwhile, tra-
ditional machine learning methods were used to construct
quantitative structure-activity relationship (QSAR) models
[11] to predict the activity of output molecules of generative
models. We investigated Random Forest (RF) [12], K near-
est neighbors (KNN) [13], Support Vector Machine (SVM)
[14] and lightGBM [15] to construct a high-performance pre-
dictor. For hyperparameter optimization of these four mod-
els, grid search and bayesian optimization were employed to



tune these models.
This thesis makes the following technological contributions:
1) The seq2seq model was employed to optimize the biolog-
ical activity of existing inactive drug-like compounds. Sev-
eral modifications are made to the original seq2seq model
learning in order to make it more suitable for our task.

• Dropout layer was included in order to prevent over-
fitting during training sessions,

• the Teacher Forcing approach was applied to speed the
training of the model.

2) The transformer model with multi-head scaled dot-product
attention mechanism was constructed to optimize the activ-
ity of existing compounds. 3) Traditional machine learning
models were built to predict the activity of output com-
pounds. Meanwhile, grid search and bayesian optimization
were used to tune these models.
The remainder of the thesis is structured as follows. In
Section 2, we summarise several related work, including se-
quence to sequence learning in machine translation and deep
learning applications in drug discovery. In Section 3, we de-
tail our entire pipeline, from datasets to neural network ar-
chitectures and metrics for algorithm evaluation. In Section
4, we summarize and analyze the outcomes of our experi-
ments, confirming our models’ higher performance. In Sec-
tion 5, we conclude and discuss the future direction of our
work.

2. RELATED WORK
This section discusses the seq2seq and transformer machine
translation models, as well as their applications in drug de-
velopment.

2.1 The seq2seq model and the transform model
in machine translation

Natural language processing (NLP) is a broad field, and nu-
merous techniques and algorithms have been developed for
text interpretation. In 2014, ilya sutskever et al. [16] pro-
posed a novel neural network, using a multilayered Long
Short-Term Memory (LSTM) to map the sequence to a vec-
tor, and then another deep LSTM to decode the target se-
quence from the vector. This sequence to sequence learning
method demonstrated superior performance on an English
to French translation task. Later on, this novel model was
applied in many fields, such machine translation, text sum-
marization, and Chatbot. However, this model has very
limited memory, and it does not have sufficient capacity to
deal with long sequences. To sidestep the limitation of the
seq2seq model, in 2017, Vaswani et al. [17] proposed a novel
network architecture, based solely on attention mechanisms,
not using RNNs. This novel model was a new state-of-the-
art model for English-to-French translation tasks, and it was
shown to perform well in a variety of fields. The transform
model has a great capacity for dealing with long sequences.

2.2 The seq2seq model and the transform model
in drug development

More recently, many state-of-the-art deep learning models
have also attracted the attention of researchers in drug dis-
covery. To explore the wide chemical space of drug-like
molecules and manufacture novel drug-like chemicals, gen-
erative models based on sequence-to-sequence autoencoders
have been developed. Winter er al. [18] proposed to exploit
the powerful ability of the seq2seq model to learn contin-
uous and data-driven molecular descriptors by translating
equivalent chemical representations. Zheng Xu et al. [19]
exploited the seq2seq model to provide a continuous fea-
ture vector for each molecule for many downstream tasks
and demonstrated its superior performance on the classifi-
cation task. The transformer model was employed to predict
retrosynthetic reaction in Pavel Karpov et al [10]. Lukasz
Maziarka et al. customized transformer model and proposed
Molecule Attention Transformer (MAT) and their experi-
ments showed it is effective in a wide range of molecular
prediction tasks. [20].
When training all of the models proposed in these studies,
the input and output sequences were identical. The input
sequence was CN1CCC[C@H]1c2cccnc2 (Nicotine), for exam-
ple, the output sequence was also CN1CCC[C@H]1c2cccnc2.
Winter er al. failed to train models on translating from
canonical SMILES to the International Chemical Identifier
(InChI) representations. Their models were unable to learn
anything, and the reason they gave might be the higher com-
plexity of the InChI format [18].
The input sequence and the output sequence were different
when training our models. Our models’ neural network ar-
chitectures are similar to those in these related work. We
trained similar models on different datasets for different pur-
poses.

3. DATASET AND METHODS

3.1 Dataset
ChEMBL is a database of bioactive compounds with drug-
like characteristics that has been carefully selected. It com-
bines chemical, bioactivity, and genetic data to facilitate
the translation of genomic information into successful novel
medications [21]. The known ligands for the A2A (ChEMBL
identifier: CHEMBL251) from ChEMBL (version 23) were
retrieved as the drug discovery target. These known active
ligands of the A2AR were used as output molecules when
training our generative models. The pChEMBL value allows
a number of roughly comparable measures of half-maximal
response concentration/potency/affinity to be compared on
a negative logarithmic scale [22]. pChEMBL is currently
defined as [22]:

−log10(molarIC50, XC50, EC50, AC50,Ki,Kd or Potency)

The compound with the pCHEMBL value ≥ 6.5 was con-
sidered as “Active”, and others were annotated as “Not Ac-
tive”[23]. Input molecules for training our generative models
were selected from the ChEMBL database (version 28), con-
taining 2,066,376 molecules. Output molecules were known
active ligands for target CHEMBL251 from the ChEMBL23
database. All molecules collected from the ChEMBL database
were represented by a linear form as a SMILES string. Fig-
ure 1 is a 2D depiction of the caffeine molecule and its
SMILES string.



Figure 1: An example of caffeine molecule and its SMILES
string

The Tanimoto coefficient is the most commonly used mea-
sure of similarity when comparing chemical structures repre-
sented by fingerprints [24], and thus Tanimoto similarity was
used to measure the similarity of the input compound and
the output active compound. When training our generative
models, a molecule from the ChEMBL database (version 28)
is the input of generative models, and an active molecule
for target CHEMBL251 from the ChEMBL database is the
output of generative models when the Tanimoto-similarity
score of these two molecules is ≥ 0.4. All the SMILES
strings of these compounds were transformed into a series
of tokens. The final dataset for our generative models was
pairs of molecules represented by SMILES format, including
220,460 samples. And then it was split into a training set
containing 170,000 pairs and a testing set containing 50,460
pairs.

Figure 2 shows that the length of the vast majority of in-
put and output molecules is less than 150, which is an im-
portant hyperparameter in our generative models. When
training the seq2seq model and the transformer model to
generate output drug-like molecules, we need to specify the
maximum length of output sequence in these two models.
The dataset for training prediction models was also from the
known ligands for theA2AR (ChEMBL identifier: CHEMBL251),
including 5,157 compounds. The compound was labeled as
“Active” when its pCHEMBL value ≥ 6.5, and it was re-
garded as a positive sample; others were “Not Active” and
were viewed as negative samples. This dataset was split
balanced as active and inactive compounds, containing 3120
positive samples and 2037 negative samples, respectively.
Therefore, the prediction of active or inactive chemicals may
be considered a binary classification issue.

3.2 Prediction model (QSAR)

Machine Learning:RF, KNN, SVM and lightGBM
The prediction goal was binary categorization using QSAR
modeling. Featurizing molecules is the first and essential
step when performing machine learning algorithms on molec-
ular data. Although there is a wide variety of machine-
readable chemical representations, a molecule is commonly
represented by linear notations as a SMILES string, or by

Figure 2: The top plot is the length of general drug-like
chemical space (i.e. ChEMBL28) and the bottom the

length of chemicals that have been tested/designed for the
adenosine a2a receptor (i.e. target ChEMBL251 in

ChEMBL)

graph form as an adjacent matrix [25]. In our custom dataset,
a molecule was already represented with a SMILES string,
and its SMILES string could be further converted into its
molecular fingerprint. Extended-connectivity fingerprints
(ECFPs), which are created using a variation of the Mor-
gan algorithm, are a newly discovered fingerprint technol-
ogy that is specifically designed to capture molecular prop-
erties associated with molecular activity. [26]. In RDKit,
Extended-connectivity fingerprints are called Morgan Fin-
gerprints. When generating Morgan fingerprints, the radius
of the fingerprint, namely number of iterations, must also
be specified. Generally, radius 2 and 3 are commonly used.
Taking a cue from Xuhan Liu’s paper, the parameter ra-
dius was set to 3 in our work. The input data transformed
from SMILES of compounds were Extended Connectivity
Fingerprint 6 (ECFP6) fingerprints with 4096 bits, which
were calculated by the RDkit Morgan Fingerprint algorithm
with three-bound radius [23]. Each compound was repre-
sented by a 4096 vector of 1s and 0s, indicating the pres-
ence or absence of chemical substructures in a compound.
The output of the prediction model was the predicted prob-
ability of whether an input compound was active. Here,
traditional machine learning algorithms, including Random
Forest(RF), K nearest neighbors (KNN) and Support Vec-
tor Machines (SVMs), were benchmarked by using scikit-
learn. Additionally, LightGBM was used since it is a rapid
and high-performance gradient boosting framework based on
decision tree techniques that has demonstrated outstanding
performance in the data science sector. [15].
The options of grid search and bayesian optimization for
model optimization were considered to find the optimal hy-
perparameters.
GridSearchCV, a function from Scikit-learn’s package, was
used to hypertune our three traditional model parameters.



Compared with RF, KNN and SVM, lightGBM model has
more parameters and hyperparameters. Bayesian optimiza-
tion is more efficient than grid search in obtaining the op-
timum collection of parameters. As a result, bayesian opti-
mization was applied to optimize lightGBM.

For classification tasks, the random forest output, which is
the class picked by the majority of trees, has demonstrated
exceptional performance in scenarios when the number of
variables exceeds the number of observations [27]. Random-
ForestClassifier from scikit-learn was employed to construct
the model and GridSearchCV was applied to optimise this
model. The number of trees in the forest was set 600 and
the split criterion was “gini”. Other parameters are default.
KNN is a non-parametric supervised machine learning ap-
proach that is capable of dealing with classification and re-
gression problems. It’s simple to set up and comprehend,
but it can give highly competitive results. The disadvan-
tage of this simple algorithm is that it becomes noticeably
slower as the amount of data increases.
KNeighborsClassifier was used and the optimal value of k
was determined by grid search. SVMs are supervised learn-
ing models, aiming to find a hyperplane in an N-dimensional
space that clearly classifiers the input multi-dimensional data
points. Advantages of these methods are that they are ef-
fective in high dimensional spaces even in situations where
number of features of input data is greater than the number
of samples.
In SVM, implemented through scikit-learn, the radial basis
function (RBF) kernel was selected. γ was searched between
2−15 and 25 and parameter C was set as

[
2−5, 215

]
. Other

parameters are default [23].

LightGBM is a framework for gradient boosting that makes
use of tree-based learning techniques. This framework is de-
signed with low memory usage, high accuracy, fast training
speed and high efficiency and capability of handing large-
scale data [15]. LightGBM allows for extensive customiza-
tion through a range of hyper-parameters. While certain
hyper-parameters have a recommended default value that
produces generally acceptable outcomes.

Validation metrics
Model validation metrics are needed to measure agreement
between a predictive model and real observations. Com-
pared with other common evaluation metrics for binary clas-
sification, such as accuracy and F1 score, the Matthews cor-
relation coefficient (MCC) provides a reliable and informa-
tive score when carrying out a proper evaluation of binary
classifications [28]. And thus MCC was used to measure and
compare the results of these four machine learning models,
which could produce an informative and reliable score in
evaluating performance of binary classification models [28].
MCC is defined as the following formula

MCC =
tp× tn− fp× fn√

(tp+ fp) (tp+ fn)(tn+ fp)(tn+ fn)

Here, tp, tn, fp and fn are the number of true positives, true
negatives, false positives and false negatives,respectively.
Meanwhile, the area under the receiver operating charac-
teristics (AUROC) was also applied to compare the perfor-

Figure 3: The Encoder-Decoder

mance of these four prediction models.

3.3 Generative model (seq2seq)

The seq2seq model is a machine translation method based
on encoder-decoder. This method maps an input sequence
of variable length to an output sequence of another length,
and the length of the two sequences may not be equal [16].
This model has been widely used in applications, such as
Chatbot, speech recognition and speech generation, machine
language translation, text summarization, etc [29, 30, 31].
The encoder block and the decoder block are essential parts
of the seq2seq model (Figure 3). The encoder block receives
the input sequence and processes a symbol at each time step.
It is finally converted into a fixed-length feature vector (con-
text vector). In this process, the encoder block will encode
important information in the sequence and lose less impor-
tant information. The context vector can be regarded as a
summary of the entire input sequence. The decoder block
gradually generates another output sequence, generating an
output symbol at each time step. When the decoder is ini-
tialized, it receives the hidden state (context vector) at the
last moment and the special symbol of word segmentation
<SOS> (the symbol to start decoding). Each subsequent
time step receives the hidden state and symbol output at
the previous time.

Here, the seq2seq model acted as a baseline and it is a ba-
sic model for better understanding the transformer model.
In our work, each molecule from ChEMBL28, represented
by SMILES format, was featurized as a series of tokens.
Then, all these tokens were gathered to construct our input
SMILES vocabulary. In our custom dataset, there are 57
and 36 tokens in the input vocabulary set and the output
vocabulary set, respectively.

Figure 4 shows the architecture of the seq2seq network. Each
molecule was featurized as a series of tokens and then each
token was transformed into a 128 dimensional vector. For
encoder layer and decoder layer, Long short-term memory
(LSTM) was used as the recurrent cell. The output sequence
was the selection of tokens from output vocabulary with the
maximum probability.
During the training process of this baseline, 3-layer LSTM
and 4-layer LSTM were used to compare the performance of
different settings of this model.
In the training of the seq2seq model, the Teacher Forcing
approach was applied to converge faster. This approach for
training RNNs provides observed sequence values as inputs
during training and doing multi-step sampling with the net-
work’s one-step-ahead predictions [32]. The disadvantage of



Figure 4: Architecture of seq2seq network for generating drug-like active molecules

this training approach is a discrepancy between training and
inference, possibly resulting in poor model performance and
instability [33].
The main drawbacks of the seq2seq model are the following.

1. The content vector does not fully represent the infor-
mation in the entire input sequence, which is equiva-
lent to “lossy compression” of the information.

2. Any token in an input sequence has the same impact
on generating an output token without any difference
[34].

3.4 Generative model (transformer)

The transformer model was expected to generate drug-like
active molecules by modifying the chemical structure of ex-
isting compounds in our work. At a high level, this model
is based on the encoder-decoder structure (Figure 5). Fig-
ure 5 shows that the transformer model, like the seq2seq
model, consists of two parts, namely the encoder block and
the decoder block, which can transform one sequence into
another. But, it differs from the previously described the
seq2seq model. The transformer model abandons the RNNs
used in the preceding seq2seq model in favor of self-attention
or multi-head self-attention, which allows for simultaneous
processing of the incoming data and increases operational
efficiency.
Self-attention is an attention mechanism relating different
positions of a single sequence in order to compute a rep-
resentation of the sequence [17]. An attention mechanism
allows the transformer model’s encoder and decoder to si-

multaneously observe the whole input sequence, directly rep-
resenting these dependencies. The input of Encode block of
the transformer model is a series of vectors and its output
is a series of different vectors. In practice, the transformer
model has a stack of encoder blocks and decoder blocks of
the same number. In our work, 3 and 4 encoder blocks were
experimented with to examine their effects on our custom
dataset.
Unit of multi-head self-attention mechanism is a major com-
ponent in the transformer and it consists of several scaled-
dot attention layers. Attention mechanism with Query-Key-
Value (QKV) was adopted in the transformer model. Given
the packed matrix representations of queries Q, keys K, and
values V , The score of scaled dot-product attention was cal-
culated as follows.

attention(Q,K, V ) = softmax(
QKT

√
dk

)V

The closeness between the keys and the queries is indicated
by the dot product of the keys and the queries. The value of
dk, a scaling factor, depends on the dimension of the layer
[17, 35].
Rather of computing attention once, the multi-head method
iteratively computes the scaled dot-product attention. Multi-
head attention allows the model to jointly attend to infor-
mation from different representation subspaces at different
positions [17].

MultiHeadAttn(Q,K, V ) = Concat(head1, ..., headH)WO

where headi = Attention(QWQ
i ,KW

K
i , V WV

i )

Here, WQ
i , WK

i , WV
i , WO are parameter matrices to be

learned through training models on datasets.



Figure 5: Architecture of the transformer model for generating drug-like active molecules

3.5 Molecular similarity and visualization of
chemical space

In chemoinformatics, molecular similarity refers to the struc-
tural or functional resemblance of chemical elements, molecules,
or chemical compounds. Although there are several chem-
ical similarity methods, Tanimoto-similarity was employed
to indicate the similarity of two compounds [36, 37]. Com-
pounds are featurized in ECFP6 fingerprints (Figure 6) and
Tanimoto-similarity is defined as the following.

Ts(A,B) =
c

a+ b− c

where, c indicates the number of common features of two
molecules, a+ b− c represents the total number of features
of these two molecules. The range of Ts(A,B) is between
0 and 1. When two molecules are identical, its Tanimoto-
similarity is 1.
In 1996, Patterson et al. concluded that two compounds
have a high probability of having the same activity when
their Tanimoto-similarity score is ≥ 0.85 [38]. When we
built our custom dataset for training our generative mod-

Figure 6: Tanimoto-similarity of two molecules

els, the Tanimoto-similarity value of the input compound
and the output compound was < 0.85. Meanwhile, to get
enough data and ensure the chemical similarity of two com-
pounds, we set the Tanimoto-similarity value ≥ 0.4.
PCA (Principal component analysis) and t-SNE (t-distributed
stochastic neighbor embedding), dimensionality reduction
techniques, were used to evaluate chemical space coverage of
input data and output data of our generative model. T-SNE



is proven to be a great way to compare the chemical space
covered by different datasets [39]. For the input dataset and
output dataset, the following processes were conducted:

1. Each molecule, represented in the formation of SMILES,
was transformed into ECFP6 fingerprints(4096-dimension).

2. 4096 dimensions of each molecule were reduced to 2
dimensions with PCA and t-SNE [40].

3. The reduced features of each molecule were plotted
into 2 dimensional space.

When plotting reduced features with PCA, the amount of
variance accounted for by two principal components was
checked to evaluate the performance of PCA. The small
amount of variance indicates that to preprocess data to ob-
tain a distance or similarity matrix should be considered.
Meanwhile, other techniques for data-dimensionality reduc-
tion should be considered. For example, t-SNE may be a
better approach for visualizing high-dimensional data.

4. EXPERIMENTS AND RESULTS

The known ligands for theA2AR (ChEMBL identifier: CHEMBL251)
were featurized with the package RDkit for machine learn-
ing models. Each molecule was transformed into ECFP6
fingerprints with 4096 bits by RDkit Morgan Fingerprint al-
gorithm. Here a three-bond radius was set to generate 4096
features that indicate the presence or absence of a particu-
lar molecular feature, defined by some local arrangement of
atoms.

Grid search with 5-fold cross-validation was employed to
search the optimum values of hyperparameters of models,
namely RF, SVM and KNN. Table 1 displays optimal pa-
rameters of RF and KNN in bold text by applying grid
search. In the RF model, the number of trees in the for-
est was set 600 and the criterion was “entropy”. In the SVM
model, a radial basis function “rbf” was used as the kernel
type. Regularization parameter “C” was set to 32768.0 and
kernel coefficient “gamma” was “auto”. In KNN model, the
value of “k” experimented with 3, 5, 7 and 9. The optimal
value of “k” was set to 7.

In our work, the python package bayesian-optimization

was used to optimize the optimal values of hyperparameters
of lightGBM [41]. In our experiments, the cross-validation
AUCROC function was to be maximized. The hyperparamter
search space was specified as in Table 2. The optimal hyper-
parameters are in bold. The other parameters are default.
Some other important hyperparameters were tuned, such
max number of leaves in one tree, the max depth for tree
model, subsample ratio of the training instance.

After the optimal value of hyperparameters of these four
models were obtained, we compared the performance of these
supervised machine learning algorithms with 5-fold cross val-
idation of which the ROC curves are displayed in Figure 7.
As Figure 7 illustrates, the RF model outperforms the other
three models, having the highest value of AUC (0.93). Fig-
ure 8 shows the RF model performs best among these models
in terms of metric MCC on our small dataset. It was chosen

Figure 7: AUC of ROC curve of four machine learning
models

to predict the activity of drug-like molecules generated by
our generative models due to its the highest value of AUC
and MCC.

Figure 8: MCC of four machine learning models

4.1 Performance of the seq2seq model

In our work, the seq2seq model was expected to act as a
baseline to improve the activity of molecules. The input
molecule is from the ChEMBL28 dataset. The test set was
used to evaluate the grammatical correctness of drug-like
molecules while training the model. The grammatical cor-
rectness of a generated SMILES sequence was checked by
package RDKit during the process of training. In each epoch
of training, the percentage of grammatically correct SMILES
and the value of the loss function were regarded as metrics
for evaluating the model’s performance. They were calcu-
lated and recorded for visualization.
Throughout the seq2seq model experiments, three parame-
ters settings were experimented on GPU clusters, and some
experimental setups are reported in Table 3.

Figure 9 shows the values of loss function and the percent-
age of valid SMILES sequences in the training process of
the seq2seq (M1), seq2seq (M2) and seq2seq (M3). The or-



Table 1: Parameter settings to determine the optimal hyperparameters for RF, KNN, and SVMs

Model Hyperparameter Grid Search Parameter Space

RF
number of trees (nt) 300, 400, 500, 600

criterion “gini”, “entropy”
bootstrap True, “False”

minimum samples to split 2, 3, 5, 7, 10 15

KNN K 3, 5, 7 , 9, 11, 13, 15, 17, 19
weight options uniform, distance

SVM regularization parameter C
[
2−5, 2−15

]
gamma(γ)

[
2−15, 25

]

Figure 9: The value of loss function and the percentage of valid SMILES sequences of the seq2seq M1, M2 and M3 during
the training process

Table 2: Parameter Search Space of bayesian optimization
of lightGBM

Hyperparameters Parameter Search Space

num leaves (10, 100), 68
max depth (2, 50), 49
subsample (0.7, 1.0), 0.8

colsample bytree (0.5, 1), 0.445
min child samples (3, 30), 13

ange learning curve was value of loss function on the training
set in the process of training. The blue learning curve was
the percentage of valid SMILES sequences generated by the
seq2seq model when the input data was the test data set.
Model seq2seq (M1) and seq2seq (M2) have 3 layers in en-
coder block and decoder block while model seq2seq (M3)
has 4 layers in both blocks and their other values of param-
eters are some. Figure 9 shows that after around 50 epochs,
the loss function of seq2seq (M1) had converged, while the
percentage of valid SMILES sequences was around 32.6%.
Model seq2seq (M1) has only 3 layers in encoder block and
decoder block and its performer is bad, indicating this model
was underfitted. To obtain a more powerful seq2seq model,
we considered increasing the number of hidden layers in en-
coder and decoder blocks. Model seq2seq (M3) has 4 layers
in encoder block and decoder block. With the convergence
of value of loss function after about 100 epochs, the per-
centage of valid SMILES sequences of this model is still not
stable, fluctuating between 25% to 58%. Here we conclude
that the seq2seq model with more layers could not perform
better on our custom dataset.
Figure 9 also shows the performance of 3-layer seq2seq (M2)

with dropout value 0. The value of the loss function was
declining stably after 100 epochs, and then the percentage
of valid SMILES sequences was around 78%. Here it is con-
cluded that 3 layers are an optimal setting of seq2seq model
on our custom dataset. Due to the limitation of time and
computing power, we did not optimize this 3-layer seq3seq
model.

4.2 Performance of the transformer model

For the training of the transformer model, all compounds in
our custom dataset, in formation of SMILES, were decom-
posed into the tokens. RDKit was used to check the validity
of generated SMILES sequence. Some training parameters
of this model are shown in Table 4.
This model was obtained by training about 26h on GPU
cluster (Nvidia Titanium). As Table 4 shows, the learn-
ing rate was set 0.0001 to avoid unstable training, whereas,
learning rate was set 0.01 in previous seq2seq model. The
learning rate was the most important hyperparameter when
we attempt to tune this model [42]. When the learning rate
was 0.01, the model could not converge stably. Tiny rates,
like 0.00001, resulted in a failure to train. Dropout rate,
a regularization method, was set 0.1 to prevent our model
from overfitting. The original 2017 transformer [17] consists
of 6 encoder layers and decoder layers, whereas there are 2
encoder layers and decoder layers in this transformer model.
The main reason of this setting is due to our small custom
dataset.
Dot-product attention is a family of attention mechanisms,
and it was applied in our transformer model.The unit of
multi-head self-attention mechanism was the major compo-
nent in the transformer model. The number of multi-header
is a hyperparameter that needs to be tuned. In our exper-



Table 3: The training parameters of seq2seq models

Parameter value

Seq2seq 3 (M1) Seq2seq 3 (M2) Seq2seq 4 (M3)

Batch size 256 256 256
Learning rate 0.01 0.01 0.01
Optimiser Adam Adam Adam
Layers 3 3 4

Hidden dimension 128 128 128
Encoder dimension 256 256 256
Decoder dimension 256 256 256
Encoder dropout 0.5 0 0.5
Decoder dropout 0.5 0 0.5

Trainable parameters 952,100 952,100 1,216,292

SMILES validation rate 0.42 0.76 0.53

iment, the number of encoder headers and decoder headers
was 8.
Figure 10 shows learning curves of the transformer model
in the training process. The orange learning curve was
the value of loss function on the training data set, and the
blue learning curve was the percentage of valid SMILES se-
quences when the input data set was the test data set. Two
learning curves indicates that the convergence speed of the
loss function changed quickly and this model was trained
well and converged after around 50 epochs. After about 50
epochs, the percentage of valid SMILES sequences fluctu-
ated between 83% to 87%. Then we evaluated the quality
of drug-like molecules generated by this model.

Figure 10: The value of loss function and the percentage of
valid SMILES sequences in the training process of

transformer model

Visualization of chemical space

Molecular weight (MW) and logP were calculated to explore
the chemical space of these two datasets. Figure 11a is the
logP∼MW plot, indicating that the vast majority of gen-
erated molecules were drug-like, and these two datasets of
molecules seem to share the same chemical space.
Subsequently, PCA and t-SNE, were employed for dimen-
sionality reduction and evaluating chemical space coverage
of these two datasets. In Figures 11b, and c, 10,000 molecules
from the ChEMBL28 dataset, as the input data of the trans-
former model, are shown in purple, while the generated

drug-like molecules are shown in orange. Figures 11b and c
were the visualization of two datasets by applying PCA and
t-SNE, respectively. Figure 11b displays that there are two
distinguishable clusters in PCA space. A possible reason for
the two clusters observed here could be that there are two
different groups in the test set or the size of the dataset is
too small. Figure 11f displays three distinguishable clusters
in the generated inactive compounds, indicating that they
may have similar characteristics.
The second row in Figure 11 is the visualization of generated
molecules categorized as inactive ones and active ones. As
Figure 11f shows the generated inactive molecules cluster in
3 cluster in t-SNE space.
Random forest classifier was used to predict the activity of
whole molecules in the ChEMBL28 dataset, and only 9.62%
of molecules are active. In contrast, the majority of gen-
erated drug-like molecules are active, up to approximately
76.39% of the whole output compounds. As an example,
five candidate molecules generated by the transformer model
were selected, shown in Figure 12. The top row molecules are
input data for the transformer model, and the bottom row
molecules are generated drug-like molecules. Numbers in the
middle of the arrow are the Tanimoto-similarity scores of the
input molecule and its generated drug-like molecule. The
Tanimoto-similarity of active and inactive molecules gener-
ated by the transformer model to every ligands for A2AR
(ChEMBL identifier: CHEMBL251) were calculated. And
then PCA was used on this similarity matrix 14.
The distribution of Tanimoto-similarity scores of input and
its output compounds is shown in Figure 13. The great
majority of input molecule and its generated molecule have
chemical similarities between 0.2 and 0.6, as can be observed.
However, the vast majority of the chemicals produced are ac-
tive. The transformer model has dramatically improved the
bioactivity of existing compounds.

5. CONCLUSION AND FUTURE WORK

The purpose of this study was to compare the performance
of the seq2seq and transformer models on the objective of
enhancing the activity of existing compounds. This work
was motivated by a recent success in English-to-French lan-
guage translation, dubbed the sequence to sequence learning
model. Our generative models translated the inactive molec-
ular SMILES string to another molecular SMILES string,
with the expectation that the input molecule and its out-



Figure 11: The chemical space of generated molecules by the transformer model with the ChEMBL28 (Only compounds
used for training) (a-c). The chemical space was represented by either logP∼MW (a), first two components in PCA on

PhysChem descriptors (b), and t-SNE on ECFP6 fingerprints (c). The second row is the visualization of generated inactive
and inactive molecules

put drug-like molecule to be as similar as possible in chem-
ical structure. Based on visualization and exploitation of
the chemical space of generated drug-like compounds, the
transformer model outperform the seq2seq model in terms
of improving the activity of compounds by modifying the
chemical structure of existing molecules. Our work indi-
cates the transformer model with a multi-head attention,
a data-driven sequence to sequence learning method, has a
potential to optimize the property of compounds.
In future work, data-driven molecular fingerprints may be
applied for activity prediction since a SMILES string could
be further converted into different formats. Many sophisti-
cated deep learning models have been constructed to gen-
erate molecular representation for the downstream tasks.
Molecular fingerprint, such as seq2seq fingerprint or mol2vec
[43], maybe used as molecular representation for approach-
ing molecular machine learning tasks in drug discovery.
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Figure 12: 5 input compounds and output drug-like active compounds generated by the transformer model

Figure 13: Distribution of Tanimoto-similarity scores of
input and output compounds of the transformer model

Table 4: The training parameters of transformer model

Parameter Value

Batch size 256
Learning rate 0.0001

Dropout 0.1
Encoder layers 2
Decoder layers 2

Encoder headers 8
Decoder headers 8

Epoch 200
Optimizer Adam

Loss function Cross entropy
Attention Mechanisms Dot product
Trainable parameters 1,970,468

SMILES validation rate 0.87

Figure 14: Visualization of inactive and active molecules
on a similarity matrix (ChEMBL251)



7. REFERENCES
[1] Manuel de Lera Ruiz, Yeon-Hee Lim, and Junying

Zheng. Adenosine a2a receptor as a drug discovery
target. Journal of medicinal chemistry,
57(9):3623–3650, 2014.

[2] Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus
Olivecrona, and Thomas Blaschke. The rise of deep
learning in drug discovery. Drug discovery today,
23(6):1241–1250, 2018.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Identity mappings in deep residual networks. In
European conference on computer vision, pages
630–645. Springer, 2016.

[4] Zheng Xu, Sheng Wang, Feiyun Zhu, and Junzhou
Huang. Seq2seq fingerprint: An unsupervised deep
molecular embedding for drug discovery. In
Proceedings of the 8th ACM international conference
on bioinformatics, computational biology, and health
informatics, pages 285–294, 2017.

[5] James P Hughes, Stephen Rees, S Barrett Kalindjian,
and Karen L Philpott. Principles of early drug
discovery. British journal of pharmacology,
162(6):1239–1249, 2011.
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