
Opleiding Informatica

Gradual OverPy: a proof of concept of applying a gradual method on

the Overwatch Workshop

David Lin

Supervisors:
Felienne Hermans & Giulio Barbero

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 20/07/2021

www.liacs.leidenuniv.nl

Abstract

This is where you write an abstract that concisely summarizes your thesis. Keep it short. No
references here — exceptions do occur.

Contents

1 Introduction 1
1.1 The situation . 1
1.2 Thesis overview . 2

2 Background 3
2.1 Gradual language . 3
2.2 Game modifications . 3
2.3 The Overwatch Workshop . 4
2.4 OverPy . 6
2.5 Gradual OverPy . 6
2.6 Relevance . 7

3 Method 8
3.1 Creating the web application . 8

3.1.1 Requirements . 8
3.1.2 Flask . 8
3.1.3 Lark parsing & grammar . 8

3.2 The web application . 9
3.2.1 End goal . 9
3.2.2 The grammar of OverPy . 10
3.2.3 The grammar of Gradual OverPy . 11
3.2.4 The levels of Gradual OverPy . 13
3.2.5 Comparison between Gradual OverPy, Hedy and the in-game overlay 14

3.3 Testing the web application . 15

4 Results 17

5 Discussion 18

6 Conclusions and future work 19

References 20

7 Appendix 22

1 Introduction

In this section an introduction to the problem addressed in this thesis is given.

1.1 The situation

In the current era of technology, there is a need for programmers in the world [Her20]. You could
argue that there is no end to the demand for client-customized software, as people have very specific
needs. One of the problems with current programming learning methods is that complete online
tutorials like Geeksforgeeks1 can be overwhelming for a beginner as there are many concepts to
understand, which makes learning a programming language less appealing.
In the case of either learning a programming language through a simplified online tutorial or
through a course, an aspect that people struggle on is the syntax of a language. [Her20] Learning
programming syntax is said to require “a level of attention to detail that does not come naturally
to human beings” [CM08]. This means that students are not guaranteed to be able to learn such
syntax, the potential consequence being an increasing rate of these students dropping out from
their Computer Science studies increases.
An approach to provide a proper chance to these students has been made by Hermans et al. with
their web application called Hedy2 (see Figure 1) [Her20]. They make programming in Python more
accessible with their gradual language learning method. This method puts the focus of programming
language learning on different aspects at the time [Her20], starting with the introduction of functions
with simple syntax and later on introducing a gradually changed syntax.
However, a disadvantage of learning programming with such language is that the visible result of

your code can only be seen in text form (see Figure 1). To make this process more interactive, this
paper introduces gradual learning on the mod workshop of a multiplayer first person shooter called
Overwatch (PC version) [Ent16], in order to allow players to play and interact with their code.
Even though Overwatch has an integrated overlay (see Section 2.3) and this overlay is manageable for
less experienced programmers, it does come with the downside that there is no actual programming
involved, as the overlay allows the user to add, remove and edit elements by simple clickable
interaction.
However, the game also allows to import code through copying and pasting (which is the reason
the PC version of the game is used). In this paper, a web application has been developed that users
can utilize to learn how to program in this workshop. It involves 3 main elements:

• OverPy [OvPa], a script that simplifies the syntax of the original workshop code

• The gradual introduction of elements with explanations and examples

• Online integrated editor,which the users can use to create their workshops

The research question is as follows:

Does a gradual language system help Overwatch players develop custom
workshops?

1Geeksforgeeks can be found on: https://www.geeksforgeeks.org
2Hedy can be found on: https://www.hedycode.com

1

www.geeksforgeeks.org
www.hedycode.com

Figure 1: Hedy, a gradual programming language [Her20]

1.2 Thesis overview

The further sections will go into more detail what was discussed in the introduction. Section 2
provides information about what a gradual language is, why the Overwatch workshop was chosen
instead of any other workshop and what (Gradual) OverPy is. In Section 3 the specifics on the
developed web application are provided, including the framework and customized grammar. Section 4
shows the results of the interviews with volunteers (varying from inexperienced to experienced
programmers) who tested the web application and provided their opinion on the concept of such
method, after which the conclusion is drawn and future work is discussed in section 6.

2

2 Background

Learning a programming language is quite a task. The concept of learning such a language is similar
to learning a natural language [Her20]. Elements like order of words in a sentence can be compared
to syntax, a person’s vocabulary is similar to a person’s knowledge of existing functions, etc. When
looking at language education for young children, the process of learning rules and words in a
natural language follows a specific structure [Her20]: It starts with the introduction of words in
lowercase letters, after which sentences are made with lowercase letter words. Only after mastering
this concept by lots of repetition are uppercase words and punctuation introduced. The importance
is that concepts that are introduced early should be the baseline for later concepts.

2.1 Gradual language

A gradual language, which was developed by Hermans et al., is a new way of learning a programming
language. Instead of introducing new functions of a programming language whilst assuming the user
has the insight to understand the syntax, this method simplifies the syntax to put the focus more
towards functions at the first levels [Her20]. This process can be compared to simplified grammar
in a natural language. After this, the syntax gradually changes to be more similar to Python, but
this is done using previously learnt functions [Her20]. By introducing one concept at the time, the
short term memory load of the user is not being overloaded with information at once. By reusing
previously learnt functions whilst gradually changing syntax, the user experiences repetition, which
is required to master different practices [Her20].

2.2 Game modifications

There is a distinct difference between programming a game as a whole and modifying one. As the
development of a game is entirely from scratch and as the time and costs can be enormous, this
is out of reach for most players [ENS06]. Game modifications on the other hand require no game
development, as the infrastructure is already present and modifications can be accessible to many
game players with the proper tools [ENS06].
El-Nasr et al. think of game modifications as a design activity, which they believe have educational
benefits, the main reason being that these design activities provide engaging contexts for skill and
concept exploration, which can be applied to real life problems [ENS06]. Depending on their level
of interest, can it enable wide exploration within that context, after which they can utilize explored
concepts to other problems in the future.
Different games require different amounts of effort to be modified. This heavily depends on how
accessible such modifications are made by the developers. Some are implemented in the game itself,
others require the user to install external programs. When attempting to apply gradual learning on
such modification languages, user friendliness and accessibility should be considered. If a user has
to install many programs before the actual learning progress, it could become less of interest.

3

2.3 The Overwatch Workshop

There are many different games that allow users to program their own game modes, calculators,
etc., but the main reason why the Overwatch Workshop was used for this thesis is because of the
ease of use, intuitiveness and simplicity.
Programming workshops, which are basically modifications to the game, requires no external
programs. The Overwatch workshop is a game modification tool made by the developers, which
allows players to experiment with the game and the elements it provides. The workshop has an
in-game overlay made for workshop development. Creating workshops can be done without writing
code by adding/modifying/removing elements with the mouse (see Figure 2 and 3).

Figure 2: Overwatch Workshop overlay

Even though creating workshops in such manner might be less time consuming than typing code,
gradual learning can not/hardly be applied to such method. On the other hand, the workshop
allows for workshop code to be exported to your clipboard and copied code to be imported from
outside the game. This enables experienced programmers to modify the workshop code in text form.
The workshop elements that are made available by the developers are quite easy to understand
by their names and creating simple workshops is possible with some programming knowledge.
Workshops like Counter Strike: Global Offensive [VC12] do have more possibilities, including map
making, but such variety of possibilities is irrelevant when it comes to learning a programming
language, as an introduction to a language does not involve that many elements.

4

Figure 3: Overwatch Workshop overlay, create HUD text modification screen

Figure 4: Exporting Overwatch Workshop code to clipboard

Figure 5: Importing Overwatch Workshop code with code in clipboard

5

2.4 OverPy

The workshop has elements that are easy to understand by their names, but as for the syntax of
the workshop language, it’s interpretability is relatively bad compared to Python. Python uses
indentation and few to no brackets, whilst the workshop code uses many brackets and functions are
allowed to have spaces in their name.

Workshop code:

rule("show some text")

{

event

{

Ongoing - Each Player;

All;

All;

}

actions

{

Create HUD Text(All Players(All Teams), Custom String("Hello world"),

Null, Null, Left, 0, Color(White), Color(White), Color(White),

Visible To and String, Default Visibility);

}

}

This is where OverPy is used. OverPy is a script, made by Zezombye, that is able to transform
workshop code to a more Pythonic syntax. After the code above is compiled to OverPy syntax, the
code looks as follows:

OverPy:

rule "show some text":

@Event eachPlayer

@Hero all

hudHeader(getAllPlayers(), "Hello world", HudPosition.LEFT, 0,

Color.WHITE, HudReeval.VISIBILITY_AND_STRING, SpecVisibility.DEFAULT)

The OverPy code is structured less complex, rules are seperated in indented blocks instead of
brackets, and the overall overview is higher level compared to the workshop code. As the generated
OverPy code is fairly similar to Python with it’s indentation, member variable calls and function
syntax, this paper proposes a gradual method on this OverPy-syntaxed code, as it could have a
similar performance as Hedy, where learning Python is made conceptually easier [Her20].

2.5 Gradual OverPy

OverPy itself is relatively intuitive. However, there are some functions that require many parameters
to function. The function that displays simple text is called hudHeader. This function requires 7

6

parameters: what instances will see the text, the text itself, the positioning, sorting order, text
color, reevaluation and spectator visibility. Most of these are irrelevant when trying to display text
like ”Hello world”. This is where Gradual OverPy comes in, which can simplify the syntax of such
complex functions and narrow it down to a simple function with 1 parameter, namely the text.
Specifications on the grammar can be found in section 3.2.3

2.6 Relevance

The concept of the gradual language approach on Python by Hermans et al. is interesting by
itself, but this concept could potentially be a frequently used teaching method when it comes to
teaching a programming language. Applying such method on different languages has great learning
potential. However, the effects of such method in a game environment or game-oriented method on
gradual learning are still unknown. The result could be advantageous, like quicker understanding of
concepts, or it could have drawbacks, like getting distracted quickly by the game.

7

3 Method

The research focuses on the incorporation of elements from the gradual method in a web application.
The created web application is then used for qualitative research involving the participation of
volunteers, who will be asked to test and provide their opinion on the web application.

3.1 Creating the web application

3.1.1 Requirements

As for technical requirements of the web application, they are as follows:

• The application should be accessible online through the internet browser

– The application should be able to display HTML code

• The application should be able to compile OverPy code

– The application should be able to run Javascript code (as the compilation is done with
Javascript)

• The application should be able to use the Lark module from Python, as this will be the
grammar parser

– The application should be able to run Python code

When considering the requirements above, the choice was made to use the Python module Flask for
this web application, as Flask allows for basic HTML/Javascript webpages and for running Python
code in the backend. The webpage lay-out and OverPy compilation were done using HTML and
Javascript, and the grammar parsing was done with the Python module Lark.

3.1.2 Flask

The main framework of the application uses Flask. Compared to the Python module http.server,
Flask allows for running interactive Python code. In this web application, the parsing of the user’s
code with the module Lark is done in Python, hence the usage of Flask.

3.1.3 Lark parsing & grammar

Lark is a module that parses code in a given programmable grammar. In this web application, the
grammar was written with the goal to simplify the OverPy syntax, cutting unnecessary elements
from a given function if possible. Therefore, Lark will detect code with this specific grammar,
and based on the functions it finds, will it return code in proper OverPy syntax. With this new
simplified syntax, users need not to provide irrelevant elements.

8

https://flask.palletsprojects.com/en/2.0.x/
https://docs.python.org/3/library/http.server.html

3.2 The web application

3.2.1 End goal

The end goal of the web application is to simulate a jetpack system, comparable to the jetpack the
character Pharah has, which includes a fuel tank, adding/removing fuel and vertical impulses. The
pseudocode is as follows:

Algorithm 1 Simulated jetpack system

1: Define current player User
2: Define player variables Flying, Fuel
3: while Game is ongoing do
4: if User is holding JUMP then
5: User.Flying = true
6: else . User is not holding JUMP
7: User.Flying = false
8: end if
9: if User.Flying == true then

10: if User.Fuel > 0 then
11: User.Fuel = User.Fuel - 1
12: Apply vertical impulse upwards
13: Wait 10 ms
14: else
15: User.Fuel = 0 . This is to prevent Fuel going below 0
16: end if
17: else . Flying == false
18: if User.Fuel < 100 then
19: User.Fuel = User.Fuel + 1
20: Wait 10 ms
21: else
22: User.Fuel = 100 . This is to prevent Fuel going above 100
23: end if
24: end if
25: end while

The reason that Flying is used when jumping instead of immediately checking the fuel, is to improve
the clarity. When you are holding JUMP, you are flying, when you are flying, fuel is checked etc.
This is by no means necessary and/or the optimal pseudocode for such system, but such optimized
code is not required, as it might be more difficult to understand. In OverPy, it is possible to define
all the code within one rule, but it is recommended to use multiple rules, just like using multiple
functions in Python.

The eventual web application has the following structure:

• A main webpage, where (the purpose of) (Gradual) OverPy is introduced, the structure of
the webpage is explained and how the code from the webpage can be transferred to the game
to show the results (the latter one is done through a video).

9

• Stage 1, which contains 4 levels, each on a different webpage. Each level page is structured as
follows:

– The learning goal of the current level

– The introduction and explanation of new elements

– Example code for each introduced element

– A inline editor to code programs with

3.2.2 The grammar of OverPy

OverPy has a syntax, which is pretty similar to Python. Some examples are indentation when
defining if’s, elses, while and for loops, member variables are called with a period and functions are
called with round brackets. The following code blocks show how Python code looks like in OverPy.

Python3:

#In this example, we create a class named User for our event player. In OverPy,

#the code is running for every user and eventPlayer is predefined.

print("Hello world")

class User:

def __init__(self):

self.apples = 5

self.pears = 2

def changeValues(self, apples, pears):

self.apples = apples

self.pears = pears

eventPlayer = User()

eventPlayer.changeValues(5, 2)

if eventPlayer.apples > eventPlayer.pears:

print("the eventPlayer has more apples than pears")

OverPy:

playervar 0 apples

playervar 1 pears

rule "beginCode":

#The @Event defines that the code is running "within" every user.

#This makes eventPlayer accessible

@Event eachPlayer

eventPlayer.apples = 5

eventPlayer.pears = 2

10

rule "changeValues":

@Event eachplayer

#You need some way to trigger the code, so in this case,

#we use the jump button

if eventPlayer.isHoldingButton(Button.JUMP):

eventPlayer.apples = 5

eventPlayer.pears = 2

rule "printValues":

@Event eachPlayer

hudHeader(eventPlayer, "Hello world", HudPosition.LEFT, 0, Color.WHITE,

HudReeval.VISIBILITY_AND_STRING, SpecVisibility.DEFAULT)

if eventPlayer.apples > eventPlayer.pears:

hudHeader(eventPlayer, "The eventPlayer has more apples than pears",

HudPosition.LEFT, 0, Color.WHITE, HudReeval.VISIBILITY_AND_STRING,

SpecVisibility.DEFAULT)

3.2.3 The grammar of Gradual OverPy

The grammar of all the 4 levels in Stage 1 is the same. This means that, for example, code from
level 1 works in level 4 and vice versa. In Table 1 (see Section 7), the levels and the introduced
concepts per level can be seen.

Noticable from the table is that most elements were left unchanged. This was done as those elements
all contain necessary and relevant variables/elements, and a properly ordered introduction to such
elements could suffice. The main changes in grammar were the hudHeader, the progressBarHud
and applyImpulse. The hudHeader is supposed to be the print function in Python, the simple way
to display text. The original OverPy syntax requires the user to provide many variables, which are
not as relevant as the text itself. All variables like the position and color were removed and the
simplified syntax only asks for text (and at level 3, the inclusion of (player) variables in the text is
introduced). The back-end will fill in predefined code to match original OverPy, so that OverPy
compilation succeeds with initially different syntax.

The hudHeader is detected by Lark with the following regular expressions:

INDENT INDENT* "hudHeader(" quoted_text_no_escape ")"

INDENT INDENT* "hudHeader(" textwithoutspaces BRACKETS? ")"

INDENT INDENT* "hudHeader(" ((textwithoutspaces BRACKETS? SPACE?

quoted_text_no_escape) | (quoted_text_no_escape SPACE? textwithoutspaces

BRACKETS?)) (quoted_text_no_escape? SPACE? textwithoutspaces? BRACKETS?)* ")"

The variables are defined as follows:

11

INDENT: " "

BRACKETS: "()"

quoted_text_no_escape: /’([^’]*)’/

textwithoutspaces: /([^\n *+-\/()]+\.?[^\n *+-\/()]+)/

The first two are fairly simple. Either it takes a string as input or a variable/function that provides
a value. The third one is to make all combinations of strings and variables possible. It can handle
the following syntax cases:

s = string

vf = variable or function (both function the same, as the function is

textwithoutspaces but with brackets after)

s vf = string followed by a variable/function

s? = string can occur 0 or 1 times

s* = string can occur 0 or multiple times (any amount)

hudHeader(s)

hudHeader(s vf)

hudHeader(s vf s)

hudHeader(s vf s vf...)

hudHeader(s vf (s? vf?)*)

hudHeader(vf)

hudHeader(vf s)

hudHeader(vf s vf)

hudHeader(vf s vf s...)

hudHeader(vf s (s? vf?)*) (because (s? vf?)* = (vf? s?)*)

combined:

hudHeader((s vf | vf s) (s? vf?)*)

Because the combined regular expression requires either a string and variable/function or a
variable/function and a string, the cases with only a string or a variable/function had to be written
out separately.
The proof for (s? vf?)* = (vf? s?)* is as follows:

(s? vf?)* = ((s? vf?)*)* = ((s? vf?)(s? vf?)(s? vf?)*)* = ((vf?)(s?)(s? vf?)*)*

= ((vf?)(s?))* = (vf? s?)*

The progressBarHud and applyImpulse are detected as follows:

INDENT INDENT* "progressBarHud(" textwithoutcomma "," SPACE?

(quoted_text_no_escape | textwithoutcomma) ")"

INDENT INDENT* eventplayer? "applyImpulse(" textwithoutcomma "," SPACE? text ")"

SPACE = " "

12

textwithoutcomma: /([^\n(),])+/

eventplayer = "eventplayer."

Any other code that is not detected by the regular expressions above will remain the same during
OverPy compilation.

3.2.4 The levels of Gradual OverPy

The levels were structured in a way that new elements indirectly depend on previous elements. A
simple example is the hudHeader in the first level, which displays text. This can be used to display
the user input in the second level (which checks what buttons the user is pressing).

Gradual OverPy:

rule "displayText":

hudHeader("Hello world")

rule "displayJump":

@Event eachPlayer

if eventPlayer.isHoldingButton(Button.JUMP):

hudHeader("Jump")

In level 2, the @Event is introduced, which determines the ”location” of the rule. If combined with
eachPlayer, it simply means that the rule is executed within every player that is present. With
@Event eachPlayer, the eventPlayer and it’s member variables and functions can be called within
the rule. The provided variables in this tutorial are the getCurrentHero() and isHoldingButton().
The getCurrentHero() function is fairly intuitive and easy to understand. The isHoldingButton()
is a function that has many uses, including triggering when a rule is executed in combination
with @Condition, which should be true, and only then is the rule executed. if a rule has multiple
conditions, all those conditions should be satisfied before rule execution.
In level 3, variables are introduced. The standard variables are named after the capital letters of
the alphabet (A, B, . . . , Z), but their names can be changed with a simple line above the rules.
Depending on if the variable is a global or player variable should globalvar or playervar be used.
The index indicates which variable’s name is changed (0 corresponds to A, 1 to B, 2 to C, etc.).
This is not required to run proper programs, but it does allow for better code interpretation. The
in-game overlay has a dedicated menu for changing variables (see Figure 6), which might improve
the understanding of the explanation.

13

Figure 6: Overwatch Workshop variable name change menu

Variables can be used to store integers, strings, booleans, etc., but they can also be displayed with
hudHeader. The original OverPy syntax requires the variables to be indicated with 0, 1, etc. and
the variables themselves should be put inside a format function. This is quite difficult to explain,
so instead, the grammar was changed to make a distinct split between strings and variables with
the double quotation marks.
The progressBarHud is also introduced, but with only 2 parameters: the value of the bar and the
title. The maximum value of the bar is 100 by default. Examples are given of the bar being empty,
completely filled and halfway filled.
In the final level the applyImpulse is introduced, which simply applies a (vertical) impulse to the
player. This was introduced as the last element for the jetpack system, as the other levels contain
the base for the whole system itself. Most of the introduced elements are used for creating the
jetpack. Some elements are introduced because of the relevance of that current level. In level 2,
destroyHudText(getLastCreatedText()) is shown as an extra element, which removes the last added
hudHeader. Even though this element is not used in the final jetpack system, it can be used to test
programs in level 2.
Something that should be noted is that, because of the grammar changes compared to original
OverPy, if regular OverPy code is used to attempt code compilation, it will result in errors. Original
OverPy code can be compiled with the Demo [OvPb], provided by Zezombye himself.

3.2.5 Comparison between Gradual OverPy, Hedy and the in-game overlay

Because Gradual OverPy is heavily based on Hedy, the interface is somewhat similar. Similarities
are the dedicated editor and the possibility to insert example code. However, there are many

14

Hedy Gradual OverPy In-game overlay
Based on Python OverPy Workshop language
Introduction to
new elements

Independent on
other functions

Dependent on
other functions

None

Small descriptions Large descriptions Small descriptions

Running code
Within integrated
console

In game In game

Error handling
Simplified error
messages

Regular error
messages

Regular error
messages

differences because of the structure of OverPy’s code. One major difference is the explanation of
functions. Hedy has small descriptions, whereas Gradual OverPy has large explanations, which the
intention was to prevent abstraction. Another difference is the result of running code. As Hedy is
based on Python, the result is (in early levels) in text form, which is directly visible from the web
application. Gradual OverPy on the other hand generates workshop code for the user to import
themselves in the game. This is an extra step required for the user to see results, but the result can
be interactive and more than just textual output. Another quality of life feature in Hedy is the
simplification of error messages, one example being provided suggestions in case of syntax errors.
Gradual OverPy does not have such feature.

Gradual OverPy has quite some similarities with the in-game overlay, including the same re-
sult when running code. The major difference is that the overlay has no integrated tutorial, whereas
Gradual OverPy is a tutorial in itself and it introduces elements based on previously introduced
elements per level. Even though the overlay provides small descriptions for each function when
hovering over an element with the cursor, these could still lead to abstraction, because of incomplete
explanations. The error messages on the other hand provide direct feedback and refer to specific
elements, whereas Gradual OverPy has vague error messages dedicated to OverPy instead of
Gradual OverPy.

3.3 Testing the web application

The web application was tested using interviews. Interviewees went through the 4 levels and quali-
tative data was then collected. These interviewees’ programming skills range from inexperienced
to (somewhat) experienced. This will roughly show how effective and desirable this method is
depending on different skill ranges.

The reason why qualitative research was done instead of quantitative research is that the web appli-
cation does require the user to commit to learning a fully new programming language. This requires
a level of commitment and covers a range of details which is difficult to adapt to online quantitative
testing (especially in the current pandemic). If during the interview the interviewee thinks that the
web application is boring, they are not forced to continue, which still provides better information
than expecting large amounts of testing online, which has the risk of ending up with small/no results.

The interviewees were told the following:

15

• ”Hi, thanks for your time. First off, am I allowed to record this think-aloud interview? This
is purely for citing purposes and there are no means of harm.”

• ”Secondly: It would be ideal to revise the whole first stage, but if you think halfway through
it gets boring or you do not understand anything, feel free to let me know and we will go to
the questions right away.”

• ”If you read something and don’t quite understand what it means, you can ask me and I will
try to explain how it works.”

• ”Now before you can start with the first level, I will ask you some quick questions about you
and your experience in programming.”

– ”What is your age?”

– ”What is your gender?”

– ”How experienced are you with programming? And what languages do you know?”

– ”How interested are you in programming?”

After this, the interviewees started with the first level. During the interview, the interviewee could
ask questions about the project or the content if they did not understand how certain elements
function. At the end of each level, a code comprehension test was done, where they were asked to
go through the example code provided with the ”Insert example” button, and explain what the
code does. The initial protocol had them write code themselves, but as (Gradual) OverPy could
need many rules for simple functionality, which can be a time-consuming process, it was decided
that explaining the code would be sufficient enough for the code comprehension test.
After the interviewees went through all the levels (or after they ended it early due to boredom/lack
of interest), they were asked the following questions:

• ”How did it go? Did it go smoothly or did you have to reread the descriptions? How far did
they come?”

• ”What are some things that you liked and what parts did you not like (and how do you think
you could improve it)?”

– ”Did you like the integrated editor? Do you think the explanations were clear? Should
there be videos per level instead to keep the users attention? Should there be (more)
challenges?”

• ”Do you think this concept would be interesting to other players, beginning programmers,
players that want to explore the workshop?”

• ”Do you think you have mastered the elements from the levels? And do you think you can
master more elements with this approach?”

• ”Have you tried the in-game overlay? Do you think this is a good replacement? Or only for
people that want to learn programming?”

16

4 Results

During development, a first prototype was shared online within a small social network. This resulted
in only first impressions, and no proper testing. Barbero also revised this prototype and provided
minor improvements.
Screenshots of the developed web application (Figures 7, 8, 9, 10, 11 and 12) can be found in Section 7.

As for the interviews, the interviewees were interviewed online through a voice call in the communi-
cation application called Discord [Inc15]. The results of the interviews can be seen in Table 2 at
Section 7.

To summarize the results:
The interviewees managed to finish all the levels, some with more ease than others. The first
interviewee found the explanations clear with the provided examples, whilst the other two had
trouble understanding the introduced concepts, one because of the complexity, the other because of
the incompleteness. Noticeable is that all interviewees liked the integrated editor. The interviewee
with no experience liked the ”insert example” button, as it provides a template, however, this
template becomes more complicated at later levels.

As for direct feedback on the web application, the two main potential improvements they thought
might help were:

1. Adding videos for the introduction of an element

2. Adding small challenges per level

Their opinion on the concept is positive in general. It could be a great replacement for learning the
original workshop syntax, especially for beginning programmers, as they think the workshop code
is quite messy compared to Gradual OverPy.

As for mastering elements, the two interviewees who are (somewhat) experienced in program-
ming could master more elements if this approach were to be refined in the future, as they did not
master the elements through the testing.

Out of the interviewees, none of them have tried the in-game programming overlay. After showing
how the overlay works, the first interviewee thought it was easier than Gradual OverPy. The second
interviewee thought it looked easier, but having that many predefined elements to experiment with
would probably be as hard as learning Gradual OverPy. As the overlay is just an editor in its
core, having a dedicated tutorial is better, as it guides the programmer through the large amount
of elements that exist. The third interviewee thought that the overlay was ambiguous and that
Gradual OverPy would be better to use, even if people want to quickly experiment.

17

5 Discussion

As mentioned in Section 3, the provided explanations for the introduced elements in the web
application did not suffice for all the interviewees. This was due to lengthy text blocks which
attempt to explain how, where and when certain elements have to be used. This could have caused
the explanation to be too long for people that want a quick explanation on the usage and it would
be too short/informal for programmers that are used to having proper documentation.

The initial target group was the group of Overwatch players who have small to no program-
ming knowledge and are interested in learning both programming and the Overwatch workshop,
but looking at the results, players who already know basic/complex programming could also
benefit from Gradual OverPy, if they are interested in workshop programming. To prevent the
exclusion of a specific target group, the large explanations should be replaced with both short
simple usage explanations for beginners and complete documentation per function/element for
experienced programmers. Most of the documentation is similar to the documentation from OverPy.
The main differences lay in the functions/elements with changed syntax, so including documen-
tation per stage on how the syntax of functions has changed in that stage might already be sufficient.

When looking at the contents of the web application, even though the first stage covers the
whole of the jetpack system, this is still just a proof of concept, as the web application only contains
one stage with four levels. The only changes to the actual grammar were the hudHeader and pro-
gressBarHud functions. The gradual change to OverPy has not been implemented yet because of this.

Two problems which have not been discussed are the website layout and the organization of
code of the web application.
The current layout of the levels is very basic and is minimalistic: It is bland and has almost no CSS.
This was done as the focus of this project lays in the functionality rather than the looks of the web
application. The functionality of the application is present, but changing one website element from
all levels has to be done manually. Making more use of blocks for repetitive usage would be a great
improvement for future development.

18

6 Conclusions and future work

Gradual OverPy, the concept of the gradual learning method of OverPy, has shown that a gradual
method on an lesser-known language could be of interest. As seen in the results, people with different
programming experiences can show similarities and differences in their opinion, but the important
part is that these opinions are brought out and should be considered in cases of future development,
as Gradual OverPy is currently still a proof of concept. To answer the research question ”Does a
gradual language system help Overwatch players develop custom workshops?”, the generosity and
interest of the players should be considered. Depending on what a player desires to learn/do, can
Gradual OverPy be a tool to gain knowledge both about the elements of the game and programming.
Therefore, the answer to the research question is: ”Yes, but their learning potential mostly depends
on the generosity and interest of the player.” This conclusion can be backed by Section 2, where
syntax requires user insight to get an understanding of it. A gradual method on the programming
language of a game can work for players that are interested, independent of their insight on syntax.

In the case this project would be continued, the following (mentioned) potential improvements
could be applied:

• Adding video footage for each introduced element

• Changing the blocks of text with explanation to:

– Simple usage explanation

– Complete fully explained documentation

• Improve website layout

• Better code organization

A bigger research could be if a gradual method on OverPy would teach beginning programmers to
program could be researched by implementing the gradual method itself and completely covering
all the syntax changes such that the resulting code is original OverPy instead of a simplified version
of OverPy.

19

References

[CM08] Ioana Chan Mow. Issues and Difficulties in Teaching Novice Computer Programming,
pages 199–204. 08 2008.

[ENS06] Magy Seif El-Nasr and Brian K. Smith. Learning through game modding. Comput.
Entertain., 4(1):7–es, January 2006.

[Ent16] Blizzard Entertainment. Overwatch. PC/PlayStation 4/Xbox One/Nintendo Switch,
2016.

[Her20] Felienne Hermans. Hedy: A gradual language for programming education. In Proceedings
of the 2020 ACM Conference on International Computing Education Research, ICER ’20,
page 259–270, New York, NY, USA, 2020. Association for Computing Machinery.

[Inc15] Discord Inc. Discord. PC/iOS/Android/Linux, 2015.

[OvPa] OverPy v6.0. https://github.com/Zezombye/overpy. Accessed: 2021-3-30.

[OvPb] OverPy v6.0 language demo by zezombye. https://zezombye.github.io/overpy/demo.
Accessed: 2021-3-30.

[VC12] Hidden Path Entertainment Valve Corporation. Counter strike: Global offensive. PC,
2012.

20

https://github.com/Zezombye/overpy
https://zezombye.github.io/overpy/demo

21

7 Appendix

Level Original OverPy code

Level 1 rule ”myRule”:

Simplified syntax unchanged

hudHeader(eventPlayer, ”Jump”, HudPosition.LEFT, 0, Color.WHITE,
HudReeval.VISIBILITY AND STRING, SpecVisibility.DEFAULT)

Simplified syntax hudHeader(”Jump”)

Level 2 @Event eachPlayer

Simplified syntax unchanged

@Condition eventPlayer.getCurrentHero() != Hero.PHARAH
@Condition eventPlayer.isHoldingButton(Button.JUMP) == true

Simplified syntax unchanged

destroyHudText(getLastCreatedText())

Simplified syntax unchanged

Level 3 globalvar apples 0

Simplified syntax unchanged

playervar apples 0

Simplified syntax unchanged

apples = 5
pears = 7
eventPlayer.apples = 5
eventPlayer.Flying = true
eventPlayer.Text = ”Sample text”

Simplified syntax unchanged

hudHeader(getAllPlayers(), ”There are {0} apples and {1} pears”.format(apples.pears),
HudPosition.LEFT, 0, Color.WHITE, HudReeval.VISIBILITY AND STRING,
SpecVisibility.DEFAULT)

hudHeader(eventPlayer,
”You have {0} apples and {1} pears”.format(eventPlayer.apples, eventPlayer.pears),
HudPosition.LEFT, 0, Color.WHITE, HudReeval.VISIBILITY AND STRING,
SpecVisibility.DEFAULT)

Simplified syntax
hudHeader(”There are ” apples ” apples and ” pears ” pears.”)
hudHeader(”You have ” eventPlayer.apples ” apples and ”eventPlayer.pears ” pears.”)

eventPlayer.sum = 2 + 30

Simplified syntax unchanged

progressBarHud(eventPlayer, eventPlayer.Fuel, ”Fuel”, HudPosition.LEFT, 0,
Color.WHITE, Color.WHITE,
ProgressHudReeval.VISIBILITY VALUES AND COLOR, SpecVisibility.DEFAULT)

Simplified syntax progressBarHud(eventPlayer.Fuel, ”Fuel”)

if RULE CONDITION:
goto RULE START

Simplified syntax unchanged

Level 4
eventPlayer.applyImpulse(Vector.UP, 0.3, Relativity.TO PLAYER,
Impulse.INCORPORATE CONTRARY MOTION)

Simplified syntax eventPlayer.applyImpulse(Vector.UP, 0.3)

Table 1: Grammar of (Gradual) OverPy of each element introduced in each level
22

Interviewee 1 Interviewee 2 Interviewee 3

Age, gender,
programming experience

19, male, knows
Java from high school

22, male, no experience
21, male, experienced
in C++, Python, Javascript
(2 years), PHP (3+ years)

Interest in learning a
programming language

Not really
Generally no, but seems fun to
be able to program

Very interested

Progress and smoothness
of the interview

Finished all levels, went
quite well, example code
was easy to understand

Finished all levels with
assistance. First few levels
were doable, but further levels
were difficult without verbal
explanations. Importing and
changing code makes code
comprehension easier.

Finished all levels, went
pretty smooth because of
programming experience

Liked/Disliked parts

Liked:
-Integrated editor: good to
check if the code could run
-Many examples: makes the
explanations clearer
-Easy to read

Disliked:
None

Liked:
-Insert example button
-Editor is amazing

Disliked:
-Insert example button at later
levels: quite a lot of code to
understand.
-Explanations read but not
fully comprehensive.

Liked:
-Integrated editor

Disliked:
-Incomplete explanations:
not everything was fully
explained, some parts in
the explanations were
missing.

Potential improvements

Some people prefer text and
examples, some prefer
videos. Doing both would be
the best solution.

During the interview,
the incomprehension was solved
through verbal explanations.
It could be solved through
reoccurance of first few elements
at later levels through small
challenges.

Adding videos is definitely
recommended, Having
small challenges per level
could help code
comprehension overall.

Opinion on concept

Not sure how easy it is for
people that are beginning
to learn programming, but
for experienced programmers
quite understandable.

If someone is into Overwatch,
it could open a whole new
world. They could start coding
their own gamemodes and
experiment with elements.

It really depends on how that
person wants to get into
programming.

It is generally a good idea,
because the original workshop
code is quite a mess.

Thinks the concept is interesting,
as a decent amount of players
would probably want to try
things out but don’t know where
to start.

It would be more interesting to
beginning programmers. Half a
year of experience would be ideal.
Great introduction to the workshop

Gradual OverPy is way easier to
understand than the workshop code.
With Gradual OverPy and the
workshop code side by side,
elements in the workshop code
can be spotted.

Not sure about players, as
he is not involved in the
Overwatch scene.

It would probably be
interesting for beginning
programmers.

Elements mastered/
able to master elements
with this approach

Would go back to this website
to check the syntax if he
wanted to code something
by himself.

Think he would probably be
able to master more elements
with this approach.

Has not really mastered the elements,
but if he got constant vocal feedback,
he could probably create some things
after a few days.

Has not completely mastered
the elements, because there is
no complete documentation/
explanation.

Could master more elements
with this approach

Ingame overlay, Gradual
OverPy as replacement
for the overlay

Has not tried the ingame
overlay.

After demonstration:
Ingame overlay would be
easier, but if someone wants
to learn programming, Gradual
OverPy would be better

Has not tried the ingame overlay.

After demonstration:
At first glance, the overlay seems to
be easier to code, especially doing
small experiments. Even though
elements are predefined in a list,
there are quite a lot of elements,
which is probably as difficult as
learning syntax.

In this case, having a dedicated
tutorial is better than the overlay by
itself.

Has not tried the ingame
overlay.

After demonstration:
Did not really understand the
overlay. Gradual OverPy is
a good replacement for it.
Gradual OverPy would also
be handy for people that
want to quickly put something
together.

Table 2: Results of the interviews
23

Figure 7: Gradual OverPy main page

24

Figure 8: Gradual OverPy Stage 1 Level 1
25

Figure 9: Gradual OverPy Stage 1 Level 2

26

Figure 10: Gradual OverPy Stage 1 Level 3 part 1

27

Figure 11: Gradual OverPy Stage 1 Level 3 part 2

28

Figure 12: Gradual OverPy Stage 1 Level 429

	Introduction
	The situation
	Thesis overview

	Background
	Gradual language
	Game modifications
	The Overwatch Workshop
	OverPy
	Gradual OverPy
	Relevance

	Method
	Creating the web application
	Requirements
	Flask
	Lark parsing & grammar

	The web application
	End goal
	The grammar of OverPy
	The grammar of Gradual OverPy
	The levels of Gradual OverPy
	Comparison between Gradual OverPy, Hedy and the in-game overlay

	Testing the web application

	Results
	Discussion
	Conclusions and future work
	References
	Appendix

