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Abstract

Background Avery Dennison [1] is a global material company specializing in
producing labelling and functional material products. Because of the variety
of the products, it is hard for the sales team to keep track of every customer.
In the sales orders, the changes of some customers are hard to detect not
only because of the great amount of the entire customers in the company, but
also because changes are various under many aspects and categories.

Aim The paper focuses on detecting customer abnormal buying patterns
based on unlabelled annual sales transaction orders by using the unsupervised
learning methods. Automation of anomaly detection is the main goal to
support the sales department in identifying abnormal customer behaviors.

Method We use three design science research cycles in guiding our project.
In the relevance cycle, we do the data exploration and get a baseline idea of
anomalous data by using an unsupervised method DBSCAN. In the design
cycle, we elaborate and give a detail evaluation for an automated forecasting
model in detecting abnormal orders and propose a mixture model for finding
anomalies. In the rigor cycle, we validate our model through labelling a small
sample of anomalous data supported by sales representatives.

Results We find three locally optimal models for daily, weekly and yearly
aggregated transaction data, and purpose a prophet-derived Gaussian mixture
model in the form of the bi-modal distribution for different product categories.
In addition, we provide a methodology to verify the performance of the
unsupervised model on labelled sample data.

Conclusion We conclude that our approach can give us the insight in not
only the anomaly distribution and the statistical properties of anomalies
per customer and per item but also helping identify the cause and effect of
transaction data anomalies for sales department.



Contents

[y

Introduction 1
1.1 Research Statement. . . ... ... ............... 2
Related Work 3
Preliminaries 5
3.1 Design Science . . . .. ... .. ... e 5
3.2 Time Series Analysis . . . .. ... ... ... ... ..... 7
3.2.1 Temporal Stochastic Effects . . .. ... ... ..... 8
3.2.2 Serial and Auto-Correlation . . .. ... ........ 10
Approaches 12
4.1 Unsupervised Clustering Methods . . . . ... ... ... ... 12
4.1.1 Principal Component Analysis (PCA) . ... ... ... 12
4.1.2 DBCAN . . . . . e 14
4.2 Unsupervised Anomaly Detection . . .. ... ......... 16
4.2.1 Auto-Regression. . . . ... ............... 17
4.2.2 ProphetModel .. ... ....... . ... ... 18
4.3 Automated Optimization Technique . . . . . .. ... ... .. 22
4.4 Anomaly Analysis . . . . ... ... ... ... 23
Data Analysis 25
5.1 SalesOrder Variables . . . . .. ... ... ........... 25
5.2 Preprocessing . . . . . . . ..o e e 29
5.3 Sales Data Exploration . . ... ... .............. 31
Anomaly Detection 39
6.1 Auto-Regressive Model . . . . . ... ... ... ... .... 39
6.2 Anomaly Detection with Daily, Weekly, and Monthly Transactions 40
6.2.1 Parameters . . . . .. ... ... ... 40
6.22 Daily . . . ... ... 42
6.2.3 Weekly . . . . .. .. ... 46
6.24 Monthly . ... ... .. ... ... ... ... ..., 48



iv

6.3 Optimization . .. ... ... ... i
6.4 Anomaly Analysis . . . . . . . ... ..o
6.5 Validation . . ... ... ... ... ... ...

7 Conclusion
7.1 Can prediction models for time series data be used to detect
anomalies in salesdata? . ... ... ... ...........
7.2 How can we utilize unsupervised learning to create and opti-
mize an anomaly detection model to classify our data?
7.3 How can the performance of the resulting anomaly detection
models be determined in a practical setting? . . ... ... ..
7.4 Contributions . . . . . . .. ...
7.5 FutureWork . . . . . . ... .
A Appendix
B References
C Index

61

61

62
63
64

65

73

78



Introduction

Avery Dennison [1] is a global material company specializing in products
such as labels and packaging material. Operating in over 50 countries, Avery
Dennison addresses a diverse global market with complex financial dynamics.
As the market behaviour of the various product lines can vary greatly by
customer, region and time, the analysis of sales dynamics needs to incorporate
these components to produce versatile predictive and diagnostic models.

The primary challenge that we analyze in this study is abnormal customer be-
haviour within this complex system. In daily sales, the changes of customers
buying patterns are hard to detect, not only because of the great amount
of the entire customers in the company, but also because the changes are
variable under product, spatial and temporal properties. Another challenge
is there is no defined standard for anomalous behaviour within the domain,
and therefore no objective labelling of transactional data. Therefore, it is
necessary to understand and define the conditions under which customer buy-
ing patterns are abnormal, which form the basis for our anomaly detection
model.

In this thesis, the data we focus on is sales orders data which we analyze for
Avery Dennison, focusing on the transactions through the EU data warehouse.
The sales orders dataset contains both categorical variables such as customer
name and numerical variables such as ordered value in Euros. In the dataset,
the daily orders are recorded if a customer makes an order for a specific
product with the relevant information such as ordered volume and value.

We use three design science research cycles [2] in guiding the project. Since
the project cooperates with sales department, in the initial cycle (i.e. rele-
vance cycle), we transform the requests into research questions and define
the abnormal buying patterns. On the next cycle which is design cycle, we
build our anomaly detection model and do the relevant experiments and
evaluate the model performance. On the final cycle (i.e. rigor cycle), some
result validation works have been done by the sales representatives.
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The rest of the thesis is organized as follows. Section 2 provides the related
works for time series analysis and existing unsupervised anomaly detection
methods. In section 3, we give preliminaries about the design science research
and the time series analysis. In section 5, we elaborate the details about the
sales transaction data and do the data exploration in unsupervised analysis
of the sales transaction data to get a baseline idea of anomalous data. We
discuss the baseline time series exploration, provide a detail evaluation of
the automated forecasting model, purpose a mixture model in the form of
a bi-modal distribution for anomalies in section 6 and label a small sample
of validation data supported by sales representatives. We conclude our
contributions, answer our research questions and discuss about future work
in section 7.

1.1 Research Statement

There are some questions that need to be stated for this research.

1. Can we use statistical uncertainty modelling to effectively detect anoma-
lies in sales data?

2. How can we utilize unsupervised learning to create and optimize an
anomaly detection model to classify our data?

3. How can the performance of the resulting anomaly detection models
be determined in a practical setting?

Chapter 1 Introduction



Related Work

In the presence of unlabelled data, typical classification models that train
on class labels cannot be used without making assumptions over the class of
each instance. In addition, the classification of a data element may depend
largely on the underlying distribution of the data. To rectify this we must look
towards unsupervised methods, that allow us to extract analyzable patterns
or metrics from which we can estimate the probability for a data point being
an outlier that can be classified as an anomaly.

Clustering is one of the unsupervised learning methods. There are some
popular clustering algorithms in unsupervised machine learning such as K-
Means described in detecting unknown network intrusions or attacks [3],
however they are susceptible to strong outliers unless the clusters are disjoint.
Another clustering methods is called DBSCAN which is used in clustering and
detecting noise by grouping the reachable neighbors and finding the outliers

[4].

In time series analysis, the stationary time series means the changes of values
do not depend on time. For our project, we focus on the non-stationary time
series which the values change through time and are affected by trend, sea-
sonalities, etc. Changepoint analysis detects the points that affect the changes
on the time series, Dette et al. [5] purpose the changepoint and correlation
analysis for non-stationary time series in detecting relevant changepoints.

The goal of our project is to detect time series anomalies. Since the data is
unlabelled, we focus on unsupervised anomaly detection methods. Munir
et al. [6] purpose a convolutional neural network (CNN) based prediction
model called DeepAnT for unsupervised learning on a time-scale that used the
unlabelled data in predicting the time series normal behaviour and DeepAnt
can be applied for both uni-variant and multi-variant. Audibert et al. [7]
purpose an UnSupervised Anomaly Detection for multivariate time series
(USAD) model based on an adversarial autoencoder architecture in detecting
anomalies while doing unsupervised training.
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For detected anomalies, a mixture of a bi-modal distribution model can be
performed. Zong et al. [8] purpose an advanced Gaussian Mixture Model
(GMM) with the non-linear autoregressive component for univariate time
series in satisfying the stationarity and ergodicity conditions. Zong et al.
[8] purposes a similar GMM architecture by using auto-encoding method
in modeling the error. Braei and Wagner [9] conduct a survey on the state
of the art in evaluating and comparing the anomaly detection models not
only in statistical approaches such as auto-regression but also deep neural
network methods such as CNN on univariate time series.

Chapter 2 Related Work



Preliminaries

In this chapter, we discuss about the preliminaries of our research. In sec-
tion 3.1, we discuss the three cycles of design science and how we use design
science in guiding our project. In section 3.2, we describe the preliminaries
of the stochastic effects and auto-correlation for time-series data.

3.1 Design Science

The project described in this thesis is an application of the design science
research. The idea of the three design science research cycles (i.e. relevance
cycle, rigor cycle, design cycle) is brought by Hevner [2] where he claims
that these three cycles help enhance the understanding of design science in
the Information System (IS) field. In [10], livari summarizes twelve theses
in order to give an overview of the main properties of IS as a design science
based on ontology, epistemology, methodology, and ethics.

Environment Design Science Research Knowledge Base
Application Domain Foundations
® People Build Design ® Scientific Theories
pl L Artifacts & & Methods
® Organizational Processes
Systems
. 4 ; f ® Experience
S-;ifehr?llgal Relevance Cycle Rigor Cycle Expertise
® Requirements * Grounding
A o
® Field Testing Additions to KB
®* Problems
& Opportunities Evaluate * Meta-Artifacts
(Design Products &
Design Processes)

Fig. 3.1.: Design Science Research Cycle [2]

Figure 3.1 shows the three design science research cycles introduced by
Hevner [2]. In general, the Relevance Cycle represents the initiate stage
of the design science research project that connects both the application
domain such as people, organizational systems and the requirements such
as research problems while evaluating if the design artifact meets the final



research results criteria. If the requirements are wrong or the design artifact
will have negative impact in practice. In this context, field testing is used to
evaluate the impact of the prototype to which demonstrates the performance
and usability before it is used in operation. This process is used to validate
designs in the current design cycle before they make it to the market.

The Design Cycle is bridge that connects both the relevance cycle and the
rigor cycle. It provides the evaluation for the design artifact to the relevance
cycle after applying the scientific research methods provided in the rigor
cycle based on the requirement inputs from the relevance cycle. Since the
changes of methods in the rigor cycle and the feed-backs provided in the
relevance cycle, design cycle is the core of the design science research and it
may involve multiple of iterations.

The Rigor Cycle indicates the process of collecting and developing the scien-
tific theories and methods from both the innovative experience and expertise
of the research domain and the already existed meta-artifacts in the applica-
tion domain [2]. In this thesis, we consider and test both sources mentioned
above.

Environment
Design Science Research Knowledge Base
People: Sales, -
Marketing Design process: data Methods:
cleaning, model Classification,
tramlmg._ algorithm Gaussian Process,
selection, eete
Organizational Ne}:}r:tallh:fm;arks
Systems: Sales, , §c
Marketing, IT Relevance Cycle Desion Gy Rigor Cycle
« > esign Lycie B * | Experience: applied
Technical Systems: Neural Prophet, etc
Cognos, Google
document system .
Evaluation: sales Meta-Artifacts: [T
people validation, test infrastructure of
Problems: Lack of ACCUrECY, rinning model assessment
understanding of time, ete process, etc
sales decline

6

Fig. 3.2.: Application of Design Science Research Cycle

The application of our research project on three cycles of design science is
shown in Figure 3.2. At the initial stage of our project, the application envi-
ronment includes sales representatives to gain insights of the transactional
data, organizational systems such as the Sales Department, Marketing Depart-
ment, and IT Department, and technical systems which are Cognos system

Chapter 3 Preliminaries



and Google Cloud Platform (GCP). Cognos is a business intelligence tool cre-
ated by IBM, it helps users with and without technical background to manage
and analyze the data easily. In our project, we get the recent three-year sales
orders data from Cognos and use GCP to share documents and communicate
with each other. The problem that drives us to do the anomaly detection
research is the unexplained decline in sales of some products. Sales people
find that there have been declined sales patterns among some customers in
recent years and marketing people are interested in understanding the sales
dynamics for various products. Both of the sales and marketing departments
would like to know the changing patterns in detail on a time-scale basis.

During the design cycle, we continuously get feedbacks from sales and
marketing people and improve the model during the design cycle. The design
process contains the data preprocessing, algorithm selection, model training,
etc. Figure 3.3 shows the design process flow chart of our project.

The rigor cycle provides the existing knowledge base (i.e. methods) with
additional extensions of the original approaches, the new meta-artifacts,
and the learning experience from doing the research experiments and field
testing [10]. In Figure 3.2, we consider the existing unsupervised learning
methods such as DBSCAN, and auto-regression and also the innovative
approach such as Prophet. Experiment, as mentioned in [10], is one of the
additional knowledge that represents the cutting-edge theories or methods
in the research application domain. In our project, we consider unsurprising
methods such as the application of DBSCAN and Prophet. Another additional
knowledge is meta-artifact which means the existent design products and
processes applied in the past research domain. As mentioned in [11], meta-
artifact is to improve the development of the information system. After
reviewing the meta-artifacts mentioned in [12] and [13], we propose the
new meta-artifact shown in Figure 3.3.

3.2 Time Series Analysis

In comparison to cross sectional data, which is used to compare the sample
differences within sample space for various instances, for time series data
we find that there is ordering in the data with serial dependence over the
observations [14].

Chapter 3 Preliminaries 7
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Fig. 3.3.: Flow chart for the design process followed in this thesis.

This ordering is temporal in nature, as such each sample within the sample
space can be expressed as the values at a unique point in time and we can
define a time differential with respect to two discrete samples in a time-
continuous sample space.

In comparison to a continuous function g, where we can determine a deriva-

tive by taking the limit lim slete)—g(z)
e—

, real-world data is bound to a sampling
rate [ giving us a discrete waveform with no definition of the derivative for
this sampling function. This means that traditional calculus cannot be applied,
rather we must look towards probabilistic modelling methods. Consider that
between each time-step in the discrete signal, there is uncertainty over the
subsequent possible values, which are resolved at the next measuring interval
[15]. As the result of this, the higher the measuring frequency, the lower the

uncertainty over the possible values between each sample.

3.2.1 Temporal Stochastic Effects

With time series data comes new challenges, as we not only have to estimate
the effects between each of the predictor attributes x1, zs, ..., x,_1, x,, With
x; € X where X is the vector of attributes in relation to the data, but we
also have to consider the change of each of these attributes as a function of

Chapter 3 Preliminaries



the temporal attribute T to give observations yg, y1, ..., ¥;—1,y; Where y; € Y
and ¢t € T. This property is called the dynamic causal effect of X, which can
be modelled as a sequence of coefficients i, 0, ..., 8,13, for each attribute
x € X denoting the effect a change in ¢ has on the realisation of observation
yeyY.

With this property a complicating factor of the model comes into play, as the
temporal variable changes, so do the statistical properties of the attributes
for non-stationary data [16]. However, as the attributes themselves change
in shape and distribution, so do the co-correlated attributes. This sequence of
events is what we consider a temporal dynamic model, which is governed by
a stochastic process indexed by time and attributes that have causal relation-
ships that can be estimated by inference [17]. Each individual observation
within a time series based model is also considered a realization of the
stochastic process.

We can describe this type of system with a mixed-effects model that combines
deterministic effect attributes with temporal non-determinism, which we
can describe as a generalized mixed-effects model as shown in Equation 3.1.
In this respect, individual predictors X and their estimated coefficients 3
are given by the first term, the covariates Z and their measured interaction
coefficient -y are given by the second term and the final term gives the random
effect on each of the realizations of Y.

Y=XB+Zv+e (3.1

Where residuals are defined by the normally distributed vector € ~ N(0,R)
with R = o1, the static component is given by the parametric vector 3 ~
N(p, o) and the stochastic component is given by the triangular Cholesky
factorization [18, 19] of the variance co-variance matrix G = LDL resulting
in the model matrix of Equation 3.2 for the non-deterministic component.

2 2 2
G| Tne|id |7 0 (3.2)
‘732,1 032 0 ‘732

Chapter 3 Preliminaries
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From the Cholesky factorization we can derive the random effects model
parameters distributed by v ~ N(0,G) to get the Whittaker-Henderson
factorization [20] in Equation 3.3 of the model given by Equation 3.1.

e

A

Y

XTR1X XTR'Z
ZTR'X Z'TR '+ G™!

3.3
ZTRYY (3-3)

XTR—lY]

For the generalized linear mixed-effects model using ordinary-least squares
(OLS) parameter estimation this introduces a challenge, similar to cross-
sectional regression, several assumptions have to be made over the data
which have a big influence on the quality of the final model.

An assumption unique to time series is that the temporal distance between
each index within the sample is constant, in other words the sampling rate f
must be a constant [21]. An assumption that is harder to satisfy is the normal
distribution of the response variable. For this assumption to hold the variance
of the response must be approximately constant over all ¢, which is hardly
ever the case in real world data [22]. With the right processing techniques
however, we might transform the data to satisfy this assumption to some
extent while estimating the effect of the inevitable factor of auto-correlation
between temporal sampling for model diagnostics.

3.2.2 Serial and Auto-Correlation

Within a stochastic process we assume that the random errors are uncorre-
lated, since the model won’t take the co-variances into account, as holds with
the assumption of independent and identically distributed residuals using
the Cholesky factorization in Equation 3.2. By assuming uncorrelated errors
and independence of variables we can simplify the propagation of errors into
the partial derivatives of variances in our model with respect to each of the
attributes over the observations y; € Y and attributes z; € X.

n (oY 2 oY 279y \? oY 2
2 _ B — . —= _ - -
oy = g (8% 03“) (81’1 0x1> + (8352 Ux2> 4+ ...+ <3xn am> (3.4)

To determine the presence of correlated errors for an attribute over temporal
attribute 7, we analyse the presence of auto-correlation in the residuals

Chapter 3 Preliminaries



using the Durbin-Watson test [23]. Consider the residual ¢ in a simple linear
regression model defined by Equation 3.5.

Y = (8 %) —|—a1X—|—e (35)

Then for an auto-correlated error, in other words modelling that residual e
depends on ¢;_1, we can define the residual at time ¢ as Equation 3.6.

e=v+pe 1, v~ N0, 0'21) (3.6)

And p denotes the correlation matrix, which is given by the Pearson correla-
tion coefficient over elements of X and Y in Equation 3.7.

Pziyls --- Pzxlyn
E[(Z — pux)(§ — )]
p : . : s Pay P 3.7)

Panyl -+ Pznyn

Here p denotes the measure of correlation of the residual with itself in regards
to the residual at the previous time step for attribute x; and realisation ;.
For this assumption to hold, we must apply some test to determine if the
hypothesis Hy : p = 0, H, : p # 0 holds to a measure of significance «. This
can be tested with a Durbin-Watson statistics given by Equation 3.8.

T
Zt:Q(et - Et—l)2
D= —
Zt:1 €t

(3.8)

In other words, we divide the sum of squared differences of the residual
between time steps by the residual sum of squares. The closer the difference
between the residuals is to the value of the baseline residual at ¢, the less
evidence there is for auto-correlation to one degree of time differential.
Values D > 1 tend to be positively auto-correlated, while values D < 1
are negatively auto-correlated, and D = 1 means there no auto-correlation
between single time-steps [24]. The size of the confidence interval around
the critical value of D depends positively on the amount of regressors within
the model and negatively on the sample size.

Chapter 3 Preliminaries
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4

Approaches

In this chapter, we discuss about the related approaches used for our ex-
periments. Since the sales transaction data is unlabelled and discrete (see
section 5 in detail), we use the unsupervised clustering methods to discover
the hidden pattern of the customer buying behaviors. To detect abnormal
sales orders on a time scale, we preform the unsupervised anomaly detection
methods for our experiments. For optimizing our anomaly detection model,
we use the grid search in automatically selecting the hyperparameters. To an-
alyze the anomalies labelled from our anomaly detection model, we purpose
a Gaussian mixture model in the form of a bi-modal distribution.

4.1 Unsupervised Clustering Methods

Since the sales data is unlabelled, distributed over time and hierarchically
grouped by product type and customer, we will need to use unsupervised
clustering method to identify clusters and patterns within the data. To achieve
the goal of detecting abnormal customers, and ultimately abnormal patterns,
within the sales data, we utilize two methods which are Principal Component
Analysis (PCA) and Density-based Spatial Clustering of Applications with
Noise (DBSCAN) described in this section. The result of DBSCAN of applying
2 dimensions of PCA data is shown in section 5.3.

4.1.1 Principal Component Analysis (PCA)

Clustering can help divide aggregated customer data with similar sales pat-
terns into hierarchical groups, which can then be mapped in proximity to
find outliers. To deal with the high dimensionality of the data, PCA is used to
generate representation mappings for the original data into few numbers of
principal components [25].



Given a data matrix X with m variables and n objects, the covariance matrix
for X is shown in Equation 4.1

[Cov(zy,x1) ... Cov(zy,z;) .. Cov(xy, )
Cov(X) = | Cov(xj,z1) ... Cov(zj,x;) ... Cov(xj, ) (4.1)
Cov(@m, 1) ... Cov(zy,x;) ... Cov(Tm,Tm)]

where z; represents the i-th variable in data matrix with ¢ € {1,2,...,m}. The
covariance between two variables x and y is Cov(z,y) = >0 (z; — Z)(y; —
y)/(n — 1). For PCA the weights for the representations on the covariance of
the data matrix X are estimated by finding matrix v that maximizes variance
over the covariance matrix C'ov(X) as in Equation 4.2 where \ represents the
scale of the variance. For m variables, there are m vectors of weights so that
v represents the weights for the new variables (i.e. principle components)
[25].

(Cov(X) = NI)vi =0 (4.2)

20.0
175
15.0
125
> 10.0

75

5.0

25

0.0
0.0 25 5.0 75 10.0 125 15.0 175 20.0
X

Fig. 4.1.: Principle Component Example in 2 Dimensional Space Illustration

Each principle component is uncorrelated with each other and ordered by
the explained variance defined by A\ [26]. Figure 4.1 gives an example in
visualizing the principle components in a 2 dimensional space on the original
example dataset with 2 variables. In the plot, it is clear that the example data

Chapter 4 Approaches
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has a positive correlation. After using the PCA, the first principle component
in the light green arrow shows the direction of the data represented by the
weight vector v; with the highest variance represented as the vector length
scaled by \;. The first principle component explains the most of variance
and the second principle component shown in the darker green arrow is
uncorrelated with the first component since v, is perpendicular with v;. The
length of second principle component vector )\, is smaller than that of the firs
component which indicates that the second principle component explains less
variance than the first component. In our unsupervised clustering experiment,
we use PCA to capture most of the variance among our four numerical
variables and reduce the dimensionality to 2 principle components.

4.1.2 DBCAN

From the PCA, we use Density-based Spatial Clustering of Applications with
Noise (DBSCAN) to initially identify customer-based outliers. DBSCAN pro-
vides a more reliable clustering method in light of within-cluster outliers [4].
There two parameters used in DBSCAN, minPts represents the minimum num-
ber of points (i.e. threshold) for the density of the neighborhood including
the current point itself. Another parameter is the radius ¢ which means the
distance in measuring the scale of the neighborhood. Higher radius means
the neighborhood scale is bigger which can include more points.

In DSBCAN model, the neighbors for the point within its the radius with at
least minPts in the neighborhood is called core point which belongs to the
same cluster [27]. The point that stays within the radius of the core point and
does not reach the minPts neighbors of itself is represented as the border point
and it has the same cluster as the core point since the border point is within
the neighborhood of the core point (i.e. density connected), in addition, the
core points are density reachable with each other [28]. The point that is
not density reachable with the core point, in order words, the point does
not connect to the core point within its neighborhood is considered as noise
[27]. In our experiment, we use DBSCAN to detect the noises which are
the abnormal customers to discover the customer buying behavior pattern
further.

The illustration of DBSCAN cluster model is shown in Figure 4.2 generated
by Schubert et al. [28] with minPts = 4 and radius ¢ is the length of the green

Chapter 4 Approaches



arrow. In the plot, point A and the other red points are core points since each
of them has the neighbors including themselves great than the threshold.
Point B and C are the border points since they are density connected and
reachable with the core points but do not reach the minPts requirement for
their neighborhoods. Point N is neither density connected nor reachable,
thus, it is the noise/outlier. The points A, B and C are within the same cluster.
By clustering based on densities, outliers within a cluster are detected by
density even in non-linearly separable clusters [28].

Fig. 4.2.: DBSCAN Cluster Model Illustration [28]

The pseduecode of DBSCAN algorithm shown in algorithm 1 is originated
from [28]. The DBSCAN algorithm iterates each point p in the points set P
and detects if the current point is core point or not based on the number of
connected neighbors N. If p is the core point, then it will be assigned into a
cluster, otherwise, it will be labeled as an outlier. Since some of the outliers
are connected to the core points but do not reach the minPts neighbors,
DBSCAN solves this issue by expanding the neighborhood based on the
detected core points and then reaching the border points while relabeling
them to the cluster.

In the algorithm 1, the function RangeQuery is called two times. In the
first time, DBSCAN searches for the neighbors for the unlabelled point in
the beginning and then it expends the neighborhood in searching for the
neighbors of the border points in the second time. The pseduecode of
RangeQuery function given in algorithm 2 compares the Euclidean distance
between the selected point and other points ¢ in P with the given radius e
iteratively and selects the reachable neighbors for the point p.

Chapter 4 Approaches

15



Algorithm 1: DBSCAN Alogrithm Pseduecode [28]

input :Point set P

input :Radius e

input :Minimum points minPts

input :Distance function dist

output : Point labels label, default null

foreach point p € points P do

if label(p) # null then continue // skip labelled points

Neighbors N < RangeQuery(P, dist, p, €)

if [N| < minPts then // label non-core points
label(p) < Outlier
continue

¢ < new cluster label

label(p) < ¢

Subset S «— N \ {p}

foreach point ¢ € points S do // Relabel non-core points

if label(q) = Outlier then label(q) < ¢

if label(q) # null then continue

Neighbors N < RangeQuery(P, dist, g, €)

label(q) < ¢

if [N| < minPts then continue

S < Union(S,N)

17 end

18 end
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Algorithm 2: Pseduecode of RangeQuery Function for DBSCAN

1 Function RangeQuery (P,dist,q,€):
2 foreach point q € points P do

dist < /> (¢ —p;)> // Euclidean dist with n-space

if dist < e then
| Neighbors N <+ add ¢
end

end

N o a b W

4.2 Unsupervised Anomaly Detection

In this section, we perform the unsupervised anomaly detection for our exper-
iments in detecting abnormal orders on a time scale. We use auto-regression
as our baseline model and primarily look at an time-series forecasting algo-
rithm provided by Facebook called Prophet [29]. Prophet is a method that
can be used to model time-series data with strong seasonality and handles
outliers and changepoints well from an automated optimization procedure.
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4.2.1 Auto-Regression

Although we have described a method to describe hierarchical anomalies in
customer behaviour with clustering, determining anomalies on the level of
individual transactions requires a more intricate approach that takes into
account the auto-regression, stationarity and causality [17].

An important factor relating to sequential data we have discussed so far are
serial- and auto-correlation. This describes that observations at ¢ given by y;
may be dependant on the set of previous observations yy, ..., y;_1, Where 0t is
constant for some periodic sampling frequency f.

To model this sequential relationship between observations, we can specify
a model that includes regressor elements on previously observed time steps
[30]. Such a linear model specification using all points 0 to ¢t — 1 is given in
Equation 4.3.

1
Y = Bo+ Y Bitg—i + € (4.3)
i=1

Within this model, the auto-correlation is modelled as p(y;_1, ;) estimated as
coefficient f;_;. In this case we are considering the auto-correlation between
a single time step, which is considered the serial correlation with lag & = 1,
which forms the AR(1) model y; = So+ 1y;_1. Previously we have defined the
general auto-regressive model in Equation 4.3, where the model is comprised
of the auto-regressive components of order £ = 1 to k = ¢t — 1, given by
>t~1 AR(k), plus an intercept and error term to estimate ;.

Such an auto-regressive model is prone to overfitting, because we estimate
n parameters [ for n samples, which does not generalize well outside of
the training data. For that purpose the lag component is modelled from
a moving window of size [. One approach may be to take the last [ data
points and discard older data points when considering estimation of y;, which
encourages exploitation of current trends [31]. While for example, an AR(7)
model would be appropriate to model the exact difference in observation
as compared to the previous week, which considers p(y;_7,v:), and sample
points y;_¢ to y;_; as random variables in a random process that link the two
observations probabilistically.
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4.2.2 Prophet Model

Prophet is a time-series automated forecasting model [13] developed by Face-
book Al Research, which can be used in detecting anomalies on a timescale.
This can be performed because Prophet can model the sales patterns overtime
and provide the expected value with an associated confidence interval. For
data that are out of the confidence interval, it can be considered as an out-
lier since it deviates from the expected value boundaries. Prophet contains
three main components which are trend, seasonality and holidays [29]. The
general piece-wise formula can be defined below

y(t) = g(t) + s(t) + h(t) + ¢ 4.4

where g(t) represents trend, s(t) is seasonality, h(t) means holidays effect
and ¢, means the error.

Trend Component

The trend model contains two implementations, the first is a piecewise growth
model that is built for nonlinear growth such as the population growth [29].
The generalized saturating growth model given in Equation 4.6 is developed
from the baseline logistic growth model with the formula:

L

STyt (43)

f(x)
where L is the maximum value of the curve, k is the growth rate and ¢, is
the initial time. In Equation 4.6, C is the carrying capacity, m is the offset
parameter for the time t. According to Taylor and Letham [29], there are two
differences between the piecewise logistic model and the standard model.
The first one is that the carrying capacity C is a variable C(t) that can be
changed based on time t. The second is that the growth rate k is changeable.
The growth rate k is adjusted to k + a(t)7§ at time t. § € 0, 1° represents the
rate adjustments vector and a(t) indicates the vector that helps sum up the
rate adjustments to the time t with the number of S changepoints [32] at

time t.
C

" 1+exp(—(k+a®)78)(t — (m+)a(t) Ty

Another implementation for trend model is a piecewise linear model [33]

(4.6)

g(x)

which is the trend model we use for our experiments. The reason is that
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growth model focuses on the pattern similar with the logistical growth,
however, our transaction data does not show such growing pattern based on
our previous data analysis. The linear model formula shown in Equation 4.7
where k, 4, and m are the growth rate, rate adjustments and offset parameter
respectively. ; represents —s;0, to make the function continuous where s; is
the changepoint time with j € 1,5 and §; is the rate changes at time s,.

g(x) = (k+at)Té)t+ (m + a(t)™) 4.7)

When there is no specifications for changepoint dates are assigned, the trend
model first selects a large number of changepoints (i.e. default is 25) based
on the history and then apply the sparse prior for the rate change § for
the regularization purpose [29]. Sparse prior is ; ~ Laplace(0, 7) for each
changepoint j € 1, .5, in order words, sparse prior has the Laplace distribution
shown in Figure 4.3 which is controlled by 7 (i.e. changepoint prior scale)
that can be tuned for the model flexibility. As the changepoint prior scale
goes to 0, it does not have an impact on the growth rate which turns the
model to standard logistical and linear model [29].

1.0

A A oA
[
(SR =]

08

probability
o
(=]

=
I

0.2

0.0

-8 —6 —4 -2 o] 2 4 & 8
Fig. 4.3.: Laplace Distribution with changing =

In forecasting, the trend model provides future rate changes (i.e. uncertainty)
in order to estimate the future pattern based on the historical patterns. The
assumption made by Taylor and Letham [29] is that the forecast uncertainty
has the same change rates in the average frequencies and extents as the
historical ones.

§;=0 w.p. I=5
Vi>T, ¢’ b7 (4.8)
d; ~ Laplace(0,\) w.p. 2
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In the uncertainty formula (see Equation 4.8) where \ = %Zle |9;] in
replacing the historical change prior scale 7 described in Equation 4.7 with
the maximum likelihood estimate to make sure the randomly generated
future changepoints have the average frequencies based on the historical
pattern [29]. Figure 4.4 shows an example of changes in uncertainty during
the one year (i.e. 365 days) forecast, it is clear that the prediction patter has
the similar rate changes compared to the historical changing patterns from
2020 January to 2021 January.

12
11

10

log ordered volume

2019-12  2020-03 2020-06 2020-09 2020-12 2021-03 2021-06 2021-09 2021-12 2022-03
date

Fig. 4.4.: Trend uncertainty example with one year forecast with log ordered volume
as y-axis.

The Laplace distribution parametric over i = 0, 5 = X provides us with the
distribution over random variable §; ~ Laplace(0, \), which we can evaluate
to the Laplacian distribution as in Equation 4.9.

Laplace(z € X |u=0,8=)) = 21)\ exp (—T) (4.9)

Seasonal Component

The seasonality component uses the Fourier series model to provide the
periodic seasonal effect. The seasonal component is deterministic since the
result is determined by the model parametric inputs, with the same set of
parameters, the output will remain the same. A standard Fourier series
function (see Equation 4.10) is a linear periodic combination of sines and
cosines where P represents the period that shows the same pattern along
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the time and £ is the specified number of waves appeared during the time
period P. Ay, A, and B are the Fourier coefficients, A, = % [T f(x)dx
represents the average value within the time range (—n, 7), A function is
L[0T f(z) cos ka dx and By, function is £ [77 f(z) sin kz dx.

A > 2rk 2k
f(x):70+Z(Akcos T Bysin Tt
k=1

) (4.10)

In Figure 4.5, it shows the changes of Fourier series with & = {3,10} in
weekly P = 7 and yearly P = 365.25 periods. When k& = 3 and the period
P is 7, the function is shown in Equation 4.11 where the coefficients Aq =

049, A; = 1.52, Ay = —2.48, Ay = —4.26, B, = 0.63, B, = 0.01, By = 0.19.

From the figure, there are less curves compared to the curve with the same
period but higher £ = 10. However, when we compare k£ = 3, P = 7 curve
with & = 3 and period is 365.25 (i.e. yearly) curve, the yearly curve has less
waves during the period (—, 7). Therefore, less period value and higher k
number can cause the Fourier series becomes more volatile.

A 2 272 273
f(x):—o—i-Alcosﬂ + Ay cos T x"’AgCOS o
2 7 7 (4.11)
. 27mx . 2m2x . 2m3x
+ By sin — + B sin + Bjssin

— P=7,k=3 —
P=7,k=10
1.0 P=365.25 k=3
—— P=36525 k=10

0.8

06

fix)

0.4
0.2

0.0

Fig. 4.5.: Fourier series with k£ = {3,10} in weekly and yearly periods.
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Taylor and Letham [29] purpose to add smoothing in the seasonal model by
making the coefficients to have the normal distribution with mean equals to O,
they also find that £ = {3, 10} suit most of the weekly and yearly seasonality
without providing over-fitting results.

Table 4.1.: A List of Events in United Kingdom

Date Event
1 January 2019 New Year’s Day
1 January 2020 New Year’s Day
1 January 2021 New Year’s Day
31 December 2020 New Year Holiday [Scotland]
17 March 2021 St. Patrick’s Day [Northern Ireland]
17 March 2021 St. Patrick’s Day [Northern Ireland] (Observed)
12 July 2021 Battle of the Boyne [Northern Ireland]
2 August 2021 Summer Bank Holiday [Scotland]
30 November 2021 St. Andrew’s Day [Scotland]
27 December 2021 Christmas Day
26 December 2021 Boxing Day
1 January 2021 New Year Holiday [Scotland] (Observed)

Holidays / Events Component

The event model is deterministic since the output is the same for the given
holiday inputs unless we change them and non-differentiable because each
holidays or events represent one or multiple days and they are independent
with each other assumed by Taylor and Letham [29]. An instance of a list of
events in United Kingdom is shown in Table 4.1, it is clear that event such as
"New Year’s Day" happens every year and in Scotland the New Year Holiday
starts on December 31st.

h(t) = [L(t € Dy), ... 1(t € Dy)]w (4.12)

According to Taylor and Letham [29], the event model formula given in
Equation 4.12 shows the holiday effects in forecasting where D is a set of
event dates for holiday L, k is a smooth prior that has a normal distribution
with mean equals to 0 and it is applied to the previous event matrix [1(t €
Dy),...,1(t € Dy)].

4.3 Automated Optimization Technique

To automate features and configuration, we use the method discussed in [34]
on how to automate features and configurations in order to find the best
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model. We use an automated machine learning procedure to optimize the
hyperparameters based on a grid search based approach.

Grid search as a optimization technique helps in finding the optimal solution
for the model by tinning the specific parameter values of a model. In selecting
the optimal hyperparameters of the model, we perform the grid search on
the daily, weekly and monthly transactions data. We use cross-validation,
a validation method, for our grid search in estimating the overall general
performance of the model and selecting the optimal pair with the best cross-
validation performance while prevent overfitting [35]. The idea of the cross-
validation is that we use the a given period of historical data in predicting
a given time period value for multiple times with a specific cutoff period in
between.

During optimization, we perform the grid search on a three-dimensional
space with three hyperparameters X, Y, Z which represent changepoint prior
scale, seasonality prior scale and holiday prior scale respectively. We consider
4 values for each hyperparameter and there are 64 combinations in total.
The sets of values for each hyperparameter are X € {0.01,0.05,0.1,0.5},
Y €{0.01,0.1,1.0,10.0}, and Z € {0.01,0.1,1.0,10.0}. Through grid search,
we compare the performance of each pair and select the best pair by using
cross-validation evaluation scores.

4.4 Anomaly Analysis

Classifying outlier observations when no inherent class labels are present
requires us to model the distribution of the process generating the data. This
allows for estimation of the sales observation across customers, and makes
it possible to model observations that fall outside of the expected level of
uncertainty over the previous observations. After the anomaly detection
experiment, each sales order is classified as one of the labels which are
normal, negative anomaly, and positive anomaly. Negative anomaly means
an order that has extreme low ordered volume and positive anomaly is
an abnormal order with high ordered volume. Under the assumption of
normality, a Gaussian mixture model can model the anomalies as a bimodal
distribution (i.e. a distribution with two combined normal distributions),
which are situated beyond the confidence interval above and below the
expected value.

Chapter 4 Approaches

23



24

Since we have three labels for the sale orders, assume that we have a mixture
distribution of three Gaussian components, with components for under-
performing sales (i.e. negative anomaly), normal sales and over-performing
sales (i.e. positive anomaly). When we observe a series of points z1, ..., z,
from random variables X, we assume that each z; has been sampled from
one of the £ = 3 distributions, which associates x; with a classification
label z; € Z;. In our anomaly analysis experiment, the set of labels is
Z ={-1,0,1} and —1 is under-performing 0 is normal, and 1 means over-
performing.

Since z; is not observed, but has to be inferred, they are latent variables
within the mixture model. Given a proportion 7, associated to each of the
k distributions, where >.¥ 7; = 1, the marginal probability model given for
a random variable generating X, conditional to a label Z, can be shown in
Equation 4.13.

k k
j=1 j=1

For a continuous random variable we can then give the probability density
and mass functions as Equation 4.14.

k k
fla) = Zlﬁjfx(l“ | Z;) p(x) = Zlﬂjp(x | Z;) (4.14)
J= J=
Under the assumption of a given constant £ and each distribution being
Gaussian or by making an assumption over the true labels z; € Z, the
weights 7, and the conditional probabilities can be estimated with Maximum
Likelihood Estimate (MLE) in order to get the distribution that maximizes
the probability of data [36]. Therefore, we are able to use such Gaussian
mixture model in modeling the anomalies.
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Data Analysis

According to Avery Dennison [1], there are two types of sales data which are
currently available. The first one is called "sales invoice" which contains an
aggregated and brief information about the sales orders happened daily. The
second one, which is the data we use for this project, is called "sales orders",
it contains abundant daily orders with sufficient information. After consulting
the sales department, we decide to continue working on our experiments
based on sales orders data. For reasons of confidentiality, the data is only for
company’s internal usage and disclosure of the customers names is prohibited.
The transaction dataset extracted from IBM Cognos system [37] is the subset
from the Avery Dennison EU data warehouse. The time range for our dataset
covers the sales orders dates starting from October 2019 to January 2021.

5.1 Sales Order Variables

Since there are a large number of variables that can be used and analyzed
in the sales orders data, it is important for us to consider what variables are
fundamental and important for both sales and marketing departments. The
unrelated variables can have negative influence on our anomaly detection
results [38] and also produce noise for our transaction data. In addition,
the outlier detection result will be used by the sales department, so it is
important for them to decide which variables are necessary for them during
the daily workflow. Table 5.1 shows our selected numerical and categorical
variables without ordering in the Design Cycle stage (see Section 2.1 Design
Science).

From Table 5.1a, the column "Unique Labels" shows the number of labels
this categorical variable has. It is clear that in our dataset, we have 20
categorical variables, and variables such as Sales Order Number, Product
Code have a large number of labels. The customer contains customer from
inner-companies (i.e. the sub-branch company that orders the products
within the company) which will be filtered in the preprocessing stage. We
can find that within 495 ordering dates, everyday there is a large number
of orders from different customers with various products. That’s why the
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Table 5.1.: Sales Order Data Variables Name List

(a) Categorical list

No. | Categorical Variable Unique Labels
1 Sales Order Number 469857
2 Customer Name 2992
3 Country Name 67
4 Region Name 6
5 Product Code 5995
6 Product Name 5627
7 Product Category 0O 6
8 Product Category 1 34
9 Product Category 2 89
10 | Product Category 3 44
11 | Standard Finance Reporting Flag | 1
12 | Division 1
13 | Customer Segmentation Code 4
14 | Customer Segmentation Name 4
15 | Sales Order Date 495
16 | Bulk Specialty 6
17 | Adhesive Technology 9
18 | Product Line Team 7
19 | Liner Group 5
20 | Face Material 1472
(b) Numerical list
No. | Numerical Variable Value Range
1 Average Sales Price in Euro | (0,2870)
2 Quantity Ordered (-130219,3468000)
3 Value Ordered (-1418136, 1446156)
4 Material Cost in Euro (0, 891960)

anomaly detection for each customer is needed since there are over 5000
products. In our experiments, we mainly focus on Product Category 2
which is an important categorical variable for sales people. From Table 5.1a,
it has 89 labels which is larger than other Product Category variables but is
not as large as the number labels that product code has.

The reason for choosing Product Category 2 is because in sales orders
Product Code can be changed even it represents the same product, however,
by using Product Category 2, we are not only able to see the product
attributes but also keep track of the current product.

From Table 5.1b, the column "Value Range" represents the range of each
numerical variable. The Average Sales Price (ASP) shows the average
product price for each order. Quantity Ordered and Value Ordered show
the the quantity and the value in euro for each individual sales order respec-
tively. Material Cost is the total cost for each sales order. If one sales order
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Table 5.2.: Numerical Variables Distribution Summary

ORDERED_VALUE_EUR | QTY_ORDERED_SQM | MATERIAL_COST EUR | ASP_EUR
count 601010.00 601005.00 601010.00 | 599704.00
mean 3232.70 7100.69 1695.10 0.65
std 7261.07 16920.25 3934.88 4.63
min -1418135.84 -130218.52 0.00 0.00
25% 766.00 1340.00 354.07 0.36
50% 1458.80 2640.00 682.60 0.46
75% 3087.50 6120.00 1529.07 0.67
max 1446156.00 3468000.00 891960.00 |  2870.00

has a negative ordered value or quantity, it means this order is a balance
order which is commonly used in sales area [39]. For our experiment, we
don’t expect negative orders shown in our testing stage, therefore, we sum
up both the positive order and the negative order for the same product on the
same day in order to eliminate the negative influence of the balance order.

Figures 5.1, 5.2, 5.3 and 5.4 show the frequency distributions of four numeri-
cal variables listed in Table 5.1b. Table 5.2 provides the summary statistics of
these quantitative variables.

original dataset log-transformed dataset
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Fig. 5.1.: Total Average Sales Price Distribution

Figure 5.1 shows the ASP original dataset distribution in the range between
0 and 3 euros and the log-transformed ASP distribution. From the plot and
the Table 5.2, we can find that the distribution is skewed to the right side
with standard deviation 4.63 and 75% orders concentrate between O to 0.67
euro. This indicates that many products have low ASP per square meter.
Moreover, there are 25% orders between 0 and 0.36 euro which means less
orders have been made under 0.36 euro compared to the large amount of
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orders with ASP greater than 0.36 euro. After the log transformation, the
ASP distribution is less skewed and has two peaks.
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Fig. 5.2.: Total Ordered Volume Distribution

From Figure 5.2 and Table 5.2, we can tell the ordered values in the trans-
action data are highly spread out with standard deviation 7261.08. A high
frequency of orders are concentrated around 2500 with lower frequencies
after 5000. It is interesting to find there is a small peak when the volume
is around 4000. After transformation, the log ordered volume is close to
normal distribution except some high peaks. Since it is close to normal
distribution, we decide to use the log ordered volume for our experiments to
detect anomalies.
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Fig. 5.3.: Total Order Value Distribution

Figure 5.3 shows the frequency distribution of the total ordered value in
the range between 0 and 20000 before log transformation and the log-
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transformed distribution. From the left plot, it is highly skewed to the right
wit high variation which is 16920.25 from Table 5.2 and it indicates most of
orders are concentrated between 0 and 2500 euros. Since the mean (7100.69
euro) is a lot higher than the ordered value at 50% orders (2640.00 euro), it
means there are some orders with high ordered value which causes the mean
greater than the median ordered value. After transformation, it is clear that
the log ordered value has a near-normal distribution with mean around 7.
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Fig. 5.4.: Total Material Cost Distribution

From Figure 5.4, in the left plot, the distribution shape is skewed to the right
side with a high standard deviation 3934.88 from Table 5.2. Most of orders
material costs are concentrated between 300 and 1500 euros. The mean is
greater then the median (682 euros) indicates there are some orders that
have a high material costs. For log-transformed material cost, the distribution
in the right plot is approximately normal [40].

5.2 Preprocessing

In this section, we do the preprocessing for our sales order dataset, since
Cognos can only store the recent years data, we select the sales data from
2019 to 2021. The entire dataset before preprocessing has millions of daily
sales orders, and almost 3000 customers in total. However, the sales data
includes Avery intercompany orders and also some orders with missing
values, therefore, it’s necessary to clean the data before continuing with our
experiments [41].
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Table 5.3.: Sales Data Filtering Condition

Variable Name Condition

REGION_CODE except 5
CUSTOMER_SEGMENTATION CODE except STD

PRODUCT CATEGORY 0 except Tapes
STANDARD FINANCE REPORTING FLAG | except flag tagged as N
DIVISION_NAME except GDE division
DIVISION_NAME except PPD division
DIVISION_NAME except orders with empty division
CUSTOMER_SEGMENTATION NAME except Internal Company orders

First, we select customers that meet our criteria, in other words, customers
that do not belong to Avery Dennison (i.e. not internal companies). Specifi-
cally, we filter the original 2019-2021 dataset by using the conditions shown
in Table 5.3.

Second, we clean the sales dataset through the following three steps:

1. Dealing with missing value in various variables such as Bulk specialty,
Ordered value, etc. From the sales department, we know that the orders
with missing values can be system errors, the wrong listed order, and
orders that are incomplete. In this step, we removing the sales orders
with missing numerical or categorical variables shown in Table 5.1.

2. Dealing with negative ordered value and ordered quantity. The negative
order after merging is due to the deferred refund related to customer
behaviors such as product exchanging, product refunding. Here we
merge the negative orders with the same orders on the same day to do
the order corrections.

3. Encoding Sales Order Date to the numerical timestamp. Here we use
Python datetime package to transform the sales date with the format
year-month-day to a numerical timestamp variable.

Third, because the sales dataset contains the daily orders with the same
products and customer but in various quantities, we aggregate such same
orders on the daily basis, therefore, there’s only one sales order from the
same customer for the same product in one day. By doing this step, we reduce
the number of the original millions of daily orders to around 0.6 million of
orders in total.
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5.3 Sales Data Exploration

After finishing the preprocessing, from what we’ve discussed in Design Sci-
ence, we explore the dataset on both categorical and numerical variables
to study what variables are we interested in detecting anomalies and what
variables are less important from both the sales representatives perspective
and data exploration perspective. For numerical variables in Table 5.1b,
we check the correlation among these variables [42] while adding another
numerical variable timestamp (i.e. date) which we generate from previous
preprocessing stage. From Figure 5.5, it’s obvious that the sales volume,
value, and cost are high correlated since the number are around 0.9. The
correlations between ASP and other variables are close to zero, this indicates
that there’s no strong correlation for ASP with cost, value, and date. The
correlations between date and volume, date and cost, date and ASP are close
to zero which show no meaningful relationship. However, the correlation
between date and value is 0.24, this means there’s a moderate but not strong
positive relationship [43]. The moderate relationship between date and value
indicates the price increase.
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Fig. 5.5.: Correlation Matrix for numerical variables and date

As we discussed previously, we consider Product Category 2 as an impor-
tant categorical variable for our anomaly detection model. Therefore, we
plot the category 2 labels to see the buying pattern for each label. After
reprocessing, we have 81 unique labels for category 2 products, Figure 5.6
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normalized total ordered volume

shows the distribution of these labels. Each dot represents one label, the left
plot shows the overall category 2 products distribution based on the total or-
dered quantity and the ASP per product, the y-axis on the right plot indicates
the total volume less than 10 millions. In the plot, each category 2 label is
transformed into an ID number (i.e. "PP85" is represented as Cat2_ID=5).
From Figure 5.6, we can find that most of the category 2 products are concen-
trated under 10 million ordered quantity with ASP less than 3 euros. There
are some products which have a large amount of sales volume but with low
ASP, these products are usually the popular or common products that most
customers tend to buy. However, there are some products with high ASP
close to 7 euros but with low ordered quantity. These are the special and
unusual products for few customers.
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Fig. 5.6.: Category 2 products overview with ASP and ordered volume

From Table 5.1a, we consider the the abnormal behaviors among customers
from various countries. Therefore, it is necessary to have a visualization for
the distributions of the total number of customers, the total ordered quantity
(i.e. volume), the total ordered value in each country [44]. Figure 5.8 shows
the geographic map of these distributions for each country. By comparing
the three different maps, it’s clear that over 100 customers are concentrated
in Europe, there’s only one customer in the North America (NA) region.
This is because the dataset we got came from Avery Dennison EU data
warehouse, so we're unable to access the data in the NA region. Both the
distributions of total ordered value and volume look similar. However, with
its low amount of number of customers, Russia has higher ordered value
compared to other countries with the corresponding higher of volume in
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country name

thousands of square meters (sqm). This indicates that compared to many
sales orders concentrated in EU countries such as Germany, UK, Spain, Italy,
Russia although has a small number of customers (i.e. around 10), it still
has competitive ordered value and volume. The customers in Russia can be
considered as big customers.Figure 5.7 shows the overview of the countries
with the highest sales ordered volumes.

GERMANY

FRANCE

RUSSIAN FEDERATION
UNITED KINGDOM

TALY

POLAND

SPAIN

THE NETHERLANDS

BELGIUM

TURKEY

2 3 4 5
ordered volumes in total led

(=]
=

Fig. 5.7.: Top 10 countries ordered by the total sales volume.

Since our abnormal detection is based on time-series sales data, it’s important
to have an overview of how the sales ordered quantity and ASP change during
the time. Figure 5.9 shows the changes of one UK customer for the top 5
ordered most category 2 products from 2019 October to 2021 January. In
Figure 5.9a, we can find products such as MC and Digital PE are concentrating
under 20000 square meters with a stable trend. We can also find that this
customer tends to buy more quantities for products such as PE85 and PP50
with volatile changes through time. Figure 5.9b shows products PE85 and
PP50 have stable average sales prices which are lower than the ASP of PP60
and Digital PE. MC has the lowest ASP. Therefore, we know that the changes
for various category 2 products on the time-scale are different, for example,
some show seasonal trend (i.e. PE85) and some have stable trend without
any volatile changes (i.e. Digital PE).
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Fig. 5.8.: Geographic map for the distributions of customers, the total ordered value,
the total ordered volume in each country.
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Fig. 5.9.: Changes of volume and ASP on the time-scale for top 5 ordered most
products.

In addition, since the sales department is interested in finding the difference
of the customers buying patterns, the buying frequency distribution can
provide information about how often the customer buys the specific product
[45]. The buying frequency distribution for the same UK customer with the
top 5 ordered most products shown in Figure 5.10. The x-axis represents
the number of days between two consecutive orders for the same product
category 2 products in a log-scale and y-axis shows the frequency in a stack
visualization. Included are the kernel density estimations (KDE) using Gaus-
sian kernels that indicate the density distribution of the buying frequencies.
From the plot, it’s clear that there are two peaks which happen when the
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Fig. 5.10.: Buying frequency distribution based on the days between two consecu-
tive orders.

days between two orders is 1 and 3 to 4. Most products are ordered on the
next day, however, there are lower amount of these top 5 products ordered
on the next 3 or 4 days as well. PE85 has the highest KDE which means that
PE85 will be more likely ordered within 5 days and Digital PE has the lowest
KDE which indicates the customer tends to get this products within 5 days
with low likelihood and the buying patter is not stable.

As we discussed in section 4.1, an unsupervised clustering method DBSCAN
has been used in studying the hidden patterns among customers. In this
experiment, we use 4 numerical variables described in Table 5.1b to do the
clustering and identify noise, in other words, to find abnormal customers
(i.e. outliers). At the beginning, we aggregate all the transactions for each
customer and take average for each numerical variable and then do the stan-
dardization by using the StandardScaler () method from sklearn to make
sure all the numerical variables are standardized. Before we use DBSCAN,
we reduce the dimensionalities through Principal component analysis (PCA)
(see section 4.1). Figure 5.11 shows the amount of variance captured on the
y-axis based on the number of components we include in the x-axis. A rule
of thumb is to preserve around 80% of the variance, therefore, we decide
to keep 2 principle components for DBSCAN method in detecting abnormal
customers (i.e. noise).
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clusters can be found. min_samples represents the number of samples can
be considered as a core point in a cluster. Here we are interested in using
DBSCAN to detect the noise (i.e. abnormal customers). Figure 5.12 shows the
DBSCAN clustering result, each dot represents one customer. From the plot,
label -1 indicates the abnormal customer and label 0 means the customers in
the normal cluster. We can find that most of the customers are concentrated
together and there are 14 abnormal customers. These abnormal customers
all have abnormal buying patterns in ordered value, ordered volume, ASP,
and metrical cost. There are three abnormal customers that have low ordered
value and ordered volume but have high ASP such as 14, 19, and 33 euros
respectively. Most of the customer are abnormal because of the high average
ordered value over 100000, average volume over 30000 and average material
cost over 20000.
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Anomaly Detection

In this chapter we introduce various unsupervised methods that allow us
to extract anomalies based on the property of uncertainty. Hypotheses are
generated over the uncertainty with significance (o = 0.05), to provide
a binary determination over each data point whether they are within the
normal range or outside the confidence interval and thus anomalous.

6.1 Auto-Regressive Model

Using the first year of sales data, we split into forecasting test window of
100 elements and use the previous data to fit an auto-regressive model (see
section 4.2.1). For the model we use a multiple auto-regression model of
order AR(1) through AR(7), which is fitted using Conditional Maximum
Likelihood (CML). Seasonal dummies are included with an assumed season-
ality of 30 time steps, and assumed are that the trend f, is a constant value.
The forecast window and the fitted model are shown in Figure 6.1 with the
residuals, KDE, Normal Q-Q and Correlogram given in Figure 6.2.

— actual
12 95% confidence interval

11

m il

o 20 40 60 80 100

Fig. 6.1.: Autoregression Prediction with 95% Confidence Interval (in blue) vs
Actual Time Series Data (in red)

While the forecast contains all actual data within the 95% CI, the model
underfits as can be seen from the relatively large and unstable residuals [46].
Because the data is approximately normally distributed, shown in the Normal
Q-Q graph [47], and the auto-correlation is lower than «, = 0.2, a more
rigorous time-series model would be able to provide a better fit on the data
while adhering to the assumption of normality and stationarity [48].
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Fig. 6.2.: Autoregression Diagnostic Diagram

6.2 Anomaly Detection with Daily, Weekly,
and Monthly Transactions

Different parameters can change the estimated/predicted value and confi-
dence interval which lead to different anomalies when using the Prophet
model. In addition, the model settings are different based on various daily or
non-daily (i.e. weekly, monthly) transaction data which can cause the differ-
ent performance. Therefore, it’s important to have an insight on the relevant
parameters and how the different settings can affect the predictions overtime.
In this section, we give an overview on how various changes in parameters
and settings can affect the model performance on anomaly detection.

6.2.1 Parameters

From the previous discussion, there are various parameters related to the
three model components can be tuned and make an impact in generating
the result of anomalies. According to Taylor and Letham [29], there are 4
tunable parameters and the deceptions are shown below:
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1. changepoint_prior_scale: Changepoint prior scale 7 controls the
model flexibility described in the trend component (see Equation 4.7).
A small changepoint prior scale can cause the trend underfitted and a
large scale can cause the trend becomes overfitting. In the trend model,
the default is 0.05.

2. seasonality_prior_scale: Seasonality prior scale controls the sea-
sonal component flexibility (see Equation 4.10). Smaller seasonality
prior scale will have lower magnitude of seasonality and higher scale
will make the component becomes more volatile. The default seasonal-
ity prior scale is 10 without any regularization.

3. holidays_prior_scale: Holidays prior scale controls the flexibility
of the holiday component (see Equation 4.12). Lower holidays prior
scale can have less impact on the holiday component, higher scale can
make the holiday magnitude becomes more unstable and may cause
overfitting. The default is 10 that indicates no regularization.

4. seasonality_mode: There are two options for seasonality mode, one is
"additive" which means the seasonality effect will be added constantly
to the trend. If seasonality does not show additive effect but it grows
together with trend, then "multiplicative" is a better option . The
seasonality mode default is additive as we discussed in Equation 4.4.

In our experiments, we test all these 4 tunable parameters mentioned above
with various values by using the daily, weekly and monthly transaction data
in order to see how the model perform and the predictions differences with
various parameter values. For seasonality, since the model does not contain
monthly seasonality by default, we add the monthly seasonality with period
P = 30.5 and Fourier order k£ = 3. In the Prophet model, weekly seasonality
has P = 7 with k£ = 3 and yearly seasonality has P = 365.25 with k£ = 10 by
default.

To show the predictions, we use the same UK customer that we discussed
in the previous section (see Figure 5.10 and Figure 5.9) for one of the
top 5 category 2 products called PE85. From the plots, we know that the
customer orders PE85 really frequently and also has a high ordered volume
with volatile changes through time. In addition, we use the natural log-
transformed ordered volume in testing our experiments in order to avoid
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getting the negative predictions. Therefore, it is meaningful to show the
different prediction results and see how anomalies change under various set
of parameter values.

6.2.2 Dalily

In this subsection, we test the model with daily sales transaction data for
different parameters. Table 6.3 shows the sets of parameter values that we
choose for testing our experiments. In addition, in comparing how different
seasonalities affect the prediction results, we also test weekly, monthly, and
yearly seasonalities for our daily transaction data. For the baseline model and
the test cases listed in the Table 6.3, the default seasonalities are monthly and
yearly seasonalities. The reason why we do not use weekly seasonality is that
most of the customers do not buy products daily so it is hard to capture the
weekly trend and most of the products have the monthly and year periodic
seasonalities.

Table 6.1.: Baseline model and 4 cases with different sets of parameter values.

name baseline case 1 case2 | case3 | case4
Changepoint Prior Scale 0.05 0.05 0.5 0.05 0.05
Seasonality Prior Scale 10 10 10 0.01 10
Holidays Prior Scale 0.01 0.01 0.01 0.01 10
Seasonality Mode additive | multiplicative | additive | additive | additive
12 4

11

log ordered volume

2019-11 2020-01 2020-03 2020-05 2020-07 2020-09 2020-11 2021-01
date

Fig. 6.3.: Daily Baseline Prediction Result
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The baseline model prediction result is shown in Figure 6.3, each dot rep-
resents a daily order, the blue upper and lower boundaries represent 95%
confidence intervals, the blue line means the predicted fitting result for log
ordered volume, and the red line is the trend overtime. Since we set the
threshold of the changepoints as 0.01, no obvious changepoints have been
detected in the baseline model. The dots out of boundaries (i.e. dots are
not in the blue shaded area) are considered as anomalies. From the baseline
model, the prediction result is volatile and the ordered volume has a rapid
decrease between 2020 May and July. The overall trend is negative since it is
decreasing, the prediction blue line contains trend, seasonality and holiday
effects.

201011 202001 2020-03  2020-05 202007 202009  2020-11 202101 01911 202001 202003 202005 202007 202008 202011 202101
date date

(c) case 3 (d) case 4

Fig. 6.4.: 4 cases with different sets of parameter values in comparing to the baseline
model.

In comparison, Figure 6.4 shows the 4 cases described in Table 6.3. From
Figure 6.4a, after changing the seasonality mode from additive to multiplica-
tive, there are small changes in the prediction such as the peaks shown in
the baseline during 2020 March to April disappear in case 1 model and the
predicting line becomes more stable during 2021 January. This is because
with multiplicative mode, the seasonality grows together with trend which
will make the seasonality effect less volatile when the trend is negative.
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Figure 6.4b shows the prediction result after increasing the changepoint
prior scale from the default in the baseline 0.05 to 0.5. It is obvious that
there are additional 4 vertical dash lines appeared on the plot, these are the
changepoints that have been used with the magnitude of rate change greater
than the threshold 0.01. The red trend line is decomposed into 5 subsections,
the trend increases till 2020 January and then decreases until 2021 January
in different decreasing speed. In addition, increasing changepoint prior
scale increases the sensitivity of the seasonality component since the peaks
happened during 2020 March and 2021 January become higher compared to
the same peaks in the baseline model.

In Figure 6.4c, the case 3 model has a lower seasonality prior scale 0.01 com-
pared to the default one 10. It is clear that the prediction line becomes flatter
and closer to the trend line. This is because there are less seasonality effect
has been added to our piece-wise model and the magnitude of seasonality
determines if the prediction is volatile or not. The seasonality peaks in the
plots are also diminishing compared to the baseline model in Figure 6.3.

Case 4 prediction result shown in Figure 6.4d is more volatile than the
baseline since we increase the holiday prior scale from 0.01 to 10. Therefore,
we can clearly see with higher holiday scale, the magnitude of holiday
component increases in specific dates which cause the peaks during 2020
March and 2021 January become higher. The overall prediction remains
the same since the holiday component only effects the specific number of
dates.

To show how different seasonalities affect the prediction result, we test
weekly, monthly, and yearly seasonalities with the same baseline model
parameter values listed in Table 6.3. The seasonality differences plot is
shown in Figure 6.5 where the red line represents the trend component.
Since seasonality is another component, the trend remains the same for each
plot. In Figure 6.5a, the prediction result is stable in general but it shows
many small weekly peaks overtime which indicates the weekly buying trend.
There is a gap between 2020 May to 2020 July because the customer did not
order ever day, there is no weekly periodic trend that can be captured during
that time. Therefore, we decide to not consider about the weekly seasonality
to avoid overfitting. Figure 6.5b shows the monthly periodic effect, it is
clear that the prediction becomes more stable than weekly result. Monthly
seasonality captures the change happened in a monthly period, however, it
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Fig. 6.5.: Weekly, Monthly and Yearly Seasonality Differences

does not capture the decreasing in ordered volume during 2020 May to July.
For yearly seasonality (see Figure 6.5¢), it captures the overall changes and
it is the main seasonality we use for our daily transaction data. From the
plot, the yearly prediction is the most volatile result compared to weekly and
yearly, it also successfully captures the decreasing pattern from 2020 May to
2020 July and other changing patterns. Therefore, for our daily transaction
data, we use monthly and yearly seasonality as our baseline seasonality
component.
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6.2.3 Weekly

Since in our transaction data, many customers do not order the products daily,
it is necessary to see if the aggregated weekly or monthly transaction data
can show better anomaly detection results. To test how the model changes
based on the weekly data, we continue testing our baseline model and the
other 4 cases listed in Table 6.3. In order to show the effects of changing
parameter values, we use the same UK customer discussed in the previous
section 6.2.2. For the weekly transaction data, each aggregated weekly order
date starts on the first day of the week. It is possible that for some products,
there are empty weeks with 0 ordered volume. For seasonality component,
we use monthly and yearly seasonality for our baseline model and 4 cases.

13
12
11

10

log ordered volume

-

2019-11 2020-01 2020-03 2020-05 2020-07 2020-09 2020-11 2021-01
date

Fig. 6.6.: Weekly Baseline Prediction Result

Figure 6.6 shows the weekly baseline prediction, after aggregating daily
transaction data into weekly, the number of orders with low ordered volume
decreases and most of the weekly ordered volume concentrates between 11
and 12. The trend (see red line in the plot) decreases overtime which is
similar with the trend in daily baseline model. From the plot, there are 10
weeks that are out of boundaries which can be considered as anomalies.

The prediction result for the 4 cases is shown in Figure 6.7. After changing
the seasonality model to multiplicative, in Figure 6.7a, the prediction result
is really similar to the baseline model except there are slightly changes on
the lower and upper boundaries during 2020 July. The number of weekly
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anomalies has the same number in baselines result which is 10. We can tell
that seasonality model does not have a significant impact for the prediction
result.

01911 202001 202003 202005 202007 202009 202011 202101 201911 202001 202003 202005 202007 02009 202011 202101
date date

(a) case 1 (b) case 2
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(c) case 3 (d) case 4

Fig. 6.7.: 4 cases with different sets of parameter values in comparing to the baseline
model.

Figure 6.7b shows the result after increasing the changepoint prior scale to
0.5. It is clear that there is a changepoint (see vertical dashed red line) that
has the rate change over 0.01 and it turns the trend into two segments. The
trend increases till 2020 January and then decreases. Compared to the daily
result in Figure 6.4b, less changepoints are used. The number of weekly
anomalies in case 2 is 12 which is greater than that in the baseline model.
Higher changepoint scale can cause the model becomes more volatile and
detect more anomalies.

After decreasing the seasonality prior scale to 0.01, it is clear that in case 3
shown in Figure 6.7c the prediction is flatter and less volatile since the model
have less seasonality scale. The smooth prediction curve detects 11 anomalies
in total and most of them have low ordered volume. Such anomalies are
inaccurate since they are not the real anomalies as these can be explained by
monthly and yearly seasonalities.
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Figure 6.4d shows the result when holidays prior scale is 10. It is obvious
that when we have a strong holiday effect, one of the previous anomalies
detected in the baseline during 2020 May is no longer an anomaly since it
can be explained by the holiday events. The total numbers of anomalies in
case 4 is 15 which has the highest anomaly amount among all cases. Strong
holiday effect causes the model becomes more flexible which may detect
anomalies that are actually normal orders (i.e. false positive).

6.2.4 Monthly

For monthly sales transaction data, comparing to the weekly level, there are
less aggregated monthly orders. To test our baseline model and 4 cases, we
continue using the same UK customer data as we discussed in the previous
section. For the same customer with the same product, the number of
transactions for daily orders is 249, for aggregated weekly orders is 64, and
for aggregated monthly orders is only 16 data points which means that this
customer buys PE85 for 16 months in total during the period from 2019
October to 2021 January. Because of the few monthly data points, in order to
avoid overfitting, we change seasonality prior scale of the baseline model to
0.01 rather than remaining 10. The sets of parameter values for the baseline
model and 4 cases is shown in Table 6.2.

Table 6.2.: Baseline model and 4 cases with different sets of parameter values for
monthly data.

name baseline case 1 case2 | case3 | case4
Changepoint Prior Scale 0.05 0.05 0.5 0.05 0.05
Seasonality Prior Scale 0.01 0.01 0.01 0.5 0.01
Holidays Prior Scale 0.01 0.01 0.01 0.01 10
Seasonality Mode additive | multiplicative | additive | additive | additive

The baseline model prediction result is shown in Figure 6.8. After aggregating
the daily transaction data to monthly level, each dot represents the log-
transformed ordered volume sum for the related month. The date for each
monthly orders is the last day of the corresponding month. In the baseline
plot, the trend decreases overtime, there is no significant changepoints with
change rate over 0.01, and the model detects 5 anomalies in total.

The prediction results for the 4 cases is shown in Figure 6.9. There is

no significant changes when we change seasonality mode from additive to
multiplicative (see Figure 6.9a), the baseline result and the case 1 result are
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Fig. 6.8.: Monthly Baseline Prediction Result

similar. The boundaries in case 1 during 2021 January is wider than that
in baseline case because multiplicative mode can make seasonality become
more flexible, therefore, the total anomalies detected in case 1 is 4. In case
2, we increase the changepoint prior scale from 0.05 to 0.5 and the result
shown in Figure 6.9b has smaller boundaries and more fitted prediction
results than the baseline model results. The reason why the confidence
intervals are small is that the predictions are closer to the actual values with
the high changepoint scale which causes the confidence interval becomes
smaller. In the case 2 plot, there are 5 significant changepoints impact the
trend and make the trend becomes more flexible and predicts the overall
ordered volume pattern correctly. It is interesting to find that with fewer data,
it is more susceptible to changing trend for the model. The total number of
detected anomalies is 4 which is the same amount in case 1.

In case 3, we increase the seasonality prior scale from 0.01 to 0.5 and the
result is shown in Figure 6.9c. From the plot, there is no confidence intervals,
the red trend line does not predict the correct downward pattern, and all
the monthly data points are connected together. This is because with high
seasonality scale on monthly level, the model causes overfitting and it gives
too much credence to seasonality with few data points. Case 4 we increase
the holiday prior scale from 0.01 to 10, however, there is not significant
effect that we have discovered in daily and weekly prediction results. This is
because holiday component focuses on the specific event dates. On monthly
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Fig. 6.9.: 4 cases with different sets of parameter values in comparing to the baseline
model.

level for the same even date, there is no ordered volume records thus cannot
have significant influences on the prediction results. The anomalies detected
in case 4 is same to the the baseline anomaly results.

6.3 Optimization

As we discussed in section 4.3, we preform an optimization approach grid
search and evaluate our model by using cross-validation method to find the
optimal model with best hyperparameters for our aggregated daily, weekly
and yearly transaction data.

The evaluation metrics that we use are Mean Squared Error (MSE), Root
Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), Median Absolute Percentage Error (MdAPE), and
Coverage. MSE measures the mean of the square difference between the
predicted value and the actual value, the formula is = 3°(y—§)? where n is the
total number of orders in our experiment, {j means the prediction. RMSE with
formula /% > (y — §)? is the root mean squared difference between prediction
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and actual value. MAE measures the mean of the absolute difference between
the predicted value and the actual value, the formula is £ > |(y — 9|. MSE,
RMSE, and MAE are all the metrics in showing the variation of the errors, the
lower MSE/RMSE/MAE means the model has a better prediction result.

The formula for MAPE is £ ° |(ny@,’ which measures the model prediction ac-
curacy in percentage, lower MAPE means the model performs better. MAAPE
is the median score selected from a range of the absolute percentage errors
(APEs) where the formula is |%@| for each time. If MDAPE is less than MAPE,
it means the distribution of APEs is skewed to the right which indicates that
most predictions have smaller errors. If MDAPE is greater than MAPE, the
APEs distribution is skewed to the left and most predictions have higher
errors. Coverage measures the coverage probability of the actual value under
the confidence interval of the randomly generated sample. Since our con-
fidence interval for the model is 95%, ideally the coverage should close to
95% if there is enough data and it is perfectly normally distributed. However,
because our data contains anomalies and is only close to normal distribution,
so the coverage value should always smaller than the ideal value. Lower
coverage means the model fails to include the normal orders and have more
false positives. Higher coverage means the model performs better and have
less false positives.

Table A.1 shows the model performance with different hyperparameters for
our daily sales transaction data starting with the lowest RMSE score. It is clear
that for daily data, the model with 0.05 changepoint prior scale, 10 holidays
prior scale and 0.01 seasonality prior scale performs the best with MSE equals
to 1.4455 and RMSE equals to 1.2023. Both MAPE and MDAPE are low and
MDAPE is smaller than MAPE indicates the APE distribution is skewed to
right and most error are small. The coverage is 85.89% which is closer
to 95% indicates that the model detects the anomalies without many false
positives. From Table A.1, the high holiday prior scale increases has model
flexibility and also the predicting accuracy. Seasonality is less important
than the default value 10 in our baseline model (see Table 6.3). From the
table, RMSE increases rapidly as the seasonality prior scale increases, this
is because higher seasonality scale can cause the prediction result becomes
more volatile which can leads to overfitting.

The model performance for weekly data after grid search is shown in Ta-
ble A.3. The model that performs the best with the smallest RMSE score
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which is 1.2486 has 0.1 changepoint prior scale, 0.01 holidays prior scale,
and 0.01 seasonality prior scale. Comparing to the best hyperparameter de-
rived in the model for daily data, the model for weekly data focuses more on
the changepoint prior scale that controls the flexibility of the trend. Holiday
prior scale and seasonality prior scale are not as important as the changepoint
scale. MAPE is lower than MAE means most of predictions have small errors.
Higher seasonality prior scale causes the weekly model more unstable and
performs worse. The coverage for the best model is 55.88%, this is because
there are less data points for weekly data which deceases the coverage since
the generated region covers less actual weekly orders.

Table A.3 shows the grid search performance result for monthly data. Unlike
the daily model focuses on holiday prior scale and the weekly model focuses
on changepoint prior scale, the monthly model focuses on both changepoint
prior scale and the seasonality prior scale. The model with 0.1 changepoint
scale, 0.01 holiday scale and 0.01 seasonality scale performs the best with
MSE equals to 0.7943 and RMSE equals to 0.8912. It is clear that on monthly
level, the model focuses more on the trend and the seasonality components
rather than holiday component. Comparing with the baseline model with the
default changepoint scale 0.05, the model is more flexible.

6.4 Anomaly Analysis

In this section, we analyze the detected anomalies by using our daily sales
transaction data in order to haven an insight on the normal orders and
anomalies distributions. In the end, we purpose the binomial models for
anomalies based on different products. After using the optimal model for daily
data derived from grid search (see Table A.1) with 0.05 changepoint prior
scale, 10 holidays prior scale and 0.01 seasonality prior scale, we analyze the
abnormal results with the aim of finding the patterns for anomalies under
different products.

To have an overview of the anomalies, first we look at the top 5 countries
that have the high amount of anomalies and the plot is shown in Figure 6.10.
The plot shows the distribution of abnormal orders for each country on a
timescale, Poland has the highest number of anomalies and Germany has the
second highest number of anomalies. In the plot, there is no specific anomaly
pattern for each country since anomalies are widely distributed. However, it
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is clear that when log ordered volume is around 8, there is a gap between
the upper anomalies and lower anomalies, this is because for our anomaly
results, there are positive anomalies and negative anomalies. The positive
anomaly means that the customer orders more than the expected value and
the negative anomaly means that the customer orders less than the prediction.
From Figure 6.10, most of anomalies for Poland is more concentrated and
there are some anomalies for Germany and United Kingdom have extremely
high ordered volume. Some anomalies for Italy have extremely low ordered
volume.

Top 5 Anomaly Countries ®
® POLAND
® GERMANY .
14 UNITED KINGDOM
FRANCE
ITALY

1z

10

log ordered volume

2019-11 2020-01 2020-03 2020-05 2020-07 2020-09 2020-11 2021-01
time

Fig. 6.10.: Top 5 Countries with High Numbers of Anomalies

In addition, we distribute the anomalies for customers (see Figure 6.10) and
study how customers behave overtime and if there are a group of customers
that have many anomalies during one period. In the plot, different dot color
represents different customers and each dot means an abnormal order. It is
clear that there are a large amount of anomalies clustered from 2020 March to
2020 May. During this period, most of the anomalies are positive anomalies
which indicate that customers buy products with a high ordered volume.
There are small gaps during 2020 December and 2021 December, this is
because of the holiday seasonality that most of countries have Christmas
and New Year which decreases the number of anomalies. Another reason
is that not many customer place their orders during holidays. Most of the
anomalies are concentrate between 6 to 12 log ordered volume, however,
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Fig. 6.11.: Customer Anomalies Distribution Overtime

some customers have more orders with extremely high ordered volume than
orders with extremely low ordered volume.
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Fig. 6.12.: Three Products Examples with Anomalies Overtime

To have an insight of anomalies distribution with different products, we select
3 top ordered products (i.e. PE85, PP50, and PP60) among customers as our
examples. The anomalies for each product overtime is shown in Figure 6.12
where y-axis is the ordered date and x-axis is the log ordered volume for
each product. The two labels are negative anomaly which is an abnormal
order with lower volume than prediction and positive anomaly which is an
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abnormal order with higher volume than expected. It is obvious that from
the plot, negative anomalies and positive anomalies are separated from each
other. The anomaly distributions for each product are different, the positive

anomalies are concentrated during 2020 March to 2020 May in product PE85.

The anomalies in PP50 are widely spread and there are some overlaps with
both negative and positive anomalies happened during 2020 March which
indicates the customers behave differently during the period, some customers
have more extreme low ordered volume than expected. There are more
positive anomalies in buying product PP60 which means that the customer
buying patterns are more volatile and the customers are diverse since the
range of both negative and positive anomalies are wide.

ODUCT_CATEGORY_2 = PEB5 PRODUCT_CATEGORY_2 = PP50 PRODUCT_CATEGORY_2 = PP&0

4
(a) Three Product Examples Normal Orders Distribution

DUCT_CATEGORY_2 = PEBS PRODUCT_CATEGORY_2 = PP50

PRODUCT_CATEGORY_2 = PP&0
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(b) Three Product Examples Abnormal Orders Distribution

Fig. 6.13.: Frequency distributions comparisons for three product examples.

An compassion between the normal orders and anomalies frequency distribu-
tions for the three products is shown in Figure 6.13 where y represents the log
ordered value, count is the frequencies for the log-transformed volume, and
the line represents the kernel density estimation (KDE) of the distribution. In
Figure 6.13a, the frequency distribution of normal orders in product PE85
is close to normal distribution and it is slightly skewed to right, most of the
normal orders are concentrated when log ordered volume is 8. PP50 has

Chapter 6 Anomaly Detection

anomaly

55

1
1



56

smaller distribution than PE85 with lower ordered frequency around 500 in
general, the distribution is also close to normal distribution and there are
two small peaks. It is clear that PP60 has a distribution with high ordering
frequencies greater than 2500 with the log ordered volume around 8 the dis-
tribution is skewed to right. There are also two peaks in PP60 normal order
around 8. The normal order frequency distribution indicates that different
products have different ordering patterns in not only ordering frequencies
and ordered volumes individually.

In comparing with the normal order distributions, the anomalies frequency
distributions shown in Figure 6.13b perform differently for each product and
are more close to normal distributions than that in normal order distributions.
The anomaly with label 1 means a positive abnormal order, the anomaly with
label -1 is a negative abnormal order. In Figure 6.13b, the positive anomalies
distributions are separated from the negative anomalies distributions with
small overlaps. It is clear that the frequencies of anomalies are much smaller
than the normal order frequencies. In addition, in PE85 distribution, more
negative orders are detected than positive orders and positive orders have
a wider distribution than negative anomaly distribution. In PP50, both
distributions are similar except the negative distribution is more concentrated
around log ordered volume 7. The negative anomaly distribution in PP60
has a peak with around 160 anomalies, more positive anomalies have been
detected than negative anomalies and the positive anomaly distribution is
approximately to normal distribution.

. 05
—— maodel 035 —— model S
data data

0.4

03

density

0.z
0.1

0.00 00
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log ordered volume (PES5) log ordered volume (PP50) log ordered volume (PP60)

Fig. 6.14.: Products Anomaly Model

From Figure 6.13b, both the negative and positive abnormal order distribu-
tions are approximately to normal distributions which lead to a mixture of
two normal distributions, in other words, such mixture can be considered as
a bimodal distribution for abnormal orders. Rossi [49] describes the mixtures
of univariate and multivariate normal distributions. As we discussed in the
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section 4.4, based on the detected anomalies labels {-1, 1}, we are able to
conduct a bimodal distribution that contains two Gaussian components for
each product. Derived from Equation 4.14, the bimodal model probability
density formula can be defined as

p(z) = Ay - exp (—; (x ;1M1)2> + Ay - exp (—; (x ;2M2>2> (6.1)

where A, A, are the proportions of the first and second distributions which

can be estimated with MLE Rossi [49], j is the distribution mean, o represents
the standard variance of the distribution. The bimodal distribution model for
each product is shown in Figure 6.14. The estimated values for parameters
and the standard deviation errors on the parameters (i.e. sigma) of each
product bimodal model are listed in Table 6.3.

Table 6.3.: Bimodal Distribution Parameters and Standard Deviation Errors Sum-
mary for three Product Examples

params PE85 | sigma PE85 | params PP50 | sigma PP50 | params PP60 | sigma PP60
I 7.011393 0.045694 6.821975 0.060565 6.823961 0.078975
ol 0.525920 0.046411 0.574510 0.061389 0.589295 0.080764
Ay 0.309155 0.022837 0.247063 0.022187 0.244937 0.027824
I 10.094075 0.074418 10.278292 0.079381 10.209560 0.100557
o2 0.905030 0.077090 1.012411 0.082477 1.007424 0.104694
Ay 0.247172 0.017548 0.248694 0.016870 0.249258 0.021447

From Figure 6.14 and Table 6.3, the bi-modal model for PE85 estimates
anomalies distribution under a maximized likelihood estimate with the first
distribution mean p; = 7.01 and second distribution with mean p, = 10.09,
the standard deviations are relatively small with ¢; = 0.53 and 05 = 0.90
respectively leading to a bimodal distribution. Since p;(i.e. the mean of
the first distribution component) in the table is less than u,, it indicates
that the ratio of under-performing to over-performing sales is evaluated at
Ay /A = 0.309155/0.247172 =~ 1.250769, thus anomalies below the mean of
the prophet model are more common than above.

In the PP50 bi-modal model, we can find that the second distribution has a
larger standard deviation of 1.01 than that of the first distribution of 0.57. In
addition, since p; in PP50 is also less than x5, we can state that anomalies be-
low p; are more common than above p;. The performance of PP60 is similar
with pp50 bi-modal model. Overall, the positive anomalies distribution has
higher standard deviation than the negative anomalies distribution resulting
in greater dispersion for sales below expectation. The o columns shows the
standard deviation errors for each parameter, from Table 6.3, all of the errors
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are proportionally insignificant which results that our bi-modal models for
anomalies have good estimation performance. Table A.4 shows additional
bi-modal model parameter results for 10 products.

6.5 Validation

In this Section we discuss the validation of the anomaly detection model that
we created. We do this by collecting feedback on the prediction results from
various sales people. Also, we discussed with them the overall usability of the
model. The following summary shows our validation process and result:

* Preparing and presenting anomaly reports to 5 sales people. The
anomaly reports contain variables such as ordered volume, ordered
value, customer names, product category 2 etc. The report also includes
the reasons why we report this order as an anomaly, the reason could
be the ordered volume is lower than the expected value. The report
uses the aggregated monthly data, thus the detected anomalies are on
the monthly level.

* Ask for structured feedback by presenting them with a spreadsheet in
which they can indicate which anomalies were considered valid and
why. In the anomaly report, we ask sales representatives to help us
validate if the detected anomaly is a real anomaly and is there any
normal orders that should be considered as an anomaly.

* Only 2 sales people provided useful feedback for the validation in the
end, covering 5 customers. Many sales representatives provide useful
feedback in improving the anomaly report, unfortunately, not many
validations for the detected anomalies have been done for most of the
customers because lacking of sales representatives. Therefore, we are
only able to gather the validation results from 5 customers.

We use 3 different measurements for our validation results. Here are the
formulas for our metrics:

True Positive

Precision = — —
True Positive + False Positive
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Precision measures the percentage of real anomalies among all detected

anomalies. .
True Positive

Recall = — .
True Positive + False Negative

Recall measures the percentage of real anomalies to the results which include
both the real anomalies and the false normal orders (i.e. orders detected as
normal orders but should be anomalies).

True Positive + True Negative

Accuracy = Total

Accuracy measures the percentage of real anomalies and real normal orders
from the total orders.

Table 6.4.: Validation Result for 5 Customers

Customer | Precision (%) | Recall (%) | Accuracy (%) | Num of Anomalies (%)
A 67.86 83.33 91.90 14.40
B 54.17 91.67 90.16 18.22
C 55.56 83.33 89.58 14.58
D 59.72 87.21 91.78 20.82
E 61.90 84.56 92.39 17.35

The feedback form summary is shown in Table 6.4, we can find that the
average precision is around 60% which indicates that from all detected
anomalies, there are 60% anomalies are correctly detected. High precision
means that the model has less false anomalies (i.e. normal orders detected
as anomalies). The average recall is high and it is around 85%, it means the
model predicts less false normal orders, in other words, the model performs
well in detecting more potential anomalies without detecting them as normal
orders. The most of the accuracy results for customers is above 90%, this
is because the accuracy accounts for both the real anomalies and the real
normal orders. From this validation we conclude that the anomaly detection
model is useful for detecting the real anomalies without detecting normal
orders as anomalies.

Chapter 6 Anomaly Detection

59



60

Conclusion

In this thesis we set out to perform time series analysis through unsupervised
learning on unlabelled sales data, in order to detect anomalies in the sales
volume and patterns. We approach this by using an automated time-series
prediction model, elaborating each component within the model, and finding
three optimal models for our daily, weekly, and monthly aggregated sales
transactions data.

Based on our detected anomalies, we purpose a mixture model in the form
of a bi-modal anomaly probability density specification, which is uniquely
optimized for the baseline behaviour per customer in relation to specific
product categories. By starting from a baseline and then optimizing models
for behaviour of individual customers, a more reliable model of uncertainty
can be achieved in comparison to a model that assumes all customers have
identically distributed sales patterns.

Furthermore, we have used a small sample of validation data labelled by sales
representatives to validate the estimation of anomalies for a set of five specific
customers, which on average have shown an estimated accuracy of 91.16% on
the anomaly classification of the validation data. This shows that successful
identification of anomalies can be achieved through unsupervised methods,
by taking advantage of the distribution of the data itself and modelling the
uncertainty as a classification criteria based on binary hypotheses on the
confidence interval.

In addition, this approach has given us insight into the distribution of the
anomalies, while also giving the statistical properties of anomalies in the
sales data categorically per customer and item. These properties can then be
used to perform causal inference, leading to direct business insights that can
help identify the cause and effect of sales data anomalies.

Below we will provide explicit answers to our research questions, enumerate
our contributions, and describe possible avenues of future work.



7.1 Can prediction models for time series
data be used to detect anomalies in
sales data?

We have demonstrated that it is indeed possible to design an anomaly de-
tection model for sales data based on an uncertainty model for time series
data. We use an auto-regressive model as our baseline model, however,
the model shows under-fitting and is not appropriate for customer-specific
modelling where data is more sparse. Therefore, we move on to the more
rigorous prophet model that utilizes automated machine-learning to intro-
duce change-points and models three deterministic components, which are
the trend, seasonality, and holidays components.

We elaborate each component and build the optimal model through grid
search for daily, aggregated weekly and monthly data respectively in detecting
daily and non-daily anomalies. In general, the anomalies are the outliers
out of the 95% confidence interval based on the the observations under
the uncertainty model. We discover that the anomalies have a bi-modal
distribution under maximum likelihood. In order to analyze the detected
anomalies, we propose that an optimized mixture model for anomalies under
different combinations of customers and product categories. Based on the
validation data, labelled and provided by the sales team, measured over
the uncertainty model and evaluated for precision, recall, and accuracy, we
conclude that the time-series prediction models can be used to reliably detect
sales anomalies.

7.2 How can we utilize unsupervised
learning to create and optimize an
anomaly detection model to classify
our data?

While theoretically, given the availability of class labels on the data, either
supervised or non-supervised methods could be used. In supervised training,
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the labelled data is necessary so that we can use the supervised or semi-
supervised training methods. In addition, most labelling is performed by
human annotators, which is a costly and time consuming process that may be
also biased if not accounting for a significant inter-rater agreement sample.
Unsupervised learning on the other hand makes no assumptions over the
classification labels of the data, and instead uses the inherent distribution of
the data to determine what constitutes as an anomaly.

We find that in a practical setting, collecting sufficient labels to enable reliable
supervised learning proved challenging. Due to lacking resources in terms
of experts that can reliably label the data, especially in consideration of
the volume and veracity of the data that is being recorded every day of
the operation. Even if we assume that enough resources are available for
labelling, this process would take place after orders are already processed.
While if we apply unsupervised methods, sales data can be analyzed in real
time without requiring labelling in order to adjust the model in light of new
data. What constitutes as an anomaly within the sales patterns changes
over time, so the most efficient model requires quick adaptation to adjust to
market trends.

To create an optimize our unsupervised anomaly detection model, we dis-
cuss the auto-regression as our baseline model to determine anomalies (see
section 6.1) in extracting anomalies. Then we elaborate an automated time-
series prediction model and find three local optimal models for our daily,
weekly and monthly aggregated sales transaction data in classifying our data
through grid search which is a hyperparameter optimization method. By
using the labels generated by the anomaly detection model, we purpose a
Gaussian mixture model in modeling the anomalies as a bimodal distribu-
tion.

7.3 How can the performance of the
resulting anomaly detection models be
determined in a practical setting?

The conditions for validating the performance of the prophet uncertainty
model are based on post-classification of previous sales data. This can be
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done by taking a sample of the data, then having a team of sales experts
analyze these for anomalies and classify these data. Since these are limited
samples from the original data, classification of small samples is significantly
more feasible than classification of all data for training a supervised model.
With these samples, represented by the classification labels of individual
domain experts for the sales data, we can use an inter-rater agreement
metric to estimate the true label of these data points. From these labels
we can estimate the classification performance of the uncertainty model,
while comparing it to the mean and standard deviation within classification
performance of the human annotators.

To validate the estimation of the detected anomalies, we create reports to
present detected anomalies to sales representatives and collect their feedback.
With this method, we were able to collect the labelling feedback from two
users for five customers as a small validation set but not as a means to train
or model. Based on the validation result, we use three measurements (i.e.
precision, recall, and accuracy) to evaluate our model performance.

7.4 Contributions

Throughout this project we made the following contributions:

* Data analysis for sales transaction data in preprocessing, data explo-
ration, and detecting abnormal customers by using DBSCAN with PCA
components for customer-based sales aggregates.

e Unsupervised training by using the piece-wise automated prediction
model for aggregated daily, weekly and yearly transaction data with
the baseline model and four different settings of trend, seasonality and
holiday components.

e Automated Prophet machine learning model optimization by efficient
hyper-parameter optimization through forecast-based grid search and
evaluation of model performance via MSE, RMSE, MAE, MAPE, MDAPE
and Coverage.

* Anomaly analysis on optimal prophet-based uncertainty model, leading
to a Gaussian mixture model in the form of a bi-modal distribution
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for detected anomalies in the form of abnormal orders with unique
parametric models under maximum likelihood for each combination of
customers and product categories.

* Description and example of a validation procedure, where a small
sample set is labelled by human annotators using inter-rater agreement
as validation from which an estimation of model performance can be
generated through the precision, recall and accuracy metrics.

7.5 Future Work

In our experiments, we have a baseline auto-regressive model in the begin-
ning and then move on to the automated forecasting model in detecting
anomalies since the baseline model underfits our transaction data. It is in-
teresting that for different aggregated data (i.e. daily, weekly and monthly
data), the optimal model has different hyperparameters. Therefore, in the
future, we hope to automate the selection process and build the specific
model for each customer.

Zong et al. [8] purposes a similar architecture which is a Gaussian Mixture
Model (GMM) to model the error by using auto-encoding instead of auto-
regression as the bi-modal model purposed by us. Thus, we would like to
compare both unsupervised models and evaluate which model performs
better in detecting anomalies. Munir et al. [6] purpose a convolutional
neural network (CNN) based prediction model for unsupervised learning
on a time-scale. We would like to compare our current optimal anomaly
detection model with this CNN model and to improve the unsupervised
learning method further.

In addition, since we only have a small sample of validation data labelled by
two sales representatives, there is not enough labelled data for us to do the
semi-supervised or supervised training by using other models such as Long
short-term memory (LSTM), recurrent neural network (RNN). Therefore,
in the future, we hope to gather more labelled validation data in order to
perform the supervised training.
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Appendix

A. Python Code

def detect anomalies(forecast):

forecasted = forecast[[’ds’, trend’, ’yhat’, ’yhat lower’,
yhat _upper’, ’fact’]].copy()

forecasted [ ’anomaly’] = 0

forecasted.loc[forecasted[’fact’] > forecasted[’yhat upper’],
’anomaly’] =1

forecasted.loc[forecasted[’fact’] < forecasted[’yhat lower’],
’anomaly’] = -1

#anomaly importances

forecasted [ ’importance’] = 0

interval range = forecasted[’yhat upper’] — forecasted[’

yhat lower ']

# calculate importance of anomalies
forecasted.loc[forecasted [ ’anomaly’] ==1, ’importance’] = \
(forecasted[’fact’] — forecasted[’yhat upper’]) «0.5/

interval range

forecasted.loc[forecasted [ ’anomaly’] ==-1, ’importance’] = \
(forecasted[’yhat lower’] — forecasted[’fact’])«0.7/

interval range

return forecasted

Listing A.1: Anomaly Detection

def weekly abn(output, product cat2):
test_filter = (output.PRODUCT CATEGORY 2 == product_cat2)
df new = output.loc[test filter , output.columns].reset index(

drop=True)
week num = []
year num = []

# add week & year columns
for i in df new.SALES ORDER _DATE:
week num.append (i.week)
if (i.week == 1) & (i.month == 12):
year num.append(i.year+1)
else:
year num.append(i.year)
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14 df new[ 'WEEK NUM’] = week num
15 df new[ ’YEAR NUM’] = year_num

17 # get the empty weeks

s empty_week = df new[df new[ ’ORDERED VALUE EUR SUM’] <= 0]

19 # remove 0 ordered value lines

20 df new = df new.drop(np.where(df new[ ’ORDERED VALUE EUR SUM’]
<= 0)[0]).reset_index (drop=True)

21 df prop = df new.copy()

22 df prop = df prop.rename(columns={’SALES ORDER DATE’:’ds’,’
ORDERED VALUE EUR SUM’: ’y’})

23 # unsupervised anomaly detection model

2« m = Prophet(

25 daily seasonality=False,

26 yearly seasonality=True,

27 weekly seasonality=False,

28 seasonality mode=’additive’,
29 changepoint prior_scale=0.05,

30 seasonality prior scale=0.01,
31 changepoint range=0.8,

32 holidays_prior_scale =10,
33 interval width=0.95
34 )

35 # add monthly seasonality

ss m.add _seasonality (name="monthly’, period=30.5, fourier order=3)
37 m.add_country_holidays (country name=’UK’)

38 start _time = time.time ()

39 m. fit (df_prop)

40 runtime = time.time () — start time

2 prop_pred = m.predict(df prop[[’ds’,’y’1])

43 prop_pred[’fact’] = df prop[’y’]

44  for i in prop_pred[prop pred.yhat lower < O].yhat lower.index:

45 prop_pred[’yhat lower’]J[i] = O

46

47 new_prop = prop _pred[[’ds’,’ fact’, ’trend’, ’yhat’, ’yhat lower
’, ’yhat upper’]]

48 detect_anb = detect _anomalies(new_prop).drop(’ds’,axis=1)

49 df detect = pd.concat([df prop.reset index (drop=True),
detect_anb], axis=1)

so # return the detection result with importance and reasons

si Abn Value = week value detection(df detect)

s3  return Abn Value, df detect

Listing A.2: Anomaly Detection For Weekly Data
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B. Training Plots and Tables

AutoReg Model Results

Dep. Variable: y No. Observations: 249
Model: Seas. AutoReg(7) Log Likelihood -339.490
Method: Conditional MLE S.D. of innovations 0.984
Date: Thu, 08 Jul 2021  AIC 0.282
Time: 00:05:24  BIC 0.830
Sample: 7  HQIC 0.503
249

coef std err z P>|z]| [0.025 0.975]
intercept 5.0287 1.284 3.917 0.000 2.512 7.545
seasonal.l 0.1040 0.501 0.208 0.835 -0.877 1.085
seasonal.?2 0.7488 0.497 1.508 0.132 -0.225 1.722
seasonal.3 0.0098 0.497 0.020 0.984 -0.964 0.984
seasonal.4 0.8481 0.497 1.708 0.088 -0.125 1.821
seasonal.b -0.4281 0.498 -0.860 0.390 -1.404 0.548
seasonal.6 0.0182 0.504 0.036 0.971 -0.970 1.006
seasonal.?7 0.9078 0.486 1.869 0.062 -0.044 1.860
seasonal.8 0.6383 0.490 1.303 0.193 -0.322 1.598
seasonal.9 0.0474 0.497 0.096 0.924 -0.926 1.021
seasonal. 10 0.0084 0.507 0.017 0.987 -0.984 1.001
seasonal.l1 0.5007 0.504 0.993 0.321 -0.487 1.489
seasonal.12 -0.1582 0.497 -0.318 0.750 -1.132 0.816
seasonal.13 0.5838 0.502 1.163 0.245 -0.400 1.568
seasonal.14 7999 0.499 1.604 0.109 -0.178 1.777
seasonal. 15 -0.1503 0.497 -0.303 0.762 -1.124 0.823
seasonal. 16 0.5042 0.498 1.012 0.311 -0.472 1.480
seasonal. 17 -0.1886 0.501 -0.376 0.707 -1.170 0.793
seasonal.18 5480 0.501 .094 0.274 -0.434 1.530
seasonal.19 1327 0.498 .267 0.790 -0.842 1.108
seasonal.?20 2909 0.503 .578 0.563 -0.696 1.278
seasonal.21 -0.0869 0.495 -0.176 0.861 -1.057 0.883
seasonal.22 .4927 0.501 .983 0.326 -0.490 1.475
seasonal.23 2882 0.494 .584 0.559 -0.679 1.255
seasonal.24 -0.1370 0.498 -0.275 0.783 -1.112 0.838
seasonal.25b 0.5229 0.497 1.053 0.292 -0.451 1.496
seasonal.26 -0.0423 0.497 -0.085 0.932 -1.016 0.931
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seasonal.27 0.3073 0.497 0.619 0.536 -0.666 1.281
seasonal .28 0.2867 0.496 0.578 0.563 -0.685 1.259
seasonal.29 0.7614 0.498 1.528 0.126 -0.215 1.738
y.L1 0.1110 0.064 1.735 0.083 -0.014 0.236
y.L2 0.1116 0.064 1.751 0.080 -0.013 0.237
y.L3 0.0788 0.065 1.221 0.222 -0.048 0.205
y.L4 -0.0522 0.065 -0.805 0.421 -0.179 0.075
y.L5 0.0203 0.065 0.312 0.755 -0.107 0.148
y.L6 0.0943 0.065 1.462 0.144 -0.032 0.221
y.L7 0.0859 0.065 1.331 0.183 -0.041 0.212
Roots

Real Imaginary Modulus Frequency
AR.1 2099 -0.0000j 1.2099 -0.0000
AR.2 .8262 -1.0483j 1.3347 -0.1438
AR.3 .8262 +1.0483j 1.3347 0.1438
AR.4 -0.5439 -1.3539j 1.4590 -0.3108
AR.5 -0.5439 +1.3539j 1.4590 0.3108
AR.6 -1.4361 -0.6890j 1.5929 -0.4288
AR.7 -1.4361 +0.6890] 1.5929 0.4288
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Table A.1.: Grid Search Performance Results for Daily Data

Changepoint | Holidays | Seasonality | \icp | pyop | MAE | MAPE | MDAPE | Goverage | Runtime
Prior Scale | Prior Scale | Prior Scale

0.05 10.0 0.01 1.4455 1.2023 0.9689 | 0.1043 | 0.0859 0.8589 10.67
0.05 0.1 0.01 1.5141 1.2305 0.9931 | 0.1066 | 0.089 0.8506 11.0

0.05 1.0 0.01 1.5271 1.2358 0.9966 | 0.1071 | 0.089 0.8465 11.06
0.05 0.01 0.01 1.5473 1.2439 | 1.0059 | 0.1081 | 0.0894 0.8506 10.52
0.1 0.01 0.01 1.5481 1.2442 1.0031 | 0.1078 | 0.0882 0.8506 10.68
0.1 1.0 0.01 1.5507 1.2453 1.0043 | 0.1078 | 0.0897 0.8382 10.79
0.1 10.0 0.01 1.5668 1.2517 1.0095 | 0.1084 | 0.0897 0.8382 11.24
0.1 0.1 0.01 1.5737 1.2545 1.0133 | 0.1088 | 0.0907 0.8465 11.05
0.01 10.0 0.01 1.7613 1.3271 1.0642 | 0.1153 | 0.0882 0.8465 10.44
0.01 0.01 0.01 1.7627 1.3277 1.0647 | 0.1154 | 0.0881 0.8465 10.55
0.01 0.1 0.01 1.7653 1.3286 1.0645 | 0.1154 | 0.088 0.8423 10.21
0.01 1.0 0.01 1.7656 1.3288 1.0649 | 0.1155 | 0.0882 0.8423 10.16
0.5 0.1 0.1 2.3364 1.5285 1.2278 | 0.1306 | 0.1087 0.7593 11.5

0.05 0.01 0.1 2.3411 1.5301 1.2335 | 0.1328 | 0.1163 0.751 10.45
0.5 10.0 0.01 2.3473 1.5321 1.2222 | 0.1312 | 0.1052 0.7552 11.28
0.5 0.01 0.1 2.351 1.5333 1.2304 | 0.131 | 0.1069 0.751 11.16
0.5 1.0 0.01 2.3647 1.5378 1.226 | 0.1317 | 0.1038 0.7386 11.38
0.5 0.1 0.01 2.3658 1.5381 1.2273 | 0.1318 | 0.1037 0.7427 11.53
0.5 0.01 0.01 2.3792 1.5425 1.2323 | 0.1322 | 0.1068 0.7427 11.52
0.1 0.01 0.1 2.3903 1.5461 1.2456 | 0.1342 | 0.1145 0.7427 10.26
0.05 0.1 0.1 2.4142 1.5538 1.2521 | 0.1346 | 0.1167 0.7261 10.52
0.1 0.1 0.1 2.4184 1.5551 1.2525 | 0.1344 | 0.1111 0.7178 10.36
0.05 10.0 0.1 2.4331 1.5598 1.2555 | 0.1348 | 0.1168 0.7303 10.26
0.1 10.0 0.1 2.4571 1.5675 1.2635 | 0.1354 | 0.1089 0.7303 10.63
0.05 1.0 0.1 2.4703 1.5717 1.2643 | 0.1356 | 0.1166 0.7261 10.51
0.1 1.0 0.1 2.5248 1.5889 1.276 | 0.1374 | 0.1131 0.7303 10.26
0.5 1.0 0.1 2.5864 1.6082 1.2966 | 0.1387 | 0.1114 0.722 10.89
0.5 10.0 0.1 2.592 1.61 1.2976 | 0.1388 | 0.1106 0.722 10.84
0.01 0.1 0.1 2.7566 1.6603 1.3505 | 0.1466 | 0.1248 0.7635 10.11
0.01 1.0 0.1 2.9004 1.703 1.3922 | 0.1505 | 0.1298 0.7427 10.16
0.01 0.01 0.1 2.9369 1.7137 | 1.4024 | 0.1517 | 0.1298 0.7344 10.06
0.01 10.0 0.1 2.9628 1.7213 1.4175 | 0.1534 | 0.1326 0.7261 10.17
0.05 0.01 1.0 5.098 2.2579 | 1.7784 | 0.1883 | 0.1487 0.6017 10.84
0.01 0.01 1.0 5.4701 2.3388 1.9132 | 0.2041 | 0.1609 0.5934 10.25
0.05 0.1 1.0 5.8348 2.4155 1.8752 | 0.1985 | 0.153 0.5685 10.73
0.1 0.01 1.0 5.9125 2.4316 1.8966 | 0.1993 | 0.1552 0.5726 10.41
0.01 0.1 1.0 5.9297 2.4351 1.9292 | 0.2058 | 0.157 0.6224 10.11
0.05 10.0 1.0 6.3252 2.515 1.9025 | 0.2009 | 0.1515 0.5768 10.35
0.1 0.1 1.0 6.5282 2.555 2.0074 | 0.2123 | 0.1692 0.527 10.39
0.05 1.0 1.0 6.5605 2.5613 1.9483 | 0.2058 | 0.161 0.5768 10.62
0.01 1.0 1.0 6.5924 2.5676 1.9787 | 0.2106 | 0.1551 0.639 10.21
0.01 10.0 1.0 6.6072 2.5704 1.9793 | 0.2107 | 0.1551 0.639 10.39
0.1 10.0 1.0 7.3458 2.7103 2.0721 | 0.2185 | 0.1735 0.5394 10.57
0.1 1.0 1.0 7.8405 2.8001 2.1719 | 0.2285 0.18 0.5228 10.56
0.5 0.01 1.0 85.6819 9.2565 6.1104 | 0.6432 | 0.3307 0.3029 10.37
0.5 1.0 1.0 93.2215 | 9.6551 6.5982 | 0.6931 | 0.3788 0.278 10.53
0.5 0.1 1.0 100.1222 | 10.0061 | 6.5086 | 0.6848 | 0.3344 0.3071 10.64
0.5 10.0 1.0 105.1307 | 10.2533 | 6.7218 | 0.7072 | 0.3638 0.3112 11.34
0.01 0.01 10.0 207.1187 | 14.3916 | 6.5962 | 0.6792 | 0.1753 0.5394 12.29
0.05 0.01 10.0 268.7251 | 16.3928 | 6.9886 | 0.7146 | 0.1617 0.5643 10.5

0.1 0.01 10.0 276.3333 | 16.6233 | 7.1135 | 0.7276 | 0.1718 0.5311 10.5

0.01 0.1 10.0 351.9445 | 18.7602 | 8.0914 | 0.8294 | 0.1801 0.5519 10.03
0.1 0.1 10.0 356.1351 | 18.8715 | 8.3951 | 0.8581 | 0.1925 0.4979 10.3

0.05 0.1 10.0 363.6006 | 19.0683 8.051 0.8235 | 0.1712 0.5394 10.62
0.01 1.0 10.0 377.4384 | 19.4278 | 8.5427 | 0.8798 | 0.167 0.5934 10.2

0.05 1.0 10.0 395.1735 | 19.879 8.5655 | 0.8794 | 0.1667 0.5519 10.15
0.1 1.0 10.0 396.9258 | 19.923 8.8869 0.913 | 0.2164 0.4647 10.3

0.05 10.0 10.0 397.4212 | 19.9354 | 8.5859 | 0.8817 | 0.1664 0.5519 10.19
0.1 10.0 10.0 399.8304 | 19.9958 | 8.9579 | 0.9195 | 0.206 0.4813 10.42
0.01 10.0 10.0 411.6025 | 20.288 8.7916 | 0.9035 | 0.1812 0.556 14.25
0.5 0.01 10.0 470.0088 | 21.6797 | 13.3727 | 1.3837 | 0.5805 0.2656 10.1

0.5 0.1 10.0 513.7011 | 22.665 | 14.2724 | 1.4777 | 0.6422 0.2573 10.47
0.5 1.0 10.0 536.6881 | 23.1665 | 14.5217 | 1.5034 | 0.6538 0.2614 10.58
0.5 10.0 10.0 571.7395 | 23.9111 | 15.1599 | 1.5725 | 0.6727 0.2656 10.38
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Table A.2.: Grid Search Performance Results for Weekly Data

Changepoint | Holidays | Seasonality |\ op RMSE | MAE | MAPE | MDAPE | Coverage | Runtime

Prior Scale | Prior Scale | Prior Scale
0.1 0.01 0.01 1.5591 1.2486 | 0.9642 | 0.0912 | 0.0742 | 0.5588 13.1
0.05 0.01 0.01 1.5971 1.2638 | 1.0175 | 0.0954 | 0.0788 | 05882 | 12.97
0.01 0.01 0.01 16 1.2649 | 1.0182 | 0.0955 | 0.0793 | 0.5882 | 12.38
0.01 0.1 0.01 2.0049 14159 | 1.1098 | 0.1051 | 0.0831 | 0.3088 | 12.15
0.05 0.1 0.01 2.0161 14199 | 1.1139 | 0.1055 | 0.083 | 0.3088 | 12.89
0.01 10.0 0.01 2.0273 14238 | 1.1125 | 0.1054 | 0.0799 | 0.2941 | 11.69
0.01 1.0 0.01 2.0321 1.4255 T.114 | 0.1056 | 0.0801 | 0.2941 | 12.19
0.05 10.0 0.01 2.034 14262 | 1.1145 | 0.1056 | 0.0805 | 0.2941 12.6
0.05 1.0 0.01 2.0387 14278 | 1.1164 | 0.1058 | 0.0805 | 0.2941 | 13.51
0.1 0.1 0.01 2.4782 15742 | 1.2035 | 0.1132 | 0.0957 | 0.3382 | 13.78
0.1 10.0 0.01 2.4862 1.5768 | 1.2008 | 0.1129 | 0.0978 | 0.3382 | 13.78
0.1 1.0 0.01 2.43868 1.5769 1.201 | 0.1120 | 0.098 | 03382 | 14.64
0.5 0.01 0.01 5.3381 2.3104 | 1.8022 | 0.1661 | 0.1347 0.5 51.93
0.5 0.01 0.1 5.6613 2.3794 | 1.9387 | 0.1762 | 0.1381 | 0.3088 | 50.72
0.5 10.0 0.01 5.7102 2.3806 | 1.8307 | 0.1707 | 0.1253 | 0.5147 | 52.94
0.5 0.1 0.01 5.7466 2.3972 | 1.8455 | 0.1719 | 0.125 | 0.4706 | 53.99
0.5 1.0 0.01 7.7872 2.7905 | 2.0543 | 0.1907 | 0.1299 | 0.5147 | 54.19
0.1 0.01 0.1 8.949 2.9915 | 2.262 | 0.2027 | 0.144 | 0.2647 | 48.79
0.01 0.01 0.1 12.1213 | 3.4816 | 2.3231 | 0.2115 | 0.1343 | 0.25 12.24
0.05 0.01 0.1 12.2148 3.495 | 24753 | 0.2211 | 0.1401 | 02794 | 17.64
05 10.0 0.1 13.2388 | 3.6385 | 2.7321 | 0.251 | 0.1823 | 0.1912 51.6
0.5 1.0 0.1 13.3167 | 3.6492 | 2.7584 | 0.2506 | 0.1793 | 0.1912 51.6
0.1 10.0 0.1 15.2068 | 3.8996 | 3.1195 | 0.2822 | 0.2015 | 0.0441 | 49.95
0.5 0.1 0.1 15.4924 3.936 | 3.0565 | 0.278 | 0.201 | 0.1618 | 50.95
0.1 0.1 0.1 15.8841 | 3.9855 | 3.1831 | 0.2875 | 0.2019 | 0.0441 | 50.34
0.05 10.0 0.1 16.06 4.0075 | 3.1536 | 0.2861 | 0.1949 | 0.0588 | 22.91
0.05 1.0 0.1 16.1326 | 4.0165 | 3.1633 | 0.2873 | 0.1921 | 0.0588 | 15.26
0.1 1.0 0.1 16.9646 | 4.1188 | 3.2651 | 0.294 | 0.2039 | 0.0441 | 50.72
0.05 0.1 0.1 18.119 42566 | 3.3256 | 0.3005 | 0.198 | 0.0735 | 19.43
0.01 0.1 0.1 194584 | 4.4112 | 3.4012 | 0.3089 | 0.2012 | 0.0441 | 12.32
0.01 1.0 0.1 20.5991 | 4.5386 | 3.4293 | 0.3088 | 0.1995 | 0.0441 | 12.33
0.01 10.0 0.1 21.069 45901 | 3.5056 | 0.316 | 0.1958 | 0.0441 | 13.01
0.1 10.0 1.0 527.5081 | 22.9675 | 17.1499 | 1.5298 | 1.2333 | 0.0294 | 49.73
0.1 1.0 1.0 636.9448 | 25.2378 | 18.5738 | 1.6571 | 1.426 | 0.0294 52.6
0.05 0.1 1.0 642.8104 | 25.3537 | 19.2657 | 1.7218 | 1.5737 | 0.0441 | 48.57
0.1 0.1 1.0 727.5591 | 26.9733 | 20.5511 | 1.853 | 1.6096 | 0.0294 | 50.16
0.1 0.01 1.0 757.2583 | 27.5183 | 18.6167 | 1.6772 | 1.019 | 0.1912 | 48.91
0.05 1.0 1.0 780.6468 | 27.9401 | 20.1725 | 1.7855 | 1.5672 | 0.0588 | 49.25
0.01 1.0 1.0 878.0198 | 29.6314 | 21.5925 | 1.0180 | 1.642 | 0.0294 | 12.23
0.05 10.0 1.0 887.4243 | 29.7897 | 21.2581 | 1.9107 | 1.6148 | 0.0294 | 14.04
0.5 0.1 1.0 950.3293 | 30.8274 | 22.9503 | 2.0665 | 1.6129 | 0.0882 54.0
0.05 0.01 1.0 1030.3539 | 32.0991 | 22.0905 | 2.0081 | 1.276 | 0.1324 14.1
0.5 0.01 1.0 1124.8984 | 33.5395 | 23.0679 | 2.0545 | 1.4386 | 0.1765 | 51.38
0.01 0.1 1.0 1352.734 | 36.7795 | 24.9236 | 2.1849 | 1.6027 | 0.0441 | 48.42
0.5 1.0 1.0 1375.2986 | 37.085 | 25.3766 | 2.3791 | 1.614 | 0.0441 | 55.23
0.5 10.0 1.0 1383.2789 | 37.1925 | 26.4114 | 2.4357 | 1.6211 | 0.0735 | 102.53
0.01 0.01 1.0 1485.763 | 38.5456 | 25.4684 | 2.2767 | 1.4399 | 0.1471 | 49.44
0.01 10.0 1.0 2549.3814 | 50.4914 | 30.3573 | 2.7182 | 1.719 | 0.0294 | 15.18
0.1 1.0 10.0 10147.2748 | 100.7337 | 64.4038 | 5.8501 | 2.0374 | 0.0441 | 52.12
0.05 10.0 10.0 10255.0617 | 101.2673 | 66.7488 | 6.0517 | 3.4872 | 0.0294 485
0.1 10.0 10.0 10369.2322 | 101.8294 | 68.7206 | 6.2311 | 3.7769 | 0.0294 50.7
0.05 1.0 10.0 10505.3350 | 102.4955 | 69.0249 | 6.2515 | 4.065 | 0.0294 | 13.94
0.01 1.0 10.0 10890.1883 | 104.3561 | 71.1375 | 6.4636 | 4.93 | 0.0294 | 12.51
0.5 10.0 10.0 11688.1171 | 108.1116 | 71.9147 | 6.5344 | 4.6578 | 0.0294 | 55.01
0.1 0.1 10.0 12042.8786 | 109.7401 | 76.7218 | 6.9319 | 5.7164 | 0.0294 | 50.42
0.01 0.1 10.0 14343.3898 | 119.7639 | 82.2462 | 7.508 | 5.6333 | 0.0294 13.1
0.01 10.0 10.0 177755382 | 133.3249 | 92.02 | 8.361 | 6.5728 | 0.0294 | 13.81
0.5 0.1 10.0 21790.4637 | 147.6159 | 91.481 | 8.5439 | 5.1351 | 0.0441 | 59.98
0.1 0.01 10.0 34917.7503 | 186.8629 | 98.8713 | 9.1879 | 3.4152 | 0.1324 | 49.58
0.05 0.01 10.0 35088.131 | 187.3183 | 99.1123 | 9.1845 | 3.3766 | 0.1618 | 12.69
0.01 0.01 10.0 35376.6300 | 188.0868 | 102.9723 | 9.5784 | 3.4613 | 0.1324 | 19.49
0.05 0.1 10.0 36635.8401 | 191.4049 | 118.6949 | 10.9211 | 6.5818 | 0.0294 | 14.85
0.5 0.01 10.0 37739.237 | 194.2659 | 92.1178 | 8.6914 | 2.0408 | 0.2059 | 59.92
05 1.0 10.0 87253.6528 | 295.3873 | 145.7674 | 14.0736 | 4.215 | 0.0588 | 57.98
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Table A.3.: Grid Search Performance Results for Monthly Data

Changepoint | Holidays | Seasonality |\ op RMSE | MAE | MAPE | MDAPE | Coverage | Runtime
Prior Scale | Prior Scale | Prior Scale

0.1 0.01 0.1 0.7943 0.8912 0.7279 0.059 0.039 0.0 28.42
0.5 0.01 0.1 1.3462 1.1603 0.9659 0.078 0.0573 0.05 87.98
0.5 0.1 0.1 1.4432 1.2013 0.9846 0.0786 0.067 0.2 89.58
0.05 1.0 0.1 1.5146 1.2307 0.9754 0.079 0.0594 0.0 47.49
0.01 0.01 0.01 1.5626 1.25 1.0713 0.086 0.0687 0.0 12.64
0.5 0.01 0.01 1.635 1.2787 1.0376 0.083 0.0537 0.4 100.32
0.5 10.0 0.01 1.6622 1.2893 1.0917 0.0872 | 0.0634 0.35 133.8
0.05 0.01 0.01 1.6954 1.3021 1.1189 0.0896 | 0.0724 0.0 32.62
0.01 0.1 0.01 1.7075 1.3067 1.1154 0.0898 | 0.0756 0.0 14.37
0.05 0.1 0.01 1.7174 1.3105 1.1252 0.0903 | 0.0778 0.0 31.98
0.01 10.0 0.01 1.7278 1.3145 1.1305 0.0908 | 0.0774 0.0 14.69
0.05 10.0 0.01 1.7386 1.3186 1.1337 0.091 0.0778 0.0 27.35
0.05 1.0 0.01 1.7509 1.3232 1.1354 0.0911 | 0.0782 0.0 2491
0.5 0.1 0.01 1.7694 1.3302 1.117 0.0892 | 0.0653 0.35 132.87
0.01 1.0 0.01 1.7796 1.334 1.1511 0.0924 | 0.0756 0.0 13.8

0.01 0.01 0.1 1.7807 1.3344 1.1316 0.0909 | 0.0757 0.0 16.01
0.5 1.0 0.01 1.8094 1.3451 1.1441 0.0913 | 0.0711 0.35 115.56
0.1 0.01 0.01 1.8875 1.3738 1.2021 0.0961 | 0.0876 0.0 61.84
0.1 10.0 0.01 1.9009 1.3787 1.1868 0.095 0.0858 0.05 79.49
0.1 0.1 0.01 1.9093 1.3818 1.1922 0.0954 | 0.0853 0.05 76.82
0.1 1.0 0.01 1.9322 1.39 1.1984 0.0959 | 0.0863 0.05 72.83
0.5 10.0 0.1 2.0164 1.42 1.1856 0.0962 | 0.0813 0.0 122.66
0.01 0.1 0.1 2.2354 1.4951 1.1499 0.0938 | 0.0646 0.0 16.45
0.5 1.0 0.1 2.363 1.5372 1.298 0.1041 | 0.0918 0.05 101.24
0.1 10.0 0.1 2.4783 1.5743 1.3319 0.1067 | 0.0833 0.0 59.42
0.05 0.1 0.1 2.5095 1.5841 1.2798 0.1033 | 0.0768 0.0 48.84
0.1 1.0 0.1 2.551 1.5972 1.3302 0.1074 | 0.0921 0.0 58.38
0.05 10.0 0.1 2.5746 1.6046 1.32 0.105 0.0805 0.0 22.65
0.01 1.0 0.1 2.579 1.6059 1.3683 0.1095 | 0.0915 0.0 16.86
0.01 10.0 0.1 2.7068 1.6452 1.4232 0.1138 | 0.1048 0.0 16.0

0.1 0.1 0.1 2.7337 1.6534 1.4732 0.1179 | 0.0968 0.0 49.01
0.05 0.01 0.1 2.8642 1.6924 1.4267 0.1138 | 0.0851 0.0 22.46
0.1 0.1 1.0 208.0027 14.4223 11.711 0.9273 | 0.9889 0.0 43.7

0.5 1.0 1.0 351.582 18.7505 16.1105 1.2646 | 1.0739 0.0 109.25
0.5 0.1 1.0 404.5528 20.1135 15.1492 1.2042 | 0.9987 0.05 90.62
0.1 10.0 1.0 498.5677 22.3286 16.153 1.285 0.6716 0.1 68.17
0.5 10.0 1.0 534.1418 23.1115 18.2524 | 1.4829 | 1.1663 0.05 127.16
0.1 1.0 1.0 593.102 24.3537 19.4353 1.5465 | 1.1685 0.0 50.66
0.05 0.1 1.0 604.503 24.5866 19.1085 1.5194 | 1.3566 0.0 16.36
0.5 0.01 1.0 709.3814 26.6342 | 18.4875 | 1.4757 1.061 0.05 81.09
0.05 1.0 1.0 888.5921 29.8093 18.9843 1.5054 | 0.7805 0.0 14.16
0.01 0.01 1.0 906.8947 30.1147 19.5468 1.5534 | 1.2212 0.0 12.33
0.01 1.0 1.0 929.6245 30.4897 18.8232 1.48 0.9143 0.0 12.46
0.05 10.0 1.0 946.3264 30.7624 | 21.9092 1.7768 | 1.2597 0.0 30.86
0.05 0.01 1.0 1020.9509 | 31.9523 | 24.1085 1.9038 1.374 0.0 20.14
0.1 0.01 1.0 1055.1698 | 32.4834 | 21.6756 1.7246 | 0.8876 0.0 40.52
0.01 0.1 1.0 1517.3268 | 38.9529 | 29.2268 | 2.2946 | 2.3084 0.0 12.97
0.01 10.0 1.0 3181.703 56.4066 | 42.3688 | 3.4025 | 2.0553 0.0 42.74
0.5 0.1 10.0 9884.5049 | 99.4208 71.5861 5.6937 | 3.8603 0.0 94.94
0.1 0.01 10.0 10670.0023 | 103.2957 | 76.5094 | 6.2105 | 4.5318 0.0 21.83
0.05 0.01 10.0 12898.8021 | 113.5729 | 84.2855 6.6963 | 4.5776 0.0 14.68
0.5 1.0 10.0 13348.3784 | 115.5352 | 70.0621 5.4873 | 1.8417 0.05 130.22
0.5 0.01 10.0 17812.0614 | 133.4618 | 99.2043 7.9114 | 5.3313 0.0 90.4

0.1 1.0 10.0 19570.4902 | 139.8946 | 90.8144 | 7.4798 | 4.3841 0.0 61.69
0.01 10.0 10.0 20136.8019 | 141.9042 | 105.899 | 8.4871 | 5.2828 0.0 31.53
0.01 0.1 10.0 20967.2534 | 144.8007 | 102.9399 | 8.3023 6.677 0.0 14.2

0.1 10.0 10.0 21423.7609 | 146.3686 | 109.1792 | 8.5352 | 6.8439 0.0 43.43
0.1 0.1 10.0 22370.9742 | 149.5693 | 104.4122 | 8.2065 | 6.5063 0.0 72.6

0.05 0.1 10.0 23284.5184 | 152.5927 | 104.8498 | 8.4475 | 5.3665 0.0 32.61
0.05 1.0 10.0 24156.98 155.4252 | 107.4946 | 8.5323 | 5.3078 0.0 16.01
0.05 10.0 10.0 45510.0224 | 213.3308 | 144.4524 | 11.6052 | 8.0889 0.05 68.71
0.01 0.01 10.0 45530.2625 | 213.3782 | 141.4875 | 11.3895 | 7.5303 0.0 12.1

0.01 1.0 10.0 52580.6301 | 229.3047 | 151.081 | 11.8729 | 7.3663 0.0 17.54
0.5 10.0 10.0 63213.7482 | 251.4234 | 176.0804 | 14.276 | 7.2534 0.0 129.12
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Table A.4.: Bimodal Distribution Parameters and Standard Deviation Errors (Sigma)
Summary for 10 Products

H1 21 Ay H2 02 Ay
params PE85 7.011393 | 0.52592 | 0.309155 | 10.094075 | 0.90503 | 0.247172
sigma PE85 0.045694 | 0.046411 | 0.022837 | 0.074418 | 0.07709 | 0.017548
params PP50 6.821975 | 0.57451 | 0.247063 | 10.278292 | 1.012411 | 0.248694
sigma PP50 0.060565 | 0.061389 | 0.022187 | 0.079381 | 0.082477 | 0.01687
params PP60 6.823961 | 0.589295 | 0.244937 | 10.20956 | 1.007424 | 0.249258
sigma PP60 0.078975 | 0.080764 | 0.027824 | 0.100557 | 0.104694 | 0.021447
params Thermal ECO 7.154781 | 0.350253 | 0.414061 | 10.346966 | 1.269719 | 0.181288
sigma Thermal ECO 0.036625 | 0.037263 | 0.036955 | 0.159829 | 0.169374 | 0.019613
params TT Uncoated 7.110139 | 0.287267 | 0.374780 | 10.060893 | 0.962612 | 0.277377
sigma TT Uncoated 0.031390 | 0.031495 | 0.035274 | 0.077458 | 0.078631 | 0.019350

params Decorative Uncoated | 6.317687 | 0.607491 | 0.342194 | 9.680521 | 0.768912 | 0.245010

sigma Decorative Uncoated | 0.119432 | 0.129495 | 0.057342 | 0.180932 | 0.182589 | 0.049929

params MC 7.068254 | 0.458789 | 0.424382 | 10.419040 | 1.002428 | 0.181639

sigma MC 0.033547 | 0.033760 | 0.026627 | 0.115340 | 0.117598 | 0.018107

params Special Film Other | 6.811508 | 0.525339 | 0.317501 | 10.453161 | 1.270285 | 0.176336

sigma Special Film Other 0.114210 | 0.115579 | 0.057695 | 0.331811 | 0.393028 | 0.038951

params Decorative Coated | 6.323099 | 0.552525 | 0.235768 | 10.030882 | 1.219497 | 0.230721

sigma Decorative Coated 0.120144 | 0.128447 | 0.043172 | 0.180168 | 0.198827 | 0.029454

params Thermal Top 6.934644 | 0.540794 | 0.365774 | 10.391814 | 0.968904 | 0.193375

sigma Thermal Top 0.052263 | 0.052753 | 0.030360 | 0.131786 | 0.134407 | 0.022779
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