
Master Computer Science

Standardizing

Nature-inspired Algorithms — a unified framework

UNIOA for seven swarm-based algorithms

Name: Huilin Li
Student ID: 2556057

Date: 16/05/2022

Specialisation: Computer Science: Data Science

1st supervisor: Anna V.Kononova
2nd supervisor: Carola Doerr

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

Based on the analysis of the core idea of seven selected swarm-based optimization algo-
rithms (SA), we proposed a Unified Framework UNIOA to make these seven algorithms
more understandable on the level of basic mathematics. UNIOA can also help to prevent
SA from meaningless repetitions. The detailed process of constructing the UNIOA is
illustrated, including the Unified terminologies, the Unified procedure and the Unified
framework UNIOA. Meanwhile, practical experiments are performed to verify the re-
liability of UNIOA. In addition, a demo for automatically designing SA is developed,
which introduces a general application of UNIOA. Subsequently, we leave an open
discussion on the possibility of extending UNIOA into the whole of nature-inspired
optimization algorithms, including the SA and the evolutionary algorithms (EA). Our work
is organized in https://github.com/Huilin-Li/ThesisProject Huilin, and the
general application of UNIOA is https://github.com/Huilin-Li/UNIOA.

2

https://github.com/Huilin-Li/ThesisProject_Huilin
https://github.com/Huilin-Li/UNIOA

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Overview . 8

2 Unified Terminologies 11
2.1 Motivation . 11
2.2 Specific Swarm-based Algorithms . 12

2.2.1 Bat-inspired Algorithm (BA) . 12
2.2.2 Grasshopper Optimization Algorithm (GOA) 14
2.2.3 Crow Search Algorithm (CSA) 15
2.2.4 Moth-flame Optimization Algorithm (MFO) 17
2.2.5 Monarch Butterfly Optimization (MBO) 18
2.2.6 Butterfly Optimization Algorithm (BOA) 20
2.2.7 Particle Swarm Optimization (PSO) 22

2.3 Unified Terminologies . 24
2.3.1 Unified Terminologies Catalog 24
2.3.2 Extension in Other Swarm-based Algorithms. 26

2.4 Summary . 27

3 Unified Procedure 33
3.1 Introduction . 33
3.2 Unified Procedure . 36
3.3 Summary . 39

4 Unified Framework 40
4.1 Motivation . 40
4.2 Re-framed Nature-inspired Algorithms 41

4.2.1 Re-framed BA . 41

3

CONTENTS

4.2.2 Re-framed GOA . 43
4.2.3 Re-framed CSA . 45
4.2.4 Re-framed MFO . 47
4.2.5 Re-framed MBO . 49
4.2.6 Re-framed BOA . 51
4.2.7 Re-framed PSO . 53

4.3 Unified Nature-Inspired Optimization Algorithm (UNIOA) 55
4.3.1 Unified Framework — UNIOA 55
4.3.2 UNIOA Package . 59

4.4 Summary . 65

5 Experimental Setup of Benchmark Study 66
5.1 Motivation for experiments . 66
5.2 Summary . 69

6 Experimental Results 70
6.1 Introduction . 70
6.2 Experiments for avoiding side effects 71

6.2.1 Results . 71
6.2.2 Conclusion . 76

6.3 Comparing UNIOA to the original framework 78
6.3.1 Results . 78
6.3.2 Conclusion . 80

6.4 Observations among algorithms in UNIOA 81
6.5 Summary . 83

7 Summary 85
7.1 Conclusions in our studies . 85
7.2 Limitations in our analysis . 87
7.3 Future work . 88

Acknowledgement 89

References 92

Appendices 93
A Original positions of eight tuples in selected algorithms 93
B Re-framed Algorithm Pseudo-code . 96

B.1 Re-framed Bat Inspired Algorithm (Re-framed BA) 96

4

CONTENTS

B.2 Re-framed Grasshopper Optimization Algorithm (Re-framed GOA) 100
B.3 Re-framed Crow Search Algorithm (Re-framed CSA) 103
B.4 Re-framed Moth-flame Optimization Algorithm (Re-framed MFO) 105
B.5 Re-framed Monarch Butterfly Algorithm (Re-framed MBO) . . . 108
B.6 Re-framed Butterfly Optimization Algorithm (Re-framed BOA) . 111
B.7 Re-framed Particle Swarm Optimization (Re-framed PSO) 114

5

Symbols

Table 1: Some symbols in this work.

Symbol Meaning

U(a,b) A single random uniform distributed number in [a,b)

rand A single random uniform distributed number in [0,1). It is
always randomly generated when utilized.

Exp(a) A single random exponential distributed number with the scale
λ= a

Min({ai})→ ai Minimization calculator that will generate one ai that has the
minimum fitness value amongst the set {ai}.

Sort({ai})→ 〈ai〉 Sort calculator that will generate an ordered sequence 〈ai〉 of the
ascending fitness values of ai amongst the set {ai}.

Round(a)→ a
′ Rounding calculator that will round a value a to its nearest

integer a′ .

Dist(a,b)→Da,b Distance calculator that will calculate the Euclidean distance by
Da,b =

√
(a− b)2.

| | Only denotes absolute value.1

1Some places use it as a calculation of distance that is defined as Dist(a,b)→Da,b in our work.

6

Chapter 1

Introduction

1.1 Motivation
The pace of designing optimization algorithms has never been stopped even since antiquity
[1]. In the late stage of the 1900s, heuristic algorithms began to stand out with their
impressive performance on more complicated modern optimization problems [24]. In these
heuristic research fields, due to the great success of the simulated annealing optimization
algorithm [24], the analogy connection between nature and optimization methods attracts
increasing attention.
As the most successful analogy [24], the natural evolution process has inspired most
metaphor-based optimization algorithms until now. From classical genetic algorithms,
particle swarm optimization to modern ’animal’-inspired optimization algorithms, from
pure algorithms to their various variants, from independent algorithms to combination
algorithms, these algorithms that have come or are coming are welcome to solve problems
and enrich the research community, however, one issue in this research field becomes
increasingly obvious: a great number of new nature-inspired optimization algo-
rithms are just old heuristic algorithms in new clothes, which might already
mislead the development of heuristic algorithms [10, 11, 22, 24].
This problem frequently appears in population-based algorithms that are also well-known
as swarm-based algorithms. One paper mentioned that these new modern nature-inspired
algorithms are actually similar to swarm intelligence [10], in which they theoretically
displayed the common components between the swarm intelligence and the nature-inspired
algorithm. Some researchers also mentioned that several core components comprised

7

1.2. OVERVIEW

most meta-heuristic algorithms [11], in which they provided a generalized flow chart
to display these common components. Moreover, some papers pointed out that a
unified representation for organizing these algorithms together, especially a mathematical
representation, will help prevent a worse development of heuristic algorithms [25, 31].
Therefore, in this work, we aim to propose a unified framework that can combine
swarm-based optimization algorithms together. This work will start with several
selected swarm-based optimization algorithms. Before starting this work, we want
to clarify:

• Variants of algorithms are not considered in this work.
Variants are important improvements to the algorithms, however, these variants will
be ignored when building up the unified framework in this work. We will only focus
on the base algorithms.

• Hybrid algorithms are not considered in this work.
We must accept that it is very challenging to discuss independent and hybrid
algorithms together. Therefore, we will start with independent algorithms and
ignore hybrid algorithms here.

To build up a unified framework, we get inspired by gene terminologies and operations in
the Evolutionary algorithm group. Therefore, in this work, we firstly study the possibility
of unifying different terminologies in selected algorithms (see Chapter 2), which is the
same as the gene terminology that is the only way to express evolutionary algorithms.
Next, we study the possibility of unifying different procedures in these selected algorithms
(see Chapter 3), in which we discuss the possibility that these algorithms have the same
model structure. Finally, we give our unified framework for several selected algorithms
(see Chapter 4), in which selected algorithms can be re-written in this unified framework
without losing their quality of optimization.
Furthermore, we will also prove the feasibility of this unified framework by benchmark
experiments, and meanwhile compare the performance of these selected algorithms in our
unified framework (see Chapter 5, Chapter 6). Lastly, we conclude our observations, point
out our limitations in this work, and give future research suggestions (see Chapter 7).

1.2 Overview
As Figure 1.1 displayed, since unifying the entire swarm-based algorithms is impossible in
one work, we will start with working on seven examples, including new modern and old
classical examples, after proving the feasibility of the unified framework we will build, we

8

1.2. OVERVIEW

will discuss the possibility that this framework is also able to be used in other swarm-based
algorithms.

Figure 1.1: Overview.

These seven examples will be selected from the Bestiary of evolutionary computation1.
They are :

• New modern swarm-based algorithms:
Bat-inspired algorithm [30], Grasshopper optimization algorithm [23], Crow search

1https://github.com/fcampelo/EC-Bestiary

9

https://github.com/fcampelo/EC-Bestiary

1.2. OVERVIEW

algorithm [2], Moth-flame optimization algorithm, Monarch butterfly optimization
algorithm [27], Butterfly optimization algorithm [3].

• Old classical swarm-based algorithms:
Particle swarm optimization [15]

We hope our unified framework is unified enough to cover both traditional and modern
nature-inspired algorithms.

10

Chapter 2

Unified Terminologies

2.1 Motivation
This chapter discusses the commonalities among seven selected swarm-based
algorithms on the level of their components. Specifically, in these algorithms, we find
that various terminologies of components with their meanings are able to be categorized
into same terminologies with same meanings.
Firstly, we want to introduce several common symbols in swarm-based algorithms. In
the swarm-based algorithm research field1, the given objective optimization problem is
formulated as a math formula f(~x) in which all decision variables are represented as a
vector ~x. Moreover, the number of decision variables2 is usually defined as the dimension
of search space to the objective optimization problem. When seeking the optimal solution
to the optimization problem, the swarm-based algorithm will first initialize an arbitrary set
of ~x and then optimize this set by using iterative strategies. Same as in most studies, we
also denote ~x as x and call it the possible objective solution. Inspired by this representation,
we define that any term a in the bold style denotes that this item is also a vector with the
same dimension as the objective solution x. Furthermore, we want to clarify that if the
bold style item a has a subscript i, it means this item has a one-to-one correspondence
with each xi. However, one item without this subscript will act on the whole set of xi,
whether this item is in bold style or not in bold style.

1In our work, we only consider single-objective continuous problem optimization.
2The number of decision variables is also the number of independent elements in ~x.

11

2.2. SPECIFIC SWARM-BASED ALGORITHMS

Moreover, usually, the set of xi is called a population, and the number of xi in this set
is called the size of this population. Each xi is a possible optimal solution to the target
optimization problem f(), therefore the value of f(xi) is called the fitness value of xi.
In the following sections, Section 2.2 introduces these seven algorithms in detail but
doesn’t include how natures are simulated to create mathematical models. Readers can
find such information in their published papers. In this work, the description of each
algorithm is straightforward, only including the final model and its default hyper-parameter
settings. Meanwhile, we also summarize their special points. Section 2.3 will give and
discuss our unified terminologies based on these seven selected algorithms. A summary
about this chapter is displayed in Section 2.4.

2.2 Specific Swarm-based Algorithms

2.2.1 Bat-inspired Algorithm (BA)
Description When simulating the echolocation behavior of micro-bats, for simplicity,
the Bat-inspired algorithm only considered the velocity vi of each bat xi, the echo
frequency freq emitted by each bat xi, the rate r of echo pulse, and the loudness A of
echo [30]. The algorithm described here follows the published implementation code3, and
explanations with math formulas are from their published paper [30].
This algorithm starts from is (1) initializing a bat xi population with size n= 20 in the
d dimension environment and the initialization method is Eq.2.1 in which Lb/Ub is the
lower/upper boundary of each element in xi. Meanwhile, (2) velocity vi of each bat xi is
initialized as Eq.2.2.

xi(t= 0) = U(Lb,Ub), i= 1,2, · · · ,n 2.1
vi(t= 0) = U(0,0), i= 1,2, · · · ,n 2.2

After (3) evaluating fitness of each xi, it (4) goes to find the best individual x∗ that is
the best xi the whole population has found so far. Next is (5) the iterative optimization
process in which the maximum number of iterations is t max= 1000. Under the iterative
process, it firstly (6) updates A as Eq.2.3 in which A0 = 1 is its initial value, and α= 0.97
is a decreasing hyper-parameter. Next, (7) r is updated as Eq.2.4 in which r0 = 1 is the
initial value of pulse rate and γ = 0.1 is a decreasing hyper-parameter. In this algorithm,

3https://uk.mathworks.com/matlabcentral/fileexchange/74768-the-standard-bat-alg
orithm-ba?s tid=prof contriblnk

12

https://uk.mathworks.com/matlabcentral/fileexchange/74768-the-standard-bat-algorithm-ba?s_tid=prof_contriblnk
https://uk.mathworks.com/matlabcentral/fileexchange/74768-the-standard-bat-algorithm-ba?s_tid=prof_contriblnk

2.2. SPECIFIC SWARM-BASED ALGORITHMS

t is the iteration counter.  A(t) = α×A0 , t= 0

A(t+ 1) = α×A(t) , o.w
2.3

r(t) = r0 × (1− e−γ×t) 2.4
Next is (8) updating each xi as Eq.2.5 in which freq min = 0/freq max = 2 is the
lower/upper boundary of freqi.

freqi = U(freq min,freq max)
vi(t+ 1) = vi(t) + (xi(t)− x∗)× freqi
xi(t+ 1) = xi(t) + vi(t+ 1)

2.5

If (9) rand < r(t), xi will be updated differently as Eq.2.6 in which ε= 0.1.

xi(t+ 1) = x∗(t) + ε× rand×A(t+ 1) 2.6

After (10) fixing outliers in xi(t+ 1) by replacing them with the boundary value, the BA
model evaluates fitness of each xi(t+ 1) again. Then (11) if the fitness of xi(t+ 1) is
better than xi(t) or the situation is rand > A, xi(t+ 1) will be accepted. Lastly (12)
the x∗ is updated.
Until now, one optimization round (from step (6) to step(12)) is finished, and it will
iteratively execute until the stop condition meets.

Summary When modeling a Bat algorithm, there are two main processes: Initialization
and Optimization. In the initialization process, besides initializing an initial population and
all default parameters (including hyper-parameters and initial values), an initial velocity
population is also initialized. Meanwhile, the initialization process also calculates the initial
best bat. In the optimization process, two dynamically changing parameters are updated
before updating the population. It is worth mentioning that the whole process of updating
the population is asynchronous, including asynchronously evaluating the fitness of each
bat, asynchronously judging whether the updated bat is improved, and asynchronously
updating the current best bat.4

Moreover, we want to clarify that in their implemented codes, it is unreasonable to
compare the previous best bat with a current unaccepted bat when updating the current

4The asynchronism here means the next individual will update only after the previous individual
finishes updating, evaluating and all other optimization steps.

13

2.2. SPECIFIC SWARM-BASED ALGORITHMS

best bat. The definition of the current best bat shall be finding the best bat in the current
population. The unaccepted bat is not in the current population anymore. Therefore, it
is more reasonable to calculate the current best bat by comparing the previous best bat
with the current bat who is at this same position in the current population.
Furthermore, we want to point out that in the Initialization process, the evaluation of the
population happens immediately after initializing the initial population. However, in the
Optimization process, the evaluation happens immediately after generating a temporary
population. In other words, it happens in the middle of obtaining the temporary population
and judging if accepting the generated individuals as the updated individuals, which means
the evaluation does not happen on the final new updated population, but on a temporary
updated population.

2.2.2 Grasshopper Optimization Algorithm (GOA)
Description The Grasshopper Optimization Algorithm was proposed in 2017 [23]. They
designed this algorithm by studying grasshoppers’ main swarming behaviors in larval and
adulthood phases, such as slow movement and small steps in the larval phase, abrupt
movement and long-range steps in the adulthood phase, and food source seeking in both
phases. Their final model described here is from their published code 5, and explanations
with math formulas are from their published paper [23].
This model starts at (1) initializing grasshoppers xi with size N = 100 in the d dimension
environment. The initialization method in their published code can be simply re-framed
as Eq.2.7 in which up/down is the upper/down boundary of xi 6.

xi = U(down,up), i= 1,2, · · · ,N 2.7

Next is (2) calculating the fitness of each individual xi and (3) finding the best individual
T that the whole population has found so far. The followings are iterative optimizing
process in which the stop condition is current number of iteration l is smaller than the
maximum number of iterations max iteration= 100 7. Under the iterative process, (4)
the hyper-parameter c is firstly updated as Eq.2.8 in which cMin= 0.00004/cMax= 1

5https://seyedalimirjalili.com/goa
6Their published implementation code considered two boundary cases: if elements in xi share the

same boundary or if elements in xi have different boundaries. According to the further experiments in
the Chapter 5, we only consider the first case.

7Their published code thought the current iteration l = 2 when starting optimizing, however, we
define the current iteration l = 1 when starting optimization in order to be same as other algorithms.

14

https://seyedalimirjalili.com/goa

2.2. SPECIFIC SWARM-BASED ALGORITHMS

is the lower/upper boundary of c.

c= cMax− l× cMax− cMin

max iteration
2.8

Then, the GOA model (5) normalizes the distances d̃ between individuals into [1,4]. The
normalization method in their published code is Eq.2.9 in which d is the Euclidean distance
8 between individual pairs.

d̃= 2 + d mod 2 2.9
Next is (6) updating xi as Eq.2.10 that is a simplified version of their published original
formula. Because we only consider one case that elements in xi share the same boundary,
we replace ubd/lbd by ub/lb. We also replace xdi by xi and T̂d by T in the view of vector
9.

xi = c×

 N∑
j=1,j,i

c× ub− lb
2 × S

(
d̃i,j

)
× xj − xi

dij

+ T 2.10

The method of updating Eq.2.10 has a function named S in which d̃i,j is the input. The S
function is formulated as Eq.2.11 in which f = 0.5 and l = 1.5 are two hyper-parameters
10.

S(d̃i,j) = fe
−d̃i,j

l − e−d̃i,j 2.11
After updating each xi, (7) outliers in xi are replaced by the boundary values before (8)
calculating its fitness. The last step is (9) updating the best individual T.
Until now, one optimization round (from step(4) to step(9)) is finished, and it will
iteratively execute until the stop condition meets.

Summary When modeling a GOA algorithm, there are two main processes: Initialization
process and Optimization process. In the Initialization process, the algorithm has only
two main tasks: initializing the initial population and finding the global best individual
in the initial population. In the Optimization process, the update strategy depends on
neighbors’ positions.

2.2.3 Crow Search Algorithm (CSA)
Description The crow search algorithm was designed [2] in 2016. The core metaphor
is crows’ behaviour of hiding excess food and retrieving this stored food when needed.

8It refers to their faster version code.
9Their published paper didn’t point out whether ̂ is a special operation or not.

10Please note, here the l is not the current iteration mentioned above.

15

2.2. SPECIFIC SWARM-BASED ALGORITHMS

The author believes that these behaviours, including stealing others’ food by tailing after
them and fighting with theft by moving to another place instead of their real hiding place,
are similar to an optimization process [2]. Their final algorithm model described here is
from their published implementation code 11, and explanations with math formulas are
from their published paper [2].
The algorithm starts at (1) initializing the crow population of size N = 20 in the d
dimension environment. The initialization method they used in their implementation code
can be formulated as Eq.2.12 in which l/u is the lower/upper boundary.

xi = U(l,u), i= 1,2, · · · ,N 2.12

The next is (2) calculating the fitness of each individual xi, and (3) initializing the memory
mi for each individual xi as Eq.2.13.

mi = xi 2.13

The following steps are about the iterative optimization process in which the stop condition
is the maximum number of iterations tmax = 5000. Under the iterative process, (4)
each individual xi is updated as Eq.2.14 in which fl = 2 and AP = 0.1 are two hyper-
parameters.

xi(t+ 1) =

 xi(t) + rand× fl× (mj(t)− xi(t)) , rand > AP

U(u, l) , o.w
2.14

After (5) calculating the fitness of the new individual xi(t+ 1), if (6) the new individual
xi(t+ 1) is in the case of l ≤ xi,d(t+ 1) ≤ u, the new individual xi(t+ 1) will be
accepted, if not, the individual xi(t) will keep unchanged and reject to update. Lastly,
(7) the memory mi(t+ 1) will be updated as Eq.2.15.

mi(t+ 1) =

 xi(t+ 1) , f(xi(t+ 1)) < f(mi(t))

mi(t) , o.w
2.15

Until now, one optimization round (step (4) to step (7)) is finished, and it will iteratively
execute until the stop condition meets.

11https://nl.mathworks.com/matlabcentral/fileexchange/56127-crow-search-algorith
m

16

https://nl.mathworks.com/matlabcentral/fileexchange/56127-crow-search-algorithm
https://nl.mathworks.com/matlabcentral/fileexchange/56127-crow-search-algorithm

2.2. SPECIFIC SWARM-BASED ALGORITHMS

Summary When modeling a CSA algorithm, there are two main processes: Initialization
process and Optimization process. In the Initialization process, the algorithm has only
two main tasks: initializing the initial population and the initial memory population that
is the same as the initial population. In the Optimization process, the memory position of
neighbors determines how far the individual moves.
When meeting outliers, the CSA algorithm chooses to give up the new position. In other
words, as far as there is an outlier, the individual rejects to be updated.

2.2.4 Moth-flame Optimization Algorithm (MFO)
Description In 2015, the Moth-flame optimization algorithm simulated the process
that moths will fly to the center of artificial light (that is also seen as flames) in the spiral
path [20]. The core characteristic in MFO is that the author defined the positions of flames
as the optimization orientation of moths, and each moth has its own dynamically changing
flame. The final algorithm model described here is from their published implementation
code 12, and explanations with math formulas are from their published paper [20].
This algorithm starts from (1) N = 30 initial moths population Moth pos in a dim di-
mension environment. The initialization method in their published code can be formulated
as Eq.2.16 in which mi is each moth and ub/lb is the upper/lower boundary of elements
in each moth 13.

mi = U(lb,ub), i= 1,2, · · · ,N 2.16
Then the algorithm model starts iteratively optimizing each mi in which the stop condition
is there is a maximum number of iterations T . Under the iterative optimization process,
first of all, (2) the number of flames is calculated as Eq.2.17 in which l is the current
number of iteration. The flame no will impact the updating positions of moths in the
following steps.

flame no= Round(N − l× N − 1
T

) 2.17

After (3) replacing outliers in xi by the boundary values, fitness of each moth is calculated.
Next is (4) sorting the combination of the current population and the previous population
14 based on the ascending of their fitness, and the first N = 30 moths in the combination

12https://nl.mathworks.com/matlabcentral/fileexchange/52270-moth-flame-optimizat
ion-mfo-algorithm-toolbox?s tid=srchtitle

13In this work, we only consider that the boundaries of all elements in each moth are same, although
their published code also provided a method to deal with different boundaries.

14The previous population is Ø (there is no previous population), when the current population is the
initial population.

17

https://nl.mathworks.com/matlabcentral/fileexchange/52270-moth-flame-optimization-mfo-algorithm-toolbox?s_tid=srchtitle
https://nl.mathworks.com/matlabcentral/fileexchange/52270-moth-flame-optimization-mfo-algorithm-toolbox?s_tid=srchtitle

2.2. SPECIFIC SWARM-BASED ALGORITHMS

population are defined as sorted population. Then, a linearly decreasing parameter a is
calculated by Eq.2.18 in which l is the current number of iteration.

a= −1 + l× −1
T

2.18

Next, (5) each element j of each moth mi will be updated as follows: if i6 flame no,
Eq.2.19; if not, Eq.2.20 in which m

′
i,j denotes each newly updated element j of each

moth mi; b = 1 is a constant parameter used to define the shape of spiral [20]; t =
(a− 1)× rand+ 1 is a random number related to a.

distance to flame= |sorted population(i,j)−mi,j |

m
′
i,j = distance to flame× eb×t × cos(t× 2× π) + sorted population(i,j)

2.19

distance to flame= |sorted population(i,j)−mi,j |

m
′
i,j = distance to flame× eb×t × cos(t× 2× π) + sorted population(flame no,j)

2.20

Until now, one optimization round (from step(2) to step(5)) is finished, and it will
iteratively execute until the stop condition meets.

Summary When modeling a Moth-flame algorithm, there are two processes: Initializa-
tion process and Optimization process. In the initialization process, this algorithm only
initializes an initial population with all default parameters. In the optimization process,
the main convergency mechanism is to keep moving to better solutions by narrowing
better choices down. Here, the better choices are selected from the top several best
solutions, and the method of narrowing down is to narrow the number of best solutions.
The main convergency mechanism happens at Eq.2.20.
Compared with other algorithms, this algorithm has another two different places. The first
one is that there is no evaluation operator in the initialization process. The second one
is that fixing outliers and evaluating are happening at the beginning of the optimization
process.

2.2.5 Monarch Butterfly Optimization (MBO)
Description The Monarch Butterfly Optimization simulated the migration behavior of
monarch butterflies in 2015 [27]. The core metaphor is that monarch butterflies in two
different habitats evolve differently. These two habitats are mimicked by dividing the whole
population into two subpopulations. The author defined that the whole population will

18

2.2. SPECIFIC SWARM-BASED ALGORITHMS

firstly be sorted based on their fitness before dividing them into two groups with a ratio [27].
Then, each habitat experiences its particular evolution approach — migration operator or
adjusting operator [27]. The final algorithm model described here is implemented in their
published code15, and the explanations with math expressions are from their published
paper [27].
This algorithm starts from (1) an initial population Population with size M = 50, and
the initialization method16 in their published code can be formulated as Eq.2.21 in which
MinParV alue/MaxParV alue is the lower/upper boundary of each element in xi.

xi = U(MinParV alue,MaxParV alue), i= 1,2, · · · ,M 2.21

After (2) evaluating each xi, the entire population is sorted from the best to the worst.
Then (3) it starts iteratively optimizing each xi when the stop condition is the maximum
number of iterations Maxgen = 50. Under the iterative process, (4) Keep = 2 best
xi are first kept in chromKeep17. Next is (5) dividing the entire Population into two
sub-populations with a ratio partition = 5

12 . The two sub-populations (Population1,
Population2) will be individually updated by two operators — migration operator or
adjusting operator. (6) In the Population1, if rand× period 6 partition in which
period= 1.2, xt+1

i,k = xtpopulation1,k; if not, xt+1
i,k = xtpopulation2,k in which k is the k−th

element in xi, and the subscript population1/population2 is one arbitrary monarch
butterfly from the previous Population1/Population2. (7) Next is fixing outliers in
this newly generated Population1 by replacing them with the boundary value, before
evaluating this newly generated Population1 .
(8) In Population2, if rand6 partition, xt+1

i,k = xtbest,k in which k is the k−th element
and best is the best individual that the entire population has found so far; if not
xt+1
i,k = xtpopulation2,k, in which k is the k−th element, and population2 is one arbitrary

monarch butterfly from previous Population2. Furthermore, under this situation, if
rand > BAR in which BAR = 5

12 , xt+1
i,k will be further updated as Eq.2.22 in which α

is a weighting factor as Eq.2.23, and dx is a walk step as Eq.2.24. (9) Then, outliers in
the newly generated Population2 are fixed by replacing them with the boundary value
before evaluating this newly generated Population2.

xt+1
i,k = xt+1

i,k + α× (dxk − 0.5) 2.22
15https://nl.mathworks.com/matlabcentral/fileexchange/101400-monarch-butterfly-o

ptimization-mbo?s tid=srchtitle
16The original paper considered the situation if boundaries of elements are same or not, but in this

work, we only consider the situation that boundaries of elements are same
17This elitism strategy stated in their published code wasn’t stated in their publish paper.

19

https://nl.mathworks.com/matlabcentral/fileexchange/101400-monarch-butterfly-optimization-mbo?s_tid=srchtitle
https://nl.mathworks.com/matlabcentral/fileexchange/101400-monarch-butterfly-optimization-mbo?s_tid=srchtitle

2.2. SPECIFIC SWARM-BASED ALGORITHMS

α=
Smax
t2

where Smax = 1 and t is the current iteration. 2.23

dx = Levy(xtj) 2.24
where Levy function in their published code can be formulated as Eq.2.25.

Stepsize∼ Exp(2×Maxgen)

dxk =
∑

(tan(π× rand), · · · , tan(π× rand)︸ ︷︷ ︸
Stepsize

) 2.25

Then (10) these two newly generated sub-populations are combined into one population.
Next, (11) after replacing the last Keep= 2 worst xi by chromKeep that is mentioned
in step (4), (12) the finally updated population will be sorted again.
Until now, one optimization round (from step (4) to step(12)) is finished, and it will
iteratively execute until the stop condition meets.

Summary When modeling the MBO algorithm, there are two main processes: Initializa-
tion and Optimization. In the initialization process, besides initializing an initial population
and all default parameters, the initial population is also sorted from best to worst. In
the optimization process, the core idea is that the whole population is divided into two
sub-populations, and these two sub-populations are updated differently. Meanwhile, one
sub-population is better than another one because of the previous sort operator. The
elitism strategy is also a highlight of this model. It happens at the beginning and the end
of the optimization process.
Furthermore, in the initialization process, the evaluation of the population only happens
once immediately after initializing the initial population, and there are two evaluations
in the optimization process. There are two evaluations because the whole population is
updated in two directions for two sub-populations.

2.2.6 Butterfly Optimization Algorithm (BOA)
Description The Butterfly Optimization Algorithm was modeled in 2018 [3]. Butterflies’
behaviors of searching for food and mates are mimicked to solve optimization problems.
The algorithm model described here is from their published code 18, and explanations
with math formulas are from their published paper [3].

18https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/b4a529ac-c709-
4752-8ae1-1d172b8968fc/67a434dc-8224-4f4e-a835-bc92c4630a73/previews/BOA.m/index
.html

20

https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/b4a529ac-c709-4752-8ae1-1d172b8968fc/67a434dc-8224-4f4e-a835-bc92c4630a73/previews/BOA.m/index.html
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/b4a529ac-c709-4752-8ae1-1d172b8968fc/67a434dc-8224-4f4e-a835-bc92c4630a73/previews/BOA.m/index.html
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/b4a529ac-c709-4752-8ae1-1d172b8968fc/67a434dc-8224-4f4e-a835-bc92c4630a73/previews/BOA.m/index.html

2.2. SPECIFIC SWARM-BASED ALGORITHMS

In this algorithm, they define a dim dimensional environment in which each individual is
xi and the fitness of xi is f(xi). (1) The algorithm first initializes a population n= 50
of xi by Eq.2.26 in which Lb/Ub is lower/upper bound 19.

xi = U(Lb,Ub), i= 1,2, · · · ,n 2.26

It also (2) setups three parameters: probability switch p = 0.8, power exponent = 0.1
and sensory modality = 0.01. After evaluating each xi, it (3) calculates the best
individual g∗ that the whole population had found so far.
Next steps are the iterative optimization process in which the stop condition is the current
iteration t is smaller than the maximum number of iterations N iter. Under the iterative
process, for each xi, (4) its own fragrance FPi is first calculated as Eq.2.27 in which
f(xi) is the fitness value of xi 20.

FPi(t) = sensory modality× f(xi(t))power exponent 2.27

Then (5) if rand > p, the xi will be updated as Eq.2.28, (6) if not, the xi will be updated
as Eq.2.29 in which xj and xk are two arbitrary neighbors around xi.

xi(t+ 1) = xi(t) + FPi(t)× (rand2 × g∗(t)− xi(t)) 2.28

xi(t+ 1) = xi(t) + FPi(t)× (rand2 × xj(t)− xk(t)) 2.29
Then after (7) replacing the outliers by the boundary values, (8) only if the updated
xi(t + 1) is better than the previous xi(t), the update xi(t + 1) will be deliveried
into the next optimization round. Next steps are (9) updating g∗ and (10) updating
sensory modality using Eq.2.30.

sensory modality(t+ 1) = sensory modality(t) + 0.025
sensory modality(t)×N iter

2.30

Until now, one optimization round (step(4) to step(10)) is finished, it will iteratively
execute until the stop condition meets.

19The initialization method isn’t shown in their published paper or code, but according to their
published code that only said there was an ’initialization’ function receiving n, dim, Ub and Lb as inputs.
We can reasonably assume their initialization method is Eq.2.26.

20Their published code calculated the fitness twice here. However, the published paper did not mention
whether this is a necessary operator. Therefore, we ignore this duplicated evaluation when studying this
algorithm.

21

2.2. SPECIFIC SWARM-BASED ALGORITHMS

Summary When modeling a BOA algorithm, there are two processes: Initialization
process and Optimization process. In the Initialization process, there are four tasks:
initialize the initial population and evaluate them, find the global best one individual, and
set up several hyper-parameters. In the optimization process, the most interesting part is
the fitness joins in optimizing the population. Moreover, the square value of the random
number is also a special place.
Meanwhile, the original implemented code also has the same issue as the BA algorithm
(see Subsection 2.2.1) when updating the global best one individual. We think it is
unreasonable to compare the previous best individual with an unaccepted one when
updating the current global best individual. The definition of the current best global
individual shall be the best one that the current population has found so far. Here, the
current population shall be the population that has been accepted and will be delivered
into the next optimization round. Therefore, it is more reasonable to calculate the current
global best one by comparing the previous best one with the current accepted best one at
this same position in the current population.

2.2.7 Particle Swarm Optimization (PSO)
Description Particle Swarm Optimization was firstly introduced in 1995 [15]. The main
idea comes from the movements of the animal swarm. By simulating their behaviors
that the swarm dynamically moves to a ’roost’ [15], the extremely simple algorithm, even
with a small swarm size (15 to 30 agents), boasted impressive performance on solving
continuous optimization functions. In the very first paper, the position of each agent in
its swarm was controlled by two velocities X and Y. Moreover, each agent can remember
its best position and know the global best position in its swarm. Although the very first
paper also provided the algorithm model with formulas, we preferred to reference clearer
published pseudocode whose algorithm model is as same as the very first paper possible.
The final PSO model described in this work is from a tutorial of this method [19], and
the hyper-parameter settings are from an application of this method [5].
This algorithm starts (1) from an initial swarm xi with the size N = 25. The initialization
method is formulated as Eq.2.31 in which min/max is the lower/upper boundary of xi.

xi(t= 0) = U(min,max), i= 1,2, · · · ,N 2.31

Then (2) each velocity vi is initialized as Eq.2.32 in which lbv/ubv is the boundary of
velocity. Next (3) each pbesti is calculated as Eq.2.33.

vi = U(lbv,ubv), i= 1,2, · · · ,N 2.32

22

2.2. SPECIFIC SWARM-BASED ALGORITHMS

pbesti = xi, i= 1,2, · · · ,N 2.33
After (4) calculating the fitness of each agent xi, the algorithm obtains (5) the best
agent gbest that is the whole swarm has found so far in the initial swarm. The following
steps are about (6) iterative optimization process with a stopping condition. Under the
iterative process, the published pseudo-code first updates each velocity vi by Eq.2.34 in
which w = 0.73 is an adjusting parameter, c1 = 1.49 and c2 = 1.49 is respectively the
cognitive and social coefficient [19].

vi(t+ 1) = w× vi(t) + c1 × rand× (pbesti − xi) + c2 × rand× (gbest− xi) 2.34

After updating (7) each agent as Eq.2.35, all elements in each new agent are checked if
they are feasible. The last step in one optimization round is (8) updating pbest and (9)
gbest.

xi(t+ 1) = xi(t) + vi(t+ 1) 2.35
Until now, one optimization round (from step(6) to step(9)) is finished, and it will
iteratively execute until the stop condition meets.
As a side note, the very first published paper did not directly point out the notation
for search space dimension, the stop condition, and if outliers should be dealt with or
not. However, as discussed in the Section 2.1, the dimension depends on the number of
elements in xi, therefore, it is reasonable to accept that the PSO model also needs a
concept of dimension. Meanwhile, the stop condition and the method to deal with the
outliers also must exist. In this work, the method of fixing outliers is the most common
way that replaces outliers by boundary values of xi.

Summary When modeling a PSO algorithm, there are two processes: Initialization
process and Optimization process. In the Initialization process, four components need to
be initialized: the initial population, their velocity population, their personal best position
group, the global best one position in this population. In the Optimization process,
individuals are optimized one by one, which means that after updating one individual, its
fitness, its pbest, and the current gbest are then updated.
Moreover, in the Initialization process, the evaluation happens immediately after generating
the initial population. In the Optimization process, the evaluation happens after generating
a temporary population and before updating pbest and gbest.

23

2.3. UNIFIED TERMINOLOGIES

2.3 Unified Terminologies

2.3.1 Unified Terminologies Catalog
Although these selected algorithms use different expressions, their core meanings are the
same. For example, the memory position in CSA is the personal best position in PSO if
we only consider the information carried by the memory position and the personal best
position. Therefore, the information carried by these various expressions is the only
principle to categorize these original terminologies. As shown in Table 2.1, we find
20 unified components can cover the entire components in these seven selected
algorithms. Specifically, only 20 kinds of information are used when modeling these
seven algorithms. At the same time, these 20 unified components can be further
divided into two groups: compulsory components and selective components, as
shown in Figure 2.1.
In Table 2.1, Information 1 to 5, 13, 15, 17-20 are compulsory components,
because they must exist when modeling a swarm-based algorithm. In other words, these
components can theoretically make up a most basic swarm-based algorithm, if we don’t
consider whether the algorithm performance is excellent. Meanwhile, we consider the
Information 18 is also a compulsory component, although not all algorithms use it
in this work. Because firstly, selection process is an important process in natural evolution.
Secondly, if one algorithm doesn’t use selection method, it means that all individuals are
delivered into the next generation round, which is also a kind of selection method. More
details are as follows:

• Information 1, 3, 4 : the objective function f() must exist to determine where
the algorithm will happen. When the f() is determined, the dimension n and the
boundary [lbx,ubx] are also determined which is because they exist in the f().

• Information 2, 5, 13, 15 : when searching possible solutions to f(), possible solutions
xi with the number M of xi also must exist, because it determines the size of
the search pool in which the algorithm could find the final optimal solution to f .
Furthermore, the method Initx to initialize the initial possible solutions also must
exist, because it determines where the algorithm starts to find the final optimal
solution, which means there also must be a method Optx that can iteratively
optimize the initial possible solutions.

• Information 17, 18, 19, 20 : because these swarm-based optimization algorithms are
a kind of iterative optimization heuristic algorithms in which sampling and repetition
play an important role in finding optimal solutions [7], the method S related to

24

2.3. UNIFIED TERMINOLOGIES

sampling and the stop condition T must exist. Moreover, these algorithms will solve
the problem in a limited search space, there must also be a method C to deal with
outliers outside the search space.

Therefore, we conclude that f , xi, M , T and methods Initx, Optx, C, S must exist
in a swarm-based optimization algorithm. As shown in the left side of Figure 2.1, these
compulsory components exist in all of seven selected algorithms.
In Table 2.1, Information 6 to 12, 14, 16 are selective components, because not
every algorithm needs these information. We find these information plays a similar role
in modeling swarm-based algorithms, and the role is that these information acts on
compulsory components to improve the performance of the algorithm. Considering the
role of these information is to influence how far the newly generated individual
will move, we define these selective components step-size with notation ∆.
Meanwhile, we consider the Information 11 is also a selective component, because
its main role is also to the movement of individuals, although it exists in every algorithm.
Furthermore, we further categorize these selective components as as follows:

• Information 11 : Static numerical w-relative step-size ∆ : w,z0, [lby,uby].
Most static numerical step-size, such as w, is able to be understood as common
hyper-parameters in most algorithms. They are numbers; are set before running
algorithms and are unchanged during optimization. In Figure 2.1, we find there are
two groups of static numerical step-size. The first group is w that is commonly
seen as hyper-parameters. The second group is the initial value of dynamic step-size
(see next item) in which the dynamic numerical step-size z needs an initial value
z0, the y-relative dynamic vector step-size yi needs an initial value [lby,uby].

• Information 6, 7, 8, 9, 12 : Dynamic step-size ∆ : z,xip ,xg,xs,yi.
– Information 12 : Dynamic numerical z-relative step-size ∆ : z.

This kind of step-size is a single numeric that is changing over the iteration t
during the optimization process.

– Dynamic vector step-size ∆ : xip ,xg,xs,yi.
This kind of step-size is a vector with the same dimension as x.

∗ Information 6, 7, 8 : x-relative step-size ∆ : xip ,xg,xs.
This kind of step-size can be converted from the target x. Specifically,
there could be a straightforward formula between x and x-relative step-
size. For example, personal best position xip , global best position xg.
The xs denotes a special x-relative step-size related to x, for example,
the sorted population in MFO.

25

2.3. UNIFIED TERMINOLOGIES

∗ Information 9 : y-relative step-size ∆ : yi.
This kind of step-size is not related to the target xi. In other words, it is
impossible to represent this kind of step-size by translating other existing
variables in a straightforward method. Normally, this kind of step-size has
same size as the population of individuals. For example, velocity vi.

For other selective components Information 10, 14, 16, because the dynamic step-
size ∆ : xip ,xg,xs,yi is changing during the optimization process, there must be an
initialization status and a changing status. Therefore, we also define Init∆ and Opt∆ to
achieve the initialization status and the changing status for dynamic step-size, in which the
Init∆ method can also include the set-up of static w-relative step-size ∆ : w,z0, [lby,uby].
As shown in the right side of Figure 2.1, all of these step-size ∆ have an initial status
determined by Init∆, and each dynamic step-size ∆ : z,xip ,xg,xs,yi will change by an
optimization operator Opt∆.

2.3.2 Extension in Other Swarm-based Algorithms.
This section discusses the possibility of applying these unified terminologies in any other
swarm-based algorithm. First of all, all of compulsory components (see Information 1 to
5, 13, 15, 17-20 in Table 2.1) and several selective components (see Information 6, 7, 11,
12 in Table 2.1) are easily detected in any one swarm-based algorithm, because they are
straightforward. For example, x is the animal, w is the hyper-parameter and z is also the
hyper-parameter but z is changing. Mostly any one swarm-based algorithm will use very
clear noun or terminology to point out these information.
The place where it is most likely to confuse readers is how to detect the dynamic
vector step-size: Why we think one vector step-size is a x-relative step-size not
a y-relative step-size? This question can be answered according to the observations
found in these seven algorithms.
In most of swarm-based algorithms, besides the animal x, another noun is also always
existing. This noun could be the velocity (in BA, PSO), the memory (in CSA) or the flame
(in MFO). We are not allowed to directly assign them the y-relative step-size, although
this is the most straightforward way. The reason is that the information carried by
the noun is the only principle used to assign them different unified terminology
name. For example:

• The memory mi in CSA is initialized by xi itself as mi(t = 0) = xi(t = 0), and
then will be updated by mi(t+ 1) = Min{mi(t),xi(t+ 1)}. Therefore in the
first iteration, the update will happen as Eq.2.36. In other words, the mi always

26

2.4. SUMMARY

can be represented by xi all the time. Moreover, the update method to the mi is
same to find the xip , therefore, it is totally safe to replace mi by x-relative vector
xiprather than the y-relative vector yi.

mi(t= 1) = Min{mi(t= 0),xi(t= 1)}
= Min{xi(t= 0),xi(t= 1)}
= xi(t= 0) or xi(t= 1)

2.36

• The flame 〈flamei〉 in MFO is initialized by 〈xi〉 itself as 〈flamei〉(t = 0) =
〈xi〉(t = 0), and then will be updated by 〈flamei〉(t + 1) = Sort({xi(t)} ∪
{xi(t+ 1)}), i= 1 . . .M . Therefore, in the first iteration, the update will happen
as Eq.2.37. In other words, the 〈flamei〉 always can be represented by x-relative
vectors 〈xi〉 all the time, rather than the y-relative vectors 〈yi〉.

〈flamei〉(t= 1) = Sort(〈flamei〉(t= 0) ∪ {xi(t= 1)}), i= 1 . . .M
= Sort(〈xi〉(t= 0) ∪ {xi(t= 1)}), i= 1 . . .M

2.37

• The velocity in BA and PSO uses a different way to initialize itself, such as U(lb,ub).
Moreover, the most important point is there is no way to represent the velocity by
x-relative vector xi. Therefore, we prefer assigning y-relative vector yi to this kind
of step-size.

After resolving the confusion between x-relative vector step size and y-relative vector
step size, other Information 8 to 10, 14, 16 also become clear to detect in any other
swarm-based algorithms according to the previous observations.

2.4 Summary
In this chapter, we discuss the commonalities among terminologies in seven selected
algorithms. We summarize their commonalities in Table 2.1 in which we conclude
20 unified components that can cover entire various components in these algorithms.
Meanwhile, we discuss the classification of these 20 general components in Figure 2.1.
In Subsection 2.3.1, we detail the classification of these 20 general components. Every
algorithm must have the target problem f , the search space n and [lbx,ubx], the possible
target solution xi, the population size M , the stop condition T , the initialization method
Initx to xi, the optimization method Optx to xi, the method C to deal with outliers
and the method S to select which individuals could be delivered into the next generation.

27

2.4. SUMMARY

However, selective components are more flexible, and these selective components are
all related to determine how far the newly generated individual will move. Therefore,
we name selective components step-size ∆. These selective components can be further
categorized into static numerical w-relative step-size ∆ : w,z0, [lby,uby] and dynamic
step-size ∆ : z,xip ,xg,xs,yi. What is interesting is the dynamic step-size also has two
categories: dynamic numeric z-relative step-size ∆ : z and dynamic vector step-size
∆ : xip ,xg,xs that are x-relative step-size and ∆ : yi that is y-relative step-size.
In Subsection 2.3.2, we discuss how to extend these unified terminologies into any other
swarm-based algorithm. Furthermore, we resolve a confusion of the difference between
x-relative step-size and y-relative step-size.
In conclusion, we provide a catalog of unified terminologies for seven selected algorithms.

28

2.4. SUMMARY

Figure 2.1: Entire compulsory components and some of selective components can comprise
any of these seven algorithms.

29

2.4.
SUM

M
ARY

Table 2.1: Unified Terminologies: all information appearing in these seven algorithms can be analyzed and then categorized into 20
components. The none in gray color means this information doesn’t appear in this algorithm.

Information Different Terminologies Unified Terminology

1.The objective optimization prob-
lem.

The representations in seven algorithms are same. f(): optimization
function.

2.One possible objective solution. •BA: each bat xi. •GOA: each grasshopper xi. •CSA: crow xi.
•MFO: moth mi. •MBO: monarch butterfly xi. •BOA: butterfly xi.
•PSO: particle xi.

xi: one objective
solution.

3.The number of independent ele-
ments in xi.

•BA: d. •GOA: dim. •CSA: d. •MFO: dim. •MBO: k. •BOA:
dim. •PSO: dimension.

n: dimension of the
f() search space.

4.The boundary of each indepen-
dent element in xi21.

•BA: Lb/Ub. •GOA: down/up. •CSA: l/u. •MFO: lb/ub. •MBO:
MinParV alue/MaxParV alue. •BOA: Lb/Ub. •PSO: lb/ub.

lbx/ubx: the
lower/upper
boundary of all
elements in xi.

5.The number of xi. •BA : n. •GOA: N . •CSA: N . •MFO: N . •MBO: M . •BOA: n.
•PSO: N .

M : population size.

6.The best xi that it itself has found
so far. It will change during the
optimization process.

•BA :none. •BA :none. •GOA: none. •CSA: memory mi. •MFO:
none. •MBO: none. •BOA: none. •PSO: pbest.

xip : x-relative
step-size ∆.

7.The best xi that the entire popula-
tion has found so far. It will change
during the optimization process.

•BA: x∗. •GOA: T. •CSA: none. •MFO: none. •MBO: xbest.
•BOA: g∗. •PSO: gbest.

xg: x-relative
step-size ∆.

21Some algorithms, such as GOA, MFO, consider the boundary of every element is different, however, we only consider the boundary of every element is same
in this work.

30

2.4.
SUM

M
ARY

8.Special vector step-size that is
able to be represented by xi. It
will change during the optimization
process.

•BA: none. •GOA: none. •CSA: none. •MFO: sorted population.
•MBO: none. •BOA: none. •PSO: none.

xs: x-relative step
size ∆.

9.Special vector step-size that is not
able to be represented by xi. It
will change during the optimization
process.

•BA:velocity vi. •GOA: none. •CSA: none. •MFO: none. •MBO:
none. •BOA: none. •PSO: velocity vi.

yi: x-relative
step-size ∆.

10.The boundary of each indepen-
dents element in yi.

•BA: Eq.2.2. •GOA: none. •CSA: none. •MFO: none. •MBO: none.
•BOA: none. •PSO: Eq.2.32.

lby/uby: the
lower/upper
boundary of all
elements in yi.

11.step-size that is set before run-
ning algorithm. They are un-
changed during the optimization
process.

•BA: echo frequency interval [freq min,freq max], 3 decreasing factors
ε, α, γ. •GOA: attractive intensity f , attractive length l. •CSA:
awareness probability AP , flight length fl. •MFO: spiral shape b.
•MBO: Keep, partition, period, BAR, Smax. •BOA: switch
probability p, power exponent, sensory modality. •PSO: adjusting
parameter w, cognitive coefficient c1, social coefficient c2.

w: w-relative
step-size ∆.

12.step-size whose initial values are
set before running algorithm. They
will change by math formulas during
the optimization process.

•BA: loudness A, pulse rate rate. •GOA: coefficient c. •CSA: none.
•MFO: decreasing weight tt, threshold Fame no. •MBO: weight α.
•BOA: sensory modality sensory modality. •PSO: none.

z: z-relative
step-size ∆.

13.How to initialize xi with size M
in the n dimension environment.

•BA: Eq.2.1. •GOA: Eq.2.7. •CSA: Eq.2.12. •MFO: Eq.2.16.
•MBO: Eq.2.21. •BOA: Eq.2.26. •PSO: Eq.2.31.

Initx: initialization
method on x.

31

2.4.
SUM

M
ARY

14.How to initialize changing step-
size.

•BA: Eq.2.2,step(4)(6)(7). •GOA: step(3),Eq.2.8. •CSA: Eq.2.13.
•MFO: Eq.2.17,Eq.2.18,step(4). •MBO: step(6),Eq.2.23. •BOA:
step(3),Eq.2.27. •PSO: Eq.2.32,Eq.2.33,step(5).

Init∆: initialization
method on ∆.

15.How to update xi. •BA: Eq.2.5,Eq.2.6. •GOA: Eq.2.10. •CSA: Eq.2.14. •MFO:
Eq.2.19,Eq.2.20. •MBO: step(5)(6),Eq.2.22. •BOA: Eq.2.28,Eq.2.29.
•PSO: Eq.2.35.

Optx: optimization
method on x.

16.How to update changing step-
size.

•BA: Eq.2.3,Eq.2.4,Eq.2.5. •GOA: Eq.2.8,step(9). •CSA: Eq.2.15.
•MFO: Eq.2.17,Eq.2.18, step(4). •MBO: Eq.2.23,step(5). •BOA:
step(3),Eq.2.30.•PSO: Eq.2.34,sep(7)(8).

Opt∆: optimization
method on ∆.

17.How to deal with outliers in xi. •BA: step(10). •GOA: step(7). •CSA: step(6). •MFO: step(3).
•MBO: step(7). •BOA: step(7). •PSO: common method.

C: outliers
treatment in xi.

18.How to decide if a updated xi
would be accepted.

•BA: step(11). •GOA: none. •CSA: none. •MFO: none. •MBO:
step(11). •BOA: step(8). •PSO: none.

S: selection method
to select which
individuals will be
delivered into the
next generation.

19.The iteration counter. •BA: t. •GOA: l. •CSA: t. •MFO: t. •MBO: t. •BOA: t. •PSO:
current iteration.

t: current iteration.

20.The maximum number of itera-
tions.

•BA: t max. •GOA: max iteration. •CSA: tmax. •MFO: T .
•MBO: Naxgen. •BOA: N iter. •PSO: stop condition.

T : stop condition.

32

THIS PAGE IS INTENTIONALLY LEFT BLANK.

Chapter 3

Unified Procedure

3.1 Introduction
This chapter discusses the commonality among these seven selected algorithms
on the level of their procedures for achieving optimization. In other words, we
discuss how these 20 unified components make up a valid algorithm. Specifically,
we are interested in whether these seven selected algorithms can arrange these 20
components in the same order.
In Chapter 2, we have discussed that these algorithms are able to be composed of 20 unified
components, and these components can be categorized into compulsory and selective
components according to their information. In this chapter, we also discuss the category
of these components, but the principle of categorizing becomes their functions. This is
because the function of each component determines their positions when constructing a
valid nature-inspired algorithm. As shown in Table 3.1, we find that these 20 unified
components can be categorized into eight tuples, and these eight tuples are
enough to construct any one of these seven selected algorithms. Therefore, these
selected swarm-based optimization algorithms NIOA1 can be defined in 8-tuple as Eq.3.1.

NIOA= (f ,Initx,Optx,C,T ,S,Init∆,Opt∆) 3.1

where
1We expect our framework can be applied in all nature-inspired algorithms, therefore, the NIOA is

short for Nature-Inspired Optimization Algorithm

33

3.1. INTRODUCTION

• Tuple.1 : ’Evaluation’ function f :
’Evaluation’ is needed to measure the quality of solutions that are found by the
algorithm to the problem, when modeling a valid swarm-based algorithm.

• Tuple.2 : ’Initialize population’ function Initx:
’Initialize population’ provides a set of possible solutions. A swarm-based algorithm
will improve this set and find the optimal one in this set.

• Tuple.3 : ’Initialize step-size’ function Init∆:
’Initialize step-size’ helps the swarm-based algorithm to improve the quality of
possible solutions efficiently. In Chapter 2, we have discussed that there are four
kinds of step-size ∆: w-relative ∆, z-relative ∆, x-relative ∆ and y-relative ∆.

• Tuple.4 : ’Update population’ function Optx:
’Update population’ is the strategy that the algorithm used to improve the quality
of possible solutions to the problem.

• Tuple.5 : ’Update step-size’ function Opt∆:
If the step-size ∆ used by the algorithm is dynamically changing, such as z-relative
∆, x-relative ∆ and y-relative ∆, ’Update step-size’ function is needed to implement
this mechanism of changing.

• Tuple.6 : ’Outliers treatment’ function C:
’Outliers treatment’ deals with every outlier when the swarm-based algorithm updates
the population.

• Tuple.7 : ’Selection’ function S:
’Selection’ determines how many updated individuals will be delivered into the
next generation round, when the nature-inspired algorithm iteratively updates the
population.

• Tuple.8 : ’Stop strategy’ function T :
’Stop strategy’ determines when the iterative optimization process stops.

34

3.1. INTRODUCTION

Table 3.1: These 20 unified components can be categorized into eight tuples, according to
their functions. Numbers in the ’Component’ column represents the index of information
disccused in Table 2.1

Tuple Component Function

Tuple.1 1.f evaluation

Tuple.2 2.xi 3.n 4.lbx/ubx 5.M
13.Initx

initialize the initial population.

Tuple.3 14.Init∆

6.xip 7.xg 8.xs initialize x-relative
step-size ∆.

initialize
step-size ∆.9.yi 10.lby/uby initialize y-relative

step-size ∆.
11.w initialize w-relative

step-size ∆.
12.z initialize z-relative

step-size ∆.

Tuple.4 15.Optx update the population.

Tuple.5 16.Opt∆ update step-size ∆.

Tuple.6 17.C outliers treatment.

Tuple.7 18.S deliver selected individuals into
next generation.

Tuple.8 19.t 20.T iteration counter, and the
maximum number of generation

In the following sections, Section 3.2 discusses whether these eight tuples can be ordered
at the same position in these seven selected algorithms. The overview summary about
this chapter is displayed in Section 3.3.

35

3.2. UNIFIED PROCEDURE

3.2 Unified Procedure
As observed in Table 3.2, we find that each algorithm only has two processes — Initialization
process and Optimization process — separated by a stop strategy Tuple.8 T .
In the Initialization process, Tuple.2 Initx, Tuple.1 f and Tuple.3 Init∆:w,z,y,x exist
in every algorithm except the MFO. The MFO does not evaluate the initial population
in the initialization process. However, in MFO’s optimization process, the Tuple.1 f
happens before updating the population, which means the initial population also will be
evaluated, but it will be evaluated in the optimization process. Therefore, considering the
swarm-based algorithm is a kind an iterative optimization heuristic algorithm, the feature
of iteration leads the Initialization process can have one Tuple.1 f function, and then
the Tuple.1 f function in the optimization process has to be moved after updating the
population.
After making this change, in the Optimization process, we can conclude that Tuple.4
Optx, Tuple.6 C and Tuple.1 f also exist in every algorithm, and the order of them
must be that Tuple.4 Optx is before Tuple.6 C followed by Tuple.1 f . Because outliers
only might appear after updating the population. Furthermore, three places are also
meaningful to be unified:

(1) The position of Tuple.3 Init∆:z and Tuple.5 Opt∆:z in BA, GOA, MFO and MBO.
As shown in Table 3.2, the position of Tuple.3 Init∆:z and Tuple.5 Opt∆:z in these
three algorithms are together assigned at the beginning of the optimization process.
However, we can find that the generalized math equation of Tuple.3 Init∆:z and
Tuple.5 Opt∆:z has two forms. For example,

• In BA, the generalized math equation G1 of one z is z(t+ 1) = G1(z(t))
which means the Tuple.3 Init∆:z is assigning an initial value z0 to z(t= 0)
and can move from the beginning of optimization process to the initialization
process. Meanwhile, the Tuple.5 Opt∆:z has to move to the end of the
optimization process. These two assignments are same as in the BOA, where
Tuple.3 Init∆:z will go to the initialization process, and Tuple.5 Opt∆:z will
go to the end of the optimization process.

• In BA, GOA, MFO and MBO, there is another generalized math equation
G2 of z is z(t) = G2(z(t), t) which means both Tuple.3 Init∆:z and Tuple.5
Opt∆:z are a function of iteration counter t. It means it doesn’t matter where
Tuple.3 Init∆:z and Tuple.5 Opt∆:z are, as far as the iteration counter t is
input correctly. Therefore, we can move Tuple.3 Init∆:z to the initialization
process, and move Tuple.5 Opt∆:z to the end of the optimization process.

36

3.2. UNIFIED PROCEDURE

(2) The position of Tuple.3 Init∆:x and Tuple.5 Opt∆:x in MFO.
The original position of Tuple.3 Init∆:x and Tuple.5 Opt∆:x are together at the
beginning of the optimization process. After looking at the implement code in MFO,
we can make sure the position of them can be separated. The Tuple.3 Init∆:x can
be in the initialization process, and the Tuple.5 Opt∆:x can move to the end of the
optimization process.

(3) The position of Tuple.5 Opt∆:y and Tuple.5 Opt∆:x in all of these selected algo-
rithms.
Generally speaking, it would be more reasonable if these two tuples can be at the
same position. However, updated y-relative ∆ is used in the current generation
round, but updated x-relative ∆ is used in the next generation round. Therefore,
the position of Tuple.5 Opt∆:y must be before Tuple.4 Optx, and the position of
Tuple.5 Opt∆:x must be after Tuple.1 f in the optimization.

Meanwhile, we also find that in the Optimization process, Tuple.7 S does not exist all
of these selected algorithms, such as GOA, CSA, MFO and PSO. However, considering
the function of Tuple.7 S is to select which individuals can be delivered into the next
generation round which is a meaningful part in swam-based algorithms, we prefer assigning
Tuple.7 S to all of these selected algorithms. For these algorithms who does not use
Tuple.7 S, we define a kind of selection method in which all updated individuals will
be delivered into the next generation round. (see Chapter 4 for more details about this
special selection method).

Table 3.2: Original positions of these eight tuples in these seven algorithms

Process BA GOA CSA MFO MBO BOA PSO

In
iti

ali
za

tio
n

Tuple.2
Initx

Tuple.2
Initx

Tuple.2
Initx

Tuple.2
Initx

Tuple.2
Initx

Tuple.2
Initx

Tuple.2
Initx

Tuple.1
f

Tuple.1
f

Tuple.1
f

Tuple.3
Init∆:w

Tuple.1
f

Tuple.1
f

Tuple.1
f

Tuple.3
Init∆:w

Tuple.3
Init∆:w

Tuple.3
Init∆:w

Tuple.3
Init∆:w

Tuple.3
Init∆:z

Tuple.3
Init∆:w

Tuple.3
Init∆:y

Tuple.3
Init∆:x

Tuple.3
Init∆:x

Tuple.3
Init∆:x

Tuple.3
Init∆:x

Tuple.3
Init∆:x

continued . . .

37

3.2. UNIFIED PROCEDURE

. . . continued

Process BA GOA CSA MFO MBO BOA PSO
Tuple.3
Init∆:x

Tuple.3
Init∆:y

Stop strategy Tuple.8 T

Op
tim

iza
tio

n

Tuple.3
Init∆:z

and
Tuple.5
Opt∆:z

Tuple.3
Init∆:z

and
Tuple.5
Opt∆:z

Tuple.4
Optx

Tuple.3
Init∆:z

and
Tuple.5
Opt∆:z

Tuple.3
Init∆:z

and
Tuple.5
Opt∆:z

Tuple.4
Optx

Tuple.5
Opt∆:y

Tuple.5
Opt∆:y

Tuple.4
Optx

Tuple.6
C

Tuple.6
C

Tuple.4
Optx

Tuple.6
C

Tuple.4
Optx

Tuple.4
Optx

Tuple.6
C

Tuple.1
f

Tuple.1
f

Tuple.1
f

Tuple.1
f

Tuple.6
C

Tuple.6
C

Tuple.1
f

Tuple.5
Opt∆:x

Tuple.3
Init∆:x

and
Tuple.5
Opt∆:x

Tuple.4
Optx

Tuple.7
S

Tuple.1
f

Tuple.1
f

Tuple.5
Opt∆:x

Tuple.4
Optx

Tuple.1
f

Tuple.5
Opt∆:x

Tuple.5
Opt∆:x

Tuple.7
S

Tuple.7
S

Tuple.5
Opt∆:z

Tuple.5
Opt∆:x

Tuple.5
Opt∆:x

Based on these previous discussions, the unified procedure for these seven selected
algorithms can be formulated as Algorithm.1. As the Algorithm.1 described, every
algorithm will start at the Initialization process in which the population must be evaluated
after being initialized, moreover, different algorithms initialize Init∆ differently. For
example, CSA only uses w-relative and x-relative step-size ∆, but PSO uses one more
y-relative step-size ∆.

38

3.3. SUMMARY

In the optimization process, if y-relative step-size ∆ exists in the initialization process, it
will be firstly updated before updating the population. Evaluation happens after dealing
with outliers in the new generated population. Selection method is possible existing in all
of these seven algorithms, and it must exit after evaluation action. The last step in the
optimization process is to update z-relative and x-relative step-size ∆, if they exist in the
initialization process.
Algorithm 1 Unified Procedure for seven selected algorithms (the unified positions of
eight tuples in Table 3.1)

1: t← 0 . iteration counter
2: Tuple.2 Initx . initialize population
3: Tuple.1 f . evaluation
4: Tuple.3 Init∆:w,z,x,y . initialize w-relative, z-relative, x-relative and y-relative

step-size ∆
5: while Tuple.8 T do . stop strategy
6: Tuple.5 Opt∆:y. update y-relative step-size ∆, if y-relative step-size exsit in the

initialization process
7: Tuple.4 Optx . update population
8: Tuple.6 C . outliers treatment
9: Tuple.1 f . evaluation

10: Tuple.7 S . selection
11: Tuple.5 Opt∆:z,x . update z-relative and x-relative step-size ∆
12: t← t+ 1
13: end while

3.3 Summary
In this chapter, we discuss the possibility to unify the various procedures among these
seven selected algorithm. We firstly categorize the 20 unified components (see Chapter 2)
again, but the principle becomes their functions in this chapter. As summarized in
Table 3.1, all of these seven algorithms can be represented by eight tuples, and the unified
representation is defined as Equation 3.1. Secondly, we detail each algorithm’s original
position of each tuple, and Table 3.2 displays all of these original positions. Then, we
discuss the possibility of arranging these eight tuples in the same positions in these seven
algorithms. Lastly, the final unified procedures is performed in Algorithm.1.
In conclusion, all of these seven algorithms can be represented by eight unified tuples, and
these eight tuples can be at the same position when modeling these seven algorithms.

39

Chapter 4

Unified Framework

4.1 Motivation
In this chapter, we aim to complete the purpose in this work — building up a unified
framework for selected algorithms — by combing the Unified Terminologies (see
Chapter 2) and the Unified Procedure (see Chapter 3) together. Specifically, we focus
on studying how these eight tuples (see Chapter 3) are represented in each
algorithm by using unified terminologies (see Chapter 2), because the order of
these eight tuples is already fixed in Chapter 3.
Firstly, we want to introduce several special symbols used in this work. As we discussed
in Chapter 2, the swarm-based algorithm happens on a set of individuals xi, therefore,
we use X and xi to distinguish the population and the individual. For example, the set
of personal best individual xip is Xp, but there is only one global best individual xg.
Meanwhile, the capital letter F is used to represent the set of the fitness of the whole
population X.1

Moreover, we use X̂ and X to distinguish the population updated before selection
operation and the population updated after selection operation. We also want to clarify
that the population updated after the selection operation is the finally updated population
after one generation round, on the contrary, the population updated before the selection
operation is the temporarily updated population.

1The capital letter in bold style denotes a set of vector. The capital letter in plain style denotes a set
of numerics.

40

4.2. RE-FRAMED NATURE-INSPIRED ALGORITHMS

In the following sections, Section 4.2 introduces how these original representations of
each algorithm is represented with only eight tuples. We also mention difficulties when
re-framing the original model into these eight tuples. Next, in Section 4.3, we display
the Unified Nature-Inspired Optimization Algorithm (UNIOA) and give discussions. The
summary about this chapter is shown in Section 4.4.

4.2 Re-framed Nature-inspired Algorithms

4.2.1 Re-framed BA
The Tuple.1 f can be represented as f(xi). The Tuple.2 Initx can be extracted from
Eq.2.1, and re-framed as Eq.4.1.

xi(t= 0) = U(lbx,ubx), i= 1,2, . . . ,M 4.1

For the Tuple.3 Init∆, as discussed in Table 2.1, we find the velocity vi is a kind of
y-relative step-size, and the global best individual x∗ is a kind of x-relative step-size.
Meanwhile, the loudness A and the rate r are a kind of z-relative step-size. Therefore, we
re-frame vi (see step (2)2) into Eq.4.2. The x∗ (see step (4)) can be re-framed as Eq.4.3.
The two z-relative step-size A and r can be respectively re-framed as Eq.4.4 and Eq.4.5.

yi(t= 0) = U(lby,uby), i= 1 . . .M 4.2

xg(t= 0) = Min({xi(t= 0)}), i= 1 . . .M 4.3
z1(t= 0) = z0

1 ×w2 4.4
z2(t= 0) = z0

2 × (1− e−w1×t) 4.5
For the Tuple.4 Optx, we find step (8) is able to be re-framed into one equation as
Eq.4.6.

x̂i(t+ 1) =

 xg(t) +w3 × rand× z1(t), rand < z2(t)

xi(t) + yi(t+ 1), o.w
4.6

For the Tuple.5 Opt∆ that corresponds to Tuple.3 Init∆, we find the update way of vi
(see one step in step (8)) is able to be re-framed into as Eq.4.7. The update way of x∗
(see step (9)) is able to be re-framed as Eq.4.8. The update way of A (see Eq.2.3) and
the update way of r (see Eq.2.4) can be respectively re-framed as Eq.4.9 and Eq.4.10.

yi(t+ 1) = yi(t) + U(lbw4 ,ubw4)× (xi(t)− xg(t)) 4.7
2It points to the step of same algorithm in Chapter 2, which is same in following sections.

41

4.2. RE-FRAMED NATURE-INSPIRED ALGORITHMS

xg(t+ 1) = Min(xg(t) ∪ {xi(t+ 1)}), i= 1 . . .M 4.8
z1(t+ 1) = z1(t)×w2 4.9

z2(t+ 1) = z0
2 × (1− e−w1×(t+1)) 4.10

For the Tuple.6 C, the step (10) can be re-framed as Eq.4.11.

xfixed
i,n (t+ 1) =


ubx , xi,n(t+ 1) > ubx

xi,n(t+ 1) , o.w
lbx , xi,n(t+ 1) < lbx

4.11

For the Tuple.7 S, the step (11) can be re-framed as Eq.4.12.

xi(t+ 1) =

 x̂i(t+ 1) , f(x̂i(t+ 1)) < f(xi(t)) or rand > z1(t)

xi(t) , o.w
4.12

For the Tuple.8 T which is a stop condition related to the maximum number of iteration.
Till now, all of other unknown parameters can be defined as w-relative step-size, and they
belong to the Tuple.3 Init∆. It has common w-relative step-size w1 = 0.1, w2 = 0.97,
[lbw4 ,ubw4] = [0,2],w3 = 0.1 and [lby,uby] = [0,0]. It also has special w-relative step-
size that is related to the initial value of z-relative step-size z0

1 = 1, z0
2 = 1.

Therefore, the complete pseudo-code of re-framed BA model can be organized as Algo-
rithm.2.

42

4.2. RE-FRAMED NATURE-INSPIRED ALGORITHMS

Algorithm 2 Re-framed BA with population size M ; search space n, [lbx,ubx]; stop
condition T ; initialization method Initx, optimization method Optx, treatment C of
outliers, and selection S to objective solutions; initialization method Init∆ and optimization
method Opt∆ to step-size ∆.

1: t← 0
2: X(t)← Initx(n,M , [lbx,ubx]) as Eq.4.1 . initialize initial population
3: F (t)← f(X(t)) . evaluate
4: w, [lby,uby],z0← Init∆:w(w, [lby,uby],z0) . initialize w-relative step-size
5: Y(t)← Init∆:y(n,M , [lby,uby]) as Eq.4.2 . initialize y-relative step-size
6: xg(t)← Init∆:x(X(t)) as Eq.4.3 . initialize x-relative step-size
7: z(t)← Init∆:z(t,z0,w) as Eq.4.4, Eq.4.5 . initialize z-relative step-size
8: while stop condition T do
9: Y(t+ 1)←Opt∆:y(Y(t),xg,w) as Eq.4.7 . update y-relative step-size

10: X̂(t+ 1)←Optx(X(t),Y(t),xg(t),z(t),w) as Eq.4.6 . generate temporarily
updated population

11: X̂(t+ 1)← C(X̂(t+ 1)) as Eq.4.11 . treatment to outliers
12: F (t+ 1)← f(X̂(t+ 1)) . evaluate
13: X(t+ 1)← S(X(t),X̂(t+ 1),z(t)) as Eq.4.12 . select and generate finally

updated population
14: xg(t+ 1)← Init∆:x(X(t),X(t+ 1)) as Eq.4.8 . update x-relative step-size
15: z(t+ 1)←Opt∆:z(t+ 1,z(t),w) as Eq.4.9, Eq.4.10. update z-relative step-size
16: t← t+ 1
17: end while

4.2.2 Re-framed GOA
The Tuple.1 f can be represented as F (t) = f(X(t)). The Tuple.2 Initx can be
extracted from Eq.2.7, and re-framed as Eq.4.13.

xi(t= 0) = U(lbx,ubx), i= 1,2, . . . ,M 4.13

For the Tuple.3 Init∆, as discussed in Table 2.1, we find the global best individual T is
a kind of x-relative step-size. Meanwhile, the hyper-parameter c is a kind of z-relative
step-size. Therefore, we re-frame T (see step (3)) into Eq.4.14. The z-relative step-size
c can be re-framed as Eq.4.15.

xg(t= 0) = Min({xi(t= 0)}), i= 1 . . .M 4.14

z(t= 0) = ubz − t× (
ubz − lbz

T
) 4.15

43

4.2. RE-FRAMED NATURE-INSPIRED ALGORITHMS

For the Tuple.4 Optx, we find Eq.2.9, Eq.2.10 and Eq.2.11 are able to be re-framed into
one equation as Eq.4.16.

D̃i,j(t) = 2 + Dist(xi(t),xj(t))mod2

x̂i(t+ 1) = z(t)× (
M∑

j=1,j,i
z(t)× ubx − lbx

2 × (w1 × e
−D̃i,j (t)

w2 − e−D̃i,j(t))× xi(t)− xj(t)
Dist(xi(t),xj(t))

) + xg

4.16
For the Tuple.5 Opt∆ that corresponds to Tuple.3 Init∆, we find the update way of T
(see step (9)) is able to be re-framed into as Eq.4.17. The update way of z (see Eq.2.8)
can be re-framed as Eq.4.18.

xg(t+ 1) = Min(xg(t) ∪ {xi(t+ 1)}), i= 1 . . .M 4.17

z(t+ 1) = ubz − (t+ 1)× (
ubz − lbz

T
) 4.18

For the Tuple.6 C, the step (7) can be re-framed as Eq.4.19.

xfixed
i,n (t+ 1) =


ubx , xi,n(t+ 1) > ubx

xi,n(t+ 1) , o.w
lbx , xi,n(t+ 1) < lbx

4.19

For the Tuple.7 S, the GOA model doesn’t have a process to select which individuals will
be delivered into the next generation, therefore, we re-frame it as Eq.4.20 that means all
newly generated individuals will be delivered into the next generation.

xi(t+ 1) = x̂i(t+ 1) 4.20

For the Tuple.8 T which is a stop condition related to the maximum number of iteration.
Till now, all of other unknown parameters can be defined as w-relative step-size, and
they belong to the Tuple.3 Init∆. It has common w-relative step-size [ubw, lbw] =
[0.00004,1],w1 = 0.5, and w2 = 1.5.
Therefore, the complete pseudo-code of re-framed GOA model can be organized as
Algorithm.3.

44

4.2. RE-FRAMED NATURE-INSPIRED ALGORITHMS

Algorithm 3 Re-framed GOA with population size M ; search space n, [lbx,ubx]; stop
condition T ; initialization method Initx, optimization method Optx, treatment C of
outliers, and selection S to objective solutions; initialization method Init∆ and optimization
method Opt∆ to step-size ∆.

1: t← 0
2: X(t)← Initx(n,M , [lbx,ubx]) as Eq.4.13 . initialize initial population
3: F (t)← f(X(t)) . evaluate
4: w← Init∆:w(w) . initialize w-relative step-size
5: xg(t)← Init∆:x(X(t)) as Eq.4.14 . initialize x-relative step-size
6: z(t)← Init∆:z(z

0) as Eq.4.15 . initialize z-relative step-size
7: while stop condition T do
8: X̂(t+ 1)←Optx(X(t),xg(t),z(t),w) as Eq.4.16 . generate temporarily

updated population
9: X̂(t+ 1)← C(X̂(t+ 1)) as Eq.4.19 . treatment to outliers

10: F (t+ 1)← f(X̂(t+ 1)) . evaluate
11: X(t+ 1)← S(X(t),X̂(t+ 1)) as Eq.4.20 . select and generate finally updated

population
12: xg(t+ 1)← Init∆:x(X(t),X(t+ 1)) as Eq.4.17 . update x-relative step-size
13: z(t+ 1)←Opt∆:z(z(t), t+ 1) as Eq.4.18 . update z-relative step-size
14: t← t+ 1
15: end while

4.2.3 Re-framed CSA
The Tuple.1 f can be represented as F (t) = f(X(t)). The Tuple.2 Initx can be
extracted from Eq.2.12, and re-framed as Eq.4.21.

xi(t= 0) = U(lbx,ubx), i= 1,2, . . . ,M 4.21

For the Tuple.3 Init∆, as discussed in Table 2.1, we find the personal best mi is a kind
of x-relative step-size. Therefore, we re-frame mi (see step (3)) into Eq.4.22.

xip(t= 0) = xi(t= 0), i= 1 . . .M 4.22

For the Tuple.4 Optx, we find Eq.2.14 is able to be re-framed as Eq.4.23 in which xjp is
any one in the population of xip .

x̂i(t+ 1) =

 xi(t) + rand×w2 × (xjp(t)− xi(t)) , rand > w1

U(lbx,ubx) , o.w
4.23

45

4.2. RE-FRAMED NATURE-INSPIRED ALGORITHMS

For the Tuple.5 Opt∆ that corresponds to Tuple.3 Init∆, we find the update way of mi

(see Eq.2.15) is able to be re-framed as Eq.4.24.

xip(t+ 1) = Min({xip(t),xi(t+ 1)}) 4.24

For the Tuple.6 C, the step (6) can be re-framed as Eq.4.25.

xfixed
i,n (t+ 1) =

 xi,n(t) , xi,n(t+ 1) < lbx or xi,n(t+ 1) > ubx

xi,n(t+ 1) , o.w
4.25

For the Tuple.7 S, the CSA model doesn’t have a process to select which individuals will
be delivered into the next generation, therefore, we re-frame it as Eq.4.26 that means all
newly generated individuals will be delivered into the next generation.

xi(t+ 1) = x̂i(t+ 1) 4.26

For the Tuple.8 T which is a stop condition related to the maximum number of iteration.
Till now, all of other unknown parameters can be defined as w-relative step-size, and they
belong to the Tuple.3 Init∆. It has common w-relative step-size w1 = 0.1 and w2 = 2.
Therefore, the complete pseudo-code of re-framed CSA model can be organized as
Algorithm.4.

46

4.2. RE-FRAMED NATURE-INSPIRED ALGORITHMS

Algorithm 4 Re-framed CSA with population size M ; search space n, [lbx,ubx]; stop
condition T ; initialization method Initx, optimization method Optx, treatment C of
outliers, and selection S to objective solutions; initialization method Init∆ and optimization
method Opt∆ to step-size ∆.

1: t← 0
2: X(t)← Initx(n,M , [lbx,ubx]) as Eq.4.21 . initialize initial population
3: F (t)← f(X(t)) . evaluate
4: w← Init∆:w(w) . initialize w-relative step-size
5: Xp(t)← Init∆:x(X(t)) as Eq.4.22 . initialize x-relative step-size
6: while stop condition T do
7: X̂(t+ 1)←Optx(X(t),Xp(t),w) as Eq.4.23 . generate temporarily updated

population
8: X̂(t+ 1)← C(X̂(t+ 1)) as Eq.4.25 . treatment to outliers
9: F (t+ 1)← f(X̂(t+ 1)) . evaluate

10: X(t+ 1)← S(X(t),X̂(t+ 1)) as Eq.4.26 . select and generate finally updated
population

11: Xp(t+ 1)← Init∆:x(X(t),X(t+ 1)) as Eq.4.24 . update x-relative step-size
12: t← t+ 1
13: end while

4.2.4 Re-framed MFO
The Tuple.1 f can be represented as F (t) = f(X(t)). The Tuple.2 Initx can be
extracted from Eq.2.16, and re-framed as Eq.4.27.

xi(t= 0) = U(lbx,ubx), i= 1,2, . . . ,M 4.27

For the Tuple.3 Init∆, as discussed in Table 2.1, we find the sort population is a kind
of x-relative step-size. Meanwhile, the flame no and the linearly decreasing parameter
a with another parameter t are a kind of z-relative step-size. Therefore, we re-frame
sort population (see step (4)) into Eq.4.28. The two z-relative step-size flame no (see
Eq.2.17) and a with t (see Eq.2.18, step (5)) can be respectively re-framed as Eq.4.28
and Eq.4.29.

〈xi(t= 0)〉= Sort({xi(t= 0)}), i= 1 . . .M 4.28

z2(t= 0) = Round(M − t× M − 1
T

) 4.29

z1i(t= 0) = rand× (−2− t

T
) + 1 4.30

47

4.2. RE-FRAMED NATURE-INSPIRED ALGORITHMS

For the Tuple.4 Optx, we find Eq.2.19 and Eq.2.20 are able to be re-framed as Eq.4.31.

x̂i(t+ 1) =

 (xsi(t)− xi(t))× ew×z1i
(t) × cos(2π× z1i(t)) + xsi(t), i≤ z2(t)

(xsz2(t)
(t)− xi(t))× ew×z1i

(t) × cos(2π× z1i(t)) + xsz2(t)
(t), o.w.

4.31

For the Tuple.5 Opt∆ that corresponds to Tuple.3 Init∆, we find the update way of
sort population into Eq.4.32. The two z-relative step-size flame no and a with t can
be respectively re-framed as Eq.4.33 and Eq.4.34.

〈xi(t+ 1)〉= Sort({xi(t)} ∪ {xi(t+ 1)}), i= 1 . . .M 4.32

z2(t+ 1) = Round(M − (t+ 1)× M − 1
T

) 4.33

z1i(t+ 1) = rand× (−2− t+ 1
T

) + 1 4.34

For the Tuple.6 C, the MFO model doesn’t have a process to deal with outliers, but we
think the method C is necessary. Therefore, we use the most common way here to deal
with outliers and re-frame it as Eq.4.35.

xfixed
i,n (t+ 1) =


ubx , xi,n(t+ 1) > ubx

xi,n(t+ 1) , o.w
lbx , xi,n(t+ 1) < lbx

4.35

For the Tuple.7 S, the MFO model doesn’t have a process to select which individuals will
be delivered into the next generation, therefore, we re-frame it as Eq.4.36 that means all
newly generated individuals will be delivered into the next generation.

xi(t+ 1) = x̂i(t+ 1) 4.36

For the Tuple.8 T which is a stop condition related to the maximum number of iteration.
Till now, all of other unknown parameters can be defined as w-relative step-size, and they
belong to the Tuple.3 Init∆. It has common w-relative step-size w = 1.
Therefore, the complete pseudo-code of re-framed MFO model can be organized as
Algorithm.5.

48

4.2. RE-FRAMED NATURE-INSPIRED ALGORITHMS

Algorithm 5 Re-framed MFO with population size M ; search space n, [lbx,ubx]; stop
condition T ; initialization method Initx, optimization method Optx, treatment C of
outliers, and selection S to objective solutions; initialization method Init∆ and optimization
method Opt∆ to step-size ∆.

1: t← 0
2: X(t)← Initx(n,M , [lbx,ubx]) as Eq.4.27 . initialize initial population
3: F (t)← f(X(t)) . evaluate
4: w← Init∆:w(w) . initialize w-relative step-size
5: Xs(t)← Init∆:xs(X(t)) as Eq.4.28 . initialize x-relative step-size
6: z(t)← Init∆:z(t,T) as Eq.4.29, Eq.4.30 . initialize z-relative step-size
7: while stop condition T do
8: X̂(t+ 1)←Optx(X(t),Xs(t),z(t),w) as Eq.4.31 . generate temporarily

updated population
9: X̂(t+ 1)← C(X̂(t+ 1)) as Eq.4.35 . treatment to outliers

10: F (t+ 1)← f(X̂i(t+ 1)) . evaluate
11: X(t+ 1)← S(Xi(t),X̂i(t+ 1)) as Eq.4.36 . select and generate finally

updated population
12: Xs(t+ 1)← Init∆:xs(X(t),X(t+ 1)) as Eq.4.32 . update dynamic x-relative

vector step-size xs
13: z1(t+ 1)←Opt∆:z1(t+ 1,T) as Eq.4.33, Eq.4.34 . update z-relative step-size
14: t← t+ 1
15: end while

4.2.5 Re-framed MBO
The Tuple.1 f can be represented as F (t) = f(X(t)). The Tuple.2 Initx can be
extracted from Eq.2.21, and re-framed as Eq.4.37.

xi(t= 0) = U(lbx,ubx), i= 1,2, . . . ,M 4.37

For the Tuple.3 Init∆, as discussed in Table 2.1, we find the global best individual xbest
is a kind of x-relative step-size. Meanwhile, the weighting factor α is a kind of z-relative
step-size. Therefore, the xbest (see step (8)) can be re-framed as Eq.4.38. The z-relative
step-size α can be re-framed as Eq.4.39.

xg(t= 0) = Min({xi(t= 0)}), i= 1 . . .M 4.38

z(t= 0) = w4
t2

4.39

49

4.2. RE-FRAMED NATURE-INSPIRED ALGORITHMS

For the Tuple.4 Optx, we find its update way (from step (3) to step (8)) is able to
be re-framed into one equation as Eq.4.40, in which Lévyi,n = Lévy(d,n,T) with
d∼ Exp(2× T).

〈xi(t)〉 = Sort({xi(t)}), i= 1 . . .M

strongx̂i,n(t+ 1) =

 xj,n(t) ∈ 〈xi(t)〉,j ∈ [1,M ′
] , r×w2 6 w1

xj,n(t) ∈ 〈xi(t)〉,j ∈ (M
′ ,M] , o.w.

M
′

= dw1×Me

weakx̂i,n(t+ 1) =


xg,n(t),r > w1 xj,n(t) + z(t)×

(
Lévyi,n − 0.5

)
,j ∈ (M

′ ,M],r > w3

xj,n(t) ∈ 〈xi(t)〉,j ∈ (M
′ ,M],o.w.

,o.w.

{x̂i(t+ 1)} = {strongx̂i(t+ 1)} ∪ {weakx̂i(t+ 1)}

4.40

For the Tuple.5 Opt∆ that corresponds to Tuple.3 Init∆, we find the update way of xbest
(see step (8)) is able to be re-framed into as Eq.4.41. The update way of α (see Eq.2.23)
can be re-framed as Eq.4.42.

xg(t+ 1) = Min(xg(t) ∪ {xi(t+ 1)}), i= 1 . . .M 4.41

z(t+ 1) = w4
(t+ 1)2 4.42

For the Tuple.6 C, the step (9) can be re-framed as Eq.4.43.

xfixed
i,n (t+ 1) =


ubx , xi,n(t+ 1) > ubx

xi,n(t+ 1) , o.w
lbx , xi,n(t+ 1) < lbx

4.43

For the Tuple.7 S, the step (11) can be re-framed as Eq.4.44.

〈x̂i(t+ 1)〉= Sort({x̂i(t+ 1)}), i= 1 . . .M

xi(t+ 1) ∈ {〈x̂i(t+ 1)〉, i= 1 . . .M −w5} ∪ {〈xi(t)〉, i= 1 . . .w5}
4.44

For the Tuple.8 T which is a stop condition related to the maximum number of iteration.
Till now, all of other unknown parameters can be defined as w-relative step-size, and they
belong to the Tuple.3 Init∆. Some common w-relative step-size are w1 =

5
12 , w2 = 1.2,

w3 =
5
12 , w4 = 1 and w5 = 2

50

4.2. RE-FRAMED NATURE-INSPIRED ALGORITHMS

Therefore, the complete pseudo-code of re-framed MBO model can be organized as
Algorithm.6.
Algorithm 6 Re-framed MBO with population size M ; search space n, [lbx,ubx]; stop
condition T ; initialization method Initx, optimization method Optx, treatment C of
outliers, and selection S to objective solutions; initialization method Init∆ and optimization
method Opt∆ to step-size ∆.

1: t← 0
2: X(t)← Initx(n,M , [lbx,ubx]) as Eq.4.37 . initialize initial population
3: F (t)← f(X(t)) . evaluate
4: w← Init∆:w(w) . initialize w-relative step-size
5: xg(t)← Init∆:x(X(t)) as Eq.4.38 . initialize x-relative step-size
6: z← Init∆:z(w) as Eq.4.39 . initialize z-relative step-size
7: while stop condition T do
8: X̂(t+ 1)←Optx(X(t),xg(t),z(t),w) as Eq.4.40 . generate temporarily

updated population
9: X̂(t+ 1)← C(X̂(t+ 1)) as Eq.4.43 . treatment to outliers

10: F (t+ 1)← f(X̂(t+ 1)) . evaluate
11: X(t+ 1)← S(X(t),X̂(t+ 1)) as Eq.4.44 . select and generate finally updated

population
12: xg(t+ 1)← Init∆:x(X(t),X(t+ 1)) as Eq.4.41 . update x-relative step-size
13: z(t+ 1)←Opt∆:z(z(t), t+ 1) as Eq.4.42 . update z-relative step-size
14: t← t+ 1
15: end while

4.2.6 Re-framed BOA
The Tuple.1 f can be represented as F (t) = f(X(t)). The Tuple.2 Initx can be
extracted from Eq.2.26, and re-framed as Eq.4.45.

xi(t= 0) = U(lbx,ubx), i= 1,2, . . . ,M 4.45

For the Tuple.3 Init∆, as discussed in Table 2.1, we find the global best individual g∗ is
a kind of x-relative step-size. Meanwhile, the sensory modality is a kind of z-relative
step-size. Therefore, we re-frame the g∗ (see step (3)) can be re-framed as Eq.4.46. The
z-relative step-size sensory modality can be re-framed as Eq.4.47.

xg(t= 0) = Min({xi(t= 0)}), i= 1 . . .M 4.46

z(t= 0) = z0 4.47

51

4.2. RE-FRAMED NATURE-INSPIRED ALGORITHMS

For the Tuple.4 Optx, we find step (4), step (5) and step (6) are able to be re-framed
into one equation as Eq.4.48, in which xj and xk are any two neighbors around xi.

x̂i(t+ 1) =

 xi(t) + (rand2 × xg(t)− xi(t))× z1(t)× f (xi(t))w1 , rand > w2

xi(t) + (rand2 × xj(t)− xk(t))× z1(t)× f (xi(t))w1 , o.w
4.48

For the Tuple.5 Opt∆ that corresponds to Tuple.3 Init∆, we find the update way of g∗ (see
step (9)) is able to be re-framed into as Eq.4.49. The update way of sensory modality
(see Eq.2.30) can be re-framed as Eq.4.50.

xg(t+ 1) = Min(xg(t) ∪ {xi(t+ 1)}), i= 1 . . .M 4.49

z(t+ 1) = z(t) +
0.025

z(t)× T
4.50

For the Tuple.6 C, the step (7) can be re-framed as Eq.4.51.

xfixed
i,n (t+ 1) =


ubx , xi,n(t+ 1) > ubx

xi,n(t+ 1) , o.w
lbx , xi,n(t+ 1) < lbx

4.51

For the Tuple.7 S, the step (8) can be re-framed as Eq.4.52.

xi(t+ 1) =

 x̂i(t+ 1) , f(x̂i(t+ 1)) < f(xi(t))

xi(t) , o.w
4.52

For the Tuple.8 T which is a stop condition related to the maximum number of iteration.
Till now, all of other unknown parameters can be defined as w-relative step-size, and they
belong to the Tuple.3 Init∆. It has common w-relative step-size w1 = 0.1 and w2 = 0.8.
It also has special w-relative step-size that is related to the initial value of z-relative
step-size z0 = 0.01.
Therefore, the complete pseudo-code of re-framed BOA model can be organized as
Algorithm.7.

52

4.2. RE-FRAMED NATURE-INSPIRED ALGORITHMS

Algorithm 7 Re-framed BOA with population size M ; search space n, [lbx,ubx]; stop
condition T ; initialization method Initx, optimization method Optx, treatment C of
outliers, and selection S to objective solutions; initialization method Init∆ and optimization
method Opt∆ to step-size ∆.

1: t← 0
2: X(t)← Initx(n,M , [lbx,ubx]) as Eq.4.45 . initialize initial population
3: F (t)← f(X(t)) . evaluate
4: w,z0← Init∆:w(w,z0) . initialize w-relative step-size
5: xg(t)← Init∆:x(X(t)) as Eq.4.46 . initialize x-relative step-size
6: z(t)← Init∆:z(z

0) as Eq.4.47 . initialize z-relative step-size
7: while stop condition T do
8: X̂(t+ 1)←Optx(X(t),xg(t),z(t),w) as Eq.4.48 . generate temporarily

updated population
9: X̂(t+ 1)← C(X̂(t+ 1)) as Eq.4.51 . treatment to outliers

10: F (t+ 1)← f(X̂(t+ 1)) . evaluate
11: X(t+ 1)← S(X(t),X̂(t+ 1)) as Eq.4.52 . select and generate finally updated

population
12: xg(t+ 1)← Init∆:x(X(t),X(t+ 1)) as Eq.4.49 . update x-relative step-size
13: z(t+ 1)←Opt∆:z(z(t), t+ 1) as Eq.4.50 . update z-relative step-size
14: t← t+ 1
15: end while

4.2.7 Re-framed PSO
The Tuple.1 f can be represented as F (t) = f(X(t)). The Tuple.2 Initx can be
extracted from Eq.2.31, and re-framed as Eq.4.53.

xi(t= 0) = U(lbx,ubx), i= 1,2, . . . ,M 4.53

For the Tuple.3 Init∆, as discussed in Table 2.1, we find the velocity vi is a kind of
y-relative step-size. The personal best individual pbest and the global best individual gbest
are a kind of x-relative step-size. Therefore, we re-frame vi (see step (2)) into Eq.4.54.
The pbest (see Eq.2.33) and the gbest (see step (5)) can be respectively re-framed as
Eq.4.55 and Eq.4.56.

yi(t= 0) = U(lby,uby), i= 1 . . .M 4.54

xip(t= 0) = xi(t= 0), i= 1 . . .M 4.55

53

4.2. RE-FRAMED NATURE-INSPIRED ALGORITHMS

xg(t= 0) = Min({xi(t= 0)}), i= 1 . . .M 4.56
For the Tuple.4 Optx, we find Eq.2.35 is able to be re-framed as Eq.4.57.

x̂i(t+ 1) = xi(t) + yi(t+ 1) 4.57

For the Tuple.5 Opt∆ that corresponds to Tuple.3 Init∆, we find the update way of vi
(see Eq.2.34) is able to be re-framed into as Eq.4.58. The update way of pbest (see step
(9)) is able to be re-framed into as Eq.4.59. The update way of gbest (see Eq.2.3) can
be re-framed as Eq.4.60.

yi(t+ 1) = w1 × yi(t) + U(0,w2)× (xip(t)− xi(t)) + U(0,w3)× (xg(t)− xi(t)) 4.58

xip(t+ 1) = Min({xip(t),xi(t+ 1)}) 4.59
xg(t+ 1) = Min(xg(t) ∪ {xi(t+ 1)}), i= 1 . . .M 4.60

For the Tuple.6 C, the step (7) can be re-framed as Eq.4.61.

xfixed
i,n (t+ 1) =


ubx , xi,n(t+ 1) > ubx

xi,n(t+ 1) , o.w
lbx , xi,n(t+ 1) < lbx

4.61

For the Tuple.7 S, the PSO model doesn’t have a process to select which individuals will
be delivered into the next generation, therefore, we re-frame it as Eq.4.62 that means all
newly generated individuals will be delivered into the next generation.

xi(t+ 1) = x̂i(t+ 1) 4.62

For the Tuple.8 T which is a stop condition related to the maximum number of iteration.
Till now, all of other unknown parameters can be defined as w-relative step-size, and they
belong to the Tuple.3 Init∆. It has common w-relative step-size w1 = 0.73, w2 = 1.49,
w2 = 1.49.
Therefore, the complete pseudo-code of re-framed PSO model can be organized as
Algorithm.8.

54

4.3. UNIFIED NATURE-INSPIRED OPTIMIZATION ALGORITHM (UNIOA)

Algorithm 8 Re-framed PSO with population size M ; search space n, [lbx,ubx]; stop
condition T ; initialization method Initx, optimization method Optx, treatment C of
outliers, and selection S to objective solutions; initialization method Init∆ and optimization
method Opt∆ to step-size ∆.

1: t← 0
2: X(t)← Initx(n,M , [lbx,ubx]) as Eq.4.53 . initialize initial population
3: F (t)← f(X(t)) . evaluate
4: w, [lby,uby]← Init∆:w(w, [lby,uby]) . initialize w-relative step-size
5: Y(t)← Init∆:y(n,M , [lby,uby]) as Eq.4.54 . initialize y-relative step-size
6: Xp(t),xg(t)← Init∆:x(X(t)) as Eq.4.55, Eq.4.56 . initialize x-relative step-size
7: while stop condition T do
8: Y(t+ 1)←Opt∆:y(Y(t) as eqeq:pso5 . update y-relative step-size
9: X̂(t+ 1)←Optx(X(t),Y(t),xg(t),Xp(t),w) as Eq.4.57 . generate

temporarily updated population
10: X̂(t+ 1)← C(X̂(t+ 1)) as Eq.4.60 . treatment to outliers
11: F (t+ 1)← f(X̂(t+ 1)) . evaluate
12: X(t+ 1)← S(X(t),X̂(t+ 1)) as Eq.4.61 . select and generate finally updated

population
13: Xp(t+ 1),xg(t+ 1)← Init∆:x(X(t),X(t+ 1)) as Eq.4.60, Eq.4.61 . update

x-relative step-size
14: t← t+ 1
15: end while

4.3 Unified Nature-Inspired Optimization Algorithm
(UNIOA)

4.3.1 Unified Framework — UNIOA
In this section, we introduce the Unified framework for Nature-inspired Optimization
Algorithm — UNIOA that is the end goal of this work. As discussed in Chapter 2,
Chapter 3 and Section 4.2, we can already be sure that these seven selected algorithms
can be re-framed from their original different terminologies in different procedures to our
unified terminologies in eight same tuples whose positions can also be same.
We summarize our observations in Algorithm.9. In the Initialization Process, these
seven algorithms can be completely same. For example, these algorithms need an initial
population with the fitness of this population and also need several step-size ∆ to trigger

55

4.3. UNIFIED NATURE-INSPIRED OPTIMIZATION ALGORITHM (UNIOA)

the optimization mechanism. Different algorithms can have different step-size ∆. In the
Optimization Process, there are two options — the algorithm uses y-relative step-size ∆
or the algorithm doesn’t use y-relative step-size ∆. If the algorithm uses the y-relative
step-size ∆, the y-relative ∆ shall update before updating the population X. If the
algorithm doesn’t use the y-relative step-size ∆, all dynamic ∆ can update together after
the selection operation. Meanwhile, z-relative ∆ has flexible positions when modeling a
valid algorithm. For example, z-relative ∆ can be used in S selection method in BA.

Algorithm 9 Unified Nature-Inspired Optimization Algorithm — UNIOA
1: t← 0
2: X(t)← Initx(n,M , [lbx,ubx]) . initialize initial pop
3: F (t)← f(X(t)) . evaluate
4: ∆w,z,y,x(t)← Init∆:w,z,y,x(X(t),w,z0, [lby,uby], t) . initialize step-size
5: while T do
6: if y ∈ ∆(t= 0) then
7: Y(t+ 1)←Opt∆:y(Y(t),w) . update y-relative step-size
8: X̂(t+ 1)←Optx(X(t),Y(t+ 1),∆w,z,x(t)) . temporarily updated pop
9: X̂(t+ 1)← C(X̂(t+ 1)) . outliers treatment

10: F (t+ 1)← f(X̂(t+ 1)) . evaluate
11: X(t+ 1)← S(X(t),X̂(t+ 1),∆w,z(t)). select and generate finally updated

pop
12: ∆z,x(t+ 1)←Opt∆:z,x(X(t),X(t+ 1),z(t), t+ 1) . update z,x-relative

step-size
13: else
14: X̂(t+ 1)←Optx(X(t),∆(t)) . temporarily updated pop
15: X̂(t+ 1)← C(X̂(t+ 1)) . outliers treatment
16: F (t+ 1)← f(X̂(t+ 1)) . evaluate
17: X(t+ 1)← S(X(t),X̂(t+ 1),∆w,z(t)). select and generate finally updated

pop
18: ∆(t+ 1)←Opt∆(X(t),X(t+ 1),∆(t), t+ 1) . update step-size
19: end if
20: t← t+ 1
21: end while

We recall the 8-tuple function (see Eq.3.1) defined in Chapter 3, and extend it as Eq.4.63
with the new name — UNIOA.

UNIOA= (f ,Initx,Optx,C,T ,S,Init∆,Opt∆) 4.63

56

4.3. UNIFIED NATURE-INSPIRED OPTIMIZATION ALGORITHM (UNIOA)

Furthermore, according to observations in Section 4.2, these eight tuples have following
different options:

(1) Tuple.1 f :
The Tuple.1 f exists in all these seven algorithms. Its function in these algorithms
is also same as f(X) that calculates the fitness of the whole population X.

(2) Tuple.2 Initx:
The Tuple.2 Initx exists in all these seven algorithms. Its function is also same as
Initx .

xi = U(lbx,ubx), i= 1,2, . . . ,M Initx

(3) Tuple.3 Init∆:
The Tuple.3 Init∆ exists in all these seven algorithms. But not all kinds of step-size
∆ are present in all algorithms at the same time. There are four kinds of step-size
∆: w-relative ∆, z-relative ∆, x-relative ∆ and y-relative ∆.
(a) w-relative ∆:

This kind of step-size doesn’t change during the optimization process. There
are three kinds of w-relative ∆: w,z0, [lby,uby]. The w is commonly used
in most algorithms and its common name is hyper-parameter. The z0 and
[lby,uby] are respectively initial values of z-relative ∆ and y-relative ∆.

(b) z-relative ∆:
The z is a kind of hyper-parameter that will be changing over the iteration
t during the optimization process. Its initialization method could be varying
(see Index.4 in Table 4.1).

(c) x-relative ∆:
• xip is the best xi that each xi has found so far. Its initialization method

is fixed as Init∆:xip
.

xip(t) = xi(t), i= 1 . . .M Init∆:xip

• xg is the best xi that the whole population has found so far. Its initial-
ization method is fixed as Init∆:xg .

xg(t) = Min({xi(t)}), i= 1 . . .M Init∆:xg

• xs denotes one kind of special x-relative ∆ that has a strong connection
with the xi. It depends on different algorithms, so it is varying. For
example, Eq.4.28 in MFO.

57

4.3. UNIFIED NATURE-INSPIRED OPTIMIZATION ALGORITHM (UNIOA)

(d) y-relative ∆:
In this work, there is only one kind of initialization method as Init∆:y. In this
work, its initialization method is fixed, however, it could be customized in the
future.

yi(t) = U(lby,uby), i= 1 . . .M Init∆:y

(4) Tuple.4 Optx:
The Tuple.4 Optx exists in all these seven algorithms. Its method is varying (see
Index.7 in Table 4.1).

(5) Tuple.5 Opt∆:
The Tuple.5 Opt∆ that corresponds to Tuple.3 Init∆ exists in all these seven
algorithms. Tuple.5 Opt∆ can locate at two positions: Index.6 or Index.11 in
Table 4.1.

(a) y-relative ∆ at Index.6 position:
The update method to y-relative ∆ is varying in different algorithms (see
Index.6 in Table 4.1)

(b) z-relative and x-relative ∆ at Index.11 position:
The update method of z-relative ∆ is varying in different algorithms (see
Index.11 in Table 4.1). However, the update method of two x-relative ∆ is
fixed as Opt∆:xip

and Opt∆:xg . The update method of x-relative ∆ can also
be customized, for example, the Opt∆:xs : Eq.4.28 in MFO.

xip(t+ 1) = Min({xip(t),xi(t+ 1)}) Opt∆:xip

xg(t+ 1) = Min(xg(t) ∪ {xi(t+ 1)}), i= 1 . . .M Opt∆:xg

(6) Tuple.6 C:
The Tuple.6 C exists in all algorithms. There are two methods to deal with outliers
in this work. For example, C1 is applied in BA, GOA, MFO, MBO, BOA and PSO,
C2 is only applied in CSA.3

xfixed
i,n (t+ 1) =


ubx , xi,n(t+ 1) > ubx

xi,n(t+ 1) , o.w
lbx , xi,n(t+ 1) < lbx

C1

3Some algorithms didn’t mention C in their published paper or code, however, it is acceptable that
outliers are invalid and must be dealt with.

58

4.3. UNIFIED NATURE-INSPIRED OPTIMIZATION ALGORITHM (UNIOA)

xfixed
i,n (t+ 1) =

 xi,n(t) , xi,n(t+ 1) < lbx or xi,n(t+ 1) > ubx

xi,n(t+ 1) , o.w
C2

(7) Tuple.7 S.
The Tuple.7 S exists in all algorithms. There are four selection methods in this
work. For example, S1 is applied in GOA, CSA, MFO and PSO, S2 is applied in
BOA, S3 is applied in BA, S4 is applied in MBO.

xi(t+ 1) = x̂i(t+ 1) S1

xi(t+ 1) =

 x̂i(t+ 1) , f(x̂i(t+ 1)) < f(xi(t))

xi(t) , o.w
S2

xi(t+ 1) =

 x̂i(t+ 1) , f(x̂i(t+ 1)) < f(xi(t)) or rand > z2(t)

xi(t) , o.w
S3

〈x̂i(t+ 1)〉= Sort({x̂i(t+ 1)}), i= 1 . . .M

xi(t+ 1) ∈ {〈x̂i(t+ 1)〉, i= 1 . . .M −w5} ∪ {〈xi(t)〉, i= 1 . . .w5}
S4

(8) Tuple.8 T .
The T determines if the iterative optimization process would stop or not. It must
exist.

We also summarize these eight tuples in Table 4.1, in which each algorithm has its
own representations of each tuple, but these seven algorithms can also have same
representations in some tuples.

4.3.2 UNIOA Package
The observations in Subsection 4.3.1 are visualized in Figure 4.1, in which seven selected
algorithms can be re-written in one same framework. In this unfied framework — UNIOA,
tuples for making up algorithms are fixed, and the positions of these tuples are also fixed.
We also find these algorithms perform differently mainly because of the different designs
of these tuples.

59

4.3. UNIFIED NATURE-INSPIRED OPTIMIZATION ALGORITHM (UNIOA)

Figure 4.1: Unified framework for Nature-Inspired Optimization Algorithm —UNIOA, only
for seven selected algorithms

60

4.3. UNIFIED NATURE-INSPIRED OPTIMIZATION ALGORITHM (UNIOA)

Therefore, as shown in Table 4.2, we discuss the possibility of each tuple being customized
in the future. In a complete optimization algorithm, Tuple.1 f , Tuple.2 Initx, Tuple.3
Init∆:xip ,xg and Tuple.5 Init∆:xip ,xg are not allowed to be customized. Tuple.1 f
and Tuple.2 Initx are coming from the objective optimization problem. The way of
initializing and updating two special x-relative step-size ∆ (Tuple.3 Init∆:xip ,xg and
Tuple.5 Init∆:xip ,xg) is also fixed in general.4 For other tuples (Tuple.3 Init∆:z,y,xs ,
Tuple.4 Optx, Tuple.5 Init∆:z,y,xs , Tuple.6 C and Tuple.7 S), they can be freely designed
by users.
The general utilization of this observation is to design an auto-designer for algorithms.
For example, there are many open Python libraries [4, 6, 9, 12, 21, 26] for developing
evolutionary and genetic algorithms (EA). Various ’crossover,’ ’mutation,’ and ’selection’
are freely combined together to build up new algorithms. However, such application might
not be suitable in UNIOA for swarm-based algorithms (SI).
The most significant difference between the unified framework for EA and the unified
framework for SI is whether customers can freely combine different options of different
tuples to build up a new algorithm. In the EA group, it is possible to freely combine
different options from different tuples because every tuple operation happens to the
entire population. For example, in the most popular unified framework for EA, the entire
population is fed into each tuple one by one. The output of each tuple is still the entire
population. However, in the SI group, this design idea is impossible. For example, in the
Table 4.2, the Tuple.3 Init∆ has six options, and the Tuple.4 Optx has seven options.
However, it doesn’t mean any option of Tuple.3 Init∆ can be combined with any option
of Tuple.4 Optx to make up a new algorithm. The reason is Tuple.3 Init∆ and Tuple.4
Optx are one-to-one correspondence.5

Therefore, although in the EA framework, customers are allowed to build up a new
algorithm by freely selecting different options from existing methods, customers don’t
have much freedom in the UNIOA framework. However, the UNIOA gives customers
many possibilities to design a totally new algorithm by only considering mathematical
equations. For example, users shall start designing Tuple.4 Optx that determines how
many and what kinds of step-size ∆ will appear in this algorithm. Tuple.6 C and Tuple.7
S are then customized to help achieve the Tuple.4 Optx .

4Step-size ∆ : xip ,xg might also be customized when people have different understanding about what
is the personal best solution and what is the global best solution.

5This difference can also be understood as: SI has more complicated optimization mechanisms
compared to EA. For example, gene operations in EA are limited, but social activities for designing SI in
the real world are very various.

61

4.3. UNIFIED NATURE-INSPIRED OPTIMIZATION ALGORITHM (UNIOA)

The idea of auto-designing SI in UNIOA is basically achieved in UNIOA 6 in which users
can design their iterative optimization algorithms only with primitive math knowledge
and without any biological knowledge. Moreover, in UNIOA, the customized algorithm
can measure its performance or compare its performance with the other seven existing
algorithms (studied in this work) with the help of the IOHprofiler environment.

6https://github.com/Huilin-Li/UNIOA

62

https://github.com/Huilin-Li/UNIOA

4.3.
UNIFIED

NATURE-INSPIRED
OPTIM

IZATION
ALGORITHM

(UNIOA)

Table 4.1: Representations of eight tuples in each algorithm.

Progress Index Tuple BA GOA CSA MFO MBO BOA PSO

1 t=0

2 Tuple.2 Initx Initx

3 Tuple.1 f f(x(t))

yi Init∆:y
� � � � �

Init∆:y

xip

� �
Init∆:xip

� � �
Init∆:xip

xg Init∆:xg

� �
Init∆:xg

xs
� � �

Eq.4.28
� � �

z Eq.4.3, Eq.4.4 Eq.4.14
�

Eq.4.29, Eq.4.29 Eq.4.38 Eq.4.46
�

In
iti

al
iza

tio
n

4 Tuple.3 Init∆

w X X X X X X X

5 Tuple.8 Stop condition T

6 Tuple.5Opt∆:y yi(t + 1) Eq.4.5
� � � � �

Eq.4.54

7 Tuple.4 Optx Eq.4.6 Eq.4.15 Eq.4.22 Eq.4.31 Eq.4.39 Eq.4.47 Eq.4.55

8 Tuple.6 C C1 C2 C1

9 Tuple.1 f f(x̂i(t + 1))

10 Tuple.7 S S3 S1 S4 S2 S1

z(t + 1) Eq.4.7, Eq.4.8 Eq.4.16
�

Eq.4.33, Eq.4.34 Eq.4.41 Eq.4.48
�

xip(t + 1)
� �

Opt∆:xip

� � �
Opt∆:xip

xg(t + 1) Opt∆:xg

� �
Init∆:xg

11 Tuple.5 Opt∆:z,x

xs(t + 1)
� � �

Eq.4.32
� � �

O
pt

im
iza

tio
n

12 t=t+1

63

4.3.
UNIFIED

NATURE-INSPIRED
OPTIM

IZATION
ALGORITHM

(UNIOA)

Table 4.2: In UNIOA, It is possible to customize Tuple., but it is impossible to customize

Index Tuple Existing Method Customization

1 t=0

2 Tuple.2 Initx Initx no

3 Tuple.1 f f(xi(t)), i = 1,2, . . . ,M no

yi Init∆:y yes

xip Init∆:xip
no

xg Init∆:xg no

xs Eq.4.28(MFO) yes

Eq.4.3, Eq.4.4(BA). Eq.4.14(GOA). Eq.4.29, Eq.4.30(MFO).
z

Eq.4.38(MBO). Eq.4.46(BOA)
yes

In
iti

al
iza

tio
n

4 Tuple.3 Init∆

w commonly known as hyper-parameters yes

5 Tuple.8 Stop condition T yes

6 Tuple.5 Opt∆ yi(t + 1) Eq.4.5(BA). Eq.4.54(PSO) yes

Eq.4.6(BA). Eq.4.15(GOA). Eq.4.31(MFO). Eq.4.39(MBO). Eq.4.47(BOA). Eq.4.55(PSO)
7 Tuple.4 Optx

Eq.4.22(CSA)
yes

8 Tuple.6 C C1, C2 yes

9 Tuple.1 f f(x̂i(t + 1)) no

9 S→ xi(t + 1) S1, S2, S3, S4 yes

Eq.4.7, Eq.4.8(BA). Eq.4.16(GOA). Eq.4.33, Eq.4.34(MFO).
z(t + 1)

Eq.4.41(MBO). Eq.4.48(BOA)
yes

xip(t + 1) Opt∆:xip
no

xg(t + 1) Opt∆:xg no

11 Tuple.5 Opt∆

xs(t + 1) Eq.4.32(MFO) yes

O
pt

im
iza

tio
n

12 t=t+1

64

4.4. SUMMARY

4.4 Summary
In this chapter, we give our Unified Framework — UNIOA that is the end goal in this
work. We firstly re-write these seven algorithms in UNIOA in Section 4.2, in which
each algorithm is re-written in UNIOA with eight tuples whose positions are also fixed.
Meanwhile, we attempt to use primitive math knowledge to represent each tuple, which
means basic math knowledge is enough to understand these swarm-based algorithms.
Re-framed pseudo-code of each algorithm is also displayed in this section. The detailed
representations of each tuple in each algorithm is shown in Table 4.1.
In Section 4.3, we discuss UNIOA deeply. The pseudo-code of the UNIOA is shown
as Algorithm.9, in which we conclude the cooperation among these eight tuples. In
Subsection 4.3.2, the visualization Figure 4.1 inspires the anto-designer UNIOA Package
for swarm-based algorithms. Furthermore, we discuss the difference between the auto-
designer for EA and the auto-designer UNIOA for swarm-based algorithms.
In conclusion, the Unified Framework UNIOA is constructed well in this chapter. based
on seven selected algorithms.

65

Chapter 5

Experimental Setup of Benchmark
Study

5.1 Motivation for experiments
As discussed in previous chapters, we find these seven selected swarm-based algorithms
can be rewritten in terms of the unified framework UNIOA (see Chapter 4). However,
to demonstrate the reliability of the unified framework UNIOA, theoretical
evidence alone is not enough, and practical evidence is also essential. Therefore,
this chapter introduces our experiment plans to provide practical evidence.
Our experiments have two purposes. Firstly, we want to know if the unified framework we
designed for these seven algorithms can adequately replace their original framework. In
other words, for each of these seven algorithms, we want to know whether the performance
of this algorithm written in the unified framework and the performance of this algorithm
written in its original framework are same on solving a same set of questions. Secondly, we
are also interested in how well they perform on solving a set of standardized benchmark
problems when they are written in the unified framework. Therefore, our work has two
kinds of comparisons:

• a comparison between two samples (mainly for the first purpose)
• a comparison among multiple (> 2) samples (mainly for the second purpose)

66

5.1. MOTIVATION FOR EXPERIMENTS

When the comparison happens between two samples, we prefer the Wilcoxon signed-rank
test with a confidence level of 95%1 to provide more convincing discussions. The null
hypothesis H0 in this kind of comparison is the difference between two samples
is on average zero on a random problem.
Here, a benchmark environment — IOHprofiler [8] — is needed. It can allow us to
implement algorithms under the same modules and also allow us to access enough
optimization problems for measuring comparisons. Moreover, the IOHprofiler environment
provides a set of 24 BBOB functions from the COCO environemnts, in which the BBOB
collections is preferred in this work because these seven algorithms are created for solving
continuous optimization problems [13–17, 29, 30].
IOHprofiler [8, 28] consists of an experimental part and a post-processing part. The
experimental part is used to generate data that contains the number of function evaluations,
current function (transformed and original) fitness and best-so-far function (transformed
and original) fitness. Here, the transformed function is isomorphically transformed from
the basic function. The transformed function exists in IOHprofiler in the form of instances2.
Specifically, in the experimental part, when we manually code each algorithm in both
framework, we need to customize the stop condition, the dimension of problems, the
number of instances of each problem, and the number of runs of each instance .
The post-processing part will visualize the algorithm performance by analyzing the gen-
erated data. Specifically, in the post-processing part, although the IOHanalyzer3

provides many measurements of the performance of algorithms, we only use two of them:
• ERT plot
• ECDF measurement

Moreover, we only focus on the number of function evaluations at various given target
values (’Fix-Target’ section), although the IOHanalyzer also allow us to observe algorithms
in the view of the target value at various given function evaluations (’Fixed-Budget’
section).
The ERT plot visualizes how many evaluations (y-axis) each algorithm will take on
solving a problem to reach a given target value (x-axis). As shown in Eq.5.1 [28], when
an algorithm A is solving a problem f in the n dimensional environment, we customize

1The reason why we use this statistical method is experiments in Chapter 6 show samples in our
cases are not normally distributed.

2More details about instances are in [8].
3https://iohanalyzer.liacs.nl/

67

https://iohanalyzer.liacs.nl/

5.1. MOTIVATION FOR EXPERIMENTS

10−8 as the target value v and n× 104 as the maximum number of evaluations B4. We
also customize that A will repeat solving f r times. Here, r is the product of the number
of instances and the number of runs of each instance. T (A,f ,n,B,v, i) is the number of
evaluations needed by A on solving f at i-th time.

ERT (A,f ,n,B,v) =
∑r
i=1 min{T (A,f ,n,B,v, i),B}∑r
i=1 1(T (A,f ,n,B,v, i) <∞)

5.1

If A can reach v within B, T (A,f ,n,B,v, i) is the number of actual evaluations taken
by A. However, if A cannot reach v when the maximum number of evaluations is B,
T (A,f ,n,B,v, i) will be set as +∞. Therefore, the ERT measurement here is not a
pure average over r times. While A repeats solving f r times, if T (A,f ,n,B,v, i) is +∞,
the ERT measurement doesn’t count it as an available evaluation, but the maximum
number of evaluations B will be added to the whole evaluations.
The ECDF plot visualizes the probability (y-axis) of successful times within all times r.
Specifically, one successful time is A can reach v under a given number of evaluations
t (x-axis) when solving f in the n dimensional environment. As shown in Eq.5.2, the
ECDF plot focuses on how many successful evaluations T (A,f ,n,v, i)6 t appear during
r times, when A aims to reach only one target value v on solving f .

ECDF (A,f ,n,v, t) = 1
r

r∑
i=1

1(T (A,f ,n,v, i)6 t) 5.2

In our experiments, we study a set of target values V = {10e | e = 2,1.8,1.6,,−8},
and the ECDF is calculated as an average value over various v, as shown in Eq.5.3 in
which |V | is the number of v in V .

ECDF (A,f ,n,V , t) = 1
r |V |

∑
v∈V

r∑
i=1

1(T (A,f ,n,v, i)6 t) 5.3

Considering the ERT plot already visually displays the performance of algorithms, the
ECDF measurement is preferred as a quantitative measurement. Therefore, with the
help of the R programming interface in IOHanalyzer, the area under each ECDF curve
AUC is performed in our work.
We conclude these settings of IOHprofiler environment in Table 5.1.

4Its another name is allocated budget [28]

68

5.2. SUMMARY

Table 5.1: Settings and usages in IOHproflier environment.

Environment Setups Usages

IOHexperimenter

· minimum target value: 10−8.

· generate running data of each
problem over multiple instances
and multiple runs.

· maximum number of
evaluations: n× 104.
· dimensions of problems:
n= 5,20.
· the number of instances for
each problem: 5.
· the number of runs for each
instance: 5.

IOHanalyzer
· web-based GUI · observe ERT plots.
· R programming interfaces. · calculate AUC of ECDF .

5.2 Summary
In this chapter, we introduce the purpose of doing practical experiments is to give practical
evidence on whether these seven algorithms can safely be rewritten in our designed unified
framework. Meanwhile, we also observe the performance of algorithms written in our
unified framework.
We will implement algorithms and compare their performances in IOHprofiler environ-
ment. Although the IOHprofiler provides various measurements, we only focus on two
measurements: ERT plots in the view of quality and AUC values of ECDF in the view
of quantity.
Moreover, comparisons between two samples will be further analyzed by a paired sample
test statistical method — Wilcoxon signed-rank test.

69

Chapter 6

Experimental Results

6.1 Introduction
In this chapter, we detail actual experiments in our work. More importantly, we display
the experimental results and give discussions.
Our first purpose of these experiments is to know whether the performance of the algorithm
in its original framework is the same as the performance of the algorithm in our unified
framework, when solving the same set of optimization problems. In other words, for each
algorithm of these seven selected algorithms, the comparison is between two frameworks
which means the framework structure shall be the only aspect affecting the algorithm
performance and any other aspects with side effects on algorithms’ performance shall be
eliminated. Therefore, for our first purpose, we designed two groups of experiments:

Group.1 Experiments for avoiding side effects in Section 6.2.
For each algorithm in each framework, the evaluation method can be synchronous
(syncE) or asynchronous (asyncE), and the method of calculating the global best
individual can be synchronous (syncG) or asynchronous (asyncG) too. In many
experimental attempts at measuring the performance of algorithms, we find these
two aspects that might significantly affect the algorithm performance. Therefore, we
do experiments to test whether syncE/asyncE and syncG/asyncG will significantly
affect the algorithm performance, and significant effects shall be eliminated.

Specially, in this group of experiments, the first comparison is between the algorithm
in syncE and the same algorithm in asyncE, and the second comparison is between

70

6.2. EXPERIMENTS FOR AVOIDING SIDE EFFECTS

the algorithm in syncG and the same algorithm in asyncG. Therefore, for these
comparisons between two samples, the Wilcoxon signed-rank (see Section 4.1) is
used.

Group.2 Comparison between the performance ’ORIGINAL’ (abbr. orig) of the algorithm in
its original framework and the performance ’UNIOA’ of the same algorithm in our
unified framework in Section 6.3
After eliminating some aspects with side effects, the experimental results about the
comparison between ’ORIGINAL’ and ’UNIOA’ become more convinced. Because
the comparison of each algorithm is between two samples, the Wilcoxon signed-rank
(see Section 4.1) is also used in this group of experiments.

Our second purpose of experiments is to understand the comparison between these
performances of these seven algorithms in our unified framework, and to give an overview
understanding of these algorithms. Therefore, for our second purpose of experiments, we
designed one group of experiments:

Group.3 Observations among performances ’UNIOA’ of these seven algorithms in Section 6.4.
In this group of experiment, there is no further statistical measurement, because
the purpose of this group focuses on the observation, rather than the comparison.

The summary of this chapter is displayed in Section 6.5.

6.2 Experiments for avoiding side effects

6.2.1 Results
In many experimental attempts, we doubt that the way of calculating the fitness and
the way of calculating the global best individual will significantly impact the perfor-
mance of algorithms. Their impact might mislead our conclusion on whether our unified
framework works correctly in replacing the original framework. According to the original
implementation of each algorithm, we found that there are two ways to calculate the
fitness:

• asynchronous Evaluation (abbr. asyncE): each time updating one individual, this
individual’s fitness is immediately calculated.

• synchronous Evaluation (abbr. syncE): only after the entire population is up-
dated, the fitness of each individual in the entire population is then calculated
simultaneously.

71

6.2. EXPERIMENTS FOR AVOIDING SIDE EFFECTS

There are also two ways to calculate the global best one individual xg:
• asynchronous xg (abbr. asyncG): each time updating one individual, the xg is

updated by comparing with this one individual.
• synchronous xg (abbr. syncG): only after the entire population is updated, the xg

is updated by comparing with the entire updated population.
Therefore, for avoid side effects from asyncE/syncE and asyncG/syncG, we constructed
33 sub-experiments 1 in which:

• Each UNIOA has two options: evaluation is synchronous or asynchronous, but xg is
always synchronous.

• Each ORIGINAL has three options: when the evaluation is synchronous, the xg is
synchronous, but when the evaluation is asynchronous, the xg is synchronous or
asynchronous.

From Figure 6.1 in which y-axis is each algorithm whose evaluation method could be
synchronous or asynchronous and its corresponding AUC values obtained in IOHanalyzer
are shown on x-axis, it is observed that the two distributions of 24 AUC values for syncE
algorithm and asyncE algorithm are the same. Even the outliers from syncE algorithm
and asyncE algorithm are also significantly near each other. Same observations can be
found when dimension n is 5 and when dimension n is 20. Meanwhile, in Table 6.1,
each case represents one comparison between one algorithm whose evaluation method is
synchronous or is asynchronous. We find that all p values are larger than 5%. It means the
data obtained from syncE algorithm and asyncE algorithm does not reject the
hull hypothesis, no matter which framework it belongs to and no matter which
dimension it is in. In other words, the way of calculating the fitness (asyncE
or syncE) does not impact the performance of algorithms. Therefore, when we

1Generally, for the five algorithms who use xg, there should be 5× 2× 2× 2 = 40 sub-experiments
in which each algorithm has two frameworks, and each framework has two evaluation options, and
each evaluation option has two xg calculation options. However, we found it was impossible to
calculate xg asynchronously when the evaluation was synchronous. The reason is when the evaluation
is already synchronous, it means the for loop for xi already stops, and it is impossible for the xg

to come back into the for loop. Moreover, for UNIOA, when the evaluation is asynchronous, it is
meaningless to set the xg asynchronous also, which is because in UNIOA, other components also have
to be changed when the evaluation and xg are simultaneously asynchronous, then it is impossible
to decide which component exactly affects the algorithm performance. Therefore, there are only
5× 2× 2× 2− 5× 2× 1× 1− 5× 1× 1× 1 = 25 for five algorithms who use xg. Meanwhile, for the
two algorithms who didn’t use xg, there will be 2× 2× 2 = 8 experiments in which each algorithm
has two framework, and each framework has two evaluations. Therefore, there are total 25 + 8 = 33
experiments. ?? and ?? lists details about how these 33 sub-experiments are constructed.

72

6.2. EXPERIMENTS FOR AVOIDING SIDE EFFECTS

reproduce these algorithms in their original framework, we don’t need to modify their
original way of calculating the fitness.

Figure 6.1: Distribution of 24 AUC values for paired algorithm performances in syncE or
asyncE, when n= 5 or n= 20.

Table 6.1: P-values of Wilcoxon signed-rank test for difference on average between
performances of paired algorithms in syncE or asyncE for a random optimization function,
when n= 5 or n= 20.

Case p-value (n=5) p-value (n=20)

orig BA syncE or asyncE syncG 0.3313349065031326 0.22886900026455015

orig GOA syncE or asyncE syncG 0.6261109162613098 0.6673653270475619

continued . . .

73

6.2. EXPERIMENTS FOR AVOIDING SIDE EFFECTS

. . . continued

Case p-value (n=5) p-value (n=20)

orig CSA syncE or asyncE 0.6475683676310555 0.8862414820514412

orig MFO syncE or asyncE 0.2530979089471155 0.8409995729722781

orig MBO syncE or asyncE syncG 0.31731050786291415 0.17469182698689223

orig BOA syncE or asyncE syncG 0.7750969621959847 0.2773986245500173

orig PSO syncE or asyncE syncG 0.954431397113681 0.19449921074798193

UNIOA BA syncE or asyncE syncG 0.24142655338204444 0.5968445170755943

UNIOA GOA syncE or asyncE syncG 0.6465582592577419 0.6233436223982587

UNIOA CSA syncE or asyncE 0.9090113066460508 0.9430276454464167

UNIOA MFO syncE or asyncE 0.6475683676310555 0.38327738184229543

UNIOA MBO syncE or asyncE syncG 0.265156633625956 0.24697273165906564

UNIOA BOA syncE or asyncE syncG 0.09749059620220792 0.629275096131297

UNIOA PSO syncE or asyncE syncG 0.954431397113681 0.4655179892460418

From Figure 6.2 in which y-axis is each algorithm whose xg calculation method could be
synchronous or asynchronous and its corresponding AUC values obtained in IOHanalyzer
are shown on x-axis, it is observed that the two distributions of 24 AUC values for
syncG algorithm and for asyncG algorithm are varying from algorithms. For example,
the difference of paired performances between syncG BA and asyncG BA is significant
when dimension n is 5 and when dimension n is 20, however, this kind of difference
shown in Figure 6.2 is not significant in other algorithms. From Table 6.2 in which each
case represents one comparison between each algorithm whose xg calculation method
is synchronous or is asynchronous, it is observed that when dimension n is 5, the data
obtained from orig GOA algorithm rejects the hull hypothesis which means the difference
between syncG and asyncG orig BA is significant. Such same observation is also found in
orig GOA algorithm when dimension n is 20.
Considering the difference is not significant in other cases, further analysis is needed
to make the role of xg explicit in unsignificant cases (orig MBO, orig BOA, orig PSO)
compared to significant cases (orig BA, orig GOA). From Table 6.3 that lists the way of

74

6.2. EXPERIMENTS FOR AVOIDING SIDE EFFECTS

each algorithm using xg in ORIGINAL framework and UNIOA framework, it is observed
that the effect of xg is different in these algorithms, although xg affects the quality of
optimization in all of these algorithms. For example, xg is directly added to objective
solution xi in BA and GOA, but in MBO, BOA and PSO, xg is scaling down by multiplying
a very small decimal (BOA), or by subtracting a larger value (PSO), or by reducing the
probability of using xg (MBO).
Therefore, we conclude that syncG and asyncG algorithms have different perfor-
mance on average for a random optimization BBOB function in ORIGINAL
framework, no matter which dimension it is in. Therefore, when we reproduce these
algorithms in their original framework, the way of calculating xg is always synchronous,
which is the same as in our unified framework according to the principle of the control
variable.

Figure 6.2: Distribution of 24 AUC values for paired algorithm performances in syncG or
asyncG, when n= 5 or n= 20.

75

6.2. EXPERIMENTS FOR AVOIDING SIDE EFFECTS

Table 6.2: P-values of Wilcoxon signed-rank test for difference on average between
performances of paired algorithms in syncG or asyncG for a random optimization function,
when n= 5 or n= 20.

Case p-value (n=5) p-value (n=20)

orig BA asyncE syncG or asyncG 0.22459133607647186 0.004638292309835263

orig GOA asyncE syncG or asyncG 0.0042199644589382525 0.17318594569671153

CSA NO USE xg

MFO NO USE xg

orig MBO asyncE syncG or asyncG 0.19854279368666194 0.07411601304083099

orig BOA asyncE syncG or asyncG 0.8192020334011836 0.2773986245500173

orig PSO asyncE syncG or asyncG 0.44045294529422474 0.964388671614557

Table 6.3: How each algorithm uses xg in ORIGINAL framework and UNIOA framework.

H0 Algorithm xg role in ORIGINAL xg role in UNIOA

reject BA Eq.2.5, Eq.2.6 Eq.4.6

reject GOA Eq.2.10 Eq.4.16

- CSA NO USE xg

- MFO NO USE xg

not reject MBO Step (8) Eq.4.40

not reject BOA Eq.2.28 Eq.4.48

not reject PSO Eq.2.34 Eq.4.58

6.2.2 Conclusion
According to the experimental results in Section 6.2, we can conclude that the different
effects from asyncE and syncE could be ignored, but whether the way of calculating xg is
synchronous or asynchronous much likely has an impact on measuring the performance

76

6.2. EXPERIMENTS FOR AVOIDING SIDE EFFECTS

of algorithms. In other words, when the performance of UNIOA is the same as the
performance of ORIGINAL, it is much likely because different ways of calculating xg force
their performance to behave same, but not because the unified framework itself does not
affect the algorithm performance.
Therefore, as shown in Table 6.4, when we reproduce these algorithms in their original
framework, we modified the asyncG to syncG, but not change their ways of calculating the
fitness. The reason why we didn’t modify the syncG to asyncG is the way of calculating
xg in our unified framework is also syncG. According to the principle of control variable,
we hope the framework is the only one variable when comparing the performance of
algorithms in two different framework, so other variables should be same.2

Table 6.4: When reproducing their original framework, if the way of calculating the
Evaluation and the xg changes.

Algorithm
Evaluation xg

in original code in this work in original code in this work

orig BA asyncE asyncE asyncG syncG

orig GOA syncE syncE syncG syncG

orig CSA syncE syncE no use no use

orig MFO asyncE asyncE no use no use

orig MBO syncE syncE syncG syncG

orig BOA asyncE asyncE asyncG syncG

orig PSO asyncE asyncE asyncG syncG

2There is another reason that we think the syncG is correct way to calculate the global best one.
However, different people might have different understanding about how to calculate the global best one.

77

6.3. COMPARING UNIOA TO THE ORIGINAL FRAMEWORK

6.3 Comparing UNIOA to the original framework

6.3.1 Results
In Section 6.2, we eliminate side effects from xg calculation method when reproducing
these algorithms in ORIGINAL framework. Therefore, it is much safer now to discuss the
difference between ORIGINAL and UNIOA.
From Figure 6.3 in which y-axis is each algorithm whose framework is ORIGINAL or
UNIOA and its corresponding AUC values obtained in IOHanalyzer are shown on x-axis, it
is observed that the two distributions of 24 AUC values for ORIGINAL algorithm and for
UNIOA algorithm are the same. Even the outliers from ORIGINAL algorithm and from
UNIOA algorithm are also significantly near to each other. Same observations can be
found when dimension n is 5 and when dimension n is 20.

Figure 6.3: Distribution of 24 AUC values for paired algorithm performances in orig
framework or UNIOA framework, when n= 5 or n= 20.

78

6.3. COMPARING UNIOA TO THE ORIGINAL FRAMEWORK

Meanwhile, from Table 6.5 in which each case represents one comparison between each
algorithm whose framework is ORIGINAL or UNIOA, it is observed that when dimension
n is 5, all p values are larger than 5% which means when n = 5, the data obtained
from ORIGINAL algorithm and UNIOA algorithm does not reject the hull hypothesis, in
other words, when n = 5, the difference between ORIGINAL and UNIOA is not
significant.
Furthermore, in Table 6.5, it is also observed that when dimension n is 20, the difference
is significant between orig PSO and UNIOA PSO as well as between orig MFO and
UNIOA MFO. However, it can be acceptable because the difference direction is that
UNIOA is better than ORIGINAL in our study. For example, when n= 20, UNIOA PSO
has higher AUC values in 16 of 24 BBOB optimization functions, and UNIOA MFO has
higher AUC values in 20 of 24 BBOB optimization functions.

Table 6.5: (1) P-values of Wilcoxon signed-rank test for difference on average between
performances of paired algorithms in ORIGINAL framework or UNIOA framework for a
random optimization function, when n= 5 or n= 20. (2) The number of wins orig had
or UNIOA had when comparing their own AUC value throughout 24 BBOB functions.

Dimension n Case p-value orig win UNIOA win

BA 0.11276741428797125 7 17
GOA 0.0804264513256041 15 9
CSA 0.05933346675499405 9 15
MFO 0.17931823604537578 11 13
MBO 0.37577150825113037 14 10

n= 5

BOA 0.8638867905449266 12 12

PSO 0.006090717662464104 8 16
BA 0.6558614582873129 3 21

GOA 0.06569860480594888 3 21
CSA 0.7860401269462913 12 12
MFO 0.000191118942510799 4 20
MBO 0.14097231038635524 15 9

continued . . .
79

6.3. COMPARING UNIOA TO THE ORIGINAL FRAMEWORK

. . . continued

Dimension n Algorithm p-value orig win UNIOA win

BOA 0.8327296566664774 6 18

n= 20

PSO 0.6064080161085506 6 18

6.3.2 Conclusion
According to the experimental results in Section 6.3, we can conclude that at least in
these seven algorithms, the ORIGINAL framework can be safely replaced by our unified
UNIOA framework, with respect to actual algorithm performance.
For example, in Figure 6.4 showing fix-target curves, the purple line denotes the MFO in
ORIGINAL, and the orange line denotes the MFO in UNIOA. We can find two lines are close
to each other in most of 24 functions, which means the MFO algorithm performs same in
two different frameworks when solving most of 24 optimization problems. Sometimes,
the MFO in ORIGINAL needs more evaluations to reach the same target value as the
MFO in UNIOA, when solving F1. Sometimes, the MFO in UNIOA can obtain much
better optimization results than the MFO in ORIGINAL, when solving F2, F7, F17, F21.
Moreover, the MFO in ORIGINAL performs slightly better than the MFO in UNIOA when
solving F8, F9, F15.

80

6.4. OBSERVATIONS AMONG ALGORITHMS IN UNIOA

Figure 6.4: ERT values of the MFO in UNIOA and in ORIGINAL, when n= 5.

6.4 Observations among algorithms in UNIOA
In this section, we want to understand the performance of these seven algorithms in
UNIOA, when solving a set of standardized benchmark problems. In Figure 6.5, when the

81

6.4. OBSERVATIONS AMONG ALGORITHMS IN UNIOA

dimension increases (from n= 5 to n= 20), the probability that the algorithm will reach
the target value under limited evaluations is reducing, no matter which algorithm it is.
When the dimension is 5, the PSO in UNIOA is much more likely to generate more target
values on solving most of 24 BBOB problems. Meanwhile, the CSA, MBO and MFO in
UNIOA have similar performances on solving 24 problems. The same observation can
also be found between the BA and BOA in UNIOA. Lastly, the GOA in UNIOA performs
obviously worst compared to the other six algorithms when solving 24 problems.
Figure 6.6 also displays the performance of these seven algorithms when the dimension is 5.
When solving F3 and F4, the MBO in UNIOA can generate much more optimal solutions
before reaching the maximum evaluations. However, other six algorithms obtain much
worse solutions, although the maximum evaluations have been finished. Furthermore,
same observations can be found in solving F16, F17, F18, F19, but the CSA in UNIOA is
the winner this time.

Figure 6.5: Distribution of 24 AUC values for UNIOA algorithms’ performance, when
n= 5 (top) or n= 20 (bottom).

82

6.5. SUMMARY

Figure 6.6: ERT values of seven algorithms over 30 runs in UNIOA, when n= 5.

6.5 Summary
In this chapter, we discuss our actual experimental results. Section 6.3 proves that the
unified framework UNIOA works correctly, and it can replace the original framework of these
seven selected algorithms. Moreover, in Section 6.2, for giving a convincing discussion

83

6.5. SUMMARY

about the comparison between our unified framework and their original framework, we
also did several experiments for avoiding some side effects from the way of calculating xg.
Furthermore, Section 6.4 also discusses the performance of these seven algorithms when
they are organized in the unified framework UNIOA.

84

Chapter 7

Summary

7.1 Conclusions in our studies
Within these six chapters presented in this work, we come to one observation: seven
selected swarm-based optimization algorithms can be re-written in the same
unified framework whose terminologies are limited, and the procedure of algo-
rithms is fixed.
Chapter 1 pointed out that similarities among many swarm-based optimization algorithms
mislead the innovation of developing swarm-based optimization algorithms. Represent-
ing the same concept in different terminologies does not bring a new algorithm but
increases the workload of filtering algorithms. In other words, the problem we expected
to solve in this work is how to bring different swarm-based optimization algorithms into
a general/unified environment for future more meaningful discussion and more effective
studies. In short, we aim to build up a unified environment for swarm-based
optimization algorithms. Our work starts with seven algorithms, including old classical
algorithms and new modern algorithms.
Firstly, Chapter 2 studied how to make every algorithm speak the same language in
this unified environment. Although these seven algorithms come from different nature
analogies, the essence of information carried by their various terminologies is the same.
For example, the memory in CSA is the personal best individual in PSO. We captured the
commonalities of information to classify various terminologies among these algorithms,
and various terminologies with the same information are defined as unified terminology.
We found that 20 unified terminologies (see Table 2.1) already can cover the entire

85

7.1. CONCLUSIONS IN OUR STUDIES

different terminologies appearing in these seven algorithms. In short, these selected
algorithms can speak the same language – 20 unified terminologies.
Then, Chapter 3 studied how to make every algorithm walk in the same line in this
unified environment. Each algorithm follows different optimization procedures, but these
procedures also have similarities in the view of their functions. For example, the update of
step-size y always happens before updating objective x. We found that eight tuples (see
Table 3.1) can represent all of these seven algorithms. Meanwhile, the positions of these
eight tuples (see Algorithm.1) can also be the same among these seven algorithms. In
short, these selected algorithms can walk in the same line with the same steps
– one unified procedure with eight unified tuples.
Lastly, Chapter 4 displayed the unified framework UNIOA by combining the findings
in Chapter 2 and Chapter 3. We found that each algorithm can be re-framed into the
UNIOA (see Section 4.2). Meanwhile, we summarized two different treatments for
outliers and four different ways of selection (see Table 4.1). The Unified Framework
UNIOA leads to a practical application — UNIOA (see Subsection 4.3.2)— an auto-
designer for swarm-based optimization algorithms. In short, the Unified Framework
UNIOA is constructed well for these seven algorithms.
Furthermore, Chapter 5 and Chapter 6 provided practical evidence that the UNIOA
can safely replace the original framework among these seven algorithms. In short, the
Unified Framework UNIOA works correctly on these seven algorithms.
Therefore, we summarized our contributions as follows:

• Main contributions:
– A Unified Framework UNIOA. (see Chapter 4)
– 20 unified terminologies. (see Chapter 2)
– Eight unified tuples. (see Chapter 3)
– One unified procedure. (see Chapter 3)
– Primitive math is the only knowledge in our unified representations. (see

Chapter 4)
• Bonus contributions:

– A demo of auto-designer UNIOA for swarm-based optimization algorithms.
(see Subsection 4.3.2, https://github.com/Huilin-Li/UNIOA.git)

86

https://github.com/Huilin-Li/UNIOA.git

7.2. LIMITATIONS IN OUR ANALYSIS

– The way of calculating the fitness dose not impact the performance of algo-
rithms. (see Section 6.2)

– The way of calculating the global best individual dose impact the performance
of algorithms. (see Section 6.2)

– A comparison of performances among these seven algorithms. (see Section 6.4)
The experimental parts of our work have organized in https://github.com/Huilin-
Li/ThesisProject Huilin.git.

7.2 Limitations in our analysis
Our work also has some possible limitations. The first limitation is how we use statistics
to test our hypotheses. In Chapter 5 and Chapter 6, we studied whether one algorithm in
our unified framework can perform the same as this algorithm in its original framework
in solving a random problem in a set of problems. However, it is also worth testing
whether one algorithm in our unified framework can perform the same as this algorithm
in its original framework in solving each problem in a set of problems. In the first case,
each problem has only one AUC value, and the samples for the statistic test are 24 AUC
values for 24 problems. The statistic test only needs to be done once to discuss whether
the UNIOA can perform correctly in solving a random problem in the set of problems.
In the second case, each problem has 25 values which are the number of runs of each
problem. Every problem will have a statistic test, which means there shall be 24 pairs of
samples, and each pair of samples is 25 AUC values for one problem. The discussion of
the second case shall be on whether the UNIOA can work correctly in solving Problem-1
or Problem-2 or · · · or Problem-24.
The second limitation is the auto-designer for swarm-based optimization algorithms. In
our demo, the number of z-relative step-size can only be added to a new algorithm once.
However, according to our observations in these seven selected algorithms, the algorithm
can use multiple z-relative step-size simultaneously.
The third limitation is the definition of the global best one individual xg. In our work, xg
is the best one among the current population that is updated after the selection process
and the previous population that is also generated after the selection process. However,
in original implementations of some algorithms, xg is the best one among the current
population that is updated before the selection process and the previous population that
is generated after the selection process. Although we believe that the first definition shall
be correct, we keep this discussion open for further studies.

87

https://github.com/Huilin-Li/ThesisProject_Huilin.git
https://github.com/Huilin-Li/ThesisProject_Huilin.git

7.3. FUTURE WORK

Lastly, we also expect more experiments, including more runs and more instances, for
giving more convinced discussions.

7.3 Future work
A deeper and more advanced analysis of our work has been left for the future. There are
some ideas we would like to try in the future.
Firstly, discussions on the level of mathematics shall also be given. In our unified framework
UNIOA, primitive math knowledge is the only knowledge readers need to understand
algorithms. The mathematics formulas determine the quality of optimization among
different algorithms. Therefore, we believe there could be more exciting findings when
comparing these algorithms on the math level in our unified framework.
Secondly, since we organized 20 components to cover these seven algorithms, we are also
curious about how to compare these algorithms only on the level of these 20 components.
For example, a comparison only on Optx. Furthermore, it is also worth studying how to
improve each of these 20 components. For example, is there a more intelligent method to
initialize the population, or is there a more efficient method to update step-size?
Thirdly, we are also interested in comparing different unified frameworks for nature-inspired
algorithms, such as the UF [18].
Lastly, we are interested in the extension of our unified framework. The first kind of
extension is to extend our unified framework from seven selected algorithms into the
whole of swarm-based optimization algorithms. Although we already slightly discussed
this kind of extension in Subsection 2.3.2, we hope there will be a more assured discussion
on our unified framework that can also much likely cover most of the swarm-based
optimization algorithms. The second kind of extension is to extend our unified framework
from swarm-based optimization algorithms into the whole of nature-inspired optimization
algorithms. Specifically, we are curious whether our unified framework can also work
correctly in the evolutionary algorithms.

88

Acknowledgement

Someone told me ’sounds like you met lots of good people’, ’yes, lots of kindness’ I
replied.
I want to thank my parents firstly, I have the best mom and dad in the world.
I want to thank my supervisor Anna’s patience for talking with me.
I want to thank my supervisor Carola for answering my questions, even these questions
are questioning her work.
I want to thank my supervisor Diederick for answering my questions. I truly believed I
was right and he was wrong, but obviously he was right at the end.
I want to thank the author Xin-she Yang of bat algorithm for replying my emails, even
these emails are also questioning his work.
I want to thank my friend Jingran Liu for helping me practice the presentation, hope her
Phd study goes well.
I rarely read, but I remember the last paragraph in the Little Prince: If one day you travel
to the desert, you might find this spot. Please do not hurry on, and wait for a minute,
especially under the star. Then, if a little man comes, who laughs, who has golden hair
and who refuses to answer questions, you will know who he is. If this happens, please
send me a message that he has come back.

89

References

[1] History of optimization:lines of development, breakthroughs, applications and cu-
riosities, and links. http://www.mitrikitti.fi/opthist.html#linx. Accessed:
20210-12-12.

[2] A novel metaheuristic method for solving constrained engineering optimization
problems: Crow search algorithm. Computers and Structures, 169:1–12, 6 2016.

[3] Sankalap Arora and Satvir Singh. Butterfly optimization algorithm: a novel approach
for global optimization. Soft Computing, 23:715–734, 2 2019.

[4] Ayodeji Remi-Omosowon and Yasser Gonzalez. Pyeasyga: A simple and easy-to-use
implementation of a genetic algorithm library in python. https://github.com/r
emiomosowon/pyeasyga.

[5] Rick Boks, Hao Wang, and Thomas Bäck. A modular hybridization of particle
swarm optimization and differential evolution. In Proceedings of the 2020 Genetic
and Evolutionary Computation Conference Companion, pages 1418–1425, 2020.

[6] Mark A Coletti, Eric O Scott, and Jeffrey K Bassett. Library for evolutionary
algorithms in python (leap). In Proceedings of the 2020 Genetic and Evolutionary
Computation Conference Companion, pages 1571–1579, 2020.

[7] Carola Doerr. Theory of iterative optimization heuristics: From black-box complexity
over algorithm design to parameter control., 2020.

[8] Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, and Thomas Bäck. Iohprofiler:
A benchmarking and profiling tool for iterative optimization heuristics. 10 2018.

[9] Ahmed Fawzy Gad. Pygad: An intuitive genetic algorithm python library. arXiv
e-prints, pages arXiv–2106, 2021.

90

http://www.mitrikitti.fi/opthist.html#linx
https://github.com/remiomosowon/pyeasyga
https://github.com/remiomosowon/pyeasyga

REFERENCES

[10] Iztok Fister Jr, Uroš Mlakar, Janez Brest, and Iztok Fister. A new population-
based nature-inspired algorithm every month: is the current era coming to the end.
In Proceedings of the 3rd Student Computer Science Research Conference, pages
33–37. University of Primorska Press, 2016.

[11] Simon Fong, Xi Wang, Qiwen Xu, Raymond Wong, Jinan Fiaidhi, and Sabah
Mohammed. Recent advances in metaheuristic algorithms: Does the makara dragon
exist? The Journal of Supercomputing, 72(10):3764–3786, 2016.

[12] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. DEAP: Evolutionary algorithms made easy. Journal
of Machine Learning Research, 13:2171–2175, jul 2012.

[13] Ahmed Helmi and Ahmed Alenany. An enhanced moth-flame optimization algorithm
for permutation-based problems. Evolutionary Intelligence, 13(4):741–764, 2020.

[14] Haouassi Hichem, Merah Elkamel, Mehdaoui Rafik, Maarouk Toufik Mesaaoud, and
Chouhal Ouahiba. A new binary grasshopper optimization algorithm for feature selec-
tion problem. Journal of King Saud University-Computer and Information Sciences,
2019.

[15] James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings of
ICNN’95-international conference on neural networks, volume 4, pages 1942–1948.
IEEE, 1995.

[16] Jonas Krause, Jelson Cordeiro, Rafael Stubs Parpinelli, and Heitor Silverio Lopes.
A survey of swarm algorithms applied to discrete optimization problems. In Swarm
Intelligence and Bio-Inspired Computation, pages 169–191. Elsevier, 2013.

[17] Soukaina Laabadi, Mohamed Naimi, Hassan El Amri, and Boujemâa Achchab. A
binary crow search algorithm for solving two-dimensional bin packing problem with
fixed orientation. Procedia Computer Science, 167:809–818, 2020.

[18] Bo Liu, Ling Wang, Ying Liu, and Shouyang Wang. A unified framework for
population-based metaheuristics. Annals of Operations Research, 186:231–262, 6
2011.

[19] Federico Marini and Beata Walczak. Particle swarm optimization (pso). a tutorial.
Chemometrics and Intelligent Laboratory Systems, 149:153–165, 2015.

[20] Seyedali Mirjalili. Moth-flame optimization algorithm: A novel nature-inspired
heuristic paradigm. Knowledge-based systems, 89:228–249, 2015.

91

REFERENCES

[21] Christian S Perone. Pyevolve: a python open-source framework for genetic algorithms.
Acm Sigevolution, 4(1):12–20, 2009.

[22] Adam P Piotrowski, Jaroslaw J Napiorkowski, and Pawel M Rowinski. How novel is
the “novel” black hole optimization approach? Information Sciences, 267:191–200,
2014.

[23] Shahrzad Saremi, Seyedali Mirjalili, and Andrew Lewis. Grasshopper optimisation
algorithm: Theory and application. Advances in Engineering Software, 105:30–47, 3
2017.

[24] Kenneth Sörensen. Metaheuristics-the metaphor exposed. International Transactions
in Operational Research, 22:3–18, 1 2015.

[25] Éric D Taillard, Luca M Gambardella, Michel Gendreau, and Jean-Yves Potvin.
Adaptive memory programming: A unified view of metaheuristics. European Journal
of Operational Research, 135(1):1–16, 2001.

[26] Alberto Tonda. Inspyred: Bio-inspired algorithms in python. Genetic Programming
and Evolvable Machines, 21(1):269–272, 2020.

[27] Gai Ge Wang, Suash Deb, and Zhihua Cui. Monarch butterfly optimization. Neural
Computing and Applications, 31:1995–2014, 7 2019.

[28] Hao Wang, Diederick Vermetten, Furong Ye, Carola Doerr, and Thomas Bäck.
Iohanalyzer: Performance analysis for iterative optimization heuristic. 7 2020.

[29] Dongfang Yang, Xitong Wang, Xin Tian, and Yonggang Zhang. Improving monarch
butterfly optimization through simulated annealing strategy. Journal of Ambient
Intelligence and Humanized Computing, pages 1–12, 2020.

[30] Xin-She Yang. A new metaheuristic bat-inspired algorithm. 4 2010.
[31] Xin-She Yang. Nature-inspired optimization algorithms: Challenges and open prob-

lems. Journal of Computational Science, 46:101104, 2020.
”

92

Appendices

A Original positions of eight tuples in selected algo-
rithms

Algorithm 10 original positions of eight tuples in BA
1: t← 0 . iteration counter
2: Tuple.2 Initx . initialize population
3: Tuple.1 f . evaluation
4: Tuple.3 Init∆:w . initialize w-relative step-size ∆
5: Tuple.3 Init∆:y . initialize y-relative step-size ∆
6: Tuple.3 Init∆:x . initialize x-relative step-size ∆
7: while Tuple.8 T do . stop strategy
8: Tuple.3 Init∆:z and Tuple.5 Opt∆:z. initialize and update z-relative step-size ∆
9: Tuple.5 Opt∆:y . update y-relative step-size ∆

10: Tuple.4 Optx . update population
11: Tuple.6 C . outliers treatment
12: Tuple.1 f . evaluation
13: Tuple.7 S . selection
14: Tuple.5 Opt∆:x . update x-relative step-size ∆
15: t← t+ 1
16: end while

93

A. ORIGINAL POSITIONS OF EIGHT TUPLES IN SELECTED ALGORITHMS

Algorithm 11 original positions of eight tuples in GOA
1: t← 0 . iteration counter
2: Tuple.2 Initx . initialize population
3: Tuple.1 f . evaluation
4: Tuple.3 Init∆:w . initialize w-relative step-size ∆
5: Tuple.3 Init∆:x . initialize x-relative step-size ∆
6: while Tuple.8 T do . stop strategy
7: Tuple.3 Init∆:z and Tuple.5 Opt∆:z. initialize and update z-relative step-size ∆
8: Tuple.4 Optx . update population
9: Tuple.6 C . outliers treatment

10: Tuple.1 f . evaluation
11: Tuple.5 Opt∆:x . update x-relative step-size ∆
12: t← t+ 1
13: end while

Algorithm 12 original positions of eight tuples in CSA
1: t← 0 . iteration counter
2: Tuple.2 Initx . initialize population
3: Tuple.1 f . evaluation
4: Tuple.3 Init∆:w . initialize w-relative step-size ∆
5: Tuple.3 Init∆:x . initialize x-relative step-size ∆
6: while Tuple.8 T do . stop strategy
7: Tuple.4 Optx . update population
8: Tuple.6 C . outliers treatment
9: Tuple.1 f . evaluation

10: Tuple.5 Opt∆:x . update x-relative step-size ∆
11: t← t+ 1
12: end while

94

A. ORIGINAL POSITIONS OF EIGHT TUPLES IN SELECTED ALGORITHMS

Algorithm 13 original positions of eight tuples in MFO
1: t← 0 . iteration counter
2: Tuple.2 Initx . initialize population
3: Tuple.3 Init∆:w . initialize w-relative step-size ∆
4: while Tuple.8 T do . stop strategy
5: Tuple.3 Init∆:z and Tuple.5 Opt∆:z. initialize and update z-relative step-size ∆
6: Tuple.6 C . outliers treatment
7: Tuple.1 f . evaluation
8: Tuple.3 Init∆:x and Tuple.5 Opt∆:x. initialize and update x-relative step-size ∆
9: Tuple.4 Optx . update population

10: t← t+ 1
11: end while

Algorithm 14 original positions of eight tuples in MBO
1: t← 0 . iteration counter
2: Tuple.2 Initx . initialize population
3: Tuple.1 f . evaluation
4: Tuple.3 Init∆:w . initialize w-relative step-size ∆
5: Tuple.3 Init∆:x . initialize x-relative step-size ∆
6: while Tuple.8 T do . stop strategy
7: Tuple.4 Optx . update population
8: Tuple.1 f . evaluation
9: Tuple.4 Optx . update population

10: Tuple.1 f . evaluation
11: Tuple.7 S . selection
12: Tuple.5 Opt∆:x . update x-relative step-size ∆
13: t← t+ 1
14: end while

95

B. RE-FRAMED ALGORITHM PSEUDO-CODE

Algorithm 15 original positions of eight tuples in BOA
1: t← 0 . iteration counter
2: Tuple.2 Initx . initialize population
3: Tuple.1 f . evaluation
4: Tuple.3 Init∆:z . initialize z-relative step-size ∆
5: Tuple.3 Init∆:x . initialize x-relative step-size ∆
6: while T do . stop strategy
7: Tuple.4 Optx . update population
8: Tuple.6 C . outliers treatment
9: Tuple.1 f . evaluation

10: Tuple.7 S . selection
11: Tuple.5 Opt∆:x . update x-relative step-size ∆
12: Tuple.5 Opt∆:z . update z-relative step-size ∆
13: t← t+ 1
14: end while

Algorithm 16 original positions of eight tuples in PSO
1: t← 0 . iteration counter
2: Tuple.2 Initx . initialize population
3: Tuple.1 f . evaluation
4: Tuple.3 Init∆:w . initialize w-relative step-size ∆
5: Tuple.3 Init∆:y . initialize y-relative step-size ∆
6: Tuple.3 Init∆:x . initialize x-relative step-size ∆
7: while T do . stop strategy
8: Tuple.5 Opt∆:y . update y-relative step-size ∆
9: Tuple.4 Optx . update population

10: Tuple.6 C . outliers treatment
11: Tuple.1 f . evaluation
12: Tuple.5 Opt∆:x . update x-relative step-size ∆
13: t← t+ 1
14: end while

B Re-framed Algorithm Pseudo-code

B.1 Re-framed Bat Inspired Algorithm (Re-framed BA)
• Objectives:

96

B. RE-FRAMED ALGORITHM PSEUDO-CODE

Objective Problem

f(xi) fitness of xi.

n the dimension of the search space.

[lbx,ubx] the interval of objective variable x, in our cases, it is defined in the
IOHprofiler, [lbx,ubx] = [−5,+5].

Objective Solution

xi it can be imagined as one individual in Swarm-Intelligence Algorithms,
xi ∈Rn.

• Parameters:

T maximum iteration, the budget in our cases, in our case, it is defined
in IOHprofiler.

M population size, M = 20,M ∈ [20,40].

xg the best position that the whole population has found so far.

yi the velocity for one individual yi.

z1 a kind of probability, in this case, it is called the decreasing pulse rate.

z2 the decreasing loudness.

z0
1 the initial value of pulse rate z1, z0

1 = 1, z0
1 ∈ [0,1].

z0
2 the initial value of loudness z2, z0

2 = 1, z0
2 ∈ (0,+∞).

w1 used to decrease pulse rate z1 , w1 = 0.1, w1 ∈ [−1,1].

w2 used to decrease loudness z2, w2 = 0.97, w2 ∈ [−1,1].

w3 used to update local position, w3 = 0.1, w3 ∈ [−1,1].

[lbw4 ,ubw4] the interval of frequency w4, [lbw4 ,ubw4] = [0,2].
[lbw4 ,ubw4] ⊂ [0,+∞].

97

B. RE-FRAMED ALGORITHM PSEUDO-CODE

• Components:
– Initialization Process:

(1) Initialize xi(t= 0):

xi(t= 0) = U(lbx,ubx), i= 1 . . .M 7.1

(2) Initialize yi(t= 0):

yi(t= 0) = U(0,0), i= 1 . . .M 7.2

(3) Initialize xg(t= 0):

xg(t= 0) = Min({xi(t)}), i= 1 . . .M 7.3

(4) Initialize z1(t= 0):
z1(t= 0) = z0

1 ×w2 7.4

(5) Initialize z2(t= 0):

z2(t= 0) = z0
2 × (1− e−w1×t) 7.5

– Optimization Process:
(1) Update the velocity yi(t) to generate yi(t+ 1):

yi(t+ 1) = yi(t) + U(lbw4 ,ubw4)× (xi(t)− xg(t)) 7.6

(2) Update xi(t+ 1) to generate x̂i(t+ 1):

x̂i(t+ 1) =

 xg(t) +w3 × rand× z1(t) , rand < z2(t)

xi(t) + yi(t+ 1) , o.w
7.7

(3) Dealing with outliers C:

xfixed
i,n (t+ 1) =


ubx , xi,n(t+ 1) > ubx

xi,n(t+ 1) , o.w
lbx , xi,n(t+ 1) < lbx

7.8

98

B. RE-FRAMED ALGORITHM PSEUDO-CODE

(4) Select xi(t+ 1) from x̂i(t+ 1):

xi(t+ 1) =

 x̂i(t+ 1) , f(x̂i(t+ 1)) < f(xi(t)) or rand > z1(t)

xi(t) , o.w
7.9

(5) Update xg(t) to generate xg(t+ 1):

xg(t+ 1) = Min(xg(t) ∪ {xi(t+ 1)}), i= 1 . . .M 7.10

(6) Update the decreasing loudness z1(t) to generate z1(t+ 1):

z1(t+ 1) = z1(t)×w2 7.11

(7) Update the pulse rate z2(t) to generate z2(t+ 1):

z2(t+ 1) = z0
2 × (1− e−w1×(t+1)) 7.12

99

B. RE-FRAMED ALGORITHM PSEUDO-CODE

Algorithm 17 Re-framed BA with population size M ; search space n, [lbx,ubx]; stop
condition T ; initialization method Initx, optimization method Optx, treatment C of
outliers, and selection S to objective solutions; initialization method Init∆ and optimization
method Opt∆ to step-size ∆.

1: t← 0
2: X(t)← Initx(n,M , [lbx,ubx]) as Eq.7.1 . initialize initial population
3: F (t)← f(X(t)) . evaluate
4: w, [lby,uby],z0← Init∆:w(w, [lby,uby],z0) . initialize w-relative step-size
5: Y(t)← Init∆:y(n,M , [lby,uby]) as Eq.7.2 . initialize y-relative step-size
6: xg(t)← Init∆:x(X(t)) as Eq.7.3 . initialize x-relative step-size
7: z(t)← Init∆:z(t,z0,w) as Eq.7.4, Eq.7.5 . initialize z-relative step-size
8: while stop condition T do
9: Y(t+ 1)←Opt∆:y(Y(t),xg,w) as Eq.7.6 . update y-relative step-size

10: X̂(t+ 1)←Optx(X(t),Y(t),xg(t),z(t),w) as Eq.7.7 . generate temporarily
updated population

11: X̂(t+ 1)← C(X̂(t+ 1)) as Eq.7.8 . treatment to outliers
12: F (t+ 1)← f(X̂(t+ 1)) . evaluate
13: X(t+ 1)← S(X(t),X̂(t+ 1),z(t)) as Eq.7.9 . select and generate finally

updated population
14: xg(t+ 1)← Init∆:x(X(t),X(t+ 1)) as Eq.?? . update x-relative step-size
15: z(t+ 1)←Opt∆:z(t+ 1,z(t),w) as Eq.7.11, Eq.7.12 . update z-relative

step-size
16: t← t+ 1
17: end while

B.2 Re-framed Grasshopper Optimization Algorithm (Re-framed
GOA)

• Objectives:

Objective Problem

f(xi) fitness of xi , (f : Rn→R).

n the dimensionality of the search space.

[lbx,ubx] the interval of objective variable x, in our case, it is defined in
IOHprofiler, [lbx,ubx] = [−5,+5].

100

B. RE-FRAMED ALGORITHM PSEUDO-CODE

Objective Solution

xi it can be imagined as one individual in Swarm-Intelligence Algorithms,
xi ∈Rn.

• Influencing factors:

T maximum iteration, the budget in our cases, in our case, it is defined
in IOHprofiler.

M population size, M = 100.

xg the best position that the whole population has found so far.

z a decreasing coefficient.

[lbz,ubz] the interval of assisting variable z, [lbz,ubz] = [0.00004.1],
[lbz,ubz] ⊂ [−∞,+∞].

w1 the intensity of attraction, w1 = 0.5.

w2 the attractive length scale, w2 = 1.5.

• Functions:
– Initialization Process:

(1) Initialize xi(t= 0):

xi(t= 0) = U(lbx,ubx), i= 1 . . .M 7.13

(2) Initialize xg(t= 0):

xg(t= 0) = Min({xi(t)}), i= 1 . . .M 7.14

(3) Initialize z(t):
z1(t) = ubz1 − t× (

ubz1 − lbz1

T
) 7.15

101

B. RE-FRAMED ALGORITHM PSEUDO-CODE

– Optimization Process:
(1) Update xi(t) to generate x̂i(t+ 1):

D̃i,j(t) = 2 + Dist(xi(t),xj(t))mod2

x̂i(t+ 1) = z(t)× (
M∑

j=1,j,i
z(t)× ubx − lbx

2 × (w1 × e
−D̃i,j (t)

w2 − e−D̃i,j(t))× xi(t)− xj(t)
Dist(xi(t),xj(t))

) + xg

7.16
(2) Dealing with outliers C:

xfixed
i,n (t+ 1) =


ubx , xi,n(t+ 1) > ubx

xi,n(t+ 1) , o.w
lbx , xi,n(t+ 1) < lbx

7.17

(3) Select xi(t+ 1) from x̂i(t+ 1):

xi(t+ 1) = x̂i(t+ 1) 7.18

(4) Update xg(t) to generate xg(t+ 1):

xg(t+ 1) = Min(xg(t) ∪ {xi(t+ 1)}), i= 1 . . .M 7.19

(5) Update z(t) to generate z(t+ 1):

z(t) = ubz − t× (
ubz − lbz

T
) 7.20

102

B. RE-FRAMED ALGORITHM PSEUDO-CODE

Algorithm 18 Re-framed GOA with population size M ; search space n, [lbx,ubx]; stop
condition T ; initialization method Initx, optimization method Optx, treatment C of
outliers, and selection S to objective solutions; initialization method Init∆ and optimization
method Opt∆ to step-size ∆.

1: t← 0
2: X(t)← Initx(n,M , [lbx,ubx]) as Eq.7.13 . initialize initial population
3: F (t)← f(X(t)) . evaluate
4: w← Init∆:w(w) . initialize w-relative step-size
5: xg(t)← Init∆:x(X(t)) as Eq.7.14 . initialize x-relative step-size
6: z(t)← Init∆:z(z

0) as Eq.7.15 . initialize z-relative step-size
7: while stop condition T do
8: X̂(t+ 1)←Optx(X(t),xg(t),z(t),w) as Eq.7.16 . generate temporarily

updated population
9: X̂(t+ 1)← C(X̂(t+ 1)) as Eq.?? . treatment to outliers

10: F (t+ 1)← f(X̂(t+ 1)) . evaluate
11: X(t+ 1)← S(X(t),X̂(t+ 1)) as Eq.7.18 . select and generate finally updated

population
12: xg(t+ 1)← Init∆:x(X(t),X(t+ 1)) as Eq.7.19 . update x-relative step-size
13: z(t+ 1)←Opt∆:z(z(t), t+ 1) as Eq.7.20 . update z-relative step-size
14: t← t+ 1
15: end while

B.3 Re-framed Crow Search Algorithm (Re-framed CSA)
• Objectives:

Objective Problem

f(xi) fitness of xi.

n the dimension of the search space.

[lbx,ubx] the interval of objective variable x, in our cases, it is defined in the
IOHprofiler, [lbx,ubx] = [−5,+5].

Objective Solution

xi it can be imagined as one individual in Swarm-Intelligence Algorithms,
xi ∈Rn.

103

B. RE-FRAMED ALGORITHM PSEUDO-CODE

• Parameters:

T maximum iteration, the budget in our cases, in our case, it is defined
in IOHprofiler.

M population size, M = 50.

xip the memory position xip for one individual xi.

w1 awareness probability, w1 = 0.1, w1 ∈ [0,1].

w2 flight length, w2 = 2, w2 ∈ (0,+∞).

• Functions:
– Initialization Process:

(1) Initialize xi(t= 0):

xi(t= 0) = U(lbx,ubx) 7.21

(2) Initialize xip(t= 0):

xip(t= 0) = xi(t= 0), i= 1 . . .M 7.22

– Optimization Process:
(1) Update xi(t+ 1) to generate x̂i(t+ 1):

x̂i(t+ 1) =

 xi(t) + r×w2 × (yj(t+ 1)− xi(t)) , r > w1

U(lbx,ubx) , o.w
7.23

(2) Dealing with outliers C:

xfixed
i,n (t+ 1) =

 xi,n(t) , xi,n(t+ 1) < lbx or xi,n(t+ 1) > ubx

xi,n(t+ 1) , o.w
7.24

104

B. RE-FRAMED ALGORITHM PSEUDO-CODE

(3) Select xi(t+ 1) from x̂i(t+ 1):

xi(t+ 1) = x̂i(t+ 1) 7.25

(4) Optimize xip(t) to generate xip(t+ 1):

xip(t+ 1) = Min({xip(t),xi(t+ 1)}) 7.26

Algorithm 19 Re-framed CSA with population size M ; search space n, [lbx,ubx]; stop
condition T ; initialization method Initx, optimization method Optx, treatment C of
outliers, and selection S to objective solutions; initialization method Init∆ and optimization
method Opt∆ to step-size ∆.

1: t← 0
2: Initx(t= 0),M as Eq.7.21 . Initialization Process
3: f . Evaluation
4: Init∆: xip(t= 0) as Eq.7.22
5: while termination criteria are not met do
6: Optx,C→ x̂i(t+ 1) as Eq.7.23, C as Eq.7.24
7: f(x̂i(t+ 1)) . Evaluation
8: S→ xi(t+ 1) according to Eq.7.25 . Selection
9: t← t+ 1

10: Opt∆: xip(t+ 1) as Eq.7.26
11: end while

B.4 Re-framed Moth-flame Optimization Algorithm (Re-framed
MFO)

• Objectives:

Objective Problem

f(xi) fitness of xi.

n the dimension of the search space.

[lbx,ubx] the interval of objective variable x, in our cases, it is defined in the
IOHprofiler, [lbx,ubx] = [−5,+5].

Objective Solution

105

B. RE-FRAMED ALGORITHM PSEUDO-CODE

xi it can be imagined as one individual in Swarm-Intelligence Algorithms,
xi ∈Rn.

• Parameters:

T maximum iteration, the budget in our cases, in our case, it is defined
in IOHprofiler.

M population size, M = 30.

yi the best flame position for one individual yi ∈Rn.

z1i a weight value.

z2 a kind of threshold.

w the shape of spiral, w = 1, w ∈ (0,+∞).

• Functions:
– Initialization Process:

(1) Initialize xi(t= 0):

xi(t= 0) = U(lbx,ubx), i= 1 . . .M 7.27

(2) Initialize xs(t= 1):

〈xi(t)〉= Sort({xi(t)}), i= 1 . . .M 7.28

(3) Initialize a weighting value z1i(t) :

z1i(t) = rand× (−2− t

T
) + 1 7.29

(4) Initialize the threshold z2(t) :

z2(t) = Round(M − t× M − 1
T

) 7.30

106

B. RE-FRAMED ALGORITHM PSEUDO-CODE

– Optimization Process:
(1) Update xi(t) to generate x̂i(t+ 1):

x̂i(t+ 1) =

 (xsi(t)− xi(t))× ew×z1i
(t) × cos(2π× z1i(t)) + xsi(t), i≤ z2(t)

(xsz2(t)
(t)− xi(t))× ew×z1i

(t) × cos(2π× z1i(t)) + xsz2(t)
(t), o.w.

7.31
(2) Dealing with outliers C:

xfixed
i,n (t+ 1) =


ubx , xi,n(t+ 1) > ubx

xi,n(t+ 1) , o.w
lbx , xi,n(t+ 1) < lbx

7.32

(3) Select xi(t+ 1) from x̂i(t+ 1):

xi(t+ 1) = x̂i(t+ 1) 7.33

(4) Update xs(t) to generate xs(t+ 1):

〈xi(t+ 1)〉= Sort({xi(t)} ∪ {xi(t+ 1)}), i= 1 . . .M 7.34

(5) Update z1i(t) to generate z1i(t+ 1):

z1i(t) = rand× (−2− t

T
) + 1 7.35

(6) Update z2(t) to generate z2(t+ 1):

z2(t) = Round(M − t× M − 1
T

) 7.36

107

B. RE-FRAMED ALGORITHM PSEUDO-CODE

Algorithm 20 Re-framed MFO with population size M ; search space n, [lbx,ubx]; stop
condition T ; initialization method Initx, optimization method Optx, treatment C of
outliers, and selection S to objective solutions; initialization method Init∆ and optimization
method Opt∆ to step-size ∆.

1: t← 0
2: X(t)← Initx(n,M , [lbx,ubx]) as Eq.?? . initialize initial population
3: F (t)← f(X(t)) . evaluate
4: w← Init∆:w(w) . initialize w-relative step-size
5: Xs(t)← Init∆:xs(X(t)) as Eq.?? . initialize x-relative step-size
6: z(t)← Init∆:z(t,T) as Eq.??, Eq.?? . initialize z-relative step-size
7: while stop condition T do
8: X̂(t+ 1)←Optx(X(t),Xs(t),z(t),w) as Eq.??. generate temporarily updated

population
9: X̂(t+ 1)← C(X̂(t+ 1)) as Eq.7.32 . treatment to outliers

10: F (t+ 1)← f(X̂i(t+ 1)) . evaluate
11: X(t+ 1)← S(Xi(t),X̂i(t+ 1)) as Eq.?? . select and generate finally updated

population
12: Xs(t+ 1)← Init∆:xs(X(t),X(t+ 1)) as Eq.?? . update dynamic x-relative

vector step-size xs
13: z1(t+ 1)←Opt∆:z1(t+ 1,T) as Eq.??, Eq.?? . update z-relative step-size
14: t← t+ 1
15: end while

B.5 Re-framed Monarch Butterfly Algorithm (Re-framed MBO)
• Objectives:

Objective Problem

f(xi) fitness of xi.

n the dimension of the search space.

[lbx,ubx] the interval of objective variable x, in our cases, it is defined in the
IOHprofiler, [lbx,ubx] = [−5,+5].

Objective Solution

xi it can be imagined as one individual in Swarm-Intelligence Algorithms,
xi ∈Rn.

108

B. RE-FRAMED ALGORITHM PSEUDO-CODE

• Parameters:

T the maximum iterations, the budget in our cases, in our case, it is
defined in IOHprofiler.

M population size, M = 50.

xg the best position that the whole population has found so far.

z weighting value of individuals.

w1 the ratio of stronger population to weaker population, specifically
named ’partition’, w1 = 5/12.

w2 the migrating rate, specifically named ’period’, w2 = 1.2.

w3 the adjusting rate, specifically named ’BAR’, the adjusting rate,
w3 = 5/12.

w4 the maximum one step size, w4 = 1.

w5 the number of elitists, w5 = 2, w5 ∈ [0,M].

• Functions:
– Initialization Process:

(1) Initialize xi(t= 0):

xi(t= 0) = U(lbx,ubx), i= 1 . . .M 7.37

(2) Initialize xg(t= 0):

xg(t= 0) = Min({xi(t)}), i= 1 . . .M 7.38

(3) Initialize z(t= 0):
z(t= 0) = w4

t2
7.39

– Optimization Process:

109

B. RE-FRAMED ALGORITHM PSEUDO-CODE

(1) Optimize x̂i(t+ 1):

〈xi(t)〉 = Sort({xi(t)}), i= 1 . . .M

strongx̂i,n(t+ 1) =

 xj,n(t) ∈ 〈xi(t)〉,j ∈ [1,M ′
] , r×w2 6 w1

xj,n(t) ∈ 〈xi(t)〉,j ∈ (M
′ ,M] , o.w.

M
′

= dw1×Me

weakx̂i,n(t+ 1) =


xg,n(t),r > w1 xj,n(t) + z(t)×

(
Lévyi,n − 0.5

)
,j ∈ (M

′ ,M],r > w3

xj,n(t) ∈ 〈xi(t)〉,j ∈ (M
′ ,M],o.w.

,o.w.

{x̂i(t+ 1)} = {strongx̂i(t+ 1)} ∪ {weakx̂i(t+ 1)}
7.40

where M ′
= dw1×Me, Lévyi,n = Lévy(d,n,T) with d∼ Exp(2×T).

(2) Dealing with outliers C:

xfixed
i,n (t+ 1) =


ubx , xi,n(t+ 1) > ubx

xi,n(t+ 1) , o.w
lbx , xi,n(t+ 1) < lbx

7.41

(3) Select xi(t+ 1) from x̂i(t+ 1):

〈x̂i(t+ 1)〉= Sort({x̂i(t+ 1)}), i= 1 . . .M

xi(t+ 1) ∈ {〈x̂i(t+ 1)〉, i= 1 . . .M −w5} ∪ {〈xi(t)〉, i= 1 . . .w5}
7.42

(4) Update xg(t) to generate xg(t+ 1):

xg(t+ 1) = Min(xg(t) ∪ {xi(t+ 1)}), i= 1 . . .M 7.43

(5) Update z(t) to generate z(t+ 1):

z(t+ 1) = w4
(t+ 1)2 7.44

110

B. RE-FRAMED ALGORITHM PSEUDO-CODE

Algorithm 21 Re-framed MBO
1: t← 0
2: X(t)← Initx(n,M , [lbx,ubx]) as Eq.7.37 . initialize initial population
3: F (t)← f(X(t)) . evaluate
4: w← Init∆:w(w) . initialize w-relative step-size
5: xg(t)← Init∆:x(X(t)) as Eq.7.38 . initialize x-relative step-size
6: z← Init∆:z(w) as Eq.7.39 . initialize z-relative step-size
7: while stop condition T do
8: X̂(t+ 1)←Optx(X(t),xg(t),z(t),w) as Eq.7.40 . generate temporarily

updated population
9: X̂(t+ 1)← C(X̂(t+ 1)) as Eq.7.41 . treatment to outliers

10: F (t+ 1)← f(X̂(t+ 1)) . evaluate
11: X(t+ 1)← S(X(t),X̂(t+ 1)) as Eq.7.42 . select and generate finally updated

population
12: xg(t+ 1)← Init∆:x(X(t),X(t+ 1)) as Eq.7.43 . update x-relative step-size
13: z(t+ 1)←Opt∆:z(z(t), t+ 1) as Eq.7.44 . update z-relative step-size
14: t← t+ 1
15: end while

B.6 Re-framed Butterfly Optimization Algorithm (Re-framed BOA)
• Objectives:

Objective Problem

f(xi) fitness of xi , (f : Rn→R).

n the dimensionality of the search space.

[lbx,ubx] the interval of objective variable x, in our case, it is defined in
IOHprofiler, [lbx,ubx] = [−5,+5].

Objective Solution

xi it can be imagined as one individual in Swarm-Intelligence Algorithms,
xi ∈Rn.

• Parameters:

111

B. RE-FRAMED ALGORITHM PSEUDO-CODE

T maximum iteration, the budget in our cases, in our case, it is defined
in IOHprofiler.

M population size, M = 5.

xg the best position that the whole population has found so far.

z sensory modality.

z0 the initial value of sensory modality z, z0 = 0.01, z0 ∈ [0,1].

w1 power exponent, w1 = 0.1, w1 ∈ [0,1].

w2 switch probability, w2 = 0.8.

• Functions:
– Initialization Process:

(1) Initialize xi(t= 0):

xi(t= 0) = U(lbx,ubx), i= 1 . . .M 7.45

(2) Initialize xg(t= 0):

xg(t= 0) = Min({xi(t)}), i= 1 . . .M 7.46

(3) Initialize z(t= 0):
z(t= 0) = z0 7.47

– Optimization Process:
(1) Update x(t) to generate x̂i(t+ 1):

x̂i(t+ 1) =

 xi(t) + (rand2 × xg(t)− xi(t))× z1(t)× f (xi(t))w1 , rand > w2

xi(t) + (rand2 × xj(t)− xk(t))× z1(t)× f (xi(t))w1 , o.w
7.48

where xj and xk are any two neighbors around xi.

112

B. RE-FRAMED ALGORITHM PSEUDO-CODE

(2) Dealing with outliers C:

xfixed
i,n (t+ 1) =


ubx , xi,n(t+ 1) > ubx

xi,n(t+ 1) , o.w
lbx , xi,n(t+ 1) < lbx

7.49

(3) Select xi(t+ 1) from x̂i(t+ 1):

xi(t+ 1) =

 x̂i(t+ 1) , f(x̂i(t+ 1)) < f(xi(t))

xi(t) , o.w
7.50

(4) Update xg(t) to generate xg(t+ 1):

xg(t+ 1) = Min(xg(t) ∪ {xi(t+ 1)}), i= 1 . . .M 7.51

(5) Update z(t) to generate z(t+ 1):

z(t+ 1) = z(t) +
0.025

z(t)× T
7.52

113

B. RE-FRAMED ALGORITHM PSEUDO-CODE

Algorithm 22 Re-framed BOA with population size M ; search space n, [lbx,ubx]; stop
condition T ; initialization method Initx, optimization method Optx, treatment C of
outliers, and selection S to objective solutions; initialization method Init∆ and optimization
method Opt∆ to step-size ∆.

1: t← 0
2: X(t)← Initx(n,M , [lbx,ubx]) as Eq.7.45 . initialize initial population
3: F (t)← f(X(t)) . evaluate
4: w,z0← Init∆:w(w,z0) . initialize w-relative step-size
5: xg(t)← Init∆:x(X(t)) as Eq.7.46 . initialize x-relative step-size
6: z(t)← Init∆:z(z

0) as Eq.7.47 . initialize z-relative step-size
7: while stop condition T do
8: X̂(t+ 1)←Optx(X(t),xg(t),z(t),w) as Eq.7.48 . generate temporarily

updated population
9: X̂(t+ 1)← C(X̂(t+ 1)) as Eq.7.49 . treatment to outliers

10: F (t+ 1)← f(X̂(t+ 1)) . evaluate
11: X(t+ 1)← S(X(t),X̂(t+ 1)) as Eq.7.50 . select and generate finally updated

population
12: xg(t+ 1)← Init∆:x(X(t),X(t+ 1)) as Eq.7.51 . update x-relative step-size
13: z(t+ 1)←Opt∆:z(z(t), t+ 1) as Eq.7.52 . update z-relative step-size
14: t← t+ 1
15: end while

B.7 Re-framed Particle Swarm Optimization (Re-framed PSO)
• Objectives:

Objective Problem

f(xi) fitness of xi.

n the dimension of the search space.

[lbx,ubx] the interval of objective variable x, in our cases, it is defined in the
IOHprofiler, [lbx,ubx] = [−5,+5].

Objective Solution

xi it can be imagined as one individual in Swarm-Intelligence Algorithms,
xi ∈Rn.

114

B. RE-FRAMED ALGORITHM PSEUDO-CODE

• Parameters:

T maximum iteration, the budget in our cases, in our case, it is defined
in IOHprofiler.

M population size, M = 25.

xip the best position that this individual xi has found so far.

xg the best position that the whole population has found so far.

yi the velocity for one individual yi ∈Rn.

[lby,uby] the interval of assisting variable y, [lby,uby] = [0,0].

w1 scaling strength, here it is specifically called inertia weight, w1 = 0.73,
w1 ∈ (0,+∞).

w2 here it is specifically called personal coefficient, w2 = 1.49,
w2 ∈ [0,+∞).

w3 here it is specifically called global coefficient, w3 = 1.49,
w3 ∈ [0,+∞).

• Functions:
– Initialization Process:

(1) Initialize xi(t= 0):

xi(t= 0) = U(lbx,ubx), i= 1 . . .M 7.53

(2) Initialize yi(t= 0):

yi(t= 0) = U(lby,uby), i= 1 . . .M 7.54

(3) Initialize xip(t= 0):
xip(t= 0) = xi(t) 7.55

115

B. RE-FRAMED ALGORITHM PSEUDO-CODE

(4) Initialize xg(t= 0):

xg(t= 0) = Min({xi(t)}), i= 1 . . .M 7.56

– Optimization Process:
(1) Update yi(t) to generate yi(t+ 1):

yi(t+ 1) = w1 × yi(t) + U(0,w2)× (xip(t)− xi(t))

+U(0,w3)× (xg(t)− xi(t))
7.57

(2) Update xi(t) to generate x̂i(t+ 1):

x̂i(t+ 1) = xi(t) + yi(t+ 1) 7.58

(3) Dealing with outliers C:

xfixed
i,n (t+ 1) =


ubx , xi,n(t+ 1) > ubx

xi,n(t+ 1) , o.w
lbx , xi,n(t+ 1) < lbx

7.59

(4) Select xi(t+ 1) from x̂i(t+ 1):

xi(t+ 1) = x̂i(t+ 1) 7.60

(5) Optimize xip(t) to generate xip(t+ 1):

xip(t+ 1) = Min({xip(t),xi(t+ 1)}) 7.61

(6) Optimize xg(t) to generate xg(t+ 1):

xg(t+ 1) = Min(xg(t) ∪ {xi(t+ 1)}), i= 1 . . .M 7.62

116

B. RE-FRAMED ALGORITHM PSEUDO-CODE

Algorithm 23 Re-framed PSO with population size M ; search space n, [lbx,ubx]; stop
condition T ; initialization method Initx, optimization method Optx, treatment C of
outliers, and selection S to objective solutions; initialization method Init∆ and optimization
method Opt∆ to step-size ∆.

1: t← 0
2: X(t)← Initx(n,M , [lbx,ubx]) as Eq.7.53 . initialize initial population
3: F (t)← f(X(t)) . evaluate
4: w, [lby,uby]← Init∆:w(w, [lby,uby]) . initialize w-relative step-size
5: Y(t)← Init∆:y(n,M , [lby,uby]) as Eq.7.54 . initialize y-relative step-size
6: Xp(t),xg(t)← Init∆:x(X(t)) as Eq.7.55, Eq.7.56 . initialize x-relative step-size
7: while stop condition T do
8: Y(t+ 1)←Opt∆:y(Y(t) as Eq.7.57 . update y-relative step-size
9: X̂(t+ 1)←Optx(X(t),Y(t),xg(t),Xp(t),w) as Eq.7.58 . generate

temporarily updated population
10: X̂(t+ 1)← C(X̂(t+ 1)) as Eq.7.59 . treatment to outliers
11: F (t+ 1)← f(X̂(t+ 1)) . evaluate
12: X(t+ 1)← S(X(t),X̂(t+ 1)) as Eq.7.60 . select and generate finally updated

population
13: Xp(t+ 1),xg(t+ 1)← Init∆:x(X(t),X(t+ 1)) as Eq.7.61, Eq.7.62 . update

x-relative step-size
14: t← t+ 1
15: end while

117

	Introduction
	Motivation
	Overview

	Unified Terminologies
	Motivation
	Specific Swarm-based Algorithms
	Bat-inspired Algorithm (BA)
	Grasshopper Optimization Algorithm (GOA)
	Crow Search Algorithm (CSA)
	Moth-flame Optimization Algorithm (MFO)
	Monarch Butterfly Optimization (MBO)
	Butterfly Optimization Algorithm (BOA)
	Particle Swarm Optimization (PSO)

	Unified Terminologies
	Unified Terminologies Catalog
	Extension in Other Swarm-based Algorithms.

	Summary

	Unified Procedure
	Introduction
	Unified Procedure
	Summary

	Unified Framework
	Motivation
	Re-framed Nature-inspired Algorithms
	Re-framed BA
	Re-framed GOA
	Re-framed CSA
	Re-framed MFO
	Re-framed MBO
	Re-framed BOA
	Re-framed PSO

	Unified Nature-Inspired Optimization Algorithm (UNIOA)
	Unified Framework — UNIOA
	UNIOA Package

	Summary

	Experimental Setup of Benchmark Study
	Motivation for experiments
	Summary

	Experimental Results
	Introduction
	Experiments for avoiding side effects
	Results
	Conclusion

	Comparing UNIOA to the original framework
	Results
	Conclusion

	Observations among algorithms in UNIOA
	Summary

	Summary
	Conclusions in our studies
	Limitations in our analysis
	Future work
	Acknowledgement
	References
	Appendices
	Original positions of eight tuples in selected algorithms
	Re-framed Algorithm Pseudo-code
	Re-framed Bat Inspired Algorithm (Re-framed BA)
	Re-framed Grasshopper Optimization Algorithm (Re-framed GOA)
	Re-framed Crow Search Algorithm (Re-framed CSA)
	Re-framed Moth-flame Optimization Algorithm (Re-framed MFO)
	Re-framed Monarch Butterfly Algorithm (Re-framed MBO)
	Re-framed Butterfly Optimization Algorithm (Re-framed BOA)
	Re-framed Particle Swarm Optimization (Re-framed PSO)

