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Abstract

In this thesis, we will the basic concepts of Combinatorial Game Theory and Synchro-
nized Game Theory. We introduce CGSynch, a program we have written to analyze games
from these fields, and explain how this program works. Lastly, we show the correctness of
CGSynch and compare CGSynch with CGSuite, the currently best application for ana-
lyzing combinatorial games.
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1 Introduction
Combinatorial Game Theory is a subfield of Game Theory, in which a subset of games is analyzed
that are in some sense simple. That is, two-player games that are deterministic, in which both
players have perfect information and take turns making moves. Despite this, the theory of these
games is surprisingly rich and analyzing some of these games, especially larger ones, is non-trivial.
An application, CGSuite, was written to aid in making these analyses.

Synchronized Game Theory is a related field, in which a similar but different class of games is
analyzed. In these deterministic two-player games both players make their moves simultaneously,
and thus players in some sense no longer have perfect information. As a result, synchronized games
are even more difficult to analyze by hand. However, CGSuite cannot analyze these games, and
also no similar application existed for this class of games. Therefore, most analyses of these games
had to be done by hand, using mathematical tricks or using ad-hoc written computer programs.

To solve this, we have written a new application, CGSynch. This program was written to deter-
mine simple properties of both combinatorial games and synchronized games. While in principle
the user interface is focused on inputting positions of Push, Shove, Cherries, Stack Cher-
ries and Hackenbush, the code was made with extensibility in mind and as such adding other
games is certainly possible. The code for this program can be found on GitHub [10], including
documentation on how to extend its analysis to other games.

In Section 2 of this thesis, we will explain the basics of Combinatorial Game Theory, and in Sec-
tion 3 we will explain the basics of Synchronized Game Theory. Both of these sections will contain
definitions and theorems that were used in CGSynch, as well as explanation of how the com-
binatorial and synchronized versions of the games Hackenbush, Push, Shove, Cherries and
Stack Cherries are played. In Section 4 we will give a high-level explanation of how CGSynch
works. In Section 5 we will show that CGSynch can accurately determine properties of combi-
natorial and synchronized games. We will also show that for combinatorial games CGSynch is
faster than CGSuite, at least for computing the canonical form of games.

This thesis has been written at Leiden University as part of the double bachelor of mathematics
and computer science. It was supervised by Walter Kosters and Mark van den Bergh.
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2 Combinatorial Games
This section will contain definitions and theorems for and about combinatorial games. Most of the
proofs of these theorems are omitted for brevity, but all of them can be found in [1, 4, 12].

Combinatorial games are deterministic games where two players alternate taking turns and have
perfect information of the state of the game. The first player unable to make a move loses. We
start by looking at examples of such games.

2.1 Rulesets

There are many different combinatorial games one can play, but the application that we have
created for analyzing combinatorial games supports only five of them. The rulesets describing these
games, Hackenbush, Cherries, Stack Cherries, Shove and Push, are therefore explained
in this section. We will also use positions of these rulesets as examples in the rest of this thesis.

For other examples of combinatorial games, we refer the reader to [1, Appendix 4], which lists a
large number of rulesets.

A position in Hackenbush is a normal graph in which a single node is labelled as “the ground”,
and in which all edges are coloured blue or red. The labelled node is often drawn as a horizontal
line with its adjacent edges rooted in different places. An example of such a position can be seen
in Figure 2.1.

Figure 2.1: An example of a Hackenbush position [13].

Two players, Blue and Red, take turns removing an edge of their colour. If after their move any
part of the graph becomes disconnected from the ground, that part of the graph is also removed
from play.

A variant of this game allows for some edges to be green, indicating that they may be removed by
either player. The application we have written does not support these green edges, but we mention
this here as it is used for an example later on.

The game Cherries is played on a strip of finite length. Each square in this strip can either
contain a black stone, a white stone or no stone at all. An example of such a position can be seen
in Figure 2.2.
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Figure 2.2: An example of a Cherries position.

On their turn, each player may remove any stone if it is of their colour and it is adjacent to either
an empty square or either end of the strip.

The game Stack Cherries is very similar to Cherries in that it is also played on a finite strip
in which each square contains either a black or white stone or no stone at all. Additionally, players
may still only remove a stone of their own colour. However, this stone must now specifically have
an empty square to the left of it, or be the left-most stone of the strip. In some sense Stack
Cherries is thus a restricted version of Cherries.
An example of such a position can be seen in Figure 2.3. The triangle on the left is used to
distinguish Stack Cherries positions from Cherries positions.

Figure 2.3: An example of a Stack Cherries position.

The game Push is also played on a finite strip. Instead of black and white stones, the squares in
this strip can contain either a blue or a red hand. An example of such a position can be seen in
Figure 2.4.

Figure 2.4: An example of a Push position.

On their turn, each player may choose a hand of their own colour. This hand and every hand left
of it up to the next empty square or the edge of the board is moved one square to the left. Any
hand that is pushed or moved off of the strip is removed from play.

The game Shove is another game that is played on a finite strip. Just as in Push, the squares of
this strip contain a red or blue hand, but with more “windy” lines drawn behind it. An example
of such a position can be seen in Figure 2.5.

Figure 2.5: An example of a Shove position.

On their turn, each player may choose a hand of their own colour. That hand and every piece
to the left of it are moved one square to the left, even if there are one or more empty squares in
between it and the chosen piece. If this would move a piece off of the strip, it is instead removed
from play.

3



2.2 Games and Outcome Classes

Combinatorial games are generally the same as those discussed above. There are two players, Left,
Blue or Black, who is usually female, and Right, Red or White, who is usually male. These genders
allow us to refer to players as “she” or “he” and make it immediately clear who is referred to.
These players take turns making moves. When after a finite number of turns one player is unable
to move, this player is declared the loser.

Definition 2.1. A combinatorial game G is a pair {GL | GR}, where GL and GR are sets of
combinatorial games.

These sets GL and GR are also called the option sets of Left and Right, respectively, and contain
the positions either player can move to from this position.

Example 2.2. An example of the definition of a Hackenbush game written as a combinatorial
game can be seen in Figure 2.6.

Figure 2.6: An example of the definition of a Combinatorial Game.

/

The class of all combinatorial games is very large, and in this thesis we are only interested in a
certain subclass of these. We will define this subclass G in the following definition.

Definition 2.3. We set G0 = {{∅ | ∅}}, the set only containing the empty game.

For all n ∈ N0, we recursively define Gn+1 = {GLn | GRn } where GLn ,GRn ⊆ Gn.

Lastly, we set G =
⋃
n∈N0

Gn.

By only looking at combinatorial games contained in G, we restrict ourselves to looking at games
that end after a finite number of moves. Forgoing this assumption can lead for example to loopy
games, in which a position can be reached from itself after one or more moves, or transfinite games,
which have can take an infinite amount of moves to play out. These classes of games have their
own very interesting mathematical properties, but we will not focus on these in this thesis. The
reader that is interested in these, can read more about them in [1, Appendix 4] or in [12].

Next, we define the birthday of a combinatorial game.

Definition 2.4. Let G = {GL | GR} ∈ G be a combinatorial game. We recursively define its
birthday b(G) by:

b(G) =

{
0 if GR = GL = ∅,
1 + max

H∈GL∪GR
b(H) else.
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Equivalently, one can say that the birthday of G is the smallest n ∈ N such that G ∈ Gn, or that
the birthday of G is the height of its the game tree.

We can subdivide this set G based on the outcome class of a combinatorial game G, that is,
the winner of the game G assuming perfect play from both players. This results in four classes
L,R,N ,P ⊂ G as shown in Table 2.1.

Right moves first
Left wins Right wins

Left moves first
Left wins L (left) N (next)

Right wins P (previous) R (right)

Table 2.1: The winner of a position based on who wins and who starts playing.

Example 2.5. In Figure 2.7, examples of positions belonging all winning classes are shown.

Figure 2.7: Examples of Hackenbush positions from winning classes L, R, N and P respectively.

/

We define o : G→ {L,R,N ,P} to be the function that maps a game position to its outcome class.
This value can be found recursively using the following theorem.

Theorem 2.6. Let G = {GL | GR} ∈ G be some game. Then the outcome class o(G) can be
determined recursively by using Table 2.2.

∃GR ∈ GR such that GR ∈ R ∪ P ∀GR ∈ GR: GR ∈ N ∪ L
∃GL ∈ GL such that GR ∈ L ∪ P o(G) = N o(G) = L
∀GL ∈ GL: GL ∈ N ∪R o(G) = R o(G) = P

Table 2.2: Table defining the outcome classes of games.

Next, we will define a partial order on the set of outcome classes by L > P ,N and P ,N > R.
This will be used in Section 2.4 when defining the partial order of combinatorial games.
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2.3 Addition and Subtraction

In this section we will define an addition operation + on G. Later in this section, we will define
its inverse operation −.

The addition operation is defined below. Intuitively, we see G + H as a combinatorial game in
which each player is allowed to move on either G or H, leaving the other operand as is.

Definition 2.7. Let G,H ∈ G, with G = {GL | GR}, H = {HL | HR}. Then we recursively define:

G+H = {GL +H,G+HL | GR +H,G+HR}.

Here, addition with a set is defined as the union of the sum of each element, for example:

GL +H =
⋃

GL∈GL

{
GL +H

}
.

We also define the game 0 = {∅ | ∅}, which is a neutral element of this addition.

Example 2.8. Two examples of addition of two Hackenbush positions can be found in Figure 2.8.

(a) A sum of two Hackenbush positions. (b) A sum of a Hackenbush position and 0.

Figure 2.8: Examples of sums of Hackenbush positions.

/

Using this definition of addition, we can also define the inverse of a game. Intuitively, this will be
the game in which Right has all the options that Left had in the original game and vice versa.

Definition 2.9. Let G ∈ G with G = {GL | GR}. Then we recursively define:

−G = {−GR | −GL}.
Where the inverse of a set is defined as the set of the set of the inverses, for example:

−GL =
⋃

GL∈GL

{
−GL

}
.

Next, we define equality on games:

Definition 2.10. Let G,H ∈ G. Then:

G = H ⇐⇒ ∀
X∈G

o(G+X) = o(H +X).

Theorem 2.11. The = defined above is an equivalence relation.

It also turns out there is an easy way to check whether a game is equal to 0:
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Theorem 2.12. Let G ∈ G. Then G = 0 ⇐⇒ G ∈ P .

While the equality defined above is very useful, it is sometimes also useful to denote when two
games are exactly the same. That is, their left option sets are equal and their right option sets are
equal. We define this below.

Definition 2.13. Let G,H ∈ G be two combinatorial games. We say G and H are isomorphic
and write G ∼= H if and only if GL ∼= HL and GR ∼= HR.

It turns out the addition and subtraction we have defined have all the natural properties one would
expect from an addition and subtraction and they give rise to an Abelian group (G, 0,+,=). One
can find more information on this in [1].

2.4 Comparing Games

In the previous section we defined an addition and subtraction on the set G and noted that these
have natural properties resulting in G being an Abelian group. In this section we will define a
partial order on G.

Definition 2.14. Let G,H ∈ G. Then G ≥ H if for all X ∈ G : o(G+X) ≥ o(H +X).

Intuitively, this definition says that whenever we come across a position of which H is a summand,
replacing this with G only improves the original position for Left.

We define >, < and ≤ as one would expect based on the definition of ≥.

Theorem 2.15. The relation ≥ is a partial ordering on G.

Furthermore, the outcome class of a game is closely linked to how it compares to the game 0.

Theorem 2.16. Let G ∈ G. Then:

G ≥ 0 ⇐⇒ G ∈ L ∪ P
G > 0 ⇐⇒ G ∈ L
G < 0 ⇐⇒ G ∈ R

Based on the above theorem and intuition on how the ordering of real numbers work, one might
expect that all games are either equal to, or smaller or greater than 0, and might conclude that
there are no games in which the next player wins. This is, however, not the case, because there exist
combinatorial games that cannot be compared with 0. An example of this is the Hackenbush
position {0 | 0} in Example 2.7. For such games, the following notation is used.

Definition 2.17. Let G,H ∈ G, such that neither G ≤ H nor H ≤ G. We then say G and H are
incomparable, and write G ‖ H.
Additionally, we write G |B H when either G ‖ H or G > H, and similarly for G C| H.

Using this, we can find the games where the next player wins.

Theorem 2.18. Let G ∈ G. Then:

G ‖ 0 ⇐⇒ G ∈ N
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2.5 Canonical Form

It is often possible to simplify combinatorial games. For example, if G = {GL | GR} is a combina-
torial game such that for some GL, GL′ ∈ GL we have that GL′

< GL, the left player will never play
to the position GL′

from G. In some sense, they can thus be removed from GL without changing the
game that is being played. We then say that GL′

is a dominated position, or that GL′
is dominated

by GL.

Theorem 2.19. Let G = {A,B,C, . . . | α, β, γ, . . .} ∈ G be such that B ≥ A and β ≤ α. Then
G = {B,C, . . . | β, γ, . . .}.

Apart from domination, there is another way to simplify a combinatorial game: reversibility.

Theorem 2.20. Let G = {A,B,C . . . | α, β, γ, . . .} ∈ G be such that there exists a AR ∈ AR

such that G ≥ AR. Write AR = {A′, B′, C ′, . . . | α′, β′, γ′, . . .}. Then by reversibility we have that
G = {A′, B′, C ′, . . . , B, C, . . . | α, β, γ, . . .}.

Example 2.22 shows an example of reversibility. Of course, reversibility also applies to the other
player, that is, if all options of both players are swapped and there exists an αL ≥ G with
αL = {A′, B′, C ′, . . . | α′, β′, γ′} then G = {A,B,C, . . . | β, γ, . . . , α′, β′, γ′ . . .}.

We thus have found two ways of simplifying a position. By starting with any game G, we can always
apply these simplifications a finite number of times until no more simplifications are possible. We
then say that this new game G′ is in canonical form and that it is the canonical form of G.

One might ask whether the canonical form of a position is unique, and this turns out to be the
case.

Theorem 2.21. Let G,G′ ∈ G be in canonical form such that G = G′. Then G ∼= G′.

Figure 2.9: A Hackenbush position won by the previous player.

Example 2.22. Let G be the combinatorial game corresponding to the Hackenbush position in
Figure 2.9, that is, G = {−1 | 1}. Then the canonical form of G is the game 0.

One can compute this by noticing that both the −1 and 1 are reversible, as they have a left
respective right option of { | } = 0 and 0 ≥ {−1 | 1} as 0 − {−1 | 1} is a win for Left playing
second. Replacing these options with the left respective right options of 0 results in the game
{ | } = 0, which cannot be simplified further. Thus, G = 0 as expected based on Theorem 2.12.

/

2.6 Values of Games

In the previous sections, we defined what a combinatorial game was, and showed that G is a
partially ordered Abelian group. We also defined a game 0, which already seems to imply that we
can assign numbers to other games. This indeed turns out to be the case.
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Definition 2.23. Let n ∈ N>0. Then we define the following games:

n = {n− 1 | }
−n = { | −n+ 1}

Furthermore, these numbers behave under the operations defined before as one would expect.

Theorem 2.24. Let A,B,C ∈ G with respective values a, b, c ∈ Z. Then:

A ≥ B ⇐⇒ a ≥ b

A = −B ⇐⇒ a = −b
A+B = C ⇐⇒ a+ b = c

As a result of these statements, integers are isomorphic with a subset of G. We will use this
isomorphism to interchangeably use integers and games with integer value when referring to them.
For example, ‘13’ will be used for both the game {12 |}, whose value is 13, and for the integer 13
itself.

Figure 2.10: A Hackenbush position with value 1.

Example 2.25. In Figure 2.10 one can see a Hackenbush position with value 2 +−1 = 1. /

We can also define a subset of fractions, usually called the dyadic fractions. These are all the
fractions with a power of two as their denominator.

Definition 2.26. Let m, j ∈ Z with m an odd number and j ≥ 1. Then we define the following
game:

m

2j
=

{
m− 1

2j

∣∣∣∣ m+ 1

2j

}

Just like integers, these games behave as one would expect under the operations we defined before.
That is, Theorem 2.24 still holds when we take the values of games A and B to be either integers
or dyadic fractions. In general, we will call a combinatorial game that is either an integer or a
dyadic fraction a number.

By using Theorem 2.24 we can see that numbers are in many cases easier to work with than
general combinatorial games. Additionally, we can in some cases easily determine the value of a
game whose options are all numbers.

9



Definition 2.27. If xL, xR are numbers and xL < xR, then we define the simplest number x
between xL and xR as follows:

• If there exists an integer n ∈ Z such that xL < n < xR, then we take x to be the smallest
such number in absolute value.

• Otherwise, we take x to be the dyadic fraction m
2j

such that xL < x < xR for which j is
minimal.

Theorem 2.28 (Simplest Number Theorem). Let G ∈ G be such that all left and right options
are numbers, and such that all left options are smaller than all right options. Then G is equal to
the simplest number between the maximal left option and the minimal right option.

Theorem 2.29. Let G = {GL | GR} ∈ G. If there exists a number x such that GL C| x C| GR,
then G = x.

With this last theorem, we conclude our exploration of the basics of Combinatorial Game Theory.

2.7 Efficiently Computing Values of Shove and Cherries games

In the previous section, we have seen how we can calculate the value of many different combinatorial
games. However, when we analyze combinatorial games from a specific ruleset, we can often use
properties of that ruleset to simplify this calculation. In this section, we will note some theorems
on the values of Shove and Cherries positions.

We will first give a simple algorithm to compute the value of any Cherries position from [11]. A
Cherries position consists of a strip of white stones, black stones and empty squares. Furthermore,
if there is ever an empty square in the strip, no moves to the left of it will have any effect on the
position to the right of it and vice versa. We can thus split the strip at each empty square. Summing
the segments obtained in this way results in a game equal to the original. For example, see the
equality in Figure 2.11.

Figure 2.11: An example of splitting a Cherries position into segments.

As a result, it is sufficient to determine the value of a position only containing empty squares
on the edges of its strip, as summing the values of these segments will result in the value of the
original entire strip.

Next, we further subdivide these segments into blocks, each maximal in size and consisting of
stones of only a single colour. For example, the right segment of the position in Figure 2.11 has
four blocks: a block of one white stone, a block of two black stones, etc. We say that the sign of
a block is 1 if the block consists of black stones, and it is −1 if the block consists of white stones.
Furthermore, we call a block internal if it does not touch any empty squares.

Theorem 2.30. Let S be a Cherries position consisting only of a single segment. Let m be
the length of the first block of Cherries of S, and n the length of the last block. Let `, r be the
signs of these blocks respectively. If the segment contains any internal block with a length strictly
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greater than 1, let then x, y be the signs of the leftmost and rightmost internal blocks, which may
coincide. Otherwise, set x = y = 0. Then the value of S is equal to:

`(m− 1) + r(n− 1) +
`+ r

2
+
x+ y

2
.

Example 2.31. The value of the left segment in Figure 2.11 is

−1(0) + 1(0) +
1− 1

2
+

0 + 0

2
= 0.

The value of the right segment in Figure 2.11 is

−1(0) + 1(1) +
1− 1

2
+

1 + 1

2
= 2.

/

We can also determine the value of any Shove position by similarly analyzing the position instead
of computing the game tree. The method below is proven in [1].

We only look at a single strip, as for any position consisting of multiple strips we can determine the
value by summing the values of each of the strips. Next, let n be the number of hands in this strip.
We define two functions p : {1, . . . , n} → N by p(i) the position of the i’th hand from the left, and
c : {1, . . . , n} → {±1} by c(i) the sign of the colour of the i’th hand form the left, were red hands
have value −1 and blue hands have value 1. We also define the function r : {1, . . . , n} → N by r(i)
the number of hands to the right of hand i up to and including the last alternation of colour. An
example of this can be seen in Figure 2.12.

Figure 2.12: The values of r for the hands above are 3, 2, 1, 0 and 0 respectively.

Theorem 2.32. Let S be some Shove strip with n hands on it. Then the value of S is equal to:

n∑
i=1

c(i)
p(i)

2r(i)
.

Example 2.33. The value of the strip in Figure 2.12 is

1

8
− 3

4
+

4

2
− 5− 7 = −10

1

4
.

/
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3 Synchronized Games
In the previous section, we have discussed combinatorial games, their properties, and a few rulesets
of games that can be modelled as combinatorial games. In this section, we will discuss a related
class of games, synchronized games.

The most important difference between combinatorial games and synchronized games is that the
moves of both players are performed simultaneously instead of successively, as is done in combi-
natorial games. Unlike in combinatorial games, a game can now also end when both players have
no moves left. In that case, we say the game ended in a draw.

By making small changes to the rulesets defined in Section 2.1, we can turn them into synchronized
games. In this section, we will first discuss these changes, give a general definition of synchronized
games and then list a few properties of synchronized games. Most of these definitions and theorems
can be found in more detail in [3].

3.1 Changes to Rulesets

We will use the same visuals when discussing positions of synchronized rulesets as we do for the
combinatorial versions of these rulesets. From the context it should be clear whether we are talking
about the combinatorial or synchronized versions of a ruleset.

Synchronized Hackenbush is played the same as combinatorial Hackenbush, except both
players simultaneously choose an edge. These edges are removed, and only then all nodes and edges
no longer connected to the ground are removed from play.

The only difference between combinatorial Cherries and Synchronized Cherries is that the
stones chosen by both players are removed at the same time. The same is true for Synchronized
Stack Cherries.

In Synchronized Shove, both players choose a hand of their own colour. The left-most of these
is moved first and then the right-most, both as they would normally be moved in Shove. As a
result, the left-most selected hand and all hands in front of it are moved two squares or off of the
strip, and all hands between the two selected hands are moved one square.

Similarly, in Synchronized Push, after both players have chosen a hand, the left-most is moved
first as it would be in combinatorial Push. Then the right-most hand is moved. While in Syn-
chronized Shove it is possible for a hand to move two squares, this is thus not possible in
Synchronzied Push.

Example 3.1. An example of a move in Synchronized Push and Shove can be seen in Fig-
ure 3.1. /

3.2 Basics of Synchronized Game Theory

It is clear that, in many ways, synchronized games and combinatorial games are very similar.
However, because now both Left and Right make a move simultaneously, we can no longer model
it using just two sets of options for the Left and Right player. This can be seen in the following
definition.

12



(a) An example of a move in Synchronized Push. (b) Example of a move in Synchronized Shove.

Figure 3.1: Examples of moves in two synchronized games; the outlined pieces are the pieces each
player moves.

Definition 3.2. A synchronized game is a triple (GL,GR,GS). Here, GL and GR are sets of syn-
chronized games, and GS is a |GL| × |GR| matrix, in which each entry is a synchronized game.

In general, we interpret these sets as follows: GL is the set, or, more formally, sequence, of left
options, that is, games reached if only Left would make a move. Similarly, GR is the set or sequence
of right options. Then we create the matrix GS by taking each element GSij to be the position in
which the i’th move of GR is performed and the j’th move of GL is performed.

Similarly to what we have done for combinatorial games, we will define the birthday of a synchro-
nized game.

Definition 3.3. Let G = (GL,GR,GS) be a synchronized game. Then we define the birthday of G
to be the result of the function b given by:

b(G) =

{
0 if GS is empty,

1 + maxi,j b(GSij) else.

If b would be ill-defined for this game G, for example when G is contained in the matrix GS, we
instead set b(G) =∞.

We restrict ourselves to looking solely at games with finite birthday. We use S to denote the set
of all synchronized games with a finite birthday. This is in a sense similar to our restriction of
combinatorial games to the set G.

One might ask why we need the sets GL and GR, if all positions that can be reached by both players
making a move are contained in GS. One reason for this is for determining the winner of a game.

Definition 3.4. We call a synchronized game G = (GL,GR,GS) decided if GS is empty.

There are three possible reasons why this could be the case, and each of these also defines which
player has won the game. If GL = ∅ but GR 6= ∅, we declare Left the winner. If GR = ∅ but GL 6= ∅,
we declare Right the winner. However, if GL = GR = ∅, that is, both players have no moves left,
then we declare the game to have ended in a draw. Similar to how it is done for combinatorial
games, we will denote these outcome classes with L,R and D, respectively.
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It turns out that, unlike combinatorial games, synchronized games are not necessarily part of only
one of these outcome classes.

Figure 3.2: A simple Hackenbush position.

Example 3.5. Let G ∈ S correspond to the Hackenbush position in Figure 3.2. Both players
have to make a choice to play on either the left or the right stalk. If they choose to play on the
same stalk, only a single stalk will remain with an edge of each colour. Both players must play
on the edge of their colour, after which no edges are left and the game ends in a draw. However,
if they play on different stalks on their first move, only a single blue edge will remain, and the
game ends in a win for Left. As both players do not know the move the other player makes, there
is no way for Right to know what move he should make to force a draw, and thus both a win for
Left and a draw are possible ways for this game to end. Thus, G /∈ L and G /∈ D. It is clear that
G /∈ R, so G /∈ L ∪ D ∪R. /

We have thus seen that S contains games that are not part of any of the three outcome classes we
have just defined. We partition the rest of S into a few new outcome classes: LD is the outcome
class for games that could either end in a win for Left or a draw, in which the game G from
Example 3.5 is contained. Similarly, we define DR, LDR and LR.

These outcome classes can be written compactly in a table, analogous to Table 2.1. This is done
in Table 3.1. We have had to generalize the idea of winning or losing if a player starts to having
a winning or drawing strategy. A player has a winning strategy if they can always force at least a
win, regardless of what moves the other player makes. Similarly, a player has a drawing strategy if
they can always force at least a draw, regardless of what moves the other player makes. If a player
has neither, we say that the player has a losing strategy, as they can always trivially force at least
a loss.

Left has a
Winning strategy Drawing strategy Losing strategy

Right has a
Winning strategy R
Drawing strategy D DR
Losing strategy L LD LR ∪ LDR

Table 3.1: Outcome classes of synchronized games.

3.3 A Value for Synchronized Games

It would in general be useful to assign a specific value to a synchronized game, just as was done
for combinatorial games. If a game G = (GR,GL,GS) ∈ S is decided, we set its value to its number
value if the position was interpreted as a combinatorial game. For example, the game (0, (), ())
would have the value 1, mirroring the definition of 1 = {0 | } as a combinatorial game. It turns
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out this is well-defined under some restrictions. This is also the approach taken in [3], where more
details on this method can be found.

However, in general, many nice properties that hold for values of combinatorial games, do not hold
for values of synchronized games. For example, we could define an addition for synchronized games
by allowing players to play their move on either of the two summands, similar to how it is done
for combinatorial games. As we do not use this addition after the next example we will not write
out its formal definition. It turns out that in general, the value of the sum is not equal to the sum
of the values of the summands.

Figure 3.3: The sum of two Synchronized Hackenbush stalks.

Example 3.6. In Figure 3.3 one can see a sum of Hackenbush positions. One of the stalks on
the left is a draw, as both players must play to 0, and thus has value 0. One would expect that
0 + 0 = 0, and thus the game on the right side of the equality should also end in a draw. However,
we have already seen that this game could also be a win for left, so this is not the case. /

Despite the value of synchronized games not respecting addition of games, we will still try to define
its value for general games. It turns out that it still respects taking inverses as well as comparing
games in most cases, though we will not show that in this thesis. We will do this by using tools
from economic game theory, most notably Nash values. More details on this approach can also be
found in [3]. Many of the economical game theory tools below are taken from [8, Section 1.2, 1.3].

Let A be a real-valued m×n matrix. We interpret this matrix as a game as follows: Left chooses a
row i and Right chooses a column j of this matrix, combining to select a single element Aij. Then,
Right must pay an amount equal to Aij to Left. If Aij is negative, we interpret this to mean that
Left must pay |Aij| to Right. We call A the pay-off matrix of this matrix game, and note that this
game is a zero-sum game: any loss for one player is equal gain for the other.

We define the sets

X =

{
(x1, x2, . . . , xm)> | xi ≥ 0,

∑
i

xi = 1

}
,

Y =

{
(y1, y2, . . . , yn)> | yj ≥ 0,

∑
j

yj = 1

}
.

X is the set of all strategies Left has, and Y the set of all strategies for Right. Here, xi is the
probability for Left to play on row i for 0 < i ≤ m, and, similarly, yj is the probability for Right
to play on column j for 0 < j ≤ n.

If Left has chosen a strategy x ∈ X and Right has chosen a strategy y ∈ Y , we can calculate the
expected pay-off value of A under these strategies by computing x>Ay.
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Definition 3.7. A strategy x∗ ∈ X is optimal if x∗>Ay′ ≥ maxx miny x
>Ay for all y′ ∈ Y .

Similarly a strategy y∗ ∈ Y is optimal if x′>Ay∗ ≤ miny maxx x
>Ay for all x′ ∈ X.

In other words, a strategy is optimal if it has the highest expected pay-off value, independent of
the strategy the other player chooses. We call the expected pay-off value when both players have
chosen an optimal strategy the optimal pay-off value.

Definition 3.8. A pair of strategies (x∗, y∗) ∈ (X, Y ) is called a Nash equilibrium, if for all x ∈ X
and y ∈ Y it holds that

x∗>Ay∗ ≥ x>Ay∗ and x∗>Ay∗ ≤ x∗>Ay.

In other words, if both players have a strategy and only one player changes their strategy, the
resulting expected value will not be better for that player. Thus neither player has an incentive to
deviate from such a strategy pair, and these are in some sense stable.

It turns out that every zero-sum matrix game has at least one Nash equilibrium, and that the
expected pay-off values for all Nash equilibria are the same and are equal to the optimal pay-off
value. We thus define the Nash value of a zero-sum matrix game to be the expected pay-off value
of any of these Nash equilibria.

Using all these tools from economical game theory, we will recursively define the value of a game
starting with games all of whose options are decided and build up from there. For this, we thus
require the restriction we made earlier that all synchronized games have finite birthday. We already
set the value of any decided G ∈ S to its number value viewed as a combinatorial game earlier. For
all other synchronized games, we compute the matrix S where for all i, j we let Si,j be the value
of GSi,j. We then view S as a zero-sum matrix game and set the value of G to the Nash value of S.
We will use the function v : S→ Q as a shorthand for this definition.

Example 3.9. Let G be the Hackenbush position in Figure 3.2. Then GS =

(
0 1
1 0

)
.

As G is not decided, we have that S =

(
0 1
1 0

)
, and that the Nash value of this position is 1

2
. Thus

v(G) = 1
2
. /

Lastly, we will note a method for efficiently finding the Nash value of an arbitrary zero-sum matrix
game. It turns out the Nash value of a zero-sum matrix game is equal to its expected pay-off
value when both players play optimally. That is, the Nash value is equal to maxx miny x

>Ay =
miny maxx x

>Ay. As a result, we only have to compute the value of either this maximisation or
minimization problem. This can be done efficiently using Linear Programming, by solving either
of the dual Linear Programs in Equation 3.9.1.

A consequence of using Nash values as the definition for values of synchronized games is that every
value of a synchronized game is a fraction. For the decided positions this follows from the fact that
the only numerical values a game can take are dyadic rationals, which is a subset of Q. The value
of all other positions is determined as the solution to a Linear Program with fractional coefficients,
and thus the solution must also be a fraction.

There is, however, a problem that can arise when determining the value of a synchronized game
in this way. If the game has positions that are decided, but one of the left or right options of that
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max

x0
∣∣∣∣∣∣
∑n

i=1 sijxi ≥ x0, j ∈ {1, . . . ,m}∑n
i=1 xi = 1
xi ≥ 0


min

y0
∣∣∣∣∣∣
∑m

j=1 sijyj ≤ y0, i ∈ {1, . . . , n}∑m
j=1 yj = 1

yj ≥ 0


Equation 3.9.1: Linear Program finding the optimal strategies of a zero-sum matrix game.

position is not decided, the ordering of two such decided positions will not necessarily match the
ordering of their values. We will not go into many details here, but those can be found in [3]. We
do note that this problem only occurs in Cherries and Stack Cherries games out of the five
discussed in this thesis. For an example of such a position, see Figure 3.4.

Figure 3.4: A decided Cherries position with undecided left options.

As a result, there is no clear well-defined way to define a value for Cherries and Stack Cherries
games. We will go into more details on the approach we did take for these games in Section 4.2.2.
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4 An Introduction to CGSynch
In the previous two sections, we have given an overview of the basics of the fields of Combinatorial
and Synchronized Game Theory. One can understand that computing the canonical form of large
and complicated combinatorial games by hand would be an arduous process. For this reason the
application CGSuite was written [5]. It can analyse and calculate many properties of a wide
range of combinatorial games, including their winner, birthday and value, among more advanced
concepts such as cooling and heating of games, which we will not discuss in this thesis. However,
it was only written to analyze combinatorial games and is unable to analyze synchronized games.

We have written a new C++-program, called CGSynch, which can determine simple properties
of combinatorial and synchronized games. All of the theory discussed in Sections 2 and 3 was
implemented in the program CGSynch, and is used for analyzing the rulesets described in these
sections. This section will discuss how this was done, describing the general structure of the program
and noting where different theorems were used in the program. Further on we will describe the
interface of CGSynch. The program can be downloaded from our GitHub repository, where the
source code is also available [10].

The program CGSynch can read in positions of five different games: Cherries, Hackenbush,
Stack Cherries, Push and Shove. It can compute multiple properties of these positions, such
as their value, outcome class and birthday in both the combinatorial and synchronized sense.
Furthermore, for combinatorial games, it can add and subtract them, compare them, put them in
canonical form and simplify their value to a number, if it is one.

4.1 The Trees

The main structure of the program revolves around two types of trees: abstract trees and game
trees. Each node of a game tree represents a unique position of a game, while each node of an
abstract tree represents the mathematically abstracted version of that position. The structures are
very similar for combinatorial and synchronized games. In this section, we will first explain how
they work for combinatorial games, and then note the few differences with synchronized games.

We will first focus on the game tree. The game tree is the same as it is in the combinatorial sense.
It has a single position of the ruleset as the root of the tree, and the children of each position are
the positions that can be reached by either Left or Right making a single move. An example of
such a game tree can be seen in Figure 4.1.

For every ruleset, we have written a class that contains a position of that ruleset and can determine
what positions can be reached by Left and Right from this position. Instances of these classes are
used as the nodes in a game tree. Each of the positions of such an instance and all its transpositions
are saved in a database. Whenever a new node is added to the game tree, the database is first
checked whether this position has occurred before. If this is the case, we instead use this position
saved in the database, as we have already determined its children, reducing the time spent building
up the game tree.

The abstract tree is similar, but instead of each node in the tree representing the position in a
game, it represents a mathematical abstraction of such a position. A node of the abstract tree
relates to a node in the game tree in the same way that {−1 | 1} relates to the root of the game
tree in Figure 4.1.
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Figure 4.1: An example of a game tree.

The abstract tree is defined by its left and right option sets. As a result, instead of it being generated
down like the game tree, it is built upwards. Starting at the leaves of the abstract tree (all of which
are empty positions), we can generate new nodes by defining their left and right option sets as
previously defined nodes. In this fashion, any combinatorial game can be reached. We again use
a database for storing every abstract node and making sure not to have any duplicates. We also
cache every property of the game corresponding to an abstract node when it is calculated in that
abstract node. As a result, we never have to determine a mathematical property of the same game
multiple times, even if it appears multiple times in the abstract game tree.

When analyzing a position, such as the one in Figure 4.1, we first generate the entire game tree.
Then, starting from the 0-positions at the bottom of the game tree, we construct the leaves of the
abstract tree. From there we build up the abstract tree layer by layer. Each time we save an ID of
an abstract tree node in the corresponding game tree node, and then use these IDs to build up the
next layer of the tree. We repeat this until the entire abstract tree is built. When analyzing the
position of this ruleset with the combinatorial tools described in Section 2, we analyze the abstract
tree. An example of both trees for a simple Hackenbush position can be found in Figure 4.2.

For synchronized games, we work very similarly. However, as synchronized positions are not only
defined by their left and right options but also by a matrix with all synchronized options, there
are some minor differences. When generating the game tree, we do not only generate two sets of
positions, but also a matrix of positions reached after both players have made a move.

When determining the abstract tree that corresponds to a certain game tree, we again create a
matrix of IDs of tree nodes as well as two sets for the left and right options. The abstract database is
then queried to find a corresponding abstract node. However, we only check if there is a game with
an equal matrix in the database, not one with an equal matrix under permutation. Determining
whether this is the case often costs quite some time, as permutation equality with every single
matrix already in the database needs to be checked. Due to graphs being able to be represented
by matrices by writing them as an adjacency matrix, this problem is at least as hard as solving
graph isomorphism, for which no known polynomial algorithm exists at the time of writing [6].

In all other regards, the algorithm works the same as the combinatorial form.
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Figure 4.2: An example of the game tree and abstract tree of the same Hackenbush position.
Note that due to usage of a database in reality equivalent nodes are merged in both trees.

20



4.2 How Analysis of Games is Performed

This section will explain exactly what theorems are used to compute different properties of com-
binatorial and synchronized games.

4.2.1 Analyzing Combinatorial Games

A few basic properties of positions are determined recursively from the definition. This applies
to determining the winner of a position, using Table 2.2, and the birthday of a position, using
Definition 2.4. Adding two games is done recursively using Definition 2.7. Taking inverses is done
using Definition 2.9. Subtracting one game from another is also basically done from the definition,
but we combine the addition with taking the inverse. For example, for two games G,H ∈ G we
compute G−H recursively as {GL −H,G−HR | GR −H,G−HL}.

We compare two games, say G ∼ H with ∼ ∈ {<,≤,C|, >,≥, |B, 6=,=, ‖}, in two steps. First,
we rewrite this as (G − H) ∼ 0. Secondly, we calculate the winner of the game G − H and use
Theorems 2.16 and 2.18 to determine whether this comparison holds.

We use a few tricks to speed up this comparison. When the canonical form of either G or H has
already been calculated earlier, we use those for the subtraction instead of G and H directly. These
have smaller game trees, so calculating their difference is faster. Additionally, if H has a smaller
birthday than G, we instead calculate H−G and reverse r to compute the comparison. This saves
time, as the inverses of all positions in the game tree of the right operand of the subtraction need
to be calculated, and having a smaller birthday often indicates having a smaller game tree. Lastly,
if both G and H are known to be numbers, we calculate their numerical value and compare those.

When we convert a game G to its canonical form, we take the following four steps. First, we
convert every direct option of G to its canonical form. This simplifies comparisons between these
two options later. Secondly, we remove all dominated options, and all but one copy of every equal
option. Thirdly, we check if the Simplest Number Theorem 2.28 applies. Normally this applies if all
left and right options are numbers and all left options are smaller than all right options. However,
as we already have removed all dominated options from G, this would now imply that both Left
and Right only have a single option left, both a number, such that the left option is smaller than
the right option. By Theorem 2.29 we then have that G equals the simplest number between these
two numbers. Lastly, we check if any of our options is reversible. If any of them are, we add the new
left and right options to G’s option sets, and recursively restart the algorithm on the newly created
game. This is, as adding those new options may have added options that could be dominating or
be dominated by already known options of G, resulting in more options that have to be removed.

Lastly, we check if a game G is a number as follows. First, we convert it to its canonical form if it is
not in canonical form yet. Next, we check if it is an integer, simply by checking that it corresponds
to Definition 2.23. If it is not an integer, it can only be a number if it is a dyadic rational. We
thus check that it has exactly one left and right option, that both of these are numbers, and that
the left option is smaller than the right option. If all of this is true, then by the Simplest Number
Theorem this must be a number as well.

4.2.2 Analyzing Synchronized Games

Compared to analyzing combinatorial games, CGSynch can compute relatively few properties of
synchronized games. It can, however, calculate their birthday, using Definition 3.3. Additionally,
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it can compute the outcome class of a game, which is done recursively using the definition in
Section 3.2. Each of these properties is cached so that we do not have to compute the same result
twice.

Lastly, CGSynch can calculate for any synchronized gameG its value v(G). It does this recursively.
It determines the value of GSij for all i, j, and puts all of these in a matrix S. This matrix is then
converted to the Linear Program in Equation 3.9.1, which is solved using the application Gurobi
[7]. This procedure is done recursively until a decided game is reached. For every different ruleset,
a function is implemented that can compute the value of a decided position from that ruleset,
which is then called to determine the value.

As the Synchronized Cherries and Synchronized Stack Cherries contain decided posi-
tions with undecided options, determining their value is, in general, not well-defined. Whenever
someone tries to do so anyway, we show a warning but continue by instead using the following
metric. Note that this will in general not give correct results, but it will still give a result.

If a Synchronized Cherries or Synchronized Stack Cherries position is decided and it
has no undecided options, all of its stones must be of the same colour. In that case, if the stones
are black, we set the value of the game equal to the number of stones in the position, and minus
the number of stones if they are white. This is similar to how Hackenbush positions with only
one colour of edge have value equal to the number of edges, negated if all edges are red. As we’ve
seen in Figure 3.4 it is possible for a Cherries or Stack Cherries position to be decided but
have undecided options. In all such positions, there are still stones of both colours left, but only
one of the players is able to move. In this case, we approximate its value by taking the number
of moves that that player still has, again negating if that player is White. This is not a perfect
or mathematically sound definition but does give a value that corresponds roughly with its actual
value.

4.3 The User Interface

CGSynch has a different interface for entering combinatorial and synchronized games. This is a
result of different operations being implemented on both of them. We will describe the interfaces
for combinatorial and synchronized games in a different subsection each. An example of how the
user interface looks can be found in Figure 4.3.

In both cases, the user interface is implemented as a command-line interface, where one can
create games using a position, and then ask for properties of these. For example, one can cre-
ate a Cherries game with a given position and determine its birthday using the command
Cherries(POSITION STRING).GetBirthday(). When interpreted as C++-code, this looks like an
instance of the class Cherries is created with the given position, and afterwards the function
GetBirthday() is called on this instance. This is indeed how it is meant to be read. All im-
plemented properties of games can be queried using this same “initialize class and call property
function” template.

Every command entered in the combinatorial interface must conform to the grammar given in
Appendix A.

When creating an object of type Shove, Push or some other game, a string needs to be passed
representing the position of that game. As Shove, Push, Cherries and Stack Cherries are
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Figure 4.3: Example of the interface of CGSynch.

played on a strip, the input string will be read as a strip, where each ‘R’ or ‘W’ will be turned into
a red (or white) piece, each ‘B’ will be turned into a blue (or black) piece, and each underscore
and space will be turned into an empty square. If any other character is encountered, an error will
be printed.

Example 4.1. The Shove position in Figure 2.5 can be created in CGSynch with the input
Shove(BR R B). /

Creating a Hackenbush game is more complex, as that game is played on a graph instead of a
strip. To input this position, we enter the adjacency matrix of this graph. The first row and column
of the adjacency matrix must correspond to the “ground” node of the position. The same letters
as before are used for the different colours of edges. All rows of this matrix are concatenated into a
single string so it can be entered as a single line. The size of the adjacency matrix has to be passed
as an additional argument to aid in reconstructing the matrix, and to check that the passed string
has the right length.

Figure 4.4: A simple Hackenbush position.

Example 4.2. The adjacency matrix of the Hackenbush position in Figure 4.4 is
B B

B R
B R

R
R

 .
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This is concatenated to a single string, BB B R B R R R . As the adjacency matrix is a 5×5
matrix, the expected input for CGSynch to generate this Hackenbush position is:
Hackenbush(5, BB B R B R R R ). /

When an object of type Shove, Push or some other game is turned into an AbstractGame, we
explore the entire game tree starting from that position, and then build the abstract tree bottom-
up, as was explained in Section 4.1.

Example 4.3. Below are a few more example inputs and their outputs.

• Shove(BRRB).GetWinner() results in LEFT.

• (Push(RBR) - Shove(R)).CanonicalForm() reults in -7/8.

• Push(R).Birthday() results in 1.

• Hackenbush(3, BRB R ) == Hackenbush(2, BB ) + Hackenbush(2, RR ) results in True.

• 3/4 + 3/4 results in 3/2.

• Cherries(B R B) >= 3 results in True.

• (-6/8).GetWinner() >= 5.GetWinner() results in False.

• {3|4}.CanonicalForm() results in 7/2. /

One can find a video with a demo of a few of the possibilities of analyzing a Hackenbush position
using CGSynch in [9].

Due to there being less functionality implemented for synchronous games, the grammar for the
synchronized UI is smaller. It can be found in Appendix B.

As one can see this is effectively a subset of the grammar for the combinatorial interface, where
integers, fractions, addition and subtraction of games, comparisons between games and comparisons
between winners have been removed. As such, we will not go into detail on how exactly inputs need
to be structured or give examples. All of these can be found in the description of the combinatorial
interface.
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5 Results and Limitations
In this section, we will first discuss experiments done with CGSynch and their results. These
experiments will show the speed and accuracy of CGSynch. Afterwards, we will note a few
things that were not implemented in CGSynch.

All of these experiments were run on a Linux desktop with 48 GB RAM and a Six-Core Processor,
overclocked to 4142.051 MHz. The program was compiled with g++ 9.4.0, with the flag -O3 enabled.

5.1 Accuracy of CGSynch

We have performed multiple experiments testing the accuracy of CGSynch. We first analyzed
combinatorial positions of Push in both CGSynch and CGSuite and compared those. For this,
experiment, we generated 10 random Push positions on a strip of length 14, and asked both
CGSynch and CGSuite to determine the canonical form of this position. The results of this
experiment can be seen in Table 5.1. Both CGSynch and CGSuite find the same values in
all of the 10 Push positions, which highly suggests that CGSynch can correctly determine the
canonical form of simple Push positions.

Input CGSynch & CGSuite
Push( R R B BR).CanonicalForm() −27983/16384
Push(BR BRBRRB R BB).CanonicalForm() 2318031/131072
Push( B B B BRBRBRR).CanonicalForm() −20513867/1048576
Push( RRB B B RBR ).CanonicalForm() −119283/32768
Push(RRBR BBRRBRBRR).CanonicalForm() −12216755/524288
Push(RRBR BBRBR R ).CanonicalForm() −512947/32768
Push(B RBRRB B).CanonicalForm() 513969/32768
Push(BB B BBBRRB ).CanonicalForm() 7341858679/4294967296
Push(RR R BRBB BR R).CanonicalForm() −8398759211/536870912

Table 5.1: Determining the canonical form of simple Push positions using both CGSynch and
CGSuite.

Next, we have investigated the analysis of Cherries positions. As CGSuite is unable to analyze
positions of this game, we will instead compare values obtained using the formula from Section 2.7
and those obtained by CGSynch with this optimization turned off. For this, we ask CGSynch
to compute the canonical form of 10 different Cherries positions. The results of this can be seen
in Table 5.2. Again, the results from CGSynch line up exactly with the theoretical results.

Based on these two tests, it seems likely that CGSynch can indeed correctly determine the
canonical form of different combinatorial games. As determining the canonical form of a position
also requires other properties to be determined correctly, such as comparing games, subtracting
games and determining their winner, this also suggests that all those properties are working as
intended.

Lastly, we have investigated whether CGSynch can correctly compute the value of a few positions
of Synchronized Hackenbush to test its accuracy for synchronized games. We define H to be
the Synchronized Hackenbush position consisting of a red edge on top of a blue edge and
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Input CGSynch & Theory
Cherries(RRRRRRRR BBRB B R BR RBBBB).CanonicalForm() −3
Cherries( BBRBRR BBRBR RB BRBBB R ).CanonicalForm() 3
Cherries(B RRBBBBB B RR B R RR BBRRBR).CanonicalForm() 1
Cherries(R RBRRB RRBBBRRB BRRB BRB ).CanonicalForm() −2
Cherries( RBB BR R R BRB BRR BB RR).CanonicalForm() −1
Cherries(R R R BB B RR RRRRR BRRRBR ).CanonicalForm() −8
Cherries( BR RB BB R RR BB BBRB RR).CanonicalForm() 1
Cherries( B B B RRBBR RB B RRBR B).CanonicalForm() 2
Cherries(RBRBR RR RRBBRRR BR BRRR R).CanonicalForm() −9

Table 5.2: Determining the canonical form of simple Cherries positions using both CGSynch
and CGSuite.

−H to be the position of a blue edge on top of a red edge. We then set nH to the Hackenbush
position consisting of n copies of H, and similarly we set −nH to the position consisting of n
copies of −H for all n ∈ N. An example of such a position can be seen in Figure 5.1.

Figure 5.1: An example of the Hackenbush stalks position 3H − 2H.

These Synchronized Hackenbush positions were analyzed before, and a table of values was
computed for all positions nH − mH, with n,m ∈ N≤10 by Mark van den Bergh [2]. We have
computed this table for n,m ≤ 5 using CGSynch, and the result can be seen in Table 5.3. The
values computed by CGSynch are again exactly the same as those computed previously, and thus
it is likely CGSynch can correctly compute the values of synchronized games.

m\n 0 1 2 3 4 5
0 0 0 0.5 0.833333 1.3333333 1.733333
1 0 0 0.25 0.642857 1.006485 1.458537
2 −0.5 −0.25 0 0.25 0.666189 1.058927
3 −0.833333 −0.642857 −0.25 0 0.25 0.666189
4 −1.333333 −1.006485 −0.666189 −0.25 0 0.25
5 −1.733333 −1.458537 −1.058927 −0.666189 −0.25 0

Table 5.3: Table of values of the Synchronized Hackenbush positions nH −mH.
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Figure 5.2: Time it takes to compute the canonical form a Push position.

5.2 Speed of CGSynch

Even if a program is accurate, having a result quickly is also important. We have thus generated
10 random Push positions with strips ranging from length 5 to 16, and ask both CGSuite and
CGSynch to compute their canonical form. We run all tests in order to also test the caching
used by both CGSynch and CGSuite. The results can be seen in Figure 5.2. The horizontal
axis represents the length of the Push positions, and the vertical axis represents the total time to
analyze all 10 positions. The data point for CGSuite at length 16 was not included, as in at least
one case CGSuite crashed while preforming the calculation. It is clear that CGSynch is almost
30 times faster than CGSuite on the provided test set.

For synchronized games, we have run a similar test to determine its speed. However, as CGSuite
cannot analyze these games, we cannot compare our results against its values. To compensate for
this, we have analyzed the speed of both Synchronized Push and Synchronized Hacken-
bush.

For Synchronized Push, we have generated 10 random strips for each of the lengths from 5 up
to 17 and let CGSynch compute the value of those positions. The results of this can be found in
Figure 5.3a. The very first data point is a bit of an outlier, which is caused by the very first game.
Determining its value took 20.0 ms while determining the value of all other 9 positions of length
5 only took 10.0 milliseconds in total. This is likely due to many of the smallest games first being
generated when computing this position, which other games can then simply reuse.

For Synchronized Hackenbush we have again generated 10 random graphs and adjacency
matrices of size 4 to 7. Each edge of each of these graphs was randomly coloured or removed with
probability 1

3
. CGSynch was asked to compute the value of these positions. The results can be
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found in Figure 5.3b. Again, the very first data point is an outlier, as the first game of the set of
ten took 23.2 ms of the 24.8 ms that the entire set took. As in the previous experiments, there is
a clear exponential increase in the time used as the position becomes more complicated. However,
the slope of the exponential curve is much steeper than that of Push. In Push each increment
in strip length only increases the number of moves of either player by at most 1. However, in
Hackenbush an increment of the size of the adjacency matrix from n to n + 1 allows for n + 1
more edges, and so at most n+ 1 more moves. It is thus expected that this exponential curve has
a steeper slope.

(a) Time for computing the value of a Synchro-
nized Push position.

(b) Time for computing the value of a Synchro-
nized Hackenbush position.

Figure 5.3: Speed of computing the value of games from two different Synchronized rulesets.

One might ask why CGSynch is so much faster than CGSuite. The programming language in
which both are written at least partly explains this. CGSuite is written in Scala and compiled
to Java bytecode, which then has to be interpreted when running. CGSynch is written in C++,
which can be compiled directly to native bytecode, which runs much faster. Another factor is the
aggressiveness with which CGSynch caches results. CGSynch caches the result of almost every
single calculation. This has the obvious advantage that no result has to be calculated twice, thus
saving time in the long run. However, this does increase the amount of memory CGSynch uses.
While running the previous tests, CGSynch sometimes used up to 20GB of memory.

5.3 A Conjecture on the Value of Synchronized Shove

When testing CGSynch on Synchronized Shove positions, we came across an interesting
result. All of the positions consisting of a single strip appeared to have integer values. We have
checked that this holds for all approximately ∼ 4.7 million Shove positions of length 13 or less,
but do not have a general proof for this.

Notably, the same is not true for Synchronized Push. The smallest counterexample is the
position Push(BR BR), which has −2.5 as its value, as its corresponding zero-sum pay-off matrix

is

(
−2 −3
−3 −2

)
.
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5.4 Limitations

Even though many features are implemented in CGSynch, there are still a few notable features
missing that one might expect. These were mostly left out due to a lack of time. This section will
go over a few of these features. Additionally, some optimizations that were not implemented will
be mentioned.

CGSynch uses quite some memory as it caches every single result that has ever been computed.
Implementing a system that caches only a certain number of games based on how recent they have
been used in other computations is certainly possible and would add a simple maximum to the
amount of memory used. It would also, however, in some cases reduce the speed of CGSynch as
some results would sometimes need to be recalculated.

Furthermore, not many properties of Synchronized Games can be computed. For example, CGSynch
cannot determine if a game is decided but contains undecided positions. It also cannot add or com-
pare two Synchronized Games. All of these can of course be implemented, and, in our opinion,
this should be easily doable, but the current version of CGSynch does not support them. It is
also currently not possible to input Synchronized Shove and Synchronized Push positions
consisting of more than one strip, which is often desirable.

Lastly, the interface of CGSynch is very basic. Many quality of life changes could still be imple-
mented, such as being able to scroll back through previously entered queries, having some sort of
auto-completion or showing understandable error messages when incorrect input is entered. Alter-
natively, having an actual interface for CGSynch, instead of just a command line, would also be
an improvement.
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6 Conclusion
In this thesis, we have discussed the basics of Combinatorial Game Theory and Synchronized Game
Theory. We have created a program, CGSynch, that can determine basic properties of games from
these rulesets. We have explained how this program works, and what theorems and definitions are
used to compute properties of games.

Furthermore, we have done experiments to verify the accuracy and demonstrated the speed of
CGSynch. It became clear that CGSynch is able to accurately determine the canonical form of
combinatorial games, as well as the value of synchronized games. As calculating these values re-
quires many other properties also to be determined correctly, we also concluded that comparison,
subtraction and determining the winner of a position are likely determined correctly. From our
speed tests we also concluded that CGSynch was faster than CGSuite in computing the canon-
ical form of combinatorial games. It did, however, also use much more memory. For synchronized
games we also showed that CGSynch was able to compute the value of many games within a
reasonable amount of time, though exactly how long increased exponentially based on the size of
the position.

All in all, we have created an application that could be used for analyzing combinatorial and
synchronized games and is faster than current alternatives.

There is, of course, still room for future work. While this program can determine simple properties,
many properties of synchronized games cannot be analyzed, as we already noted in Section 5.4.
For example, implementing features such as addition of synchronized games or determining if a
synchronized position is decided or terminal can be added in the future. Similarly, we can only
determine basic properties of combinatorial games. CGSynch could also be extended to deal with
impartial games, cooling and heating games or determining the atomic weight of a position. All of
these things can be looked at in future work.

Alternatively, the features CGSynch already has can be used in future work for analyzing syn-
chronized games.
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Appendices

A Grammar of the Alternating Interface

In this grammar, we use text between square brackets [] to denote a description written out in
English. String literals are written between backticks (‘). A star ∗ is the Kleene star, used to
denote that the preceding part of the input may be repeated any number of times, or not appear
at all.

Due to there being left recursion in the definition of AbstractGame, the definition of the grammar
used internally in CGSynch is slightly different. However, the accepted inputs are the same as in
the one below.

I n t e g e r = [ any number ]∗
QuotedString = ‘” ‘ [ any charac t e r except ” ]∗ ‘ ” ‘
S t r ing = [ any lower or uppercase l e t t e r , number , or space ]∗

| QuotedString
Fract ion = I n t e g e r ‘/ ‘ I n t e g e r
Shove = ‘ Shove ( ‘ S t r ing ‘ ) ‘
Push = ‘ Push ( ‘ S t r ing ‘ ) ‘
Cher r i e s = ‘ Cher r i e s ( ‘ S t r ing ‘ ) ‘
S tackCher r i e s = ‘ StackCher r i e s ( ‘ S t r ing ‘ ) ‘
Hackenbush = ‘ Hackenbush ( ‘ I n t eg e r ‘ , ‘ S t r ing ‘ ) ‘

AbstractGame = Shove
| Push
| Cher r i e s
| StackCher r i e s
| Hackenbush
| I n t e g e r
| Fract ion
| ‘ ( ‘ AbstractGame ‘ ) ‘
| ‘− ‘ AbstractGame
| AbstractGame ‘+ ‘ AbstractGame
| AbstractGame ‘− ‘ AbstractGame
| AbstractGame ‘ . CanonicalForm ( ) ‘
| ‘{ ‘ AbstractSet ‘ | ‘ AbstractSet ‘} ‘

AbstractSet = AbstractGame ( ‘ , ‘ AbstractGame )∗
| ε

Winner = AbstractGame ‘ . GetWinner ( ) ‘
Boolean = AbstractGame ‘> ‘ AbstractGame

| AbstractGame ‘>=‘ AbstractGame
| AbstractGame ‘==‘ AbstractGame
| AbstractGame ‘= ‘ AbstractGame
| AbstractGame ‘<=‘ AbstractGame
| AbstractGame ‘< ‘ AbstractGame
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| AbstractGame ‘ | | ‘ AbstractGame
| AbstractGame ‘< | ‘ AbstractGame
| AbstractGame ‘ |> ‘ AbstractGame
| AbstractGame ‘ != ‘ AbstractGame
| s t r i n g ‘< ‘ S t r ing
| St r ing ‘==‘ St r ing
| St r ing ‘= ‘ S t r ing
| St r ing ‘> ‘ S t r ing
| St r ing ‘ != ‘ S t r ing
| Winner ‘< ‘ Winner
| Winner ‘<=‘ Winner
| Winner ‘==‘ Winner
| Winner ‘= ‘ Winner
| Winner ‘>= Winner
| Winner ‘> ‘ Winner
| Winner ‘ != ‘ Winner
| AbstractGame ‘ . IsNumber ( ) ‘
| AbstractGame ‘ . IsInCanonicalForm ( ) ‘

Output = Boolean
| Winner
| AbstractGame ‘ . GetBirthday ( ) ‘
| AbstractGame ‘ . D i sp laySt r ing ( ) ‘
| AbstractGame
| St r ing
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B Grammar of the Synchronized Interface

I n t e g e r = [ any number ]∗
QuotedString = ” [ any charac t e r except ” ]∗ ”
St r ing = [ any lower or uppercase l e t t e r , number , or space ]∗

| quotedStr ing
Shove = ‘ Shove ( ‘ S t r ing ‘ ) ‘
Push = ‘ Push ( ‘ S t r ing ‘ ) ‘
Cher r i e s = ‘ Cher r i e s ( ‘ S t r ing ‘ ) ‘
S tackCher r i e s = ‘ StackCher r i e s ( ‘ S t r ing ‘ ) ‘
Hackenbush = ‘ Hackenbush ( ‘ I n t eg e r ‘ , ‘ S t r ing ‘ ) ‘
AbstractGame = Shove

| Push
| Cher r i e s
| StackCher r i e s
| Hackenbush
| ‘ ( ‘ AbstractGame ‘ ) ‘

WinnersSet = AbstractGame ‘ . GetWinners ( ) ‘
Boolean = AbstractGame ‘==‘ AbstractGame

| AbstractGame ‘= ‘ AbstractGame
| AbstractGame ‘ != ‘ AbstractGame
| WinnersSet ‘==‘ WinnersSet
| WinnersSet ‘= ‘ WinnersSet
| WinnersSet ‘ != ‘ WinnersSet
| St r ing ‘==‘ St r ing
| St r ing ‘= ‘ S t r ing
| St r ing ‘ != ‘ S t r ing

Output = Boolean
| WinnersSet
| AbstractGame ‘ . GetBirthday ( ) ‘
| AbstractGame
| St r ing
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