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Abstract

DEARhealth aims to improve healthcare experiences and outcomes by defining person-
alised Care Pathways for each individual patient. Suggestions to providers are given by a
recommender, which takes into account multiple sources of information regarding the pa-
tient’s health. In this paper, we focus on the extraction of information of a current unused
source of information: Dutch endoscopy reports. We investigate AutoNER, a distant super-
vision model for which we define an extensive pipeline, incorporating the clinical database
SnomedCT, to create the required dictionaries. We find that though AutoNER is able to
label various terms, the extraction process is not yet reliable in its current state. Although
future improvements could benefit AutoNER, we are not fully convinced that this particu-
lar approach is most effective for the extraction of medical entities from Dutch endoscopy
reports.

Keywords: Information Extraction, Clinical Named Entity Recognition, Distant Super-
vision, AutoNER, DEARhealth, Endoscopy Reports
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Introduction 1
DEARhealth is an organisation that addresses the treatment of chronic diseases by means
of defining Care Pathways. Care Pathways “contain all medically required activities and
associated support programs”1. In other words, these pathways indicate which specific type
of care a patient requires at which point during the treatment. However, whereas ordinary
treatment usually lasts until the patient has been sufficiently recovered, Care Pathways opt
for continuous support for an extended, indefinite amount of time thereafter. The goal here is
to prevent future complications from arising, by ‘navigating’ patients around health risks.

Naturally, patients differ from one another in terms of need regarding both physical and
mental care. Thus, in order for a Care Pathway to achieve and maintain a patient’s health,
it should be defined and tailored specifically for each individual person. Doing this by means
of manual labour is likely an unfeasible task: not only would this be highly time-consuming,
but moreover, knowledge covering all relevant expertise is required.

DEARhealth pathways are therefore continuously evaluated by a recommender. Based
on available medical background, current treatment plans and questionnaires directly taken
from the patient via the corresponding mobile app, the recommender will suggest adjust-
ments to the originally defined pathway. Whether these are implemented or not is decided by
providers themselves. Over time, these non-static pathways will become more accurate and
personalised for each individual patient. Figure 1 depicts a high-level relational overview of
the involved parties, data, platforms and the recommender.

Figure 1: DEARhealth Care Pathways relational overview.

1https://dearhealth.com/how-it-works
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A significant amount of information that could contribute to this learning and prediction
process is captured within unstructured data. In the case of Inflammatory Bowel Diseases
(IBD), this includes the free text fields found within endoscopy reports. Containing detailed
descriptions of observations and conclusions made during an endoscopic procedure, endoscopy
reports greatly reflect on the medical status of the intestines. Examples include the severity
of an active illness, such as Crohn’s Disease (CD) or Ulcerative Colitis (UC), the presence of
fistulas, or the recovery from aforementioned or other ailments. Overall, endoscopy reports
provide a lot of information regarding the development of IBD-related issues.

Currently, the recommender only allows for input filtered from texts following a small set
of rules, consisting only of predefined formats. It is known that these rules do not cover a
large quantity of token sets, and therefore the overall input coverage is limited. As such,
DEARhealth is working towards a more robust approach. This implies the need for a newly
defined method for the extraction of informative terms, as well as adjustments made to the
recommender based on the more versatile resulting input.

In this research, we focus mainly on the first: information extraction from endoscopy re-
ports, and, fitting DEARhealth’s target group of Dutch patients, focus only on those written
in Dutch. Furthermore, we aim to label extracted entities according to a set of categories,
including at least the three main categories of Problem (diseases, symptoms and otherwise
abnormal findings), Treatment (surgical procedures and medicinal substances) and Test (endo-
scopic procedures, blood tests, etc.). This way, we are able to represent terms in a structured,
consistent manner, while still allowing for a greater variety of possible input compared to the
aforementioned rule-based approach.

One of the main challenges however, is that we cannot rely on supervised learning meth-
ods, as the endoscopy reports are completely unlabelled. Doing so by means of manual effort
would be highly time-consuming, and future addition of other data, which may include new
terms, would require another iteration of labelling, lest these not appear in the training, de-
velopment or test set, and would therefore not be susceptible to evaluation. Consequently,
we investigate the effects of a model called AutoNER [41, 40], a knowledge-based, distantly
supervised approach, which already yielded promising results on other clinical datasets. The
knowledge-based aspect of AutoNER refers to its use of dictionaries, which contain terms
including their type, providing a ground truth for the model.

In order to construct these dictionaries ourselves, we make use of a medical term database
called SnomedCT2. An important property of SnomedCT is that it supports multiple lan-
guages, including English and Dutch. Therefore, we can use highly similar approaches for
the construction of the dictionaries, regardless of lingual content. The execution, and thus
reliability of our methods is thereby maintained across datasets, despite content differing on
a lingual level.

Another implication resulting from the lack of any annotation is that we can hardly eval-
uate the performance of our methods using general evaluation metrics, such as f1-scores.
Therefore, we define our methods on additional annotated clinical data. This also includes
numerous reproductions to further validate the use of AutoNER. The specific use of clinical
data ensures similar content to the endoscopy reports regarding medical terms, while the
annotations introduce the possibility of evaluating our methods according to aforementioned
evaluation metrics.

2https://www.snomed.org/
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In summary, the main challenges of this project include: annotating a yet unlabelled
dataset according to predefined categories, evaluating and improving the quality of these
labels by using a distantly supervised model in the form of AutoNER, and tuning each indi-
vidual step, opting for a reliable information extraction approach for in particular the Dutch
endoscopy reports.

The main questions we will be focusing on are:

• What kind of information can we extract from endoscopy reports, with the general aim
to improve the DEARhealth Care Pathways?

• Which methods deem the most reliable for this problem?

We make several contributions to this field of research. Foremost is applying the distant
supervision model called AutoNER to Dutch biomedical texts. Second is the exploitation of
Snowstorm’s language independent search methods, so that our approach of constructing Au-
toNER’s dictionaries can be applied to both English and Dutch corpora in the exact same
manner. Overall, we find that the application of AutoNER is not as reliable and time efficient
as the name of the model suggests.

To formulate well-supported answers to our research questions, this thesis follows a struc-
tured layout. In Chapter 2, we address relevant literature and discuss experiments done in
highly similar fields of research. Next, in Chapter 3, we discuss the data we used, which
includes the Dutch endoscopy reports, the clinical datasets of NCBI-Disease, BC5CDR and
i2b2, the clinical term database SnomedCT and the tools we used to access the latter. We then
give a thorough description of our main AutoNER pipeline setup and corresponding decision-
making in Chapter 4, followed by extensive assessments, comparisons and evaluations of the
obtained results in Chapter 5. In Chapter 6, we provide an additional discussion section. In
Chapter 7, we draw conclusions based on the made observations and results, and formulate
answers to our research questions. Finally, in Chapter 8, we propose several directions for
follow-up research. From these, several are aimed at the improvement of the AutoNER model
for in particular the Dutch endoscopy reports, and the remainder suggests additional tasks to
help create more complete and reliable input for the DEARhealth recommender.
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Background 2
Because the endoscopy reports do not yield any form of annotation, we need to investigate
suitable alternatives to widely used supervised methods. As is often the case with patient
data, it is due to unstructured documentation of procedures and privacy legislation rules that
the topic of analysing these particular type of texts has yet to be addressed in further detail.

2.1 A brief summary on the demographics and effects of IBD

The term Inflammatory Bowel Disease generally refers to Crohn’s Disease (CD) and Ulcera-
tive Colitis (UC). Both diseases are chronic in nature, and are characterised by inflammations
of the gastrointestinal tract. For UC, affected areas are continuous and uniform, found within
the large intestine and rectum. For CD, affected areas tend to be more patchy, and may occur
anywhere within the gastrointestinal tract.

Although IBD is a phenomenon found on a global scale, this type of anomaly is more
prevalent among the Caucasian race, an observation already made in 1971 by Rogers et al.
[37]. It was also found that IBD is more likely to occur among woman than men. To this day,
this trend persists.

Additionally, a series of analyses conducted by Kappelman et al. [19] indicated that the
number of IBD patients in the US has been increasing over time. This holds for both pae-
diatric and adult patients, the latter for up the age of 30. For CD, it is also found that the
prevalence has been increasing more for boys when compared to girls, and vice versa for
adults. Although there is no such deviation between the sexes for UC, the overall prevalence
has been increasing as well.

The exact cause of IBD has yet to be laid bare, but recent research suggests that, with CD
in particular, this group of diseases is hereditary in nature. A series of conducted experiments
by Baldassano et al. [4] indicates a relation between a specific gene (ATG16L1) and paediatric
IBD.

Regardless, it is well known that IBD causes a wide variety of physical and psychologi-
cal health problems. Especially children and adolescents are at an increased risk of devel-
oping extraintestional manifestations, which are affected regions of the body outside of the
intestines. This in turn can lead to growth failure, delayed puberty and joint issues [21, 20].
IBD can also lead to intestinal scarring, strictures, and the development of ulcers and fistulas.
These types of problems may regularly require surgery [11].

In turn, such persistent issues can lead to psychological disorders, affecting mental and
emotional health and expression, and social behaviour [38]. Other frequently found problems
in this regard include neuroticism [36, 33], perfectionism [16], and depression and anxiety
[17].

Because aforementioned problems all may or not may not occur, a specific, personalised
plan of treatment could be extremely beneficial. This could be a series of therapeutic measures
based on affected regions of the body or resistances to particular medicine [21] (Table 2), the
prescription of specific diet choices [12], and even the application of new forms of psychological
therapy, which are specifically designed for those affected by IBD [46].

8



2.2 Big data in IBD

Over the past few decades, big data methods for IBD related data have become increasingly
more important. Raw data is often generated in large amounts, and includes medical images,
genomics, clinical trials, social media, electronic health records, administrative databases, e-
Health applications, questionnaires - similarly to those found in the DEARhealth mobile app,
and cohort studies [39].

Naturally, endoscopy reports are also a contributing factor, as is the set of images that
explain and support statements made in these reports. For the latter, a very important task
comes in the form of artefact detection [2].

However, regardless of format, and whether structured or unstructured, this data always
has to be made suitable for big data platforms (i.e., Hadoop3) and analysis first, before it
eventually becomes applicable to prescriptions, predictive risk models, etc. With the number
of IBD affected patients consistently increasing, an important overall goal is to improve IBD
care cost-effectiveness [32].

Hou et al. [18] for example addresses the issue of cost-effectiveness by showing the im-
portance of distinguishing surveillance from non-surveillance colonoscopy procedures when it
comes to defining a care treatment plan. Namely, without discriminating procedures, it is dif-
ficult to research surveillance practices and corresponding outcomes. This becomes especially
significant when patients are more susceptible to developing life-threatening complications,
such as colorectal cancer.

2.3 Natural Language Processing (NLP) techniques for clinical texts

Written clinical data is highly prone to contain names and descriptions of diseases, medicine,
procedures and findings. Terms often are, like the overall content of such texts, domain spe-
cific. Because of this, performing any kind of task on clinical data comes with a variety of
challenges.

Common among these, is obtaining structured outputs from unstructured clinical texts.
Different types of clinical data naturally require specific NLP techniques, an issue addressed
thoroughly by Kreimeyer et al. [23].

Recent research also focuses on the detection of elliptical coordinated compound noun
phrases [6]. Sentences such as brain and spine tumour imply both brain tumour and spine
tumour. However, most NLP systems lack the ability to detect these kind of noun phrases,
which may lead to inaccurate classifications, such as labelling brain as organ, and spine tu-
mour as cancer instead.

Capturing relevant contextual information of entities occurring in biomedical texts is often
very difficult, and consequently, information passed into the deep layers of any neural model
is prone to be incomplete. For a reliable biomedical NER task, this opts for the combination of
widely known approaches, such as Conditional Random Fields (CRF) and Bi-directional Long
Short-Term Memory (BiLSTM), including incorporated n-grams [10]. Also, due to a general
lack of sufficiently annotated training data, including automatically processed syntactical
information proves to be of great importance [44].

More advanced tasks such as the classification of relations among entities in clinical notes
(medicines, medical terms, etc.) is another highly addressed issue. State of the art methods

3https://hadoop.apache.org/
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are found in the form of Long Short-Term Memory (LSTM) networks [29], where also the
conclusion is drawn that taking into account the word embeddings of medical domain terms
enhances the performance of these networks. Using word embeddings for clinical NER tasks
in general may also outperform CRF, as described by Wu et al. [50].

2.4 NLP techniques targeted at gastrointestinal reports

Aforementioned challenges such as the generation of structured data and entity recognition
are also found in IBD related research, which naturally includes endoscopy reports. Covering
such highly specific content naturally opts for newly defined methods, but little research has
been done on this type of data.

The work of Zeki et al. [53] describes the application of EndoMineR [51], a package
designed to generate quality metrics for a range of symptoms found in Barett’s oesopha-
gus. Other research by Zeki investigates the complexity of endoscopy reports using several
of the programming language R’s most popular readability-package scores: Flesch-Kincaid,
Gunning-Fog Index and Coleman-Liau. It is found that the reports are at the ‘language-
level’ of an early high school student, and therefore the author argues that extraction using
rule-based methods is a great alternative compared to for example machine learning. Phrase
removal does not have any significant impact on the scores [52].

In addition, even the construction of IBD databases is a recurring issue. Brown et al.
[9] states the importance of doing so automatically, simply because of the sheer amount of
available related data yet to be stored.

2.5 Endoscopy report quality

There are also numerous challenges regarding the quality of endoscopy reports. For general
issues such as spelling errors, the Levenshtein distance can be used to determine the correct
spelling of (important) terms. However, from content alone, it might be difficult to determine
whether the report is about CD or UC, unless explicitly stated [9]. This is due to the displayed
similarity of symptoms occurring in these diseases.

As such, studies like those by Kuipers et al. [24] and Bretthauer et al. [8] indicate the
importance of standardised report systems for endoscopy reports. This includes the use of
pre-defined text blocks, rather than free text fields, making the generation of the reports
user-friendly, maintaining clarity and providing easy access to captured information.

Furthermore, the European Crohn’s and Colitis Organisation (ECCO) suggests a consen-
sus regarding the indication and application of endoscopic procedures, in an effort to enhance
efficiency and consistency [3]. This is done by categorising the procedures according to four
main topics: diagnosis and follow-up, score of endoscopic activity, small bowel endoscopy, and
surveillance. Also, ECCO provides a terminology of endoscopic lesions in IBD, which includes
the agreed terms for different types of mucosal damage, how these should be described, and
which grading scale should be applied for each individual type [3] (Table 2.1).

Another factor that may improve the quality of endoscopy reports comes in the form of
simple audit interventions. In a study on Spanish reports performed by Lisboa-Gonçalves
et al. [27], it was found that in nearly half of these, the descriptions of observations and
conclusions regarding the state of the gastrointestinal tract were incomplete, and no further
support to these claims was provided. The percentage of incorrectly described lesions was
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found to be just over 10%.
The lack of following a general consensus affects the quality of endoscopy reports on a

global scale. Benchimol et al. [5] for example compared several reporting systems from multi-
ple countries regarding the development of IBD in children in both developed in lesser devel-
oped countries. However, accurate rates are often missing and cannot be easily derived from
current unstructured texts. It is argued that a more thorough investigation of these numbers
might lead to a better understanding of paediatric IBD incidence rates, both environmental
and genetic.

The implementation of aforementioned suggestions could enhance the quality of endoscopy
reports, in turn making it easier to automatically analyse texts, train models and extract spe-
cific information.

2.6 Annotating unlabelled clinical data

The automatic annotation of unlabelled clinical data heavily depends on the presence or ab-
sence of labelled data. When labelled training and evaluation sets are present, and these
labels are accurate, supervised approaches can be used to annotate additional, similar data.

One state-of-the-art supervised method for the annotation of clinical data comes in the
form of BioBERT, a Bidirectional Encoder Representations from Transformers (BERT)-based
[13] model pre-trained on biomedical texts. Lee et al. [26] show that the BioBERT outperforms
numerous other methods on clinical data. This includes the i2B2 VA challenge dataset, which
we will also use to evaluate our approach.

BioBERT is also suitable for transfer learning for biomedical NER [43]. Transfer learning
implies the training of a model to for example detect types of cars, but use it for trucks in-
stead, i.e., different, yet still (remotely) similar data. Our approach relies on this principle as
well. Since the endoscopy reports are unlabelled, we have to resort to evaluating our methods
on other clinical data in order to compute any evaluation metric scores automatically. Syme-
onidou et al. [43] show that with only a relatively small amount of annotated data, transfer
learning can help in specialised information extraction tasks.

However, annotated training or other sets for (raw) patient data are extremely scarce,
mainly due to privacy legislation rules. Therefore, it is often impossible to use supervised
methods unless manual annotation is performed on a rather large scale. This opted for other
approaches, including rule-based methods combined with deep representation [48], distant
supervision methods to augment data by using only a small pool of manually annotated data
[42], weakly supervised methods for the creation of vast training data [35], and unsupervised
methods that use clinical term databases such as SnomedCT [30].

2.6.1 AutoNER

As mentioned in the introduction, we will primarily use a model called AutoNER to perform
the information extraction task. Proposed by Shang et al. [41, 40], AutoNER is a knowledge-
based, distant-supervision approach, allowing for NER tasks on unlabelled data. The neural
model uses two dictionaries which provide a ground truth. The core dictionary contains en-
tities labelled according to a set of categories. The full dictionary contains all terms that
AutoNER should regard as candidate entities. Besides the terms captured within the core
dictionary, the full dictionary additionally holds all terms that thus should be considered
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relevant.
For the provided BC5CDR dataset, the core dictionary is the result of combining the MeSH

database4 and the CTD Chemical and Disease entity lists5. Here, entities are either labelled
as Chemical or Disease. The full dict has been further extended upon by entities extracted
from the texts by the AutoPhrase6 module [40, 28].

AutoNER distinguishes itself by using a so called Tie or Break tagging scheme to further
improve upon the distant supervision. Here, the focus lies on adjacent token pairs. If both
tokens are of the same entity, the token span is considered a Tie. If either one or both of the
two tokens occur only within the full dictionary, i.e., occurrence among the unknown high-
quality phrases, the token span is labelled as Unknown. Tokens spans are always separated
from one another by a Break. According to Shang et al. [41, 40], the use of this specific tagging
scheme better exploits dictionary knowledge.

4https://www.nlm.nih.gov/mesh/download_mesh.html
5http://ctdbase.org/downloads/
6https://github.com/shangjingbo1226/AutoPhrase
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Data 3
In this chapter, we present and elaborate on the used data. We start by analysing the Dutch
endoscopy reports and the additional English clinical datasets, which include the NCBI-
Disease, the i2b2 and the BC5CDR dataset. For each of the latter, we also state during
which part of the research they were considered. Next, we discuss the clinical term database
SnomedCT, as well as the tools we investigated to extract relevant concepts. Finally, we state
which pre-trained word embeddings we used for the AutoNER model.

3.1 Endoscopy reports

The Dutch endoscopy reports we will be using are provided by the department of Gastroen-
terology at the Leiden University Medical Centre hospital (LUMC), totalling 1322 XML files.
We anonymised these documents manually, removing all patient names, IDs and any other
sensitive values that may relate to the person concerned. As mentioned, as these documents
are raw patient data, they are completely unlabelled.

The majority of the texts are structured according to the ‘new’ format, adopted in 2017.
Compared to the old layout, these reports provide more containers for storing specific data,
such as descriptions for findings made during the endoscopic procedure. Therefore, more
recent reports tend to have larger content by default, even if XML fields are left empty.

Furthermore, it is important to note that either format mainly consists of free text fields,
with the exception of a few default choices for certain containers. Because no further check
on the quality of these texts has been done, these texts are prone to spelling and other syn-
tactical errors. After manual inspection, it becomes clear that this is indeed the case for
many included documents. Some examples regarding this issue are shown in Table 1. Other
examples include inconsistent use of capitalisation and words missing from sentences.

Term Type of issue Corrected Translation

ontstekinh Spelling ontsteking inflammation
rectunpolipeje Spelling rectumpoliepje small rectal polyp

wsch Unofficial abbreviation waarschijnlijk probably or likely
kwetsbaarslijmvlies Incorrect concatenation kwetsbaar slijmvlies fragile mucosa

lijkt de nauw Incorrect word usage lijkt te nauw seems too narrow
mn Incomplete abbreviation m.n. (met name) particularly or mainly

Table 1: Examples of (reoccurring) textual issues found within the endoscopy reports.

3.2 Clinical NER datasets

Because the endoscopy reports lack any annotation, we require labelled data in order to eval-
uate our methods by means of a development and test set. Given perfect circumstances, the
contents of such additional data will be highly similar to the endoscopy reports, and are writ-
ten in the same language. However, such data cannot not be obtained easily, and we therefore
sought sets which are freely distributed, are not violating any rules regarding patient privacy,
and contain clinical data as to approximate the data contained in the endoscopy reports.
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3.2.1 NCBI-disease dataset

The NCBI-disease corpus [14] consists of 793 fully annotated PubMed7 abstracts. It was
constructed specifically for the extraction of biomedical concepts, therefore providing a gold-
standard for tasks such as clinical NER.

For our research, we will make use of the version provided by the BioBERT model, which
already has all files converted to the required TSV format used by BioBERT. The annotation
however only indicates entities themselves, and not any additional typing such as the group
to which a disease is related, whether a term is a symptom referring to a disease, etc. Further-
more, BioBERT itself has to be altered quite extensively in order for it to allow the inclusion
of typing. We therefore only use this dataset to reproduce the BioBERT results as stated in
its corresponding paper by Lee et al. [26].

3.2.2 2010 i2b2/VA challenge

The 2010 i2b2/VA Challenge was a workshop composed of three tasks: medical concepts ex-
traction, assertion classification, and relation classification [45]. Partners Healthcare, Beth
Israel Deaconess Medical Center, and the University of Pittsburgh Medical Center were the
instances providing the used anonymised patient reports. From these, 394 files are suitable
for training, 477 for testing, and the remainder of 877 files was left unannotated. However,
these numbers also include the files specifically annotated for the assertion classification and
relation classification tasks, which we do not need. Omitting these leaves us with 170 files for
training, and 256 for testing.

Instead of listing each word of the text with its corresponding entity type, the i2b2 dataset
provides per text file a separate annotation file, in which annotations are stated as follows:
entity, coordinates, entity type. Coordinates state the sentence number, followed by the index
of the word itself - on token level. Entities can be labelled according to one of the following
three categories: Problem, Treatment and Test. These are the categories we will also be using
for the endoscopy reports.

This dataset is also used in the work of Lee et al. [26] to evaluate BioBERT, though again
without the use of any of the aforementioned categories. This is the first benchmark dataset
we will be using to define our methods on.

3.2.3 BioCreative V Chemical Disease Relation (BC5CDR) challenge

The final additional dataset we will be using is the BioCreative V Chemical Disease Relation
(BC5CDR) corpus [49], which is a benchmark dataset generated for the extraction of relation-
ships between disease and chemical entities. Consisting of 1500 human annotated PubMed
articles, which include 4409 annotated chemicals, 5818 diseases and 3116 chemical-disease
interactions, it covers a large variety of disease chemical interaction descriptions.

This dataset was used for evaluating the AutoNER model in its original paper, and the
required dictionaries, as well as the texts, which are formatted to support the specific for-
mat AutoNER uses, are freely available. The BC5CDR dataset will function as our second
benchmark dataset.

7https://pubmed.ncbi.nlm.nih.gov/
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3.3 Snomed Clinical Terms

Snomed Clinical Terms (SnomedCT) is a collection of clinical terms, corresponding codes, syn-
onyms, and detailed descriptions. For each concept, there is the Fully Specified Name (FSN)
field, a unique string in SnomedCT, which also includes the assigned SnomedCT category
between parenthesis. There is also the Preferred Term (PT), used to represent the concept
within clinical applications or environments. If applicable, a (series of) synonym(s) may be
provided for a particular concept.

SnomedCT also yields relationships between concepts. For example the term brain tu-
mour, labelled a disorder in SnomedCT, has several child concepts like Benign tumor of sella
turcica and Chiasmal glioma, both of which are also labelled disorder. The term also has two
parent concepts: Mass of intracranial structure, which is a finding and neoplasm of head, a
disorder. SnomedCT also holds information of the finding site, i.e., the place where the con-
cept is located within the body – here, intracranial structure, and the associated morphology,
which is Neoplasm.

From this example, we get a view of SnomedCT’s multi-hierarchical structure: there are
multiple child and parent concepts, as well as connections to other related concepts. Taking
into account that the January 2020 release of SnomedCT’s International version contains over
350.000 concepts, it is clear that the hierarchy is very complex.

Besides the high coverage of medical concepts, SnomedCT also supports multiple lan-
guages, including Dutch. Every term in SnomedCT has a direct mapping to other available
lingual variants. This allows us to query SnomedCT in English – which we will do for our
benchmark datasets – and use the same query to obtain the resulting concepts in Dutch,
without any additional effort to translate these. Therefore, our SnomedCT search methods
are language independent.

3.3.1 Accessing SnomedCT with PyMedTermino

In order to deal with SnomedCT’s complexity, several tools have been defined that allow for
efficient querying. We addressed two of these, the first being the PyMedTermino package, an
open source Python implementation of the API as presented by Lamy et al. [25]. PyMedTer-
mino makes it possible to exploit the SnomedCT hierarchy, search for concepts, retrieve the
parent and child concepts thereof, etc. Although PyMedTermino does prove its ability to ac-
curately extract concepts, there are some noticeable drawbacks.

For PyMedTermino to be used, one has to separately download and assign a release of
SnomedCT database. The latter is prone to change over time (if only minimal), due to the
introduction of new or removal of outdated (inactive) concepts, and other structural changes.
In order for these changes to be passed into PyMedTermino, a new version of SnomedCT has
to be initialised. The required initialisation also implies that whenever the user wishes to use
a different language, a corresponding version of SnomedCT has to be loaded.

If search methods are already well defined, and the initialisation only needs to be done a
few times, the swapping remains manageable. However, since we are continuously seeking to
improve our own search method, this aspect of PyMedTermino becomes rather impracticable.
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3.3.2 Accessing SnomedCT with Snowstorm

The second tool we use is the Snowstorm Terminology Server8 API, developed by Snomed
International9. Similar to PyMedTermino, it allows for concept search, parent and child con-
cept retrieval, access to synonyms, etc. In addition, Snowstorm enables further exploitation
of the multi-hierarchy, including a greater variety of search options, filters, and parameter
settings. Moreover, there is the option of traversing the data using SnomedCT Expression
Constraint Language (ECL) queries. ECL is a specifically constructed language for “defining
bounded sets of clinical meanings represented by either precoordinated or postcoordinated
expressions”10. ECL for example includes disjunctive and conjunctive operators, constraint
operators like is-member-of, is-ancestor-of and is-descendant-of, and numerous other options
[31]. The Snowstorm interface itself makes it clear which options are available, and which
values these can take.

In order to efficiently work with Snowstorm, we made crawlers for two of its search mod-
ules: Descriptions : /branch/descriptions and Concepts: /branch/concepts. The first enables
us to directly lookup concept strings, and retrieve their FSN and PT terms, as well as other
(inactive) synonyms. The second allows us to exceed the maximum response limit of 10,000
terms by using the SearchAfter parameter. Such a high amount of resulting concepts occurs
when we for example use the query: « 64572001 |disorder (disorder)|. This subsumes all con-
cepts within the category disorder - one of SnomedCT’s main categories - totalling a number
of 81,973.

In contrast with PyMedTermino, changing between lingual versions of SnomedCT here
only requires the alteration of a single parameter. And, since the terminology is continuously
updated, the relevance of all obtained results is preserved.

In conclusion, although PyMedTermino does offer quite a large variety of operations,
Snowstorm proves to be more extensive and reliable, and its ECL queries are language in-
dependent. Except for our baseline method, we will therefore continue with Snowstorm as
our main tool for accessing SnomedCT.

3.4 Pre-trained word embeddings

In order for AutoNER to properly train the model, a pre-trained word embedding file is re-
quired. For the i2b2 and BC5CDR datasets, we use the embeddings resulting from the work
of Pyysalo et al. [34]. This embedding file is automatically downloaded when initially running
AutoNER. The 200 dimensional word vectors are the result from applying a Word2vec model
to an extremely large quantity of Pubmed article titles, abstracts and full text documents.

For the endoscopy reports, we require a separate, Dutch embedding file - as embeddings
are language dependant. Here, we use an embedding from the NLPL word embeddings repos-
itory11. The 100 dimensional word vectors are the result from applying a word2vec model to
the Dutch CoNLL17 corpus (id 32) [15].

8https://snowstorm.test-nictiz.nl/swagger-ui.html
9https://www.snomed.org/

10https://confluence.ihtsdotools.org/display/slpg/snomed+ct+expression+constraint+language
11http://vectors.nlpl.eu/repository/
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Methods 4
In this chapter, we thoroughly discuss and explain each specific step of the overall method-
ology. Included is the determination of upper bound scores using the state-of-the-art clini-
cal NER model BioBERT, a naive baseline NER approach using SnomedCT, an intermediate
evaluation of the thus far obtained results to better define our pipeline, and the application of
AutoNER, as to perform the distant supervised NER task on the BC5CDR-Disease, i2b2 and
endoscopy report datasets.

4.1 Method reproduction of a state-of-the-art supervised NER
model: BioBERT

Prior to setting up a pipeline for our distant supervised model, we attempt to reproduce the
results with BioBERT reported by Lee et al. [26] on three datasets: NCBI-Disease, BC5CDR-
Disease, and i2b2. It is expected that BioBERT, given an annotated dataset, will outperform
any distantly supervised approaches on the same data. However, the scores obtained with
BioBERT will grant us an insight in what can be regarded as upper bound, and we will
therefore strive to get as close as possible to these numbers.

In contrast to the NCBI-Disease and BC5CDR datasets, the i2b2 dataset is not freely
distributed with the BioBERT model, and has to be requested via the corresponding 2010
i2b2/VA challenge website12. Annotations are provided in separate files, rather than be-
ing placed directly after each entity of the text. Moreover, annotations are denoted in a
coordinate-like format. Here, entities are referred to merely by two indices, which correspond
to the sentence and the entity’s position therein, followed by the entity type.

Because of this, we first have to apply the necessary pre-processing steps to obtain the
format required by BioBERT, linking each entity type to its corresponding entity using afore-
mentioned indices. We also introduce IOB-tagging to ensure entities consisting of multiple
consecutive tokens will still be regarded as a single entity by BioBERT.

Hereafter, we apply BioBERT to each of the three datasets, following the procedure as
stated by Lee et al. [26]. It has to be noted that the evaluation of BioBERT is limited to
the mere recognition of entities, disregarding any typing. The NCBI-Disease and BC5CDR-
Disease datasets cover, as the names suggests, only entities of the type Disease. The NER
task therefore does not impose the need for additional type annotation.

However, we opt to take typing into account for our distantly supervised approach. For
i2b2, we therefore also investigate BioBERT’s performance if IOB-annotations for all of it’s
three types, Problem, Treatment and Test, are used simultaneously, rather than separately.

12https://www.i2b2.org/NLP/DataSets/Main.php
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Precision Recall F1-score

NCBI-Disease 0.867 0.891 0.879
i2b2 (avg) 0.874 0.879 0.877

i2b2 Problem 0.692 0.697 0.694
i2b2 Treatment 0.871 0.843 0.857

i2b2 Test 0.871 0.865 0.868
BC5CDR-Disease 0.852 0.868 0.860

Table 2: Precision, recall and f1-scores of BioBERT on the NCBI-Disease, i2b2 and BC5CDR-
Disease datasets. The results on the NCBI-Disease and i2b2 (avg) are reproductions, and are
near equal to those stated by Lee et al. [26]. It has to be noted that the NER task on all three
categories of the i2b2 dataset simultaneously, as stated in the i2b2 (avg) row, does not include
the type labelling of these entities.

The values as presented in Table 2 will be regarded as the upper bound obtainable scores.
We therefore aim to get as close as possible to these scores using distant supervised methods,
but consequently also do not expect that these values will be exceeded. Surprisingly, we find
that when using BioBERT on solely the Problem category, the model performs substantially
worse compared to on all three categories simultaneously, as well as the other two categories
of Treatment and Test. This may indicate that NER task on the Problem category of the i2b2
dataset is relatively more difficult, and we will take this observation into account when using
distant supervision.

4.2 Naive dictionary-based NER using SnomedCT

Our first attempt investigates the degree of ease of mapping extracted SnomedCT terms to
the three categories of i2b2 dataset, Problem, Treatment and Test.

For the baseline method, we use a naive dictionary-based approach for entity recognition.
We determine for each term we extracted from SnomedCT where it occurs within the text,
and label accordingly.

Initially, we make use of the PyMedTermino in order to traverse and exploit the SnomedCT
hierarchy. As SnomedCT’s eight main categories do not directly correspond with those of i2b2,
e.g., there is no Problem category in SnomedCT, we selected terms in various ways, and map
these to the required three entity types instead. We investigated three approaches we consid-
ered to be worth examining:

1. We search for Problem, Treatment and Test in SnomedCT, and extract all the descen-
dants of the resulting terms, followed by their synonyms.

2. We select SnomedCT terms which hold descriptors – the term found in between paren-
thesis trailing the actual term – most likely to be matching the required format. For
Problem, we select all terms within the disorder branch of the clinical finding main
category. For Treatment, we select all terms within the regime / therapy branch of the
procedure main category. Finally, for Test, we select all terms within the procedure
branch of the eponymous procedure main category, and also add all terms found in the
observable entity category. Similarly to the previous approach, we extract all descen-
dants and synonyms.
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3. We select terms for each of the three categories according to the given examples in the
i2b2 challenge description. Using this approach, we end up with a larger variety of
search terms. For Problem, we query disease, syndrome, sign, symptom, mental status,
behavioural status, virus, bacterium, injury, abnormality and test result. For Treatment,
we search for medication, biological substance, drug delivery device, procedure, device,
hardware and Treatment. And finally, for Test, we query Test, body fluid analysis, phys-
iologic measure, vital sign, examination and evaluation.

For in particular approaches one and three, we expect to find overlap among the descen-
dants of terms, as they do not map to distinctive categories. Therefore, we may end up with
terms for example labelled as both Problem and Treatment, which in turn leads to erroneous
labelling.

4.3 Evaluating the baseline method: a mapping problem

When we put aforementioned approaches into practice, we find the evaluation metric scores
as shown in Table 3. It is clear that our baseline methods are indeed rather naive approaches,
and that there is a large possible improvement to be made when we draw a comparison to the
scores obtained by BioBERT.

Approach Precision Recall F1

1 0.252 0.039 0.064
2 0.106 0.080 0.086
3 0.155 0.141 0.145

Table 3: Precision, recall and f1-scores resulting from the three baseline approaches

The mapping of SnomedCT terms onto the three categories of the i2b2 dataset will also
be the initial step for future pipelines, with in particular the dictionary construction for Au-
toNER. Naturally, if we are to build and continuously improve upon a certain approach, it is
important to provide a solid foundation. This implies that the number of false positives (terms
erroneously assigned a specific category) and false negatives (words incorrectly unlabelled by
specific category) for each of the three categories, must be reduced as far as possible.

The core issue of this challenge lies in the complexity of the SnomedCT database. As al-
ready stated, terms can have a multitude of both parental and child relationships to other
terms, allowing for multi-hierarchical clusters. Recalling our example from previous chapter:
brain tumour, labelled a disorder in SnomedCT, has several child concepts like Benign tumor
of sella turcica and Chiasmal glioma, both of which are also labelled disorder. The term also
has two parent concepts: Mass of intracranial structure, which is a finding and neoplasm of
head, a disorder. SnomedCT also holds information of the finding site, i.e., the place where
the concept is located within the body – here, intracranial structure, and the associated mor-
phology, which is Neoplasm.

We can see here that if we extract all relations and assign the same category, which in
this case would be Problem, the term intracranial structure would also be assigned this label.
However, intracranial structure does not refer to a Problem at all, but merely a location of the
body. When this method is executed on a larger scale, we automatically end up with a lot of
erroneous labels.
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We also found that the same issues arise when we approach the mapping of labels from
the opposite perspective. Rather than mapping SnomedCT categories onto those of i2b2, we
try to map the categories of i2b2 onto those of SnomedCT. In order to extract noun phrases,
we use an approach by Bowe [7] that combinations NLTK’s part-of-speech tagger with the
regular expressions reported in the work of Kim et al. [22] (Table 2). Next, we use SnomedCT
as a ‘filter’: if querying a noun phrase in PyMedTermino does not return any results, then it
most likely does not contain any clinical terms. By omitting phrases for which this holds true,
we end up with a set composed of clinical entities only.

It would be ideal if all terms end up in three different categories, or an otherwise small
number thereof, which would sufficiently represent Problem, Treatment and Test. However,
we instead end up with many different (sub-)categories. One could argue that backtracking
would be an option, by iterating through parental relationships until a main, or at least a
high-level category is found, as to simplify the mapping problem. This however did not prove
to be a reliable method either. As mentioned earlier, terms can have multiple parental re-
lationships, and each respective ancestor can have its corresponding multitude of parental
relationships, etc. The amount of manual decision-making would be an infeasible task for
texts which may hold thousands of different medical entities – as is the case for i2b2. Conse-
quently, no further improvement is made on the results as denoted in Table 3.

4.4 Knowledge-based, distantly supervised Named Entity Recogni-
tion: AutoNER

The significance of the mapping problem is reflected greatly by the evaluation metric scores
resulting from all three baseline approaches, and we therefore deem the direct mapping of cat-
egories to be highly impracticable. We continue instead with AutoNER, a knowledge-based,
distantly supervised approach which has proven itself a reliable alternative to supervised
methods for clinical NER.

Ultimately, we want to use AutoNER for the Dutch endoscopy reports. Before we are
able to do so however, we need to define a reliable method to construct the two dictionar-
ies on which the model relies. As mentioned in Section 2.6.1, the provided dictionaries for
the BC5CDR are based on the MeSH database13 and the CTD Chemical and Disease entity
lists14, and the full dictionary is further expanded upon by using AutoPhrase. However, these
databases are not available in Dutch. Moreover, it is not completely clear how the provided
dictionaries are tailored. Because of this, we define our own pipeline to make AutoNER ap-
plicable to both Dutch and English corpora.

The content of these dictionaries is of similar format to the output of our baseline meth-
ods: lists of (candidate) entities that should be labelled according to any present category.
However, this means that we again encounter the mapping problem when we incorporate the
use of SnomedCT. The provided BC5CDR data already includes these dictionaries, so we do
have an idea of what well-defined dictionaries should resemble. The question that arises here
however is, to what extend can we actually use SnomedCT to reconstruct these dictionaries,
as well as define new ones for other data such as the endoscopy reports?

In order to implement suitable pipelines, we performing the following tasks:

13https://www.nlm.nih.gov/mesh/download_mesh.html
14http://ctdbase.org/downloads/
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• Validate AutoNER by reproducing the results as stated by Shang et al. [41] on the
BC5CDR dataset using the provided dictionaries.

• Investigate how AutoNER performs if we use the entities resulting from our current
baseline methods as dictionary content for the i2b2 dataset.

• Reproduce the results on the BC5CDR dataset, this time by defining our own dictionar-
ies. Here, we disregard the Chemical category, and focus solely on the Disease entities.
Compared to i2b2, where we have three categories, the NER task is thus narrowed
down. This takes away a great part of the mapping complexity, and therefore allows us
to better understand how we are to approach this problem.

• Return to the i2b2 dataset, and determine if we can successfully apply any new strategy
that allows for dictionary construction for all three categories.

• Evaluate AutoNER on the Dutch endoscopy reports, taking into account the results and
approaches on the two benchmark datasets.

The main reoccurring aspect of these steps is the construction of the dictionaries. During
this research, we have investigated a lot of different approaches and search methods within
SnomedCT. Eventually however, we decided upon a general method for dictionary construc-
tion, which we applied to all three datasets.

4.4.1 Extensive querying in SnomedCT

Although it is evident the mapping problem will remain present, we refine our baseline search
methods in order to extract as many relevant terms as accurately as possible. However,
PyMedTermino’s search options are rather limited. We will therefore make use of the Snow-
storm API to browse SnomedCT instead. As mentioned in Section 3.3.2, Snowstorm allows for
the use of specified ECL queries, and fully supports both English and Dutch, so our queries
and results will be language-independent.

In order to circumvent Snowstorm’s Descriptions : /branch/descriptions search method’s
maximum number of returned results, which equals 10,000, we make use of the SearchAfter
method in the Concepts: /branch/concepts module. We set the limit parameter to 1,000, and
leave all other parameter settings to their default values. For all resulting main terms, we
also collect the fully specified name (fsn) and the preferred term (pt).

For BC5CDR, we will only attempt to perform NER for the Disease category. We use the
following ECL queries:
« 404684003 |Clinical finding (clinical finding)|
« 64572001 |Disorder (disorder)|
« 49755003 |Morphologic abnormality (morphologic abnormality)|

Due to an unknown reason, we barely retrieved any concepts related to types of cancer. We
therefore additionally searched for cancer in the Descriptions : /branch/descriptions branch
– as the number of terms for this particular search request does not exceed the corresponding
maximum amount of 10,000.

For i2b2, we will define queries for all three categories, while ensuring as little overlap
between results from different categories as possible. Based on the data, we find that the
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Problem category is highly similar to BC5CDR’s Disease category, and we therefore use the
same ECL queries.

For Problem, we use:
« 404684003 |Clinical finding (clinical finding)|
« 64572001 |Disorder (disorder)|
« 49755003 |Morphologic abnormality (morphologic abnormality)|

Again, we additionally search for cancer in the Descriptions : /branch/descriptions branch
to complete the entity list for this category.

For Treatment, we use:
« 410942007 | Drug or medicament (substance) |
« 373873005 | Pharmaceutical / biologic product (product) |
« 705208008 | Complementary therapy device (physical object) |
« 706036000 | Device for body fluid and tissue management (physical object) |
« 707727004 | Device substance (physical object) |
« 707728009 | Device system (physical object) |
« 705288005 | Ear, nose and throat device (physical object) |
« 705178002 | Physical therapy device (physical object) |
« 243120004 | Regimes and therapies (regime/therapy) |
« 277132007 | Therapeutic procedure (procedure) |
« 128303001 | Surgical removal (procedure) |

And finally for Test, we use:
« 86273004 | Biopsy (procedure) |
« 386053000 | Evaluation procedure (procedure) |
« 108252007 | Laboratory procedure (procedure) |
« 363788007 | Clinical history/examination observable (observable entity) |
« 103693007 | Diagnostic procedure (procedure) |

For the Dutch endoscopy reports, we use the exact same queries for the i2b2 dataset, again
obtaining term lists for Problem, Treatment and Test. Naturally, we now retrieve the Dutch
variant of each term.

After querying, we extract any synonyms for each term captured within the three lists
– one list for each dataset. We have to perform this task in an additional matter because
inactive concepts are not included within the results of the aforementioned queries. In order
to retrieve these additional terms, we search for each term in the Descriptions : /branch/de-
scriptions branch. We do have to introduce the condition that resulting terms fsn and pt fields
may only be taken into account if the searched term and the retrieved main term are exact
matches. Otherwise, we would include matches in which the searched term is a sub-string.
For example, if search for Colon cancer without this measure, we would find Colon cancer
screening declined (and its pt and fsn entries), which holds no value for the Problem category.

To expand the lists further, we add the pluralised format of each present term – if appli-

22



cable – using the Python pattern15 package.
To finalise our initial lists of terms, we check which terms occur in the full corpus of

their respective dataset (disregarding all capitalisation), and only keep those. At this point,
the only difference between the core and full dictionaries are the added annotations for the
former.

4.4.2 Additional sources

There is also a (large) variety of abbreviations within each corpus, many of which are relevant.
SnomedCT however does not hold a sufficient amount thereof, and consequently the use of
the aforementioned queries barely resulted into any. We therefore extracted all abbreviations
from each corpus by using regular expressions, matching only fully capitalised tokens with a
length >= 2 and =< 4.

The issue that arises however is that we cannot annotate the abbreviations the same way
we did with the terms from SnomedCT, for which we relied on the mapping of categories.
Instead, make use of lists of clinical abbreviations from external sources. We then annotate
these manually according to the description given for each abbreviation.

For the BC5CDR and i2b2 datasets, we use a list of medical abbreviations provided by Re-
sourcePharm16. For the Dutch endoscopy reports, we use the list of abbreviations contained
in a Dutch IBD guideline document, called Diagnostiek en behandeling van inflammatoire
darmziekten bij kinderen (Diagnostics and treatment of inflammatory bowel diseases in chil-
dren) [1].

Thereafter, we check for each abbreviation we extracted from the corpus if it occurs within
the annotated list. If so, we also add the abbreviation including its annotation to the core
dictionary. Otherwise, the entity type remains unknown, and we can therefore only add the
abbreviation to the full dictionary.

Another external source we use is the Termprofiling17 module [47]. As mentioned in Sec-
tion 2.6.1, AutoNER makes use of AutoPhrase to extract additional relevant terms for the full
dictionary. However, AutoPhrase does not support Dutch without additionally training the
model on Dutch corpora, and we therefore made use of a language-independent alternative in
the form of Termprofiling. For the English datasets, we use a gamma of 0.8. For the Dutch
endoscopy reports, we use a gamma of 0.5. Finally, we set the n-gram parameter to 3.

4.4.3 Manual dictionary tailoring

Although we tried to make all aforementioned steps as accurate and precise as possible, we
could not avoid introducing a significant amount of false positives, i.e., terms with no rele-
vance at all, to our dictionaries. There are also numerous terms that are labelled incorrectly
for the i2b2 dataset and the endoscopy reports. This is due to a small overlap between the
terms corresponding to each category, which was an inevitable result from the used queries.

To deal with these erroneous terms, we had to make manual adjustments to the dictionar-
ies, traversing each list and removing terms accordingly.

15https://github.com/clips/pattern
16https://www.resourcepharm.com/pre-reg-pharmacist/medical-abbreviations.html
17https://github.com/suzanv/termprofiling
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4.4.4 Development and test set construction

For the AutoNER model to train, a development and a test set are required. This at the same
time allows us to gain any evaluation metric scores regarding the quality of the NER process.
For the BC5CDR dataset, the development and test set are already included in the format
suitable for AutoNER, while for the i2b2 dataset, we have to parse the existing sets into the
correct format ourselves. For the endoscopy reports however, we constructed both sets by
manually annotating a selection of documents.

The resulting development and test set consist of 9666 and 4680 annotated tokens respec-
tively. Tokens are annotated as either Problem, Treatment, Test or None.
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Results 5
In this chapter, we present and evaluate the results we obtain by various means. For all
experiments regarding AutoNER, we use similar parameter settings as stated in the work
by Shang et al. [41]: a stochastic gradient descent (SGD) update layer, a batch size of 10, a
momentum of 0.9, and a dropout rate of 0.5. Only the learning rate, which we set to 0.01,
differs from the 0.05 default value. We do so based on observations made from conducted
experiments: while the results on the BC5CDR dataset when using the provided dictionaries
remained practically unchanged, a slightly lower learning rate gave us slightly better results
when our custom made dictionaries are used. Due to the scope of this project, we do not
investigate further tuning on AutoNER’s parameters.

Finally, as we also mentioned in previous sections, we only focus on the Disease category of
the BC5CDR dataset. Thus, we do not attempt to define the dictionary part for the Chemical
category.

5.1 Reproduction of AutoNER

To validate AutoNER, we use the provided dictionaries, the unannotated training set, and
the annotated development and test sets. From the highly similar scores as presented by
Table 4, we can conclude that AutoNER functions correctly on our machines. The negligible
difference also shows that using a learning rate of 0.01 does not affect the NER process in
a negative manner. Other factors that may have contributed to the slight deviation in the
resulting numbers include the random initialisation of the model, and the random sampling
of examples during the training phase. It is also shown that the scores of the Disease category
are lower than those of the Chemical category, arguably implying that it is more difficult to
correctly perform the NER task Disease entities.

Precision Recall F1-score

Reported by Shang et al. (avg) 0.890 0.810 0.848
Obtained by reproduction (avg) 0.879 0.815 0.846

Chemical 0.907 0.848 0.876
Disease 0.844 0.779 0.808

Table 4: Precision, recall and f1-scores obtained on the BC5CDR dataset, using the provided
dictionaries. Scores in the top two rows are the average of the two categories. We additionally
provide the results for only the Chemical and Disease category obtained on our own machines.

When we investigate the predictions on token level, we can also confirm that AutoNER
extracts entities that do not occur in the dictionaries. Namely, besides the 6877 dictionary
entities, AutoNER labels 425 new entities (total over the development and test sets), the
majority of which are valid candidate entities. Here, false positives come for example in the
form of stand-alone numbers, abbreviations and names of body parts.
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5.2 Initial AutoNER results on the i2b2 dataset

Now that we have confirmed that the original AutoNER results are reproducible, we apply
the model to the i2b2 dataset. Our core and full dictionary consist of the entities extracted by
the third method as described in Section 4.2.

It is important to note that at this point, we have made alterations to the development and
test set. Possessive adjectives (his, her, etc.), demonstrative pronouns (these, that, etc.) and
articles (a, an and the) do not yield any specific importance, though they are often included
in entities of the i2b2 dataset. We also do not include these kind of tokens in entities of the
endoscopy reports. Therefore, if an entity starts with any of these tokens, then that part of
the entity is not taken into account, i.e., labelled None.

Precision Recall F1-score

Problem 0.445 0.155 0.229
Treatment 0.177 0.012 0.022

Test 0.000 0.000 0.000
Average 0.207 0.055 0.084

Table 5: Precision, recall and f1-scores obtained on the i2b2 dataset, using the entity list
obtained by our baseline method as dictionary content.

From the results presented in Table 5, it becomes evident that using our baseline method
for dictionary building is far from optimal. Beside the low scores for Problem, and Treatment
even less so, we actually find a precision, recall and f1-score equal to 0.0 for the Test category.
This rather exceptional finding can be explained by the manner in which AutoNER evaluates
the results it achieves on the development set, and how the model trains itself accordingly.
Namely, if AutoNER does not find any improvement for a certain number of iterations, the
learning rate drops. In this case, the model has most likely become stuck in a local optimum,
as the possible improvements made on the Test category do not outweigh the simultaneous
loss on the other two categories.

From the aforementioned baseline approach, however, it was already clear that the re-
sulting entity lists, and in turn the dictionaries we have now used, are of rather low quality
regarding both false positives and negatives. This particularly holds for the Test category.

Based on these observations, we can conclude that the dictionaries require a lot of im-
provement before the NER process will become as reliable as it is when using the provided
dictionaries.

5.3 AutoNER with custom dictionaries on the BC5CDR dataset

Through thorough experimentation, we make use of a dictionary resulting from querying
SnomedCT by means of the Snowstorm API, the addition of synonyms and plurals, abbrevia-
tions, terms extracted by the Termprofiling module, and manual pruning to remove as many
false positives as possible. Our final core and full dictionaries hold 2512 annotated terms, and
2679 unannotated terms, respectively. The difference in numbers is caused by the additional
unlabelled abbreviations and terms resulting from Termprofiling.

Table 6 shows the results of the NER process on the Disease category when using our
custom-tailored dictionaries. For comparison, we also state the scores of the Disease category
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obtained when using the provided dictionaries.

Precision Recall F1-score

Disease (provided dictionaries) 0.844 0.776 0.808
Disease (custom dictionaries) 0.742 0.513 0.606

Table 6: Precision, recall and f1-scores obtained on the BC5CDR dataset, using the custom-
tailored dictionaries.

Compared to the use of the provided dictionaries, we experience a significant drop in the
f1-score when applying our custom dictionaries. This decrease is primarily caused by a sub-
stantially lower recall. The latter is most likely due to a smaller number of high frequency
entities contained in the dictionary: whereas the custom core dictionary yields 2512 anno-
tated Disease entities, the provided dictionary contains ‘just’ 1288 annotated entities. On the
other hand, the custom full dictionary contains 2679 terms, whereas the original full dictio-
nary contains 3761 terms.

We have also observed that the NER process converges much more quickly, requiring only
15 epochs compared to the 49 before.

The number of entities that AutoNER extracts which aren’t in either dictionary has now
increased from 425 to 1131. The majority of these entities are, as we also observed during
the result reproduction, valid, with the exception of an unknown, though relatively small
percentage of false positives.

Regardless, the quality, and quantity even more likely so, of the custom dictionaries do not
seem to meet that of the provided dictionaries. Besides the use of different clinical databases
from which the terms are extracted, there is another important difference found in the con-
struction of in particular the full dictionary. Namely, the provided full dictionary contains
additional terms extracted from the corpus by the AutoPhrase module. A small experiment,
which involves the removal of these specific terms from the provided dictionary, leads to an
f1-score of around 0.72, a decrease of approximately 0.08.

5.4 Final AutoNER results on the i2b2 dataset

As shown in Section 5.2, our preliminary results on the i2b2 dataset are far from sufficient.
Now that we have defined a more extensive pipeline based on experiments conducted on the
BC5CDR dataset, we return to the i2b2 dataset, and apply this pipeline to construct the
corresponding dictionaries. We obtain 1518 entities for Problem, 556 entities for Treatment,
and 286 for Test, totalling a number of 2360 annotated entities for the core dictionary. The
corresponding full dictionary contains 3299 entities.

Table 7 denotes the obtained precision, recall and f1-scores for the NER process on the
i2b2 dataset.
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Precision Recall F1-score

Problem 0.457 0.342 0.391
Treatment 0.515 0.234 0.321

Test 0.402 0.148 0.217
Average 0.458 0.241 0.310

Initial average 0.207 0.055 0.084

Table 7: Precision, recall and f1-scores obtained on the i2b2 dataset, using the custom-tailored
dictionaries. Values in the Initial average row are the results we obtained by using our base-
line method for dictionary building, as shown in Table 5.

Although a noticeable improvement is found compared to earlier results on the i2b2 dataset,
particularly for the Treatment and Test categories, the overall scores indicate that the made
predictions still aren’t very accurate. Also, when we compare the f1-score obtained on the
BC5CDR Disease category with the custom dictionaries, we find that the averaged f1-score on
the i2b2 dataset is lower by almost 30%.

When we look at the confusion matrix, as shown in Figure 2, we can see that the number
of incorrect predictions that occur among the three main categories is relatively low. Rather,
most errors are the due to AutoNER missing out on entities that should be labelled according
to any of these categories, as displayed by the rightmost column. Values found within the
latter also further reflect the low recall scores.
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Figure 2: Confusion matrix for the three main categories of the i2b2 dataset,
and the None category. Predictions are presented on the X-axis, while the truth
values are on the Y-axis. Note that the heatmap colouring is done according to
a logarithmic scale.

5.5 AutoNER with custom dictionaries on the Dutch endoscopy re-
ports

For the endoscopy reports, the corresponding core and full dictionaries yield 348 annotated
and 524 unannotated entities respectively. We immediately find that brand names rarely
occur in our dictionaries. This is because such terms are already scarcely appearing within
SnomedCT. The few that are present here, are often concatenated with dosage prescriptions.
These kind of entities were always filtered out when we check whether or not they appear
within the corpus, simply because of their format.

We also find that the Termprofiling module extracts several new valuable candidate enti-
ties from the corpus, which are included within the full dictionary.

Finally, taking into account all aforementioned results and observations, we apply our
pipeline to the Dutch endoscopy reports. Table 8, shows the obtained precision, recall and
f1-scores for the three main categories of Problem, Treatment and Test.
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Precision Recall F1-score

Problem 0.800 0.333 0.471
Treatment 0.818 0.188 0.305

Test 0.867 0.186 0.306
Average 0.828 0.236 0.361

Table 8: Precision, recall and f1-scores obtained on the Dutch endoscopy reports, using the
custom-tailored dictionaries.

Although the precision score for all three categories is remarkably high, the recall scores
are, similarly to those on the i2b2 dataset, low. Consequently, this leads to quite low overall
f1-scores.

Term Entity type

endoscopie Test
midazolam Treatment
bisacodyl Treatment

poliep Problem
anastomose Problem

stenose Problem
poliepen Problem

aften Problem
IBD Problem

colitis Problem
littekens Problem

(a) The eleven most frequent correctly
predicted entities.

Term Entity type

Sedatie Treatment
Colonoscopie incl biopsie Test

Rectaal toucher Test
scopie Test

Picoprep Treatment
M. Crohn Problem
Dormicum Treatment

ulcera Problem
Poliep Problem

Fentanyl Treatment
Crohn Problem

(b) The eleven most frequent incorrectly
predicted entities.

Table 9: The eleven most frequent correctly and incorrectly predicted entities of the endoscopy
reports, ordered by descending frequency.

We find that despite the relatively small development and test sets, AutoNER extracts a
number of terms that are not in the dictionaries. From these fifteen additional terms, three
were deemed to be irrelevant. The remaining terms were labelled correctly in nearly all cases.

Arguably the most prominent factor contributing to the low recall scores isn’t the complete
absence of certain concepts from the dictionary, but rather the format in which they occur
within the texts themselves. Namely, if we look at the texts, we see numerous concepts that
can be referred to in a variety of ways. One of these terms is ziekte van Crohn (Crohn’s
disease), which in the corpus may also appear as M. Crohn, M.C., MCrohn, and Crohn. Even
though ziekte van Crohn appears within our core dictionary, none of its variations do, and
none are recognised by AutoNER as Problem entities. Moreover, aforementioned variations
are far more frequent than the core entity, resulting in numerous false negatives. This is
also shown in Table 9, where both M. Crohn and Crohn appear among the entities that are
mislabelled most frequently.

There are 38 tokens that do not occur in the used embedding. This also holds for nearly
all of the abbreviations if we distinguish the fully capitalised tokens as they appear in the
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texts, from the lower-cased formats that may occur in the embeddings. We initially assumed
that the low recall scores are caused by terms not occurring in the embeddings we use. In
this case, AutoNER resorts to a ‘default’ embedding array, one that does not hold any related
information to the actual entity. However, when we look at the token-level predictions made
on both the development and test set, this assumption does not seem to uphold itself in all
cases. For example, both the terms IBD and MTX do not appear in the embedding, and both
are contained within the core dictionary, labelled as Problem and Treatment respectively.
However, whereas IBD is in all cases but one predicted correctly, MTX is never regarded as a
Treatment by AutoNER.

Furthermore, there are terms that do occur in both the embeddings and the core dictio-
nary, but are still not assigned any of the three categories by AutoNER. Examples in this case
are Coloscopie, a Problem, and Fentanyl, a Treatment. We also find that AutoNER does not
adapt well in cases of capitalised terms. Here, an example is that of poliep and Poliep, which
is also shown in Table 9. Despite poliep occurring in both dictionaries and the embeddings,
Poliep is never labelled correctly. The definition of this term is not affected by capitalisation,
and should only be excluded from the Problem category based on context, e.g., no Poliep is
found. This however does not apply, and therefore this term should have been labelled by
its respective category. In general, it was surprising to see that the correlation between the
prediction made on a particular entity, its presence or absence in the embeddings and the
dictionaries, was not as consistent as we expected it to be.

Based on the confusion matrix as shown in Figure 3, we are able to conclude that the
number of erroneous predictions is almost solely due to entities not being labelled by any
of the three actual categories, and that incorrect predictions between entities of these three
categories are actually never made. Consequently however, this introduces a new oddity:
based on the precision scores for the categories, we expected to see more, if any false positives
portrayed in the confusion matrix. This is particularly the case for the Test category, for which
the matrix only holds false negatives, i.e., entities that should be labelled as Test are missed
out on; labelled None. However, for Test, AutoNER returns a precision score of 0.867, meaning
that not all entities AutoNER has labelled as Test should be assigned this label.
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Figure 3: Confusion matrix for the three main categories of the endoscopy re-
port dataset, and the None category. Predictions are presented on the X-axis,
while the truth values are on the Y-axis. Note that the heatmap colouring is
done according to a logarithmic scale.

Manual evaluation of the predictions confirms that the confusion matrix is completely ac-
curate, and that there are indeed no false positives among the predicted Test entities. Despite
further investigation, we were unable to determine which exact part of the extraction pro-
cess introduces this inconsistency. We reason that during training, the model indeed achieves
the aforementioned scores. Once the training is finished and the model is applied to the de-
velopment and test set, it happens to not make any predictions that lead to false positives.
Rerunning the experiments with exactly the same settings however did not lead to any false
positives.

A more general factor that likely affected the NER process as well, is the size of the de-
velopment and test set. Compared to those of the other two datasets we used, the number of
lines is approximately 25 times less.

The frequency distribution of entities for all three categories is also skewed, as is shown
in Figure 4. Although not necessarily long-tail distributions, it is still fairly obvious that if
AutoNER fails to correctly label any entities that are on the far left side of the spectrum, the
obtained scores are lowered significantly.
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(a) Frequency distribution of the 158 unique entities labelled as Problem.

(b) Frequency distribution of the 53 unique entities
labelled as Treatment.

(c) Frequency distribution of the 39 unique entities labelled as Test.

Figure 4: The frequency distributions of entities labelled as Problem, Treatment and Test
contained in the development and test set of the Dutch endoscopy reports dataset.

The size of the development and test set paired with the uneven distribution of entity
frequencies therein, makes it more difficult to draw conclusions that are completely reliable.
It could therefore be the case that when these issues are addressed, AutoNER may perform
better without making any alterations to the dictionaries or other parameters. On the other
hand, taking into account the results on the i2b2 dataset, we’ve seen that larger development
and test sets do not automatically imply that AutoNER will perform (significantly) better.
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Discussion 6
We started with several result reproductions from related research on other clinical datasets,
with in particular the i2b2 and the BC5CDR dataset. These scores were used to determine
which results we could expect as upper bound. We then applied AutoNER to these datasets
with dictionaries we defined using a clinical term database in the form of SnomedCT. Fi-
nally, taking into consideration all observations and conclusions made on these benchmark
datasets, we applied AutoNER with again specifically tailored dictionaries to the Dutch en-
doscopy reports.

Already in early stages of this research, it became clear that the mapping of SnomedCT
terms onto the categories of other datasets was very challenging, and that more thorough
approaches were required in order to improve upon the naive baseline f1-score of 0.145 for the
i2b2 dataset. One of the tools we opted to change was the PyMedTermino package. Although
it allowed for a decent amount of options to exploit SnomedCT’s multi-hierarchical design, it
did not provide us with the necessary options to extract all the terms we required.

We then defined a pipeline for the application of AutoNER. The main challenge here was
the construction of the dictionaries, a process also affected by the persisting mapping issue.
In order to make the problem slightly less challenging, we first focused solely on the Disease
category of the BC5CDR dataset, thereby narrowing down the number of categories to one.
This eventually led to a pipeline for reliable dictionary construction, taking into account the
differences between the core and full dictionaries. The extraction of terms and their respective
synonyms from SnomedCT is now done using Snowstorm. Consequently, the resulting terms
are considerably more accurate because of the ECL queries. For all these terms, we obtained
synonyms and added plurals.

After filtering the list of terms based on the contents of the full corpus, we again extended
upon it by adding annotated abbreviations for the core dictionary and unannotated abbrevi-
ations and terms resulting from the Termprofiling module for the full dictionary. Finally, we
executed a series of manual modifications to the dictionaries in order to remove as many false
positives as possible.

By applying our pipeline to the BC5CDR dataset, we managed to obtain an f1-score of
0.606 for the Disease category. This was 0.202 lower compared to f1-score when the provided
dictionaries are used. The i2b2 dataset proved to be more difficult, and even after thorough
dictionary tailoring, we achieved f1-scores of 0.391 for Problem, 0.321 for Treatment, and
0.217 for Test. Compared to our supervised approach in the form of BioBERT, the gap is
significantly larger: 0.567 averaged over the three categories.

For both datasets, we saw that the f1-scores were always affected greatly by low recall val-
ues. We argued that, despite the quality of the dictionaries, they might still lacking quantity-
wise. Consequently, AutoNER was unable to extract a sufficient amount of new terms in order
to achieve higher f1-scores.

On the endoscopy reports, AutoNER performed slightly better than it did on the i2b2
dataset, obtaining an f1-score of 0.471 for Problem, 0.305 for Treatment, and 0.306 for Test.
AutoNER’s ability to extract new terms that do not occur in the dictionaries was not sufficient
enough, leaving the majority of terms unrecognised.

For domain specific dictionary construction, as was the case for the endoscopy reports,
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we conclude that even though SnomedCT does contain all clinical concepts, we still miss out
on a large amount of corresponding variants. For example, we extracted Ziekte van Crohn
(Crohn’s disease), but there are various ways for this term to occur in the actual reports:
M.C., M.Crohn, etc., which are naturally not covered by SnomedCT. This in turn leaves our
dictionaries not fully representing the collection of relevant entities that occur in the corpus,
impairing AutoNER’s learning process.

Based on all aforementioned observations and conclusions, we have to address the fact
that AutoNER may not be as practically applicable as we initially assumed. First and fore-
most is that defining and applying a suitable pipeline for dictionary construction is extremely
time-consuming, as the dictionaries should contain as many relevant terms as possible, but
at the same time yield relatively no false positives. In particular for the latter, a lot of man-
ual labour is required, as basically all initial dictionary terms have to be filtered based on
relevance and whether the assigned label is correct or not.

Second, AutoNER still requires a development and test set in order for the model to train,
and consequently to actually allow for the extraction of new relevant entities. Then, there is
the issue of AutoNER occasionally not recognising entities that are present in the dictionaries.
Although terms should or should not be labelled based on context, this is undesired behaviour,
especially if the dictionaries are tailored to hold specific labelled terms, which still may not
end up being extracted.
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Conclusions 7
In this paper, we have addressed the automatic extraction of medical entities from Dutch
endoscopy reports using a distant supervised method called AutoNER. Our methodology in-
cluded a series of reproductions, a baseline approach and the application of AutoNER to the
BC5CDR-Disease, i2b2 and the Dutch endoscopy reports datasets. Taking all made observa-
tions into account, we will now address our research questions. The first research question
was:

• What kind of information can we extract from endoscopy reports, with the general aim
to improve the DEARhealth Care Pathways?

We have seen that we are to able extract entities from the Dutch endoscopy reports using
the knowledge-based, distantly supervised model called AutoNER. We are able to recognise
terms implying the presence of a disease or other medical issue (Problem), terms that refer
to the administration or use of medicine, surgeries and therapies (Treatment) and clinical
examinations and assessment procedures (Test). Using this information, we can prepare the
foundation of relevant medical history for each patient in a structured manner, which in turn
could be used for the recommender.

Our second research question was:

• Which methods deem the most reliable for this problem?

We have to conclude that the pipeline we defined for AutoNER requires additional tailor-
ing and improvement before this approach could be considered completely reliable. Though
we are able to extract entities belonging to either of the aforementioned categories, a rela-
tively large amount of entities is still missed out on.

In general, AutoNER can make for a decent initial round of Named Entity Recognition,
but considering the amount of time required in order to produce both dictionaries, a develop-
ment and a test set, we are not convinced that AutoNER is a reliable and efficient alternative
to fully supervised models, like BioBERT. One could arguably spend an equal amount of time
producing sufficiently large enough annotated training, development and test sets, thus al-
lowing for the training of supervised models.

It isn’t exactly clear as to where the trade-off point lies between additional (manual) tai-
loring of the dictionaries, and the reliability of automatic entity extraction by AutoNER with
these dictionaries.
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Future Work and recommendations 8
There are several aspects of our work that could prove interesting for follow-up research.

The first is to address the rather low recall scores we obtained by using AutoNER and
our custom dictionaries on the Dutch endoscopy reports. We already argued that we missed
out on a lot of concept variants, despite the concept itself being covered by SnomedCT and
consequently appearing within our dictionaries. A suggestion could be that the entity lists
are extended upon by those who have written the reports, or other experts in this domain
specific field who are highly familiar with the contents of endoscopy reports. This should
include as many contributors as possible, as each may have his or her own writing style and
semantic preferences. However, it has to be noted that even though this might be beneficial for
AutoNER, the approach will become more akin an unsupervised dictionary-based approach,
rather than a distant supervised one (which AutoNER is suggested to be).

Another option that could be taken into consideration is the training of AutoPhrase on a
large amount of Dutch (clinical) corpora. Although we have seen that Termprofiling did ex-
tract some additional terms for the full dictionary, it could be that AutoPhrase is actually able
to detect the aforementioned variants. This would thus also further automate the dictionary
tailoring process.

Furthermore, the relatively small development and test set may also negatively affect
the training process. A rather straightforward addition to our research may therefore be the
expansion of the development and test sets, and determine whether some immediate improve-
ment is found. Involvement of domain related experts could also prove to be worthwhile here.
Although we were able to construct reliable annotated development and test sets ourselves,
an expert might still insist on some slight alterations. These could be the addition or removal
of entities, the inclusion or exclusion of certain words from entities, etc. When including mul-
tiple experts, we suggest annotation is done by using a tool such as Doccano18 in order to
reach consensus.

If one continues to experiment with AutoNER, there exists the option of hyper-parameter
optimisation through for example grid search. However, taking into account the issues we
encountered, dictionary and set modifications would most likely prove to be a more important
factor when it comes to achieving more accurate predictions. Naturally, once this is more
thoroughly addressed, hyper-parameter optimisation might lead to even more precise results.

Regarding the DEARhealth recommender, the implementation of follow-up tasks such
as Named Entity Linking (NEL) and Relation Extraction (RE) would result into additional,
highly relevant knowledge in a structured format. Currently, we have addressed the mere
extraction of entities. If for example a report states that formerly observed scarring has lead
to an intestinal blockage, we will see in our results that both the terms scarring and intestinal
blockage are labelled as a Problem. However, we cannot yet derive that the scarring actually
caused the intestinal blockage. Similarly, we are not yet able to link dosages to any Treat-
ment entity, or determine whether a Test, such as an endoscopy, caused the patient any pain
because of an inflammation in the terminal ileum.

Finally, in combination with the aforementioned follow-up tasks, the presence of discon-
tinuous entities should be addressed. An example here is: abnormal vascular patterns and

18https://github.com/doccano/doccano
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haustra markings. Although abnormal vascular patterns may be recognised as a Problem
entity, we will not yet find abnormal haustra markings among the results. Finding a reliable
method to extract these kind of discontinuous entities will undoubtedly lead to more complete
and accurate knowledge representation.
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