
Master Computer Science

[GovFS, a scalable control plane using groups of

metadata nodes]

Name: [David Kleingeld]
Student ID: [s1432982]

Date: [25/08/2022]

Specialisation: [Advanced Computing and Sys-
tems]

1st supervisor: [Dr. Alexandru Uta]
2nd supervisor: [Dr. Kristian Rietveld]

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

2

2022-08-25

GovFS, a scalable control plane
using groups of metadata nodes
David Kleingeld

Email opensource@davidsk.dev

Abstract With the rise of big data and the move to the cloud the need for
highly available and scaling file systems has grown. Distributed file
systems address this need. A popular approach is to use a dedicated
metadata node. This has two problems: the node becomes a single
point of failure, and it limits the metadata capacity of the system.
Here we design and implement a system using groups of metadata
nodes: GovFS. We build it on top of Group Raft our extension of Raft
that enables scaling partitioned consensus. Experiments demon-
strate GovFS write performance scales linearly with the number of
nodes, showing that the system offers good scaling characteristics.
Our initial prototype shows promising performance that can be
significantly improved in the future.

Acknowledgement
This endeavor would not have been possible without the frequent advise, guidance and
honest feedback of my supervisor: dr. Alexandru Uta. I would also like to express my
thanks to dr. Kristian Rietveld for showing me how to test the limited implementation in
a meaningful way.

1

Contents
1 Introduction 3

2 Background 5
2.1 Distributed Computing . 5
2.2 Faults and Delays . 5
2.3 Consensus Algorithms . 6
2.4 File System . 14
2.5 Distributed file systems . 14
2.6 Related work . 20

3 Design 22
3.1 API and Capabilities . 22
3.2 Architecture . 23
3.3 Client requests . 26
3.4 Availability . 28

4 Implementation 32
4.1 Language . 32
4.2 Concurrency . 33
4.3 Structure . 34
4.4 Raft . 39
4.5 File leases . 40

5 Results 43
5.1 Ministry Architecture . 44
5.2 Range based file locking . 47

6 Discussion 57
6.1 Complexity . 57
6.2 Ministry architecture . 57
6.3 Ranged based file locking . 59

7 Conclusion 60

8 Future work 61
8.1 Dynamic scaling . 61
8.2 Consensus . 61
8.3 Leases . 62

A Introduction to Async 63

2

1 Introduction
In the last decade we have seen the rise of big data and the shift of everyday
work to the cloud. Distributed processing of large datasets has been made
accesible thanks to programming models such as MapReduce [7]. Distributed
computing frameworks such as Apache Hadoop and Spark [26] allow
computations to scale across thousands of machines. In conjunction with this
rose a need for a highly available and scaling file system. This need is
addressed by distributed file systems, which spread files across multiple
machines and keep those replicas consistent.

Files can get corrupted if multiple users write to them at the same time.
Systems therefore not only store file data but also regulate access to the files.
These tasks are normally done by two separate parts of the system: the data
and control plane. The control plane is the bottleneck in file system
performance. For this reason many systems allow client to opt out of access
control and directly operate on files. This can be useful in High Performance
Computing (HPC) where many processes need to operate on the same files
and can do so in a consistent manner.

There are currently two approaches to distributed file systems: using a
dedicated node to control where each file is placed1, or a distribution function
that decides where a file should be located2. The distribution function itself
needs only limited shared state however the system still need a separate
cluster to regulate file access.

Using a dedicated node has two problems. The node is single point of failure,
and it can not scale out. This limits the amount of files a system can store and
the maximum workload the system can handle. Recently, implementations
have started to address the first issue. HDFS for example has added standby
nodes [1, 2] which can replace the metadata node. However, ensuring
consistency between the standby nodes comes at the cost of decreased
performance.

In this thesis we investigate whether we can make the control plane scalable
using groups of nodes. We made Group Raft an extension on the Raft [17]
consistency algorithm which enables highly scalable consensus when using

1Introduced by GoogleFs [9, 15] and adopted by the widely used Hadoop file system
(HDFS) [20].

2Pioneered by Ceph[24]

3

groups of nodes that do not share information. We use Group Raft to design
and implement GovFS: a file system control plane that uses groups of
nodes.

When a hashing function is used to locate files the metadata for these files is
stored in the data-plane. It is also located through the hash function. A small
cluster regulates access to the files. This solves the scaling problem. There are
two reasons why we feel it is important to explore other approaches:

• Using hashing we lose some control over file location, this makes
co-locating compute and storage more difficult.

• As the control plane usually forms the bottleneck of the system we might
want to optimize it using special hardware [4]. When metadata is stored
in the data-plane it is hard to do so.

In the next section we will go over the challenges in distributed systems, how
consensus algorithms solve those, what a file system is and finally discuss the
most widely used distributed file systems: HDFS and Ceph. Then in Section 3
we present GovFS’s design and explain how it enables scalable distributed
storage and take a more detailed look at how we extended Raft. In Section 4
we go over the implementation and discuss how reading and writing is
coordinated. Using the GovFS implementation we performed a number of
performance tests. We present the test methodology and show the results in
Section 5. We then discuss the results in Section 6. Finally, in Section 7 we
conclude whether GovFS approach, using groups of metadata nodes, offers
better scalability. We finish by listing a number of interesting avenues for
further study in Section 8.

4

2 Background
Here we discuss what distributed computing is and when we use it. How
faults and delays make it challenging to build simultaneously consistent and
highly available systems. Then we look at consensus algorithms that solve
those challenges. After this we discuss what a file system is before we go over
the most widely used distributed file systems: HDFS and Ceph. Finally, we
look at work related to this thesis.

2.1 Distributed Computing
When state-of-the-art hardware is no longer fast enough to run a system the
option that remains is scaling out. Here then there is a choice, do you use an
expansive, reliable high performance supercomputer or commodity servers
connected by IP and Ethernet? This is the choice between High Performance
Computing (HPC) and Distributed Computing. With HPC faults in the
hardware are rare and can be handled by restarting, simplifying software. In a
distributed context faults are the norm, restarting the entire system is not an
option as you would be down all the time. Resilience against faults comes at
an often significant, cost to performance. Fault tolerance may limit scalability.
As the scale of a system increases so does the frequency with which one of the
parts fails. Even the most robust part will fail and given enough of them the
system will fail frequently. Therefore, at very large scales HPC is not even an
option.

2.2 Faults and Delays
Before we can build a fault resistant system we need to know what we can rely
on. While hardware failures are the norm in distributed computing, this is not
the only issue to keep in mind. We can not determine whether a system is
working and responsive if we can not agree on how much time has passed
since it last responded.

It is entirely normal for the clock of a computer to run slightly too fast or too
slow. The resulting drift will normally be tens of milliseconds [5] unless
special measures are taken3. Even worse, a process can be paused and then

3One could synchronize the time within a datacenter or provide nodes with more accurate

5

resumed at any time. Such a pause could be because the process thread is
pre-empted, because its virtual machine is paused or because the process was
paused and resumed after a while4.

In a distributed system the computers (nodes) that form the system are
connected by IP over Ethernet. Ethernet gives no guarantee a packet is
delivered on time or at all. A node can be unreachable before seemingly
working fine again.

Using a system model we formalize the faults that can occur. For timing there
are three models.

1. The Synchronous model allows an algorithm to assume that clocks are
synchronized within some bound and network traffic will arrive within a
fixed time.

2. The Partially synchronous model is a more realistic model. Most of the
time clocks will be correct within a bound and network traffic will arrive
within a fixed bound. However, sometimes clocks will drift unbounded,
and some traffic might be delayed forever.

3. The Asynchronous model has no clock, it is very restrictive.

For most distributed systems we assume the Partially Synchronous model.
Hardware faults cause a crash from which a node can be recovered later.
Recovery can happen either automatically as the node restarts or manual
intervention.

2.3 Consensus Algorithms
In this world where the network can not be relied upon, time lies to us and
servers will randomly crash and burn how can we get anything done at all?
Let’s discuss how we can build a system we can rely on, a system that behaves
consistently. To build such a system we need the parts that make up the system
to agree with each other, the must-have: Consensus. Here we discuss three well
known solutions. Before we get to that lets look at the principle that underlies
them all: The truth is defined by the majority.

clocks.
4On Linux by sending SIGSTOP then SIGCONT

6

Quorums

Imagine a node hard at work processing requests from its siblings, suddenly it
stops. The other nodes notice it is no longer responding and declare it dead,
they do not know its threads got paused. A few seconds later the node
responds again as if nothing had happened, and unless it checks the system
clock, no time has paused from its perspective. Or imagine a network fault
partitions the system, each group of servers can reach its members but not
others. The nodes in the group will declare those in the other group dead and
continue their work. Both these scenarios usually result in data loss, if the
work progresses at all.

We can prevent this by voting over each decision. It will be a strange vote, no
node cares about the decision itself. In most implementations a node only
checks if it regards the sender as reliable or alive and then vote yes. To prove
liveliness the vote proposal could include a number. Voters only vote yes if the
number is correct. For example if the number is the highest they have seen. If
a majority votes yes the node that requested the vote can be sure it is, at that
instance, not dead or disconnected. This is the idea behind "Quorums,"
majorities of nodes that vote.

Paxos

The Paxos algorithm [14] uses a quorum to provide consensus. It enables us to
choose a single value among proposals such that only that value can be read
as the accepted value. Usually it is used to build a fault-tolerant distributed
state machine.

In Paxos there are three roles: proposer, acceptor and learner. It is possible for
nodes to fulfill only one or two of these roles. Usually, and for the rest of this
explanation each node fulfills all three. To reach consensus on a new value we
go through two phases: prepare and accept. Once the majority of the nodes
has accepted a proposal the value included in that proposal has been chosen.
Nodes keep track of the highest proposal number n they have seen.

Let us go through a Paxos iteration from the perspective of a node trying to
share something, a value. In the first phase a new value is proposed by our
node. It sends a prepare request to a majority of acceptors. The request
contains a proposal number n higher than the highest number our node has
seen up till now. The number is unique to our node5. Each acceptor only

5This can be done by having each node incrementing their number by the cluster size having

7

responds if our number n is the highest it has seen. If an acceptor had already
accepted one or more requests it includes the accepted proposal with the
highest n in its response.

In phase two our node checks if it got a response from the majority. Our node
is going to send an accept request back to those nodes that responded. The
content of the accept request depends on what our node received in response
to its prepare request:

1. It received a response with number np. This means an acceptor has
already accepted a value. If we continued with our own value the system
would have two different accepted values. Therefor the content of our
accept request will be the value from proposal np.

2. It received only acknowledging replies and none contained a previously
accepted value. The system has not yet decided on a value. The content of
our accept request will be the value our node wants to propose but with
our number n.

Each acceptor accepts the request if it did not yet receive a prepare request
numbered greater than n. On accepting a request an acceptor sends a message
to all learners6. This way the learners learn a new value as soon as it’s
ready.

To get a feeling why this works we look at what happens during node failure.
Imagine a case where a minimal majority m accept value va. A single node in
m fails by pausing after the first learners learned of the now chosen value va.
After freezing, m− 1 of the nodes will reply va as value to learners. The
learners will conclude no value has been chosen given m− 1 is not a majority7.
Acceptors change their value if they receive a higher numbered accept-request.
If a single node changes its value to vb consensus will break since va has
already been seen as the chosen value by a learner. A new proposal that can
result into higher numbered accept-requests needs a majority-response. A
majority-response will include a node from m−1. That node will include va as
the accepted value. The value for the accept_request then changes to va. No
accept request with another value than va can thus be issued. Another value
vb will therefore never be accepted. The new accept request is issued to a
majority adding at least one node to those having accepted va. Now at least
m+ 1 nodes have va as accepted value.

initially assigned a number 0 till cluster size to each node.
6Remember every node is a learner in this example.
7This is not inconsistent, Paxos does not guarantee consistency over whether a value has

been chosen.

8

To build a distributed state machine you run multiple instances of Paxos. This
is often referred to as Multi-Paxos. The value for each instance is a command
to change the shared state. Multi-Paxos is not specified in literature and has
never been verified.

Raft

The Paxos algorithm allows us to reach consensus on a single value. The Raft
algorithm enables consent on a shared log. We can only append to and read
from the log. The content of the log will always be the same on all nodes. As
long as a majority of the nodes still function the log will be readable and
appendable.

Raft maintains a single leader. Appending to the log is sequential because
only the leader is allowed to append. The leader is decided on by a quorum.
There are two parts to Raft, electing leaders and log replication.

Leader election A Raft [17] cluster starts without a leader and when it
has a leader that leader can fail at any time. The cluster therefore must be able
to reliable decide on a new leader at any time. Nodes in Raft start as followers,
monitoring the leader by waiting for heartbeats. If a follower does not receive
a heartbeat from a valid leader on time it will try to become the leader, it
becomes a candidate. In a fresh cluster without a leader one or more nodes
become candidates.

Figure 1: A Raft node states. Most of the time all nodes except one are followers. One node
is a leader. As failures are detected by time-outs the nodes change state. Adjusted from [17].

A candidate tries to get itself elected. For that it needs the votes of a majority
of the cluster. It asks all nodes for their vote. Note that servers vote only once
and only if the candidate would become a valid leader. If a majority of the

9

cluster responds to a candidate with their vote that candidate becomes the
leader. If it takes too long to receive a majority of the votes a candidate starts a
fresh election. When there are multiple candidates requesting votes the vote
might split8, no candidate then reaches a majority. A candidate immediately
loses the election if it receives a heartbeat from a valid leader. These state
changes are illustrated in Figure 1.

Figure 2: An example of how time is divided in terms in a Raft cluster. Taken from [17].

In Raft time can be divided in terms. A term is a failed election where no node
won or the period from the election of a leader to its failure, illustrated in
Figure 2. Terms are used to determine the current leader, the leader with the
highest terms. A heartbeat is valid if, as far as the receiver knows, it originates
from the current leader. A message can only be from the current leader if the
message term is equal or higher than the receiving node’s term. If a node
receives a message with a higher term it updates its own to be that of the
message.

When a node starts its term is zero. If a node becomes a candidate it
increments its term by one. Now imagine a candidate with a term equal or
higher than that of the majority of the cluster. When receiving a vote request
the majority will determine this candidate could become a valid leader. This
candidate will get the majority vote in the absence of another candidate and
become the leader.

Log replication To append an entry to the log a leader sends an
append-request to all nodes. Messages from invalid leaders are rejected. The
leader knows an entry is committed after a majority of nodes acknowledged
the append-request. For example entry 5 in Figure 3 is committed. The leader
includes the index up to which entries are committed in all its messages. This
means entries will become committed on all followers at the latest with the
next heartbeat. If the leader approaches the heartbeat timeout and no entry

8Election timeouts are randomized, therefore this does not repeat infinitely.

10

needs to be added it sends an empty append. There is no need for a special
heartbeat message.

Figure 3: Logs for multiple nodes. Each row is a different node. The log entries are commands
to change shared variables x and y to different values. The shade boxes and the number at
their top indicate the term. Taken from [17].

There are a few edge cases that require followers to be careful when
appending. A follower may have an incomplete log if it did not receive a
previous append (1), it may have messages the leader does not (2), and finally
we must prevent a candidate missing committed entries from becoming the
leader (3).

1. To detect missing log entries, the entries are indexed incrementally. The
leader includes the index of the previous entry and the term when it was
appended in every append requests. If a follower’s last log entry does not
match the included index and term the follower responds with an error.
The leader will send its complete log for the follower to duplicate9.

2. When a follower has entries the leader misses these will occupy indices
the leader needs to use in the future. This happens when a previous
leader crashed having pushed logs to some but not majority of followers.
When the leader pushes a new entry with index k such a follower will
notice it already has an entry with index k. At that point it simply
overwrites what it had at k.

3. A new leader missing committed entries will push a wrong log to
followers missing entries. For an entry to be committed it must be stored

9This is rather inefficient, in the next paragraph we will come back to this.

11

on the majority of the cluster. To win the election a node has to have the
votes from the majority. Thus restricting followers to only vote for
candidates that are as up-to-date as they are is enough. Followers
therefore do not vote for a candidate with a lower log index then they
themselves have.

Log compaction Keeping the entire log is rather inefficient. Especially as
nodes are added and need to get send the entire log. Usually Raft is used to
build a state machine, in which case sending over the state is faster than the
log. The state machine is a snapshot of the system, only valid for the moment
in time it was taken. All nodes take snapshots independently of the
leader.

To take a snapshot a node writes the state machine to file together with the
current term and index. It then discards all committed entries up to the
snapshotted index from its log.

Followers that lag far behind are now sent the snapshot and all logs that
follow. The follower wipes its log before accepting the snapshot.

Consensus as a service

So the problem of consensus has been solved, but the solutions are non-trivial
to implement. We need to shape our application to fit the models the solutions
use. If we are using Raft that means our systems must be built around a log.
Then we need to build the application while being careful to implement the
consensus algorithm correctly. A popular alternative is to use a coordination
service instead. Here we look at ZooKeeper [12] an example of a wait free
coordination service. We first focus on the implementation, drawing parallels
to Raft before we look at the application programming interface (API)
ZooKeeper exposes.

A ZooKeeper cluster has a designated leader that replicates a database on all
nodes. Only the leader can modify the database, therefore only the leader
handles write requests. The nodes handle read requests themselves, write
requests are forwarded to the leader. To handle a write requests ZooKeeper
relies on a consensus algorithm called Zab [13]. It is an atomic broadcast
capable of crash recovery. It uses a strong leader quite similar to Raft and
guarantees that changes broadcast by the leader are delivered in the order

12

they were sent and after changes from previous (crashed) leaders. Zab can
deliver messages twice during recovery. To account for this ZooKeeper turns
change requests into idempotent transactions. These can be applied multiple
times with the same result.

ZooKeeper exposes its strongly consistent database as a hierarchical name
space (a tree) of znodes. Each znode contains a small amount of data and is
identified by its path. Using the API clients can operate on the znodes. They
can:

1. Create new znodes

2. Change the data in a znode

3. Delete existing znodes

4. Sync with the leader

5. Query if a znode exists

6. Read the data in a znode

7. Get list of the children of the
znode

The last three operations support watching: the client getting a single
notification when the result of the operation changed. This notification does
not contain any information regarding the change. The value is no longer
watched after the notification. Clients use watching to keep locally cached
data up-to-date.

Clients communicating outside of ZooKeeper might need special measures to
ensure consistency. For example: client A updates a znode from value v1 to
value v2 then communicates to client B, through another medium (lets say
over TCP/IP). In this example client A and B are connected to different
ZooKeeper nodes. If the communication from A causes B to read the znode it
will get the previous value v1 from ZooKeeper if the node it is connected to is
lagging behind. Client B can avoid this by calling sync, this will make the
ZooKeeper node process all outstanding requests from the leader before
returning.

Raft has the same race condition like issue. We might think we can just ensure
a heartbeat has passed, by then all (functioning) node will be updated. This is
not enough however, a faulty node could be suspended and not notice it is
outdated. A solution is to include the last log index client A saw in its
communication to client B.

Paxos does not need to suffer from this problem, but it can. In Paxos reading
means asking a learner for the value, the learner can then ask the majority of
the system if they have accepted a value and, if so, what it is. Usually Paxos is

13

optimized by making acceptors inform learners of a change. In this case a
leader that missed a message, that there is a value, from an acceptor will
incorrectly return to client B there is no value.

2.4 File System
A file system is a tool to organize data, the files, using a directory. Data
properties, or metadata, such as a files name, identifier, size, etc. are tracked
using the directory interface. Typically, the directory entry only contains the
file name and its unique identifier. The identifier allows the system to fetch
the other metadata. The content of the data is split into blocks which are
stored on stable storage such as a hard drive or SSD. The file system defines a
API to operate on it, providing methods to create, read, write, seek and truncate
files.

A file system can add a distinction between open and closed files. The APIs:
read, write and seek can then be restricted to open files. This enables the
system to provide some consistency guarantees. For example allowing a file to
be opened only if it was not already open. This can prevent a user from
corrupting data by writing concurrently to overlapping ranges in a file. There
is no risk to reading from files concurrently. Depending on the system reading
is even safe while appending in parallel from multiple other processes10. To
enable such guarantees a file system can define opening a file in read-only,
append-only or read-write mode. On Linux these guarantees are opt-in11.
More fine-grained semantics exist, such as opening multiple non overlapping
ranges of a file for writing.

2.5 Distributed file systems
Here we will discuss the two most widely used distributed file systems. We
will look at how they work and their implementation. Before we get to that we
will use a very basic file sharing system, network file system (NFS), to
illustrate why these distributed systems need their complexity.

10The OS can ensure append writes are serialized, this is useful for writing to a log file where
each write call appends an entire log line.

11See flock, fcntl or mandatory locking

14

Network File System

One way to share files is to expose a file-system via the network. For this you
can use a shared file system. These integrate in the file-system interface of the
client. A widely supported example is network file system (NFS). In NFS a part
of a local directory is exported/shared by a local NFS-server. Other machines
can connect and overlay part of their directory with the exported one. The
NFS protocol forwards file operations from the client to the host. When an
operation is applied on the host the result is traced back to the client. To
increase performance the client (almost always) caches file blocks and
metadata.

In a shared environment it is common for multiple users to simultaneously
access the same files. In NFS this can be problematic. Metadata caching can
result in new files appearing up to 30 seconds after they have been created.
Furthermore, simultaneous writes can become interleaved as each write is
turned into multiple network packets [21, p. 527] writing corrupt data. NFS
version 4 improves NFS semantics by respecting UNIX advisory file locks [18].
Most applications do not take advisory locks into account therefore
concurrent use still risks data corruption.

Google file system

The Google file system (GFS) [9] was developed in 2003 in a response to
Google’s rapidly growing search index which generated unusually large
files [15]. The key to the system is the separation of the control plane from the
data plane. This means that the file data is stored on many chunk servers while
a single server, the metadata server (MDS)12, regulates access to, location of
and replication of data. The MDS also manages file properties. Because all
decisions are made on a single machine GFS needs no consensus algorithm. A
chunk server need not check requests as the MDS has already done so.

When a GFS client wants to operate on a file it contacts the MDS for metadata.
The metadata includes on which chunk servers the file content are located. If
the client requests to change the data it also receives which is the primary
chunk server. Finally, it streams bytes directly to the primary or from the
chunk servers. If multiple clients want to mutate the same file concurrently
the primary serializes those requests to some undefined order. See the
resulting architecture in Figure 4. When clients mutate multiple chunks of

12Here we use the term used in Ceph for a similar role. GFS refers to this as the master.

15

Legend:

Data messages
Control messages

Application
(file name, chunk index)

(chunk handle,
chunk locations)

GFSmaster

File namespace

/foo/bar

Instructions to chunkserver

Chunkserver state

GFSchunkserverGFSchunkserver
(chunk handle, byte range)

chunk data

chunk 2ef0

Linux file system Linux file system

GFSclient

Figure 4: The GFS architecture with the coordinating server, the GFS master, adopted
from [9].

data concurrently and the mutations share one or more chunks the result are
undefined. Because the primary chunkserver serializes operations on the
chunk level mutations of multiple clients will be interspersed. For example if
the concurrent writes of client A and B translate to mutating chunks 1a 2a 3a
for client A and 2b 3b for client B. The primary could pick serialization: 1a 2a
2b 3b 3a. The writes of A and B have now been interspersed with each other.
This is a problem when using GFS to collect logs. As a solution GFS offers
atomic appends, here the primary picks the offset at which the data is written.
By tracking the length of each append the primary assures none of them
overlap. The client is returned the offset the primary picked.

To ensure data will not get corrupted by hardware failure the data is
checksummed and replicated over multiple servers. The replicas are carefully
spread around to cluster to prevent a network switch or power supply failure
taking all replicas offline and to ensure equal utilization resources. The MDS
re-creates lost chunks as needed. The cluster periodically rebalances chunks
between machines filling up newly added servers.

A single machine can efficiently handle all file metadata requests, as long as
files are large. If the cluster grows sufficiently large while the files stay small
the metadata will no longer fit in the coordinating servers memory. Effectively
GFS has a limit on the number of files. This limit became a problem as GFS
was used for services with smaller files. To work around this these services
packed smaller files together before submitting the bundle as a single file to
GFS [15].

16

Hadoop FS When Hadoop, a framework for distributed data processing,
needed a file system Apache developed the Hadoop file system (HDFS) [20]. It
is based on the GFS architecture, open source and (as of writing) actively
worked on. While it kept the file limit issue of GFS it offers improved
availability.

The single MDS13 is a single point of failure in the original GFS design. If it
fails the file system will be down and worse if its drive fails all data in the
cluster is lost. To solve this HDFS adds standby nodes that can take the place
of the MDS. These share the MDS’s data using either shared storage [1] (which
only moves the point of failure) or using a cluster of journal nodes [2] which
use a quorum to maintain internal consensus under faults.

Around 90% of metadata requests are reads [19] in HDFS these are sped up by
managing reads from the standby nodes. The MDS shares metadata changes
with the journal cluster. The standby nodes update via the journal nodes.
They can lag behind the MDS, which breaks consistency. Most notably read
after write: a client that wrote data tries to read back what it did, the read
request is sent to a standby node, it has not yet been updated with the
metadata change from the MDS. The standby node answers with the wrong
metadata, possibly denying the file exists at all.

HDFS solves this using coordinated reads. The MDS increments a counter on
every metadata change. The counter is included in the response of the MDS to
a write request. Clients performing a read include the latest counter they got.
A standby node will hold a read request until the node’s metadata is
up-to-date with the counter included in the request. In the scenario where
two clients communicate via a third channel consistency can be maintained by
explicitly requesting up-to-date metadata. The standby node then checks with
the MDS if it is up-to-date.

Ceph

Building a distributed system that scales, that is performance stays the same
as capacity increases, is quite the challenge. The GFS architecture is limited by
the metadata server (MDS). Ceph [24] minimizes central coordination
enabling it to scale near infinitely. Metadata is stored on multiple MDS instead

13HDFS refers to it as the namenode.

17

of a single machine and needs not track where data is located. Instead, objects
are located using Ceph’s defining feature: controlled, scalable, decentralized
placement of replicated data (CRUSH), a controllable hash algorithm. Given an
inode number and map of the object store devices (OSDs) Ceph uses CRUSH to
locate where a files data is or should be stored.

A client resolves a path to an inode by retrieving metadata from the MDS
cluster. It can scale as needed. Data integrity is achieved without need for
central coordination as OSDs compare replicas directly.

File Mapping We take a closer look at how Ceph uses CRUSH to map a
file to object locations on different servers. The process is illustrated in
Figure 5. Similar to GFS files are first split into fixed size pieces or objects14

each is assigned an ID based on the files inode number. These object IDs are
hashed into placement groups (PGs). CRUSH outputs a list of n OSDs on which
an object should be placed given a placement group, cluster map and
replication factor n. The cluster map not only lists the OSDs but also defines
failure domains, such as servers sharing a network switch. CRUSH uses the
map to minimize the chance all replicas are taken down by part of the
infrastructure failing.

. . .

. . .

.

OSDs
(grouped by
failure domain)

(osd1, osd2)CRUSH(pgid)

hash(oid) & mask pgid

(ino,ono) oid
Objects

file

Pgs

Figure 5: How Ceph stripes a file to objects and distributes these to different machines.
Adapted from [24].

The use of CRUSH reduces the amount of work for the MDSs. They only need
to manage the namespace and need not bother regulating where objects are
stored and replicated.

14GFS called these chunks.

18

Capabilities File consistency is enforced using capabilities. Before a
client will do anything with file content it requests these from a MDSs. There
are four capabilities: read, cache reads, write and buffer writes. When a client is
done it returns the capability together with the new file size. A MDS can
revoke capabilities as needed if a client was writing this forces the client to
return the new file size. Before issuing write-capability for a file a MDS needs
to revoke all cache read capabilities for that file. If it did not a client caching
reads would ’read’ stale data from its cache not noticing the file has changed.
MDSs also revoke capabilities to provide correct metadata for file being
written to. This is necessary as the MDS only learns about the current file
upon response of the writer.

Metadata The MDS cluster maintains consistency while resolving paths
to inodes, issuing capabilities and providing access to file metadata. Issuing
write capabilities for an inode or changing its metadata can only be done by a
unique MDS, the inodes authoritative MDS. In the next section we will discuss
how inodes are assigned an authoritative MDS. The authoritative MDS
additionally maintains cache coherency with other MDSs that cache
information for the inode. These other MDSs issue read capabilities and
handle metadata reads.

The MDS cluster must be able to recover from crashes. Changes to metadata
are therefore journaled to Ceph’s object store devices (OSDs). Journaling,
appending changes to a log, is faster than updating an on disk state of the
system. When a MDS crashes the MDS cluster reads through the journal
applying each change to recover the state. Since OSDs are replicated metadata
can not realistically be lost.

Subtree partitioning If all inodes shared the same authoritative MDS
changing metadata and issuing write capabilities would quickly bottleneck
Ceph. Instead, inodes are grouped based on their position in the file system
hierarchy. These groups, each a subtree of the file system, are all assigned
their own authoritative MDS. The members of a group, representing a subtree,
dynamically adjust to balance load. The most popular subtrees are split and
those hardly taking any load are merged.

To determine the popularity of their subtree each authoritative MDS keeps a
counter for each of their inodes. The counters decay exponentially with time.
A counter is increased whenever the corresponding inode or one of its
decedents is used. Periodically all subtrees are compared to decide which to
merge and which to split.

19

Since servers can crash at any time migrating inodes for splitting and merging
needs to be performed carefully. First the journal on the new MDS is
appended, noting a migration is in progress. The metadata to be migrated is
now appended to the new MDS’s journal. When the transfer is done an extra
entry in both the migrated to and migrated from server marks completion and
the transfer of authority.

2.6 Related work
One of the key contributions of this thesis is Group Raft. We use it together
with subtree partitioning to scale up the control plane without the overhead
that would come with scaling up a normal Raft cluster. To the best of our
knowledge there is no work using Raft to scale up the control plane of a
distributed FS. There is literature on using multiple raft groups and there is
work on using Raft within a distributed FS.

Ceph is a distributed file system with excellent scalability. It uses a cluster
to provide metadata access to clients. Ceph uses another cluster, the monitors,
to manage the metadata cluster. Based on the source code15 and discussions
on the Ceph mailing list16 the monitors seem to coordinate using a modified
version of Paxos. Each node in the metadata cluster uses a journal to store its
state. The journal is replicated in the data plane and used to recover the file
system state when a metadata node crashes. In GovFS we store the metadata
in multiple dedicated groups instead of a journal in the data plane.

TiDB is a Raft based Hybrid Transactional and Analytical Processing
database [11]. It uses multiple independent Raft groups to maintain
consistency among replicas. To speed up reading a learner role is introduced.
The learner does not use log replication nor does it vote in elections. The Raft
groups leader pushes updates to the learner. When reading strong consistency
is enforced between the leader and learner. In our Group Raft we speed up
reading by adding a Raft layer on top that takes care of heartbeats and
elections.

PolarFS provides a distributed file layer for cloud databases [4]. It uses Raft
to replicate file system chunks to three replicas. The replicas are only for
redundancy and are normally not read from. Since modifications to different
file system chunks do not affect each other they do not need to be serialized.

15https://github.com/ceph/ceph/blob/main/src/mon/MDSMonitor.cc
16https://ceph-devel.vger.kernel.narkive.com/hkhSNebO/paxos-vs-raft

20

https://github.com/ceph/ceph/blob/main/src/mon/MDSMonitor.cc
https://ceph-devel.vger.kernel.narkive.com/hkhSNebO/paxos-vs-raft

PolarFS introduces ParallelRaft17 it allows holes in the log making out-of-order
replication possible. It makes it possible for followers to handle new log
entries in parallel as they no longer need to ensure the previous entry is
committed. The leader ensures only those log entries that modify different FS
chunks are appended in parallel.

Clusterd Raft is presented and proven safe in A hierarchical model for fast
distributed consensus in dynamic networks [6]. It is designed to enhance
throughput in Geo-distributed context. Each location runs a local Raft cluster,
the leader of a location then replicates in batches to the other clusters. In
contradiction to GovFSs Group Raft their system still provides a global shared
Raft Log. They report a 5x performance improvement in a globally distributed
system when compared to Raft. We suspect keeping the log global comes at
the cost of significant latency compared to Group Raft.

17ParallelRaft has been formally verified [10].

21

3 Design
Here we present GovFS’s design and explain how it enables scalable
consistent distributed file storage. First we will discuss the API exposed by our
system then we will present the architecture, finally we will detail some
system behavior using state machine diagrams.

3.1 API and Capabilities
The file system is set up hierarchically: data is stored in files which are kept in
folders. Folders can contain other folders. The hierarchy looks like a tree
where each level may have 1 to n nodes.

The portable operation system interface (POSIX) has enabled applications to
be developed once for all complying file system and our system’s API is based
on it. If we expand beyond POSIX by adding methods that allow for greater
performance we exclude existing applications from these gains. This is a
trade-off made by Ceph (Section 2.5) by implementing part of the POSIX High
Performance Computing (HPC) IO extensions [25]. Ceph also trades in all
consistency for files using the HPC API.

We also expand the file system API beyond POSIX. While this makes our
system harder to use it does not come at a cost of reducing consistency.
Specifically GovFS expands upon POSIX with the addition of open region. A
client that opens a file region can access only a range of data in the file. This
API enables consistent limited parallel concurrent writes on, or combinations of
reading and writing in the same file.

Like Ceph in GovFS clients gain capabilities when they open files. These
capabilities determine what actions a client may perform on a file. There are
four capabilities:

• read • read region • write • write region

A client with write capabilities may also read data. Similar to Ceph
capabilities are only given for a limited time, this means a client is given a
lease to certain capabilities. The lease needs to be renewed if the client is not
done with its file operations in time. The lease can also be revoked early by
the system.

22

President

Minister1Minister0 Ministern

Clerk

Clerk

Clerki

...

Clerk

Clerk

Clerkj

...

Clerk

Clerk

Clerkk

...

. . .

. . .

. . .

. . .

Idle

Idle

Idle

Idle

Idle

Idle

Idle

. . .

Figure 6: An overview of the architecture. There is one president, n ministers ■ , each
ministry can have a different number of clerks □ . Not all servers in a cluster are always
actively used as represented by the idle nodes ■

GovFS tracks the capabilities for each of its files. It will only give out
capabilities that uphold the following:

• Multiple clients can have capabilities on the same file as long as write
capabilities have no overlap with any region.

3.2 Architecture
The overhead of maintaining consensus within a group increases linearly with
the number of members. GovFS uses hierarchical leadership to decouple the
overhead from the clusters size for interactions that only need consensus with
a subset of the cluster. In GovFS there is one president elected by all servers.
The president in turn appoints multiple ministers then assigns each a group
of clerks. A minister contacts its group, and promotes each member from idle
to clerk, forming a ministry.

The president coordinates the cluster: monitoring the population, assigning
new ministers on failures, adjusting groups given failures and load balances
between all groups. Load balancing is done in two ways: increasing the size of
a group and increasing the number of groups. To enable the president to make
load balancing decisions each minister periodically sends file
popularity.

Metadata changes are coordinated by ministers, they serialize metadata

23

modifying requests and ensures the changes proliferate to the ministry’s
clerks. Changes are only completed when they are written to half of the clerks.
Each minister also collects file popularity by querying its clerks periodically.
Finally, write capabilities can only be issued by ministers.

A ministry’s clerks handle metadata queries: issuing read capabilities and
providing information about the file system tree. Additionally, each clerk
tracks file popularity to provide to the minister.

It is not a good idea to assign as many clerks to ministries as possible. Each
extra clerk is one more machine the minister needs to contact for each change.
The cluster might therefore keep some nodes idle. We will get back to this
when discussing load balancing in Section 3.4.

Consensus

Consistent communication has a performance penalty and complicates system
design. Not all communication is critical to system or data integrity. We use
simpler protocols where possible.

The president is elected using Raft. Its coordination is communicated using
Raft’s log replication. On failure a new president is elected by all nodes.

Communication from the minister to its ministries clerks uses log replication
similar to Raft. When a minister is appointed it gets a Raft term. Changes to
the metadata are shared with clerks using log replication. A minister can fail
after the change was committed but before the client was informed of the
success. The log index is shared with the client before it is committed, on
minister failure the client can check with a clerk to see if its log entry exists18.
When the minister fails the president selects the clerk with the highest commit
index as the new minister. We call this extension of Raft Group Raft.

Load reports to the president are sent over TCP, which will almost always
ensure the reports arrive in order. A minister that froze, was replaced and
starts working again can still send outdated reports. By including the term of
the sending minister the president detects outdated reports and discards
them.

Group Raft

In Group Raft a third party instructs a node to become the leader. Followers
are not informed directly but rather accept the new leader as it has a higher

18Without the log index the client can not distinguish between failure and a successful change
followed by a new change overriding the clients.

24

term. When receiving a message the normal Raft rules apply, therefore
messages from the old leader19 are rejected as their term is too low.

In GovFS nodes must be able to move between groups with assigned leaders.
This present two problems, the first issue becomes apparent looking at the
following series of events:

• Leader B receives message that follower x is assigned to it

• Leader B appends to its log and sends an append request to its followers
now including x

• Follower x accepts the request as x has a lower term than the request

• Follower x increases its term to match B

• Leader A receives a message that assigns x back to it

• Leader A appends to its log and sends an append request to its followers
which now again includes x

• Follower x rejects the request as x now has a higher term then the request

Leader A must initially have a lower term then B and than a higher term than
B for the re-assignment to work. The second problem: we need a follower to
re-write its log after every move to match that of its new group.

To solve the first problem we make the third party change the term of the
leader when assigning it a node. Every re-assignment will succeed if it
guarantees the new term is the highest of all the groups. It is trivial to ensure
that by using a single third party. This third party can atomically increment
the term every assignment and re-assignment.

This coincidentally also solves our second problem. Since the highest number
is always unique, the correct log for each group now has an increasing
sequence of unique terms. If a node receives an append request and its
previous log entries, term and index do not match that of the leader it rejects
the request. The leader then starts sending older log entries20. A successful
append can only happen on correct (partial) group log given terms are now
unique to groups.

19The third party replacing the leader usually indicates there is a problem with the current
leader, making it doubly important that messages from old leaders are ignored.

20This is optimized in GovFS by clearing the entire log if a clerk came from another ministry.

25

3.3 Client requests
In this section we go over all the operations of the system, discussing four of
them in greater detail. We also explain how most operations are simpler forms
of these four. This section is split in two parts: client requests and
coordination by the president. For all requests a client needs to find an official
(a minister or clerk) to talk to. If the request modifies the namespace, such as
write, create and delete, the client needs to contact the minister. In Figure 7
we see how this works. Since load balancing changes and minister
appointments are communicated through Raft each cluster member knows
which ministry owns a given subtree. A client can not judge whether the node
it got directions from has up to date and correct information. In the rare case
the directions are incorrect. This means an extra jump through an irrelevant
ministry before getting correct information.

Contact random node

Official
wrong subtree

Minister Clerk
correct subtree

Figure 7: A new client ■ finding the responsible minister ■ for a file. Its route can go
through the wrong subtree ■ or via the correct ministry’s clerk □ . Whenever there is a choice
the dotted line indicate the less likely path.

Capabilities
A client needing write-capability on a file contacts the minister. It in turn
checks if the lease can be given out and asks its clerks to revoke outstanding
read leases that conflict. A read lease conflicts when its region overlaps with
the region needed for the write capability. If a clerk lost contact with a client it
can not revoke the lease and has to wait till the lease expires. The process is
illustrated in Figure 8.

If the client needs read capabilities it sends its requests to a clerk. The clerk
checks against the Raft log if the leases would conflict with an outstanding
write lease. If no conflict is found the lease is issued and the connection to the

26

client kept active. Keeping an active connection makes it possible to revoke
the lease or quickly refresh it.

start find Minister clear conflicting leases
req write

revoke overlapping
read leases

revoke overlapping
read leases

revoke overlapping
read leases

revoke overlapping
write lease

needed range

needed range

no conflicting leases got file handle
lease

Figure 8: A client ■ requesting ranged write capabilities. It finds and contacts the respons-
ible minister ■ . The minister then contacts the ministry’s clerks □ to clear conflicting read
capabilities. Meanwhile, it revokes any conflicting write leases it gave out.

Namespace Changes
Most changes to the namespace need simple edits within ministries metadata
table. The client sends its request to the minister. The change is performed by
adding a command to the Group Raft log (see: Section 3.2). Before committing
the change the client gets the log index for the change. If the minister goes
down before acknowledging success the client verifies if the change happened
using the log index.

Removing a directory spanning one or more load balanced subtrees needs a
little more care. One or more ministers will have to delete their entire subtree.
This requires coordination across the entire cluster. The client’s remove
request is forwarded by the minster to the president. It in turn appends
Subtree Delete to the cluster wide log. The client receives the log index for the
command to verify success even if the president goes down. The steps the
minister takes are shown in Figure 9.

27

Start Ministerj

Subtree delete

req coordination

. . .Minister1Minister0 Ministerj Ministern. . .

. . .
Raft commit

Minister1Minister0 Ministerj Ministern − k. . .

. . .Minister1Minister0 Ministerj Ministern − k. . .

drop sub tree

Idle0 Idlek. . .

demote

Figure 9: A minister ■ , here Ministerj , removes a directory (tree) that is load balanced
between multiple ministries. The president ■ coordinates the removal by appending a
command to the log. Once it is committed the ministers hosting subtrees of the directory
demote themselves to idle and Ministryj drops the directory from its database

3.4 Availability
Ensuring file system availability is the responsibility of the president. This
includes replacing nodes that fail and load balancing. To detect nodes that go
down we use the TCP ACK of the nodes to the president’s Raft heartbeat.
When the president fails to send a Raft heartbeat to a node it decides the node
must be failing.

A failing minister

When the president notices a minister has failed it will try to replace it. It
queries the ministries clerks to find the ideal candidate for promotion. If it
gets a response from less than half the ministry it can not safely replace the
minister. At that point it marks the file subtree as down and may retry in the
future. A successful replacement is illustrated in Figure 10.

A clerk going down is handled by the president in one of two ways:

• There is at least one idle node. The president assigns the idle node to the
failing nodes group.

28

• There are no idle nodes. The president, through raft, commands a clerk in
the group with the lowest load to demote itself. Then the president drops
the matter. The clerk wait till its read leases expire and unassigns.

When the groups’ minister appends to the Group Raft log it will notice the
clerk misses entries and update it (see Section 2.3).

1) President Minister (failing) Clerk1 Clerk2 Clerkn. . .X

2) President Clerk1 Clerk2 Clerkn. . .
request

commit idx

req. commit idx
req. commit idx

3) President Clerk1 Clerk2 Clerkn. . .idx: k

idx: k − 1
idx: k − j

4) President Minister Clerk2 Clerkn. . .
Tcp ack

heartbeat

Figure 10: A minister ■ fails and does not send a heartbeat on time (1). The president ■
requests the latest commit index (2). Node Clerk1 □ has commit index k which is the highest
(3). The president has promoted Clerk1 to minister, it has started sending heartbeats (4).
Note the heartbeats sent by the clerks are not shown.

Load balancing

From the point of availability a system that is up but drowning in requests
might as well be down. To prevent nodes from getting overloaded we actively
balance the load between ministries, add and remove them and expand the
read capacity of some. A load report contains CPU utilization for each node in
the group and the popularity of each bit of metadata split into read and write.
The President checks the balance for each report it receives.

Trade off There is a trade-off here: a larger ministry means more clerks
for the minister to communicate changes to, slowing down writes. On the
other hand as the file system is split into more subtrees the chance increases a

29

client will need to contact not one but multiple ministries. Furthermore, to
create another ministry we might have to shrink existing ministries. Growing
a ministry can even involve removing another to free up nodes. We can model
the read and write capacity of a single group as:

r =nc (1)
w =1− σ ∗nc (2)

Here nc is the number of clerks in the group, and σ the communication
overhead added by each clerk.

Now we can derive the number of clerks needed given a load. We want to have
some unused capacity δ. We set δ equal to the capacity with the current load
subtracted. This gets us the following system of equations:

δ = w −W (3)
δ = r −R (4)

Now solve for nc, the number of clerks.

r −R = w −W (5)
nc −R = (1− σ ∗nc)−W (6)

nc =
R−W + 1

1 + σ
(7)

From this we draw two conclusions. Any spare capacity for writing is at a cost
of spare reading capacity. The number of clerks roughly equals the read
load.

Read balancing A ministry experiencing low read load relative to their
capacity is shrunk. A ministries read load is low if it could lose a clerk without
average clerk CPU utilization rising above 85%. A ministry has multiple
members not only for performance. The members form a Group Raft cluster
and ensure metadata is stored redundantly. This only works if a ministry has
at least three members. Therefore, groups can not be made smaller than that.
To shrink a ministry the President issues a Raft message unassigning a
clerk.

A group under high relative read load has average clerk CPU utilization
passing 95%. The president then issues a Raft message assigning an idle node
to the group if one is available.

30

Write balancing When the president decides a group can no longer
handle the write-load it will try to split off some work to another group. If no
existing group can handle the work the president will try to create a new
group. This is illustrated in Figure 11.

Constraints If the system is experiencing a high read and write load, and
can no longer add nodes the greedy approach described above will no longer
work. At this point we will need to carefully balance the number of ministries
and their sizes using the available nodes. Using the equations derived above
we can define an objective function as function of the load reports. Then we
can use a constrained optimization method to find the optimal configuration
for GovFS.

write overload no unassigned

load
report

Minister0

Minister1

Minister2

Clerk0 Clerk1 Clerk2 Clerk3

Clerk0 Clerk1 Clerk2 Clerk3

Clerk0 Clerk1 Clerk2 Clerk3

Raft(unassign)

. . . Clerk3

. . . Clerk3

. . . Clerk3

Raft commit

Idle

Idle

Idle

President

queued load report
done

done

done

Raft(assign)

Raft(assign)

Raft(assign and promote)

Minister3 Clerk0 Clerk1 . . .

Raft commit

Figure 11: A minister ■ under too high a load, higher than all other, sends a load report to
the president ■ . It can not create a new ministry as there are no or not enough idle nodes ■ .
The president removes three clerks □ from the ministries under the lightest read load and
queues the load report. After the clerk removal is committed the load report is enqueued.

31

4 Implementation
Here we go over the implementation of the design, which is written in Rust.
We begin by motivating the choice for Rust. Following that we go over the
concurrency model. Then using small extracts of source code we discuss the
structure. Next we take a more detailed look at our extension of Raft (see:
Section 2.3) and discuss why we could not build on existing libraries. Finally,
we see how the file leases are implemented.

4.1 Language
Distributed systems are notoriously hard to build with many opportunities for
subtle bugs to slip in. Therefore, it is important to choose a language with
features that aid our work and make it harder to introduce bugs. Let’s discuss
one of the key features that can help us and one that could become
problematic.

A strongly typed language with algebraic data types enables us to express
properties of the design in the type system. An example: Clerks are listening
for messages from the President or their Minister, we keep these separate by
listening on different ports. Normally a port is expressed as an integer. If we
make the type of the President’s port different from the Ministers the
compiler will prevent us from switching these around. This practise is known
as Type Driven Development (TDD).

Timing is critical for the design, if the president does not send heartbeats in
time elections might start. Languages using Garbage Collection (GC) pause
program execution once every while to clean up memory. This can cause
timing problems, also known as the stop the world problem. It is possible but
hard to mitigate this by carefully tweaking the GC to keep its pauses short. If
possible we should use a language without GC.

Only the Rust language has such a type system without using GC.
Furthermore, the language guarantees an absence of data races which makes a
concurrent implementation far easier.

32

4.2 Concurrency
When sending and receiving data over the network most time is spent waiting.
Blocking while waiting is not at all efficient. We can use this valuable time to
start and or finish sending and receiving other data concurrently. Usually this
is solved by spawning a thread for each connection. Another way of doing this
is using non-blocking IO, however organizing a single thread of execution to
use non-blocking-IO for a diverse set of concurrent operations becomes highly
complex. Maintaining file leases (see: Section 3.3) requires us to hold many
concurrent connections. On the other hand one thread for each connection
could limit the number of connections as we run out of threads. To get around
the problematic complexity of non-blocking-IO we use: Async/await21. It is a
language feature which allows us to construct and combine non-blocking
functions as if they were normal functions. Rust has native support for the
needed syntax but requires a third party framework to provide the actual IO
implementation, here we use the Tokio project [23].

There is a trend in distributed systems to take scalability as the holy grail of
performance [16]. While the design of the system focuses on scalability our
implementation tries to use the underlying hardware optimally. Moor’se Law
still holds its ever-increasing transistor count however no longer results in
significantly increased single core performance. Instead, the increased
transistor budget goes towards horizontally scaling [8]. In recent years we see
this scaling in the form of increasing core counts22. The implementation
should proof the design is future-proof by taking full advantage of available
task parallelism. Fortunately the above-mentioned framework Tokio provides
tasks which combine organized non-blocking-IO with parallel execution.
These tasks are divided into groups where each group runs concurrently on a
single OS-thread. Creating and destroying tasks is fast compared to OS
threads.

Sharing state concurrently is with few exceptions achieved by passing
messages between tasks. Where needed these include a method to signal back
completion. Some shared state is used to keep track of the Raft lock, it is
contained to the raft module. By mostly using message passing less time is
spent waiting on locks and deadlocking bugs are contained to sections using
shared state23

21See Appendix A for an introduction to Async/await.
22Enabled by CPU chiplets: multiple smaller dies that are combined into a single multicore

CPU.
23Most of the message passing does not block, instead has a small buffer and returns an error

if the buffer is full.

33

Cancelling tasks

In GovFS’s design we frequently need to abort a concurrently running task.
Clerks for example handle client requests in a concurrently running task.
When a clerk becomes president it needs to stop handling those requests. If
we were using threads we would do this by changing a shared variable. The
task would be written such that it frequently checks if the variable is changed
and when it is the task returns.

Whenever an async function has to await IO it returns control to the scheduler.
When IO is ready the scheduler can choose to continue the function. We can
ask it not to, this effectively cancels the task. Since Rust enforces Resource
Acquisition Is Initialization (RAII) [22, p. 389] 24 the framework drops all the
objects in the scope of canceled tasks.

Task handles instruct the framework to cancel their task when they are
dropped. A group of tasks can be canceled by dropping the data structure that
contains their task handles. We organize concurrent tasks as a tree, cancelling
and cleaning up an entire branch is as easy as dropping the task handle for
the root of that branch. Concretely if we abort the president task we
automatically end any tasks it created.

4.3 Structure
Nodes in GovFS switch between the role of president, minister, clerk and idle.
The roles are separate functions. When a node switches role it returns and
enters the function corresponding with its new role. The switching is
implemented in the state machine seen in Listing 1. In Rust expressions
return a value, the match statement in line 2 returns the role for the next
iteration. The different work functions set up the async tasks needed, then
they start waiting for an exit condition.

24A programming idiom where acquiring a resource is done when creating an object. When
the object is destroyed code runs that release or cleans up the object.

34

Listing 1: The state machine switching between a nodes different roles

1 let mut role = Role::Idle;

2 loop {

3 role = match role {

4 Role::Idle => idle::work(&mut state).await.unwrap(),

5 Role::Clerk { subtree } => {

6 clerk::work(&mut state, subtree).await.unwrap()

7 }

8 Role::Minister {

9 subtree,

10 clerks,

11 term,

12 } => minister::work(&mut state, subtree, clerks, term)

13 .await

14 .unwrap(),

15 Role::President { term } => {

16 president::work(&mut state, &mut chart, term).await

17 }

18 }

19 }

35

Before nodes enter the state machine they set up two Raft logs. The president
log handles messages, timing out on inactivity and holding elections in a
background task. The minister log handles only receiving messages. In both
cases newly committed log entries are made available through a queue to a
Raft Log object. Election losses and wins are also communicated through this
queue.

Let us take a look at the president work function in Listing 2. We enter it if we
are elected president. One of the arguments this function receives is the
presidential Raft Log. It borrows the logs parts: the queue, and the Raft state.
The state is wrapped in a LogWriter which allows appending to the Raft log
and waiting till the entry is committed. Finally, a LoadBalancer instance is set
up. The created objects are passed to the async functions or task, which
are:

• load_balancing: issues orders assigning nodes and file subtrees to
ministries using the LogWriter, re-assigns based on events such as: nodes
going down, coming back online, new being added and ministry load.

• instruct_subjects: performs the leader part of the Raft algorithm. Shares
log entries with all other nodes and tracks which can be committed.

• handle_incoming: handle requests, redirecting clients to ministries.

• receive_own_order: apply committed orders from the Raft Log queue to
the programs state.

These tasks are selected on, making them run concurrently until one of them
finishes. Here this means they run until recieve_own_order returns. This
happens when the Raft background task inserts a ResignPres order indicating
a higher termed president was noticed. After the select call finishes the
president work function ends and returns the next role: Idle.

The other work functions similarly select on multiple async tasks. These tasks
themselves create yet other tasks. This way the program builds up a tree of
concurrently running functions. The tree is illustrated in Figure 12. Work that
scales with system load is divided over a variable amount concurrently
running tasks. Each connection to a client for example is run in parallel on a
separate task.

36

Listing 2: The president work function, it performs all the tasks of the president. In this
code snippet brackets and parenthesis containing whitespace mean the structs and functions
there have their arguments hidden for brevity

1 pub(super) async fn work() -> crate::Role {

2 let Log { orders, state, .. } = pres_orders;

3 let (broadcast, _) = broadcast::channel(16);

4 let (tx, notify_rx) = mpsc::channel(16);

5

6 let log_writer = LogWriter { };

7

8 let (load_balancer, load_notifier) = LoadBalancer::new();

9 let instruct_subjects = subjects::instruct();

10 let load_balancing = load_balancer.run();

11

12 tokio::select! {

13 () = load_balancing => unreachable!(),

14 () = instruct_subjects => unreachable!(),

15 () = msgs::handle_incoming(client_lstnr, log_writer) => {

16 unreachable!(),

17 }

18 res = receive_own_order(orders, load_notifier) => {

19 Role::Idle

20 }

21 }

22 }

37

Discover new nodes

President Raft handle append or vote request

President succession
sleep until timeout

hold Raft election

valid leader found

await presidents death

Minister Raft handle append

Role

perform Idle role redirect clients handle client connection

handle presidents orders

perform clerk role

handle client request handle client connection

handle minister orders

handle presidents orders

perform minister role

handle client request handle client connection

instruct clerks

manage clerks

add new clerks

remove dead clerkmanage read locks

handle presidents orders

add new clerks

remove dead clerk

handle lock request

manage clerks

perform president role

redirect clients handle client connection

instruct nodes manage node

add new node

remove dead node

handle presidents orders

Figure 12: Diagram of all concurrently running functions in a node. A dashed line between
items means only one of those items can be running at the time. For example a node in
the Idle role can not concurrently be a Minister. Functions in red ■ are single tasks while
purple ■ indicates there are between zero and n instances of the function running. Functions
in gray ■ are futures: they are running concurrently, however share a thread with any
parent and or child futures.

4.4 Raft
There are a lot of reliable Raft implementations. Developing our own took a
significant amount of time. A new implementation will be less stable as it
misses years of testing, this may impact our systems’ stability. Building on
existing work however was not an option as GovFS has two unique
requirements:

• GovFS uses the Raft heartbeat to maintain file system consensus
(see: Section 3.2). Newly assigned clerks for example use the heartbeat
duration to know determine if their state is up-to-date25 and can begin
serving clients.

• GovFS needs a special version of Raft, one where elections are rigged and
leaders (minsters) are assigned by a third party (the president). Multiple
of these instances (or ministries) must be able to exist simultaneously.
The log must stay consistent and clients should see no entries of an old
leader after being assigned to another leader.

To demonstrate that GovFS scales and can be optimized in future work the
custom implementation must also scale and be optimizable. If it does not then
the design of GovFS could be relying on an implementation detail that
fundamentally limits its performance.

Perishable log entries

When a Raft message arrives it can cause entries in the log to become
committed. At that point they are made available to the system. These could
be old entries, long ago committed by other nodes. The message contains the
index of the last committed entry or entries which we use to recognize if an
entry is old. Newly committed messages can still become outdated if they are
applied too slowly. This can happen if the server slows down due to bugs in
GovFS or hardware issues. The system notes the time a newly committed
entry arrived. The time is combined with the entry into a perishable entry. It
is what is made available to GovFS and can be asked whether it is fresh.

25That is, the clerk has applied all log committed entries, and the last was committed within
a Raft heartbeat of it being committed.

39

4.5 File leases
As discussed in Section 3.2 read and write access is coordinated by a ministry.
Before issuing write access a minister must ensure outstanding read leases are
revoked. Similarly, clerks must ensure they do not offer read-leases to files
that can be written to. The minister locks the needed file on all the ministries
clerks before issuing a write-lease.

Managing these read locks is the responsibility of the lock manager which runs
concurrent to the ministers other tasks (see Figure 12). When the client
connection handler ■ receives a write request it enters a write_lease function.
This checks if it has already given out a write-lease, returning an error if it has.
Then the lock manager is requested to lock the file. A lease-guard is
constructed once the file has been locked on the clerks. The guard unlocks the
file if the handler leaves the write_lease function. This guarantees the file is
unlocked even if the function is aborted due to an error. Then the client is
returned the lease together with a time before which it needs to be renewed.
For as long as the client keeps sending RefreshLease on time the handler stays
in the write_lease function.

Leases are not flushed to stable storage (hard drives) and as such they are
volatile. When a clerk goes down all leases issued by it are lost and clients
need to reacquire them. A minister going down means loss of all the
write-leases, the clerks, however, can keep issuing leases. The new minister
unlocks all files when it comes online. These rules allow GovFS to use simple
TCP messaging instead of relying on Raft for everything. Assuming files
access is more common than file creation and removal optimizing lease
management will speed up GovFS significantly.

Locking Rules

The lock manager times its lock requests to ensure consistency and correctness.
It is easiest to explain this at the hand of an example. Here a clerk gets
partitioned off from the rest of the cluster at the worst possible time:

• A minister receives a write request for file F

• At time T clerk A receives its last heartbeat from the President

• Clerk A loses connection to the rest of the cluster but stays reachable for
clients.

• The lock manager fans out a lock request for F, it can not reach clerk A
and starts retrying.

40

• Just before time T +H clerk A issues a read lease to a client, it is valid
until just before T + 2H

• At time T +H clerk A misses the next heartbeat and stops handling client
requests

• Just before time T + 2H the client fails to refresh its lease and stops
reading

• After 2H the lock manager gives up sending lock requests to clerk A. It is
guaranteed that any outstanding read-lease issued by clerk A has now
expired

• The minister issues the write-lease for F

We see that 2H after the lock manager started trying to lock the file it can
assume the file locked. A clerk going offline increases file write access by 2H .
If the manager keeps trying to reach it we keep this 2H overhead. Instead, the
manager removes the clerk before handling another request. Without any
failure file write access time should be dominated by the latency of the TCP
roundtrips.

Performance

The lock manager has been written to handle many simultaneous requests. It
is therefore lockless and keeps an open TCP connection to its clerks. Keeping
the connection open eliminates the overhead of opening one for each lock
request. The minister communicates with the manager through message
passing. When clerk gets assigned by the president the lock manager receives
a message. It then opens a connection in a new concurrent task dedicated to
this new clerk.

The decisions the lock manager makes directly impact the rest of the cluster.
Each lock placed on a clerk potentially blocks read-leases which potentially
slows down read performance. Therefore, it is important to unlock as soon as
possible. The lock manager thus prioritizes unlock above lock requests.

Known problems

The current implementation has four known problems. Three of these have
simple solutions however fourth requires changes to the design. First, an
imposter or failing node can still send unlock requests. Including the current
minister term in the request and checking if its valid would solve this26.

26Similar to Group Raft, see Section 3.2.

41

Second, a newly assigned clerk can serve clients before it has processed all the
existing locks. Clerks get their ministerial Raft log up-to-date before they start
serving requests. The same should be done for lock requests.

Third, a network fault could make it impossible for only a minister, and thus
lock manager, to reach one of its clerks. Traffic from the president and clients
would still reach the clerk. In this case the lock manager assumes a file locked
after 2H while the clerk does not miss a heartbeat from the president and
stays up. This clerk could now enable reading to a file that is being written to.
We can prevent this by making the minister inform the president of the clerk’s
failure. The president would then exclude the clerk from heartbeats triggering
its shutdown on time.

Finally, a lock request can fail when the file has not yet been created on a clerk.
In Raft a log entry becomes committed after the majority has accepted it. In
the current implementation file creation is done as soon as the corresponding
log entry is committed. A clerk that is behind in processing log entries can
receive and start processing lock requests. Unfortunately this reveals a design
problem: there is no mechanism to handle a clerk lagging behind. In section
Section 8 we discuss how the design can change to address this.

42

5 Results
We now describe a number of experiments to investigate whether a file system
using groups of metadata nodes can offer better performance and scalability
then using a single node.

Our prototype implementation has a number of limitations. The construction
of a full system based on this technology is left as future work. The limitations
are:

• The Raft implementation sends only a single log entry at the time and log
entries are sent each heartbeat period instead of whenever data becomes
available. Effectively this imposes a rate limit on changing the systems
metadata.

• Load balancing only replaces nodes that go down, it does not perform
subtree partitioning at runtime (see: Section 2.5).

• Sometimes nodes become unresponsive when making many requests that
change metadata. They then miss heartbeats which triggers re-elections.

In Section 5.1 we look at the ministry architecture tracking how performance
changes when we change the number of ministries. Then we look at ranged
based file locking in section 5.2, we compare write performance with and
without locking. In each section we will detail how the experiments work
around the limitations, ensuring their outcome would match an
implementation without restrictions. Every benchmark was performed five
times and all the results are presented. The nodes were monitored during
each run and if an error occurred we repeated the entire run. When using
multiple clients to create a larger load the nodes were given time to initialize
and the test start was synchronized. All raw data is available at
github.com/dvdsk/Thesis.

The benchmarks have been performed using the fifth generation distributed
ASCI Supercomputer [3]. Each node has dual eight-core Intel Xeon E5-2630
v3 CPUs and 128G of ram. As networking delays are a key characteristic of
the systems’ performance we used Ethernet for the communication between
nodes even though the hardware is equipped with InfiniBand. The Raft
heartbeat duration was set to 75 milliseconds for all tests.

43

https://github.com/dvdsk/Thesis

5.1 Ministry Architecture
Here we test the impact of varying the number of ministries on performance.
We expect to see an almost linear improvement with more ministries given
optimal size and shape of the load.

We use static subtree partitioning to vary the number of ministries. The load
balancer starts by initializing a single ministry responsible for the root
directory. Additional static ministries can be passed through command line
parameters. For these test we let it initialize n-1 extra ministries at paths /n.
Including the root ministry (it must always be present) there are now n
ministries available for testing.

List directory

The first workload we try is list directory. We perform 60 thousand list
requests spread across all directories in the root directory. We do this from 30
clients concurrently. Each client sends the requests one after another as fast as
possible. To keep the overhead from sending back the directory content small
each directory contains only 10 files. The client processes are spread between
3 physical nodes.

The 2000 requests each client sends can be in two different orders: batch and
stride. In batch a client performs all the requests for a single directory before
sending those for the next. When using the stride pattern a client sends a
request to the first directory and then sends the next request to another
directory. There were a few extreme outliers, these were further out than 4
standard deviations. We consider these outliers therefore they are not shown
in the plots.

In Figure 14 we see a violin plot comparing the two request orders for clusters
with various number of ministries. On the Y-axis we see the time it took a
single request to complete. A wider distribution means more requests were
completed within the same time. Note the multimodal distribution, the
increasing duration for the slowest requests as the number of ministries
increases and the difference in the fastest times between batch and stride.
From this we learn that batch mode is always faster than stride and that using
more nodes increases tail latencies.

Figure 13 shows cumulative density functions (CDFs) of clients performing 60
thousand list directory requests in batch mode for varying amount of
ministries. On the Y-axis are the proportion of requests that complete within

44

the time on the X-axis. Note using one ministry is always the fastest followed
initially by a configuration using five ministries until 80% of requests
complete. Past 80% the second place is taken by the configuration with two
ministries. This shows us that when using more than 2 ministries more
ministries will speed up most list directory requests a small fraction at the
cost of significantly longer tail latencies.

Figure 13: CDFs of clients performing 60 thousand list directory requests for varying
amount of ministries. On the Y-axis the proportion of requests completed, at 1.0 all 60
thousand requests have been answered. The X-axis shows the time until the proportion
was reached. The clients batch ordered their requests: they first perform all requests for one
ministry and then for the next. The chart goes up to two milliseconds, a tiny fraction of
requests take longer then that.

45

Figure 14: Distribution of list directory duration vs number of ministries for two different
request orders. On the Y-axis the time it takes a single request to complete. The X-axis shows
the number of ministries the file system is using. The orange distributions are results from
runs where 30 clients ordered their requests such that the ministries were accessed one after
the other, a stride pattern. The blue distributions show results from runs where 30 clients
used a batch pattern: they first perform all requests for one ministry and then for the next.
Outliers further out than 4σ are not shown.

Create file

The second workload we try is file creation. To create a file a minister appends
a single message to the log making creating files rate limited. Without the rate
limit, load could increase until the communication with the clerks or the
hardware of the nodes becomes the bottleneck.

As adding more ministries could alleviate future bottlenecks it is interesting
to see how file create performance scales with the number of ministries even
given with the rate limits.

Because of this limit imposed by the implementation we send only 90 create
requests. They are sent from 9 clients concurrently. These numbers were
empirically determined to maximize the load while keeping the cluster stable
enough to complete all the tests.

In Figure 15 we see CDFs for the time it takes to create a file on configurations
with a various number of ministries. On the Y-axis the proportion of write
requests completed, and the X-axis shows the time in milliseconds. Note the
first jump upwards is about 75 milliseconds and all the other jumps are
around multiples of 75. The more ministries we use the faster most requests
are done. Finally, note the proportion of requests completed jumps up in
discrete steps. Write requests duration is dominated by the time it takes the
Group Raft log to commit a change.

Figure 16 offers another look at the same data. Here we see the time needed
for each create as a function of when the request started. Darker tones are
requests from tests with more ministries. On the Y-axis we see the time
needed to complete the request in seconds while on the (logarithmic) X-axis
we see the time a create request was sent. The vertical jumps in the CDF
(Figure 15) show up as horizontal bands here. For example the lowest
horizontal band are requests that took 75 ms which matches the first vertical
jump. Note the gap just after the start of the test. When the system has more
ministries more Raft logs can be appended to in parallel. Creating files
therefore scales linearly with the number of ministries.

5.2 Range based file locking
Now we evaluate the contribution of ranged writes compared to writing the
entire file. A good use case of ranged file access is writing out one or more

47

Figure 15: CDFs of clients creating 90 files on clusters with various amount of ministries.
On the Y-axis the proportion of files created, at 1.0 all 90 files have been created. On the
X-axis the time in milliseconds until that proportion was reached.

48

Figure 16: A logarithmic plot of file create request time vs when the request was started. The
same data as in Figure 15. On the Y-axis the time it took a request to complete in seconds
while the X-axis shows the point at which the request was started. Darker points are from
runs where the system had more ministries.

rows in a file. In other systems we request exclusive access to the entire file
and writing out all the needed rows. Here we can request access to and write
out one row at the time. We expect this second method to be faster when
contending with more clients for the same file and with larger files.

Here we compare these methods using two different experiments. In the first
experiment we write a single row of a file with 10 rows from multiple clients
simultaneously. Each client picks a row at random. In the second experiment
each client writes all rows. Each client uses a random order when writing by
row.

We run both experiments for various row size and number of concurrent
writers. When varying the row size the number of concurrent writers was
fixed at six. While changing the number of writers the row size was kept at 10
megabyte (MB).

Since GovFS has no data plane implementation writing is simulated by
sleeping on the client side. We simulate writing at a speed of 200 MB per
second27.

In the table below we see the time spent on simulating IO and the average
duration for writing one or 10 rows either by locking the whole file or locking
by row:

Row Size (MB)

0.1 1 10 20 40 80

Writing a single row (ms)

IO simulation 0.5 5 50 100 200 400
Lock by row 411 370 366 444 636 971
Lock entire file 62 114 298 618 975 1644

Writing 10 rows (s)

IO simulation 0.005 0.05 0.50 1 2 4
Lock by row 2.83 3.00 3.52 4.58 7.29 12.12
Lock entire file 0.57 0.82 1.51 2.65 4.90 9.60

In the next two subsections we will look at these results in greater
depth.

27This corresponds to a slow hard drive which is a good bandwidth target for Hadoop like file
systems targeting HDDs. It is also the best case scenario for writing by row since the low speed
increases the ratio of time writing versus connecting and locking.

50

Writing a single row

Figure 17 shows the time it takes to write a single row for different row sizes.
The Y-axis shows the duration a single write request takes in seconds. Each
dot is a single measurement. We see that locking the entire file is slower than
locking only the needed row. Increasing the row length shrinks the
performance gap between these methods. Note furthermore that there are
many outliers when locking by row. Locking by row is most efficient for small
files.

In Figure 18 we see that with more simultaneous writers locking only a single
row becomes faster. The Y-axis shows the duration a single write request takes
in milliseconds. Note how locking the entire file is faster up to and including
4 writers. This is strange as both methods lock the file once. The experiment
was therefore run thrice and the results carefully checked.

51

Figure 17: The time it takes to write a single row given different row sizes. Every dot is a
single measurement. On the Y-axis the duration a single write request takes in seconds. On
the X-axis the row size in MB. In blue the time needed when only locking the needed row
while in orange we see the time needed when locking the entire file.

Figure 18: The time it takes to write a single 10 MB row given different numbers of writers
from 1 to 32. On the Y-axis the duration in milliseconds. The X-axis shows the number of
writers, doubling every time. In blue the time needed when only locking the needed row
while in orange we see the time needed when locking the entire file.

Writing the entire file

In Figure 19 we look at every individual duration measurement for writing all
10 rows given various row lengths. Again we compare locking by row versus
locking the entire file. The logarithmic Y-axis shows the duration in seconds.
The X-axis shows various sizes for the rows. As expected larger rows result in
longer write durations. Furthermore, we see discrete levels in write duration
when writing the entire file and not when writing by row. Writing a file by
writing each row separately is significantly slower than writing out the entire
file.

Figure 20 again shows the duration it takes to write all the rows this time for
varying number of writers, comparing locking by row versus locking the
entire file. Each row is ten MB. The Y-axis shows the time it takes to write all
10 rows. Note how writing by row takes significantly longer with the gap
closing when the number of writers increases. Also note the uniform
distribution between the fastest and slowest time when locking the entire file
(orange). The overhead from locking each row individually is not worth the
gains from writing in parallel for normal file sizes.

54

Figure 19: The time it takes to write 10 rows for varying row sizes. The blue dots are time
measurements when only locking the needed row, locking in total ten times to write all rows.
In orange the duration when locking the entire file and writing all rows at once.

Figure 20: The time it takes to write ten rows each ten MB with between one and 32
concurrent writers. On the logarithmic Y-axis the duration in milliseconds. In blue the
duration when only locking the needed row, locking in total ten times to write all rows. In
orange the result when locking the entire file and writing all rows at once.

6 Discussion
In the previous section we presented the performance of GovFS. We focussed
on its two distinguishing features: the ministry architecture and its ranged based
file locking. Another important characteristic of any system is its complexity.
The main contribution of the Raft consensus algorithm is a more
understandable solution that is therefore easier to implement. We begin by
discussing the complexity of GovFS then we discuss the performance
implications of the ministry architecture before we finish discussing ranged
based file locking.

6.1 Complexity
Raft is an understandable consensus algorithm. Here we have extended it to
get Group Raft which provides greater scalability. This extended algorithm
had two problems. These were both solved by re-using the Raft concept of
terms. No new variables were added to the algorithm nor did we add new
routines. It is still quite simple.

GovFS clerks need to know if their log is running behind. For this we added
Perishable Log entries to Group Raft. These use log entry arrival time, the
groups leaders commit index and the heartbeat duration to determine if a log
entry is applied on time. Tracking arrival time is a trivial addition. All other
variables where already available making perishable a simple addition.

As leases did not need to survive system crashes and reboots we did not use
Raft but designed our own algorithm for non-persistent consistency. This
enables GovFS to reach higher read and write performance. Even
non-persistent consistency is still a hard problem, therefore this algorithm
makes GovFS’s implementation significantly more complex. In Section 4.5 we
saw there are four known problems with this algorithm. While most have
solutions solving these will further increase the now already high degree of
complexity.

6.2 Ministry architecture

Design Faults During testing, we realized there is a fault in the current
design. The president is responsible for detecting nodes that go down.

57

However, if the president can reach a clerk and its minister that does not
guarantee that the clerk and minister can reach each other. We can address
this by nodes informing the president when they can not reach one of their
assigned nodes.

List Directory We saw the fastest response from a GovFS configuration
using only a single ministry. As soon as we start using multiple latency
increases, as we increase the number of ministries average performance
recovers. Clients start without knowledge of the configuration, they are
designed to initially connect to a random node. It is therefore logical that we
see an increase in latency with more ministries: given twice as many
ministries the chance to connect to the right node on the first try halves.

As expected the request order batch order is faster than stride. We would
however expect there to be a larger difference. We did not expect the
difference to get more pronounced as the number of ministries increases. It
could be that it takes the client longer to re-establish its connection when the
connection has been out longer. This requires study of the clients’
performance and implementation.

The tail latencies become longer as we increase the number of ministries. This
is unexpected. Requests should arrive at the right ministry after at most one
redirect. The number of requests that need a redirect should increase as the
number of ministries increases however those redirects should take the same
amount of time. An explanation could be that the higher number of redirects
overloads the redirect system leading to longer response times for those
queries.

Create file Mean file creation time decreases almost linearly with the
number of ministries. This should hold true even after the Raft
implementation has been improved. Most file creations complete in a multiple
of 75ms. This corresponds to the heartbeat duration used for Raft which
imposes a rate limit on log modifications in this implementation.

Up to 5% of writes are completed in less time. At least a heartbeat period
must pass before a new log entry can be appended. Only after appending the
log entry does the minister inform the client the creation is done. Further
study is required to explain these results.

58

6.3 Ranged based file locking

Writing a single row Locking only the needed data when writing to a file
gives a dramatic increase in performance. This is in line with our expectations
as the chance of lock contention decreases given less overlap in lock regions.
Given larger files the difference in performance between the methods
decreases as the time spent on (simulated) IO starts to dominate the time
spent on locking. There are some far outliers that only appear when using row
locking at the same time the variance of row locking is lower. We have no
explanation for this, and it should be studied further starting with the
behavior of the client.

In this experiment both methods lock the file once and both locks should
succeed in the same time given the files start unlocked. The only difference is
the range of the lock that is acquired. Locking the entire file is however much
faster. This even holds with a single writer in which case there can be no
contention. With only a single writer both methods should therefore do
exactly the same and have the same results. Only when using more than four
simultaneous writers do we see locking the smaller range becoming faster.
Given these results, especially the results when using a single writer, there is a
fault in either the test or the lease system.

Writing the entire file The lower lock contention when locking by row does
not make up for the overhead of extra lock operations when locking ten times.
Even when using very large files with rows of 80 MB locking the entire file is
significantly faster. The gap does seem to close as row size increases. There is a
uniform distribution of results when locking the entire file. This distribution
highlights how each write can only be started after the previous completes.
The width of the distribution comes from the five separate runs that are
presented.

59

7 Conclusion
We have investigated whether GovFS, a file system using groups of metadata
nodes can offer better scalability than using a single metadata node. The
architecture of GovFS and Group Raft are relatively simple. The algorithm that
coordinates file locking however is highly complex. The complexity kept us
from building a highly performant implementation. We were able to test the
impact of the architecture and ranged locking even with these
limitations.

The speed at which we can create files scales almost linearly with the number
of ministries. With multiple ministries’ directory metadata queries take
longer then when using only a single ministry. Mean query performance
recovers slightly however as we add more than two ministries. This comes at
the cost of increasing tail latencies.

With many clients writing to non overlapping chunks 10% of a file ranged
locking offered substantial performance improvements. Using ranged locking
when writing an entire file concurrently from many clients offered no
advantage actually slowing down performance compared to locking the entire
file.

We found a few surprising results that should not be possible given the design.
These are probably caused by the limitations of the current implementation.
With more implementation effort these results should be eliminated which
would exclude faults in the design.

To enable the ministries’ architecture we came up with Group Raft which
provides scalable partitioned consensus. It has proven to be a simple
extension with promising performance characteristics. Ranged file locking
enables performance gains in limited circumstances but is easy to implement.
Both of these should be studied further.

We conclude that a distributed file system using multiple small Raft clusters
offers great scaling characteristics. More research and implementation effort is
needed to see if such a system can be made as performant as the current state
of the art.

60

8 Future work
Although we did not succeed in building a performant system we found a
number of interesting avenues for improvement. These fall into three
categories: dynamic scaling, more efficient Group Raft and ranged
leases.

8.1 Dynamic scaling
The GovFSdesign includes load balancing through shaping the systems’
configuration to the current load. Using subtree partitioning to spread
directories across more or less ministries. In Section 3.4 we discussed the
trade-off between read or write performance. This trade-off could be
transformed into constrained optimization problem. It would be interesting to
have GovFS keep an optimal configuration by continuously solving this
problem. To allow users to specify to what degree each file should be
replicated the replication factor can be added as additional constraint.

8.2 Consensus
The Group Raft implementation is very inefficient because it sends only one
log entry at the time at fixed intervals. An efficient implementation will make
it possible to directly compare GovFS with existing distributed FS. We expect
a dramatic speedup by batching Raft log messages and sending them on
demand. Since modifications to different directories can never impact each
other we can use a combination of ParallelRaft [4] and Group Raft.

Currently, any node will start an election if it misses a heartbeat. Ministers
can, and sometimes are elected as president. The loss of the minister causes its
ex-ministry to pause metadata changes and file writes while a clerk is
promoted and a replacement clerk assigned. Banning ministers for taking part
in elections and preferring idle nodes to clerks will prevent such pauses.

One reason for re-elections is newly elected presidents taking too long to
establishing connections and start emitting heartbeats. A better
implementation would re-use the connections a candidate established asking
for votes when it becomes president.

61

As groups only communicate with their members, clients and the president.
Communication with the president does not require low latency nor high
throughput. This could make Group Raft really useful for geo-distributed
systems, that is systems consisting of clusters in different locations. As long as
the members of each group are kept to the same location normal performance
should not decrease.

8.3 Leases
Every write triggers a request to all the clerks to stop giving out read leases.
This is inefficient for files experiencing mostly writes or for consecutive small
writes. Ministers should keep files locked when the files are experiencing high
write load. Ranged writes would then become suitable for concurrently
writing a file from multiple clients using small non overlapping chunks.

Ranged locking should enable better performance in workloads with lots of
reading and writing. It would be interesting to have this difference
quantified.

The locking implementation does not batch requests. We suspect batching
will significantly increase throughput under load.

62

A Introduction to Async
Async is a syntactic language feature that allows for easy construction of
asynchronous non-blocking functions. Asynchronous programming lets us
write concurrent, not parallel, tasks while looking awfully similar to normal
blocking programming. It is a good alternative to event-driven programming
which tends to be verbose and hard to follow. All Async systems are build
around special function that do not return a value but rather a promise of a
future value. When we need the value we tell the program not to continue
until the promise is fulfilled. Let’s look at the example of downloading 2
files:

1 async fn get_two_sites_async() {

2 // Create two different "futures" which, when run to

3 // completion, will asynchronously download the web pages.

4 let future_one = download_async("https://www.foo.com");

5 let future_two = download_async("https://www.bar.com");

6

7 // Run both futures to completion at the same time.

8 let futures_joined = join!(future_one, future_two);

9 // Run them to completion returning their return values

10 let (foo, bar) = futures_joined.await;

11 some_function_using(foo,bar);

12 }

Notice the async keyword in front of the function definition, it means the
function will return a promise to complete in the future. The join! statement
on line 8 combines the two promises for a future answer to a single promise
for two answers. In line 10 we await or ’block’ the program until
futures_joined turns into two value. Those can then be used in normal and
async functions.

The caller of our async get_two_sites_async function will need to be another
async function that can await get_two_sites_async, or it can be an executor. An
executor allows a normal function to await async functions.

Let’s go through our example again explaining how this mechanism could
work. The syntax and workings of async differ a lot here we will look at the
language Rust. In rust these promises for a future value are called futures.
Until the program reaches line 10 no work on downloading the example sites

63

is done. This is not a problem as the results, foo and bar, are not used before
line 11. The runtime will start out working on downloading www.foo.com,
probably by sending out a DNS request. As soon as the DNS request has been
sent we need to wait for the answer, we need it to know to which IP to connect
to download the site. At this point the runtime will instead of waiting start
work on downloading bar where it will run into the same problem. If by now
we have received an answer on our DNS request for www.foo.com the runtime
will continue its work on downloading foo. If not the runtime might continue
on some other future available to it that can do work at this point.

64

References
[1] Apache. HDFS High Availability.

https://hadoop.apache.org/docs/r3.3.1/hadoop-project-dist/hadoop-
hdfs/HDFSHighAvailabilityWithNFS.html. 2021.

[2] Apache. HDFS High Availability Using the Quorum Journal Manager.
https://hadoop.apache.org/docs/r3.3.1/hadoop-project-dist/hadoop-
hdfs/HDFSHighAvailabilityWithQJM.html. 2021.

[3] Henri Bal et al. “A Medium-Scale Distributed System for Computer
Science Research: Infrastructure for the Long Term”. In: Computer 49.5
(2016), pp. 54–63. doi: 10.1109/MC.2016.127.

[4] Wei Cao et al. “PolarFS: An Ultra-Low Latency and Failure Resilient
Distributed File System for Shared Storage Cloud Database”. In: Proc.
VLDB Endow. 11.12 (Aug. 2018), pp. 1849–1862. issn: 2150-8097. doi:
10.14778/3229863.3229872. url:
https://doi.org/10.14778/3229863.3229872.

[5] M Caporaloni and R Ambrosini. “How closely can a personal computer
clock track the UTC timescale via the internet?” In: European Journal of
Physics 23.4 (June 2002), pp. L17–L21. doi:
10.1088/0143-0807/23/4/103. url:
https://doi.org/10.1088/0143-0807/23/4/103.

[6] Timothy Castiglia, Colin Goldberg and Stacy Patterson. “A Hierarchical
Model for Fast Distributed Consensus in Dynamic Networks”. In: 2020
IEEE 40th International Conference on Distributed Computing Systems
(ICDCS). 2020, pp. 1189–1190. doi: 10.1109/ICDCS47774.2020.00137.

[7] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data
Processing on Large Clusters”. In: Commun. ACM 51.1 (Jan. 2008),
pp. 107–113. issn: 0001-0782. doi: 10.1145/1327452.1327492. url:
https://doi.org/10.1145/1327452.1327492.

[8] Yinxiao Feng and Kaisheng Ma. Chiplet Actuary: A Quantitative Cost
Model and Multi-Chiplet Architecture Exploration. 2022. doi:
10.48550/ARXIV.2203.12268. url: https://arxiv.org/abs/2203.12268.

[9] Sanjay Ghemawat, Howard Gobioff and Shun-Tak Leung. “The Google
File System”. In: Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles. SOSP ’03. Bolton Landing, NY, USA:
Association for Computing Machinery, 2003, pp. 29–43. isbn:
1581137575. doi: 10.1145/945445.945450. url:
https://doi.org/10.1145/945445.945450.

65

https://doi.org/10.1109/MC.2016.127
https://doi.org/10.14778/3229863.3229872
https://doi.org/10.14778/3229863.3229872
https://doi.org/10.1088/0143-0807/23/4/103
https://doi.org/10.1088/0143-0807/23/4/103
https://doi.org/10.1109/ICDCS47774.2020.00137
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.48550/ARXIV.2203.12268
https://arxiv.org/abs/2203.12268
https://doi.org/10.1145/945445.945450
https://doi.org/10.1145/945445.945450

[10] Xiaosong Gu et al. “Compositional Model Checking of Consensus
Protocols Specified in TLA+ via Interaction-Preserving Abstraction”. In:
arXiv preprint arXiv:2202.11385 (2022).

[11] Dongxu Huang et al. “TiDB: a Raft-based HTAP database”. In:
Proceedings of the VLDB Endowment 13.12 (2020), pp. 3072–3084.

[12] Patrick Hunt et al. “{ZooKeeper}: Wait-free Coordination for
Internet-scale Systems”. In: 2010 USENIX Annual Technical Conference
(USENIX ATC 10). 2010.

[13] Flavio P Junqueira, Benjamin C Reed and Marco Serafini. “Zab:
High-performance broadcast for primary-backup systems”. In: 2011
IEEE/IFIP 41st International Conference on Dependable Systems &
Networks (DSN). IEEE. 2011, pp. 245–256.

[14] Leslie Lamport. “Paxos Made Simple”. In: ACM SIGACT News
(Distributed Computing Column) 32, 4 (Whole Number 121, December
2001) (Dec. 2001), pp. 51–58. url: https://www.microsoft.com/en-
us/research/publication/paxos-made-simple/.

[15] Marshall Kirk McKusick and Sean Quinlan. “GFS: Evolution on
Fast-Forward: A Discussion between Kirk McKusick and Sean Quinlan
about the Origin and Evolution of the Google File System”. In: Queue
7.7 (Aug. 2009), pp. 10–20. issn: 1542-7730. doi:
10.1145/1594204.1594206. url:
https://doi.org/10.1145/1594204.1594206.

[16] Frank McSherry, Michael Isard and Derek G Murray. “Scalability! but
at what {COST}?” In: 15th Workshop on Hot Topics in Operating Systems
(HotOS XV). 2015.

[17] Diego Ongaro and Ousterhout John. In Search of an Understandable
Consensus Algorithm (Extended Version). https://raft.github.io/. accessed
15-Feb-2022. 2014.

[18] S Shepler et al. Network File System (NFS) version 4 Protocol. RFC 3530.
IEFT, Apr. 2003. url: https://www.ietf.org/rfc/rfc3530.txt.

[19] Konstantin Shvachko et al. Consistent Reads from Standby Node.
https://issues.apache.org/jira/browse/HDFS-12943. Accessed:
03-03-2022. 2018.

[20] Konstantin Shvachko et al. “The Hadoop Distributed File System”. In:
2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST). 2010, pp. 1–10. doi: 10.1109/MSST.2010.5496972.

[21] Abraham Silberschatz, Peter Baer Galvin and Greg Gagne. Operating
system conceps. John Wiley & Sons, 2014.

[22] B. Stroustrup. The Design and Evolution of C++. Programming
languages/C+. Addison-Wesley, 1994. isbn: 9780201543308. url:
https://books.google.nl/books?id=GvivU9kGInoC.

66

https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://doi.org/10.1145/1594204.1594206
https://doi.org/10.1145/1594204.1594206
https://raft.github.io/
https://www.ietf.org/rfc/rfc3530.txt
https://issues.apache.org/jira/browse/HDFS-12943
https://doi.org/10.1109/MSST.2010.5496972
https://books.google.nl/books?id=GvivU9kGInoC

[23] Tokio Contributors. Tokio. Version 1.19.2. 27th June 2022. url:
https://tokio.rs.

[24] Sage A Weil et al. “Ceph: A scalable, high-performance distributed file
system”. In: Proceedings of the 7th symposium on Operating systems design
and implementation. 2006, pp. 307–320.

[25] Brent B. Welch. “POSIX IO extensions for HPC”. In: 2005.
[26] Matei Zaharia et al. “Spark: Cluster Computing with Working Sets”. In:

Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud
Computing. HotCloud’10. Boston, MA: USENIX Association, 2010, p. 10.

67

https://tokio.rs

