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Chapter 1

Introduction

This master thesis is the result of a collaboration between the Leiden Institute of
Advanced Computer Science (LIACS), the Intelligent Imaging and Structural
Reliability Departments of the Dutch Organisation of Applied Scientific Re-
search (TNO), and the Faculty of Civil Engineering and Geo-sciences of the TU
Delft. It can be viewed as a sub-project of TNO’s e↵orts to partially automate
the assessment of cracked facades.

In 2020, I joined the Intelligent Imaging department of TNO as a student intern
to help advance TNO’s e↵orts to automate the assessment of cracks in masonry
facades. The ultimate aim of the project is to develop automated models that aid
masonry experts in the process of assessing damaged masonry structures which
feature one or multiple cracks. Though, we do not expect that it is feasible to
fully automate this process in the foreseeable future, this thesis marks another
step towards the attainment of this overarching goal.

1.1 Motivation

Unfortunately, the number of damage reports of masonry dwellings has risen
annually over the past decade, and given that most buildings in the Nether-
lands were built in the mid twentieth century, many buildings are reaching the
end of their life cycle [1], and thus the incidence of similar damage reports is
expected to rise even further in the following decades. Furthermore, buildings
make up a significant part of the built environment which constitutes a large
portion of the national wealth in developed countries [2]. And to top it o↵,
inspection of cracked facades is very costly, in some cases even requiring exca-
vation of sites. These facts reflect the economic relevance of a well-maintained
built infrastructure, and thereby justify our e↵orts to develop automated mod-
els to aid masonry experts in their assessment which will serve to support the
maintenance of the country’s rich built environment.
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1.2 Problem Definition

In support of the goal to automate crack assessment, I focused on the devel-
opment of a model to automate the assessment of the degree of similarity of
pairs of images of cracked masonry facades as determined by masonry experts.
Thus, the goal is to learn a function which takes in two separate images, each
featuring a cracked-facade, and outputs the degree of similarity in close accor-
dance with expert assessment. Formulated as such, the output can comprise of
multiple components, depending on what kind of output would be most useful
to aid masonry experts in their assessment of damaged facades. Formally, the
task can be defined as follows

f : (X,X) ! (Y1...Yn); (x1, x2) 7! (y1...yn). (1.1)

Where X denotes the set of all cracked facade images, and Y1 through Yn denote
the sets of all possible values of output components 1 through n, respectively.

Note that a pair of images can map to multiple variables (output components),
each of which conveys some additional information regarding the similarity of
the two images provided as input. In our case, The function f is defined by the
architecture and weights of the Neural Network that establishes it. The first
neural network developed to regress the degree of similarity, yielded a scalar
between 0 and 1. Thus, n = 1 and Y1 = [0, 1] ⇢ R.

However, numerous discussions have resulted in the decision to shift from a
single output to three outputs, each of which captures a di↵erent aspect of the
notion of similarity in the context of pairs of cracked masonry facades. Further-
more, the decision was made to shift from continuous similarity scores to ordinal
similarity scores. In order of increasing similarity, the following ordinal cate-
gories were introduced: Very Dissimilar; Dissimilar; Similar; and Very Similar.
Thus n = 1 and Y1,2,3 = {Very Dissimilar, Dissimilar, Similar, Very Similar}.
The questions, the data, and the labelling task are covered in more detail in
chapter 3.

Due to a shortage of real-world data, that is images of cracks in masonry facades,
we have resorted to the use of synthetic cracks. Hence, the assessment of cracked
facades was performed on synthetic cracks that were generated with two di↵erent
crack simulation models, the Markov-Walk model and the FEM model. These
simulation models will be discussed in the remainder of this thesis.

1.3 Project Background

As mentioned previously, I joined TNO in January 2021, while the project was
initiated in 2019. This section presents a concise overview of e↵orts that were
made prior to my involvement. First, I discuss the sheer lack of data, as well
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as how this issue was addressed. This is followed by a brief account of early
e↵orts to automate crack assessment. After that, the research questions will
be presented, followed by a description of the approach, and this chapter closes
with an outline of the remainder of the thesis.

1.3.1 Shortage of Data

Due to a shortage of images of cracked masonry facades, the researchers from
TNO were faced with a serious challenge, that is the acquisition of data needed
to support e↵orts to automate crack assessment. It is not easy to find thousands
of cracked facades, and it is even harder to find thousands of cracks that belong
to a predefined category of cracks. Only a handful of damage reports of cracked
masonry facades were available at the time, and the team ultimately decided to
resort to synthetic data to achieve their aim. Two methods for modelling and
generating synthetic cracked facades based on the twelve aforementioned crack
archetypes were proposed

• A Markov-Walk model to simulate cracks on a predefined set of facades.
[3]

• A simulation model based on finite element analysis, which is much more
extensive than the Markov-Walk model. Contrary to the Markov-Walk
model, it enables one to select di↵erent aspect ratios, di↵erent settlement
profiles and di↵erent facades sizes, to name just a few additional parame-
ters. [4]

Initially, only the Markov-Walk model was developed by Dr. Arpad Rozsas. In
June 2021, I updated Rozsas’ original model and integrated the width as an
additional parameter. Figures 1.1 through 1.12 show a sample crack that was
synthetically generated with the Markov-Walk model for each of the aforemen-
tioned crack archetypes. E↵orts to develop the finite element analysis simulation
model (henceforth also referred to as FEM) started in January 2021.

Figure 1.1: Crack Archetype 18 Figure 1.2: Crack Archetype 20
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Figure 1.3: Crack Archetype 21 Figure 1.4: Crack Archetype 23

Figure 1.5: Crack Archetype 24 Figure 1.6: Crack Archetype 30

Figure 1.7: Crack Archetype 31 Figure 1.8: Crack Archetype 32

Figure 1.9: Crack Archetype 101 Figure 1.10: Crack Archetype 102

1.4 Automated Procedure

Early e↵orts focused on automation of the classification of Markov-Walk syn-
thetically generated cracked masonry facades into one of eight crack archetypes,
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Figure 1.11: Crack Archetype 103 Figure 1.12: Crack Archetype 201

focusing solely on facades without openings (Figures 1.1 through 1.8). State-
of-the-art methods from computer vision and pattern recognition failed, but a
convolutional neural network (CNN), a model from the realm of deep learn-
ing, proved to be an e↵ective alternative [3]. The resulting classification model
yielded an accuracy of around 99% accuracy [3], the architecture of which is
depicted in figure 1.13.

Figure 1.13: The architecture of the Neural Network is depicted. The used
activation function is the Rectified Linear Unit (ReLU)

In addition to classifying the cracked facades into one of the eight crack archetypes,
the masonry experts decided that it would be instructive to determine the de-
gree of similarity between pairs of cracked facades. For this purpose the output
of the second last (dense) layer (64-dimensional) was used to determine the
similarity between cracked facades.

However, one major problem arose. Since, The convolutional network is de-
signed to perform a single task, that is to classify the di↵erent cracked facades
into the correct archetype class, it was entirely optimized to do just that, and
to that end, the network is optimized to cluster samples belonging to the same
class together. As a result, pairs of cracked facades that belong to di↵erent crack
archetypes were mapped to points in the 64-dimensional space that were quite
far apart, while pairs from the same crack archetype were invariably mapped to
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points that were very close in 64-dimensional space. Thus, while the network
accurately classified cracked facades into their corresponding cause classes, the
embeddings from its second-last layer proved to be of little use for the purpose
of predicting the degree of similarity between pairs of cracked facades. [5]

In order to accurately regress the degree of similarity between pairs of cracked
facades, a siamese network was built. Unlike the classification network, this
network was specifically designed to be optimized for the task of regressing the
degree of similarity between pairs of cracked facades. This is accomplished by
updating its weight in order to promote the convergence of its predictions to the
actual similarity scores using gradient descent and the mean squared error loss
to guide the optimization (to be discussed later). Its architecture is illustrated
in Figure 1.14.

Figure 1.14: The architecture is similar to that of the classification network
shown in Figure 1.13. Note that the parallel sets of layers represent the same
network. Furthermore, the second-last (dense) layer has size 2048, while the
last layer has 64 neurons.

1.5 Research Questions

What I have aimed to achieve specifically during my internship is the automation
of the assessment of the degree of similarity between pairs of cracked facades as
given by masonry experts, which is described as a task of high practical relevance
in [5]. This would allow for a more in-depth assessment of the causes of observed
damage in masonry structures. To achieve this goal, three considerations should
be kept in mind, which form the basis of the research questions addressed in
this work

• We need a program to automate the assessments. For this purpose we use a
siamese neural network. To this end, I use the same network architecture
that was proposed and implemented by Wyke Pereboom-Huizinga and
Maarten Kruithof [5].
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• Ideally, the siamese network should accuractely predict the similarity even
for pairs of cracked facades that are somehow di↵erent from those that it
encounters during the training phase. This deserves special attention since
there is a huge variety of di↵erent types of cracks such that we cannot
expect to have all of those represented in our dataset. To this end, we
should prioritize experiments which serve to assess the model’s ability to
generalize across di↵erent types of cracked facades.

• In order to learn the expert assessment of the degree of similarity between
pairs of cracked facades by means of a neural network, it is important to
determine how consistent these assessments are w.r.t. one another before
we use them to fit a neural network.

As stated previously, a shortage of real-world images of cracks has necessitated
the acquisition of synthetic cracks. Bearing in mind that the ultimate goal
remains the automation of the assessment of real-world cracks, we strive to
develop automated methods that can learn to assess the similarity of pairs of
real-world cracks in accordance with masonry experts, and since the Markov-
Walk simulation model is quite simplistic, taking only a handful of parameters,
the decision was made to develop a second, more fine-grained crack simulation
model. This has prompted the development of the so-called finite element model
(FEM). As a result, three data-sets have been amassed, one for each of the two,
and one that mixes data from both, and this work considers all three of them.
Therefore, many experiments and analyses described herein are applied in a
similar fashion to the three di↵erent data-sets. In this work I strived to address
several research questions. These questions roughly revolve around two themes:

• How well can the model regress the similarity between pairs of cracked
facades as determined by masonry experts?

• To what extent do masonry experts agree in their assessment of cracked
masonry facades?

The specific Research Questions that I aim to address in this work are outlined
below:

RQ 1: To what degree do masonry experts agree in their assess-
ments on the degree of similarity of pairs of cracked masonry fa-
cades?

RQ 2: On which samples do the experts disagree most? More
specifically, I strive to pinpoint characteristics of samples on which
experts disagree in their assessment.

RQ 3: How well can a Siamese Neural Network learn the similar-
ity as assessed by masonry experts?

RQ 4: How well can a Siamese Neural Network
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• learn the degree of similarity between pairs of cracked facades
as determined by experts

• generalize to samples that contain crack archetypes unseen in
training

• generalize to samples with similarity scores that do not occur in
the training set

1.6 Approach

In this section, a brief description is provided of the approach that I will take
in order to address the research questions that were outlined in the previous
section. A more extensive account is given in the Inter-Rater Reliability and
the Neural Network Performance and Generalizability chapters.

1.6.1 Inter-Rater Reliability

To determine the extent to which the experts agree on their assessment of sim-
ilarity, I performed an extensive analysis of the inter-rater reliability, which
comprises several subanalyses. Each of these will be discussed in depth in the
Inter-Rater Reliability chapter. A brief summary is shown below:

• Rater Biases:
For each of the masonry experts involved in the labelling task, the mean of
all the ratings that he/she provided is computed, along with the standard
deviations.

• Relative Rater Biases:
For all pairs of raters that have performed the labelling task, the di↵erence
between their biases is analyzed.

• Correlations between Questions:
The labelling task consists of three di↵erent questions. The extent to which
the ratings given for the questions are correlated is measured per rater

• Overall Agreement:
The overall agreement among the raters is quantified using various statis-
tics.

• Agreement Distributions:
The distribution of the agreement as measured between pairs of raters is
computed and visualized.

• Agreement per Sample:
An account is given of the agreement per sample. Particularly, specific
samples with low agreement are identified and presented.
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Furthermore, in our analysis we distinguish between three categories of raters,
roughly based on their level of expertise and experience. We distinguish between
experts who hold a Ph.D. and have extensive experience, Ph.D. candidates and
Master Students.

1.6.2 Neural Network Performance and Generalizability

In order to address RQ 3 and RQ 4, as outlined in the previous section, I will use
the same Siamese Network that was built by Dr. Kruithof and Dr. Pereboom-
Huizinga. In order to gauge how well the model performs on the given data, I
apply a 75/%. 25% random train/test split.

In order to assess the model’s ability to generalize across di↵erent types of
samples, that is to address RQ4, I conducted two experiments:

1. The Leave One Crack Out Experiment
All samples that consist of one or two cracked facades belonging to the
crack archetype to be left out, are assigned to the test set, and all other
samples to the training set.

2. The Leave One Class Out Experiment
All samples belonging to the leave out class are assigned to the test set, all
other samples are assigned to the training set.

The overarching aim of the two leave one out experiments is to determine if, and
to what extent, the logic underlying the assessment of the similarity between
pairs of cracked facades is universal across di↵erent crack archetypes as well as
di↵erent degrees of similarity. In other words, is the task of determining the
degree of similarity between cracks of archetypes A and B similar to determining
the similarity between cracks of archetypes Y and B? And what about deter-
mining the similarity between highly similar cracks compared to determining
the similarity between highly dissimilar cracks? This is the question that we
strive to address by means of these experiments.

1.7 Outline

The remainder of this work is organized as follows. Chapter 2 provides a dis-
cussion of the related academic literature. Chapter 3 covers the Inter-rater
Reliability, in which the three datasets will be described in fine detail. Chapter
4 covers the neural network experiments, including an analysis of the perfor-
mance of the neural network when using a random-split, as well as some specific
experiments that help to gauge the model’s ability to generalize across di↵erent
types of cracks. Chapter 5 covers suggestions for future work and conclusions,
including a review of the research questions in light of the results that we ob-
tained. The bibliography followed by the appendix can be found at the end of
this thesis.
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Chapter 2

Background

2.1 Introduction

In this section, I shed light on some of the relevant academic literature. Since
my work involves both a deep learning and artificial intelligence component as
well as a statistics component, relevant writings that are related to this thesis
from both domains will be discussed in the following.

2.2 Neural Networks and Performance Evalua-
tion

In [6], the authors demonstrate that di↵erent performance measures can yield
di↵erent results in model selection of artificial neural networks. A model that
optimizes the percentage of correctly classified samples, may not yield the lowest
root mean squared error (RMSE) or the lowest mean absolute error (MAE).
This is demonstrated through the use of histograms to illustrate how frequently
errors of certain magnitude were observed in prediction. The reader is essentially
warned that di↵erent performance measures can give rise to di↵erent evaluations
of Neural Network Performance.

Early e↵orts by TNO to partially automate the assessment of damage in ma-
sonry structures are described in [5]. The classification network depicted in
Figure 1.13 was introduced in this work. While the model yielded an accuracy
in excess of 99%, a very good result, the proposed method in order to com-
pute the degree of similarity between pairs of cracks, namely to calculate the
distance between their 64-dimensional embeddings (from second layer) proved
to be flawed. More specifically, within-class similarities were not properly pre-
dicted by this method. All in all, this work marks a promising first step towards
the automation of damage assessment in masonry structures.
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In [7] the notion of similarity between neural network representations is dis-
cussed. In other words, how similar are the layers of di↵erent neural networks,
or even subsequent layers of the same deep neural network? The authors propose
a central kernel alignment (CKA) as a method to measure similarity between
neural network representations, and compare it to more popular methods for
measuring such similarity, including canonical correlation analysis (CCA).

In [8], the authors seek to explain how Neural Networks tend to be able to
generalize well to di↵erent samples unseen in training. More specifically, the
authors aim to empirically assess which complexity measure can best explain
di↵erences in the ability to generalize to di↵erent samples between di↵erent
neural network models, be it models with di↵erent architectures or models with
the same architecture but with di↵erent weight configurations. The experiments
show that a combination of sharpness coupled with a norm-based measure best
explains the extent to which a model can generalize.

In [9], the authors apply one shot learning for character recognition. Rather
than having a predefined set of classes to compare new and unseen samples to,
the authors strive to learn a function through the use of a siamese network that
can determine whether two images contain the same character. Their method
is trained and tested on pairs of characters from di↵erent alphabets. Their
model di↵ers from ours in that the output is binary, while in our case the model
outputs a continuous value in the real-valued interval [0, 1]

2.3 Correlation Coe�eicnts and Inter-rater Re-
liability

This section highlights some of the relevant literature regarding the domain of
statistics that is concerned with measuring the degree of correlation or agree-
ment among raters as well as some of my considerations regarding the herein
presented literature.

2.3.1 Di↵erence between Agreement and Association

Throughout the twentieth and late nineteenth centuries, statisticians have de-
veloped numerous statistical tools and methods to measure the degree of as-
sociation between variables of interest, test reliability and validity, as well as
inter-rater reliability, often referred to as agreement. A clear distinction is made
between coe�cients which are appropriate to establish whether a correlation ex-
ists between a set of variables, and coe�cients which can be used to measure
the amount of agreement between sets of ratings.
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To illustrate this di↵erence, suppose we have the following pair of sets of ratings:

1. [1, 2, 3, 4, 5]

2. [3, 4, 5, 6, 7]

Clearly, the corresponding data points of both lists suggest that a linear relation-
ship exists, nonetheless, the agreement is quite low, since the ratings disagree
across all five samples by a constant factor of 2. Some coe�cients mentioned in
the following measure the degree of correlation while others measure the rate of
agreement.

2.3.2 History of Correlation Coe�cients

In this subsection, a brief overview of the history of the development of statistics
and correlation coe�cients is given.

Early Methods for Measuring Association

Throughout the twentieth and late nineteenth centuries, statisticians have de-
veloped numerous statistical tools and methods to measure the degree of cor-
relation between variables of interest, test reliability and validity, as well as
inter-rater reliability, often referred to as agreement. Early methods used to
measure agreement include Pearson’s R and percent agreement. These mea-
sures, however, are of limited value, Pearson’s R could only establish the degree
to which ratings of two di↵erent raters are linearly associated, while percent
agreement does not account for the possibility of chance agreement and does
not account for ordinality of the label categories [10] [11].

First Statistic for Measuring Agreement: Kappa

In 1960, Jacob Cohen famously introduced Cohen’s Kappa statistic as a means
to measuring agreement among pairs of raters for nominal scales [11]. Suppose
that 2 raters assign one of k nominal classes to N samples. Cohen’s Kappa can
be used to determine the degree to which the raters agree, on a scale from �1
to 1, where k = �1 signifies complete disagreement, k = 0 signifies the amount
of agreement one would get if all labels were assigned randomly, and k = 1
signifies perfect agreement.

Weighted Kappa

Several years later, Cohen proposed a weighted version of the kappa statistic
which he had proposed earlier, which marked an early step towards the devel-
opment of coe�cients that could be used to measure the extent of agreement
between pairs of ratings on ordinal scales (i.e. likert scales). Nowadays, several
variants of the weighted kappa exist, of which the most commonly used in the
literature are the linearly weighted kappa and the quadratically weighted kappa.
As the names suggest a di↵erence of 2 is weighted as 2 and 22 = 4 in linearly
weighted kappa and quadratically weighted kappa, respectively.

12



Other Coe�cients and Statistics

Several other coe�cients have been proposed throughout the late twentieth cen-
tury, including Lin’s Concordance Correlation Coe�cient [12] which applies to
both ordinal and continuous variables. Various variants of most of the proposed
coe�cients exist, some apply to pairs of raters while others can be aplied to
more than two raters, such as Fleiss Kappa[13], the Intraclass Correlation Coef-
ficient (ICC) which was first proposed by R.A. Fisher in one of the most pivotal
writings on statistical methods [14] and later proposed as measure of reliability
by Bartko [15], and a variant of Lin’s Concordance Correlation Coe�cient which
applies to more than two raters and was proposed by Barnhart [16]. Finally,
Klaus Krippendor↵ proposed the Krippendor↵’s Alpha [17], which provides and
overall estimate of the agreement among multiple raters in the case that n raters
assign one of k classes to N samples, and not all raters have rated all samples,
or stated di↵erently, some values are missing. [17]

2.3.3 Interpretation of Coe�cients and Statistics

This section sheds light on some of the proposed criteria for interpreting the
strength of correlation as expressed by the aforementioned coe�cients and statis-
tics.

Pearson’s R and Spearman’s Rho

One can verify that Pearson’s R will only take values 1 or -1 in the case that
the two variables are perfectly linearly correlated or perfectly inversely linearly
correlated, respectively. The stronger the evidence that a linear correlation
exists, the closer Pearson’s R and Spearman’s Rho will be to 1 or -1. Guidelines
on how to interpret the strength of the linear relationship between two variables
as measured by the two have been suggested by Chan [18] and by Dancey and
Reidy [19]. Chan suggested that ⇢ > 0.8, 0.6 < ⇢ < 0.8, 0.3 < ⇢ < 0.5, and
⇢ < 0.3 shall be interpreted as strong, moderately strong, fair and poor linear
correlation, respectively.

Kappa Statistics

Early guidelines for Cohen’s unweighted kappa suggested that agreements within
the ranges 0.61�0.80 and 0.81�1.00 should be viewed “substantial agreement”
and almost “perfect agreement”, respectively.

A di↵erent guideline for interpreting both the Kappa statistic as well as the
intraclass correlation coe�cient was proposed later by Domenic V. Cicchetti
[20]. According to Cicchetti a Kappa of 0.50 � 0.75 should be interpreted as
moderate agreement, 0.75 � 0.90 as good agreement, and  > 0.9 as excellent
agreement.
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According to Fleiss et al [21], the interpretation of the magnitude of agreement
as expressed by weighted kappa is similar to that of the unweighted kappa,
k > 0.75 signifies excellent agreement. This should, however, be taken with
caution, since it has been shown empirically that quadratically weighted kappa
tends to yield a higher value than linearly weighted kappa, which in turn tends
to yield a higher value than unweighted kappa [10], that is 2 > 1 > 0. More-
over, as stated previously, the original guideline for interpreting Cohen’s Kappa
statistic has been criticized, and more stringent criteria have been suggested for
its interpretation [22].

ICC

Various guidelines on the interpretation of the ICC have been suggested, but
the most widely accepted include Cicchetti’s guideline [20], and the guideline
proposed by Li and Koo. [23]

Lin’s CCC

The most widely adopted criteria for the interpretation of Lin’s CCC were pro-
posed in 2005 by Mc.Bride. [24]. Mc.Bride’s criteria suggest that 0.90  CCC 
0.95 signifies moderate agreement, 0.95  CCC  0.99 substantial agreement
and CCC � 0.99 signifies excellent agreement. Therefore, I will henceforth
interpret CCC < 0.90 as evidence of poor agreement.

Krippendor↵ ’s Alpha

Regarding the interpretation of the Krippendor↵’s Alpha, 0.67  ↵  0.80
is considered as somewhat acceptable agreement, while 0.80 � ↵ is generally
considered to be indicative of a good degree of agreement.

2.3.4 Choice of Agreement Statistics

This section sheds light on considerations and criteria regarding which statistic
to use in order to measure agreement or association.

When one conducts an extensive review of the existing scientific literature, one
will likely conclude that there is no clear consensus on how to precisely interpret
statistics and coe�cients, nor a guideline on which method to choose for a
specific problem and dataset, and while some studies highlight that di↵erent
statistics yield similar interpretations of the degree of inter-rater reliability [25],
other studies reveal that the use of di↵erent statistics lead to di↵erent results.
[26]. Based on this observation, I have decided to use several statistics in order
to gauge the inter-rater reliability of our datasets.

Nonetheless, there are some criteria based on which researchers can make a
somewhat informed decision regarding which statistics to use to conduct their
analysis. Firstly, one should determine whether the degree of association or

14



the degree of agreement is to be measured. In the former case, Pearson’s R,
Kendall’s Tau and Spearman’s Rho are probably more suitable, whereas in the
latter case, the Kappa statistics, Lin’s CCC, and the ICC are more appropriate.
Furthermore, the nature of the data should also guide the decision-making, if
the data is nominal, the kappa statistics are useful, while in the case of ordinal
data, the weighted kappa as well as Lin’s CCC and ICC are useful, and in the
case of continuous data, Lin’s CCC and the ICC are recommended. Lastly,
Krippendor↵’s Alpha is useful when dealing with missing data.

2.4 Statistics and Coe�cients

This section provides an intuition for each of the statistics and coe�cients I have
used throughout my Inter-Rater Reliability Analysis. Each of the used statistics
will be discussed extensively in the following, and in some cases, examples will
be given of how a statistic is used to compute the rate of agreement or correla-
tion, including some examples for which certain statistics yield counter-intuitive
results. The purpose of this section is to familiarise the reader with the statistics
that I have used, and to provide an intuition for these statistics.

• Proportionate Agreement (Percent Agreement)
• Cohen’s Kappa Statistic
• Average Di↵erence.
• Mean Di↵erence
• Lin’s Concordance Correlation Coe�cient
• Krippendor↵ ’s Alpha
• Kendall’s Tau
• Pearson’s R

In the following, each of the eight statistical measures used to measure agreement
will be described.

• Proportionate Agreement (Percent Agreement):
Given two raters who each rated the same set of N samples, in what frac-
tion of their ratings do they agree?

Example:
Let P0 denote the proportionate agreement. Suppose, Jack and Tim have
rated 5 items in the same order, assigning a value ranging from 1 to 5 to
each item. And suppose {1, 2, 1, 4, 5} and {1, 3, 2, 5, 5} represent the
lists of their ratings. Regardless of which list corresponds to whom, the
proportionate agreement is P0 = .4, because their ratings match for item
1 and 5. Thus, P0 = 2/5 = .4
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Extension to Multiple Raters:
Note that this measure can be easily adapted to the case where n raters
(n � 3) have rated N samples, including the case where each of the n
raters has only rated a subset of the N samples. One can simply compute
the set of commonly rated samples for all pairs of raters, and scan through
the lists of commonly rated samples while keeping counters for both the
number of observed agreements as well as the total number of compar-
isons. The proportionate agreement will simply be the number of observed
agreements divided by the total.

• Cohen’s Kappa Statistic:
Cohen’s Kappa Statistic is a measure which reflects the degree of agree-
ment among two raters who have rated the same set of items. Cohen’s
Kappa di↵ers from proportionate agreement in that it accounts for the pos-
sibility of chance agreement. That is, two raters who rate a set of items
randomly will likely agree in some of their ratings by chance. The value
of this measure ranges from -1 to 1, with values -1, 0 and 1 reflecting,
complete disagreement, the amount of agreement that purely results from
chance, and complete agreement, respectively. It is important to note that
the original Cohen’s Kappa is insensitive to whether a nominal, ordinal or
interval scale is used. It is given by the following:

k =
Po � Pe

1� Pe

where Po denotes the proportionate agreement as defined above, and Pe

denotes the chance agreement. In this context, Pe is computed as follows:

Pe =
1

N2
·
X

k

nk1nk2

where N denotes the number of items that were rated by both raters, k
denotes the category and iterates over all possible categories, and nki de-
notes the number of times that rater i rated an item as belonging to the
k’th category.

Example:
Suppose, Jack and Tim assign a score to a set of four items. To each item,
they can assign either 1, 2 or 3. Now suppose they have rated the items
in the same order and their ratings can be represented as {1, 2, 2, 3} and
{1, 1, 2, 3}. Let P1, P2 and P3 denote the chance probabilities for classes
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(scores) 1, 2 and 3, respectively. Then, P1 = 1
4 · 2

4 = 1
8 , P2 = 2

4 · 1
4 = 1

8 ,
and P3 = 1

4 · 1
4 = 1

16 , thus Pe = P1 + P2 + P3 = 5
16 . Po = 3

4 . The value of
 is given by:

k =
Po � Pe

1� Pe
=

3
4 � 5

16

1� 5
16

= 0.636

• Average Di↵erence:
In this context, the term “Average Di↵erence” refers to the extent to which
two given raters disagree, whenever they disagree. Intuitively, when deal-
ing with ordinal labels, it matters not only whether two raters disagree in
their assessment of a certain sample, but also by how much. If the first
rater labels the featured pair of cracks as Very Dissimilar and the second
rater labels it as Very Similar, this indicates that their judgments are far
more di↵erent than they would have been if the second rater had labelled
the pair as Dissimilar. Since the five similarity labels, ranging from Very
Dissimilar to Very Similar, are ordinal, we can conveniently represent
them as integers from 1 to 5, respectively. This enables one to quantify
how much, on average, two given raters disagree whenever their judgments
do not match.

Example:
Suppose each of two raters label the same set of five items in the same
order. Their judgments can be represented as {1, 2, 3, 3, 5} and {2, 2, 3,
4, 1}. Their ratings di↵er for the first, fourth and last item by 1, 1 and
4, respectively. Thus, the average di↵erence is computed as:

1 + 1 + 4

3
= 2

• Mean Di↵erence:
Unlike the Average Di↵erence, the Mean Di↵erence is the mean of the sum
of all the di↵erences between the ratings provided by two raters for each
sample.

Example:
To illustrate the di↵erence between the two measures, suppose again that
two raters have provided the following lists of ratings {1, 2, 3, 3, 5} and
{2, 2, 3, 4, 1}. The mean di↵erence is computed as:

(2� 1) + (2� 2) + (3� 3) + (4� 3) + (5� 1)

5
= 6/5 = 1.2

• Lin’s Concordance Correlation Coe�cient:
Lin’s CCC was first proposed by Lin [12]. It is based on Pearson’s Cor-
relation Coe�cient which was introduced in the late 19’th century[27]. It
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o↵ers advantages in estimating the agreement over Pearson’s R in that it
not only measures whether a linear relation exists between two variables,
but also the deviation from this fitted line, which makes it more suitable
for measuring agreement.

Lin’s CCC for pairs of ratings is given by the following formulae:

⇢̂c =
2sxy

s2x + s2y + (x̄� ȳ)2

where s2x =
1

N

NX

n=1

(xn � x̄)2 and sxy =
1

N

NX

n=1

(xn � x̄)(yn � ȳ)

Examples:

1)

⇢
1 2 3 4 5
3 4 5 6 7

�
! ⇢̂c = 0.5 2)

⇢
1 2 3 4 5
5 4 3 2 1

�
! ⇢̂c = �1

3)

⇢
2 2 2 3
2 1 2 3

�
! ⇢̂c = 0.667 4)

⇢
2 1 2 3
2 1 2 3

�
! ⇢̂c = 1.0

5)

⇢
1 2 3 4
5 6 7 7.5

�
! ⇢̂c = 0.124 6)

⇢
1 2 3 4
1 8 27 64

�
! ⇢̂c = 0.047

7)

⇢
1 3 5 7 9
2 4 6 8 10

�
! ⇢̂c = 0.941 8)

⇢
2 2 2 2
2 2 1 2

�
! ⇢̂c = 0

9)

⇢
3 3 3 3
3 3 3 3

�
! ⇢̂c = NaN

Lin’s CCC yields a much lower value than do Kendall’s ⌧ and Pearson’s
R for examples 1, 5 and 6. This is unsurprising in the sense that Lin’s
CCC is designed to measure agreement rather than correlation. However,
a close relation yet exists between Lin’s CCC and the two coe�cients.
This relation is somewhat reflected by example 1, but even more so by
example 7. In example 7, the observations can be fitted perfectly by a
line, and Lin’s CCC is very high while the values of both sets of ratings
do not agree in any position of the lists. Furthermore, it is remarkable
that Lin’s CCC suggests that the ratings presented in example 7 are more
in agreement than those presented in example 3, which is quite counter-
intuitive. Clearly, the observations from example 3 can not be fitted by a
line, which provides counter-evidence for the existence of a linear relation-
ship between the variables. Therefore, examples 3 and 7 further highlight
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the association between Lin’s CCC and Pearson’s R. Additionally, one can
observe that Lin’s CCC equals 0 in the case that exactly one of the sets
of ratings contains only a single value (Example 8), because that implies
that either xn = x̄ or yn = ȳ which implies that (xn � x̄)(yn � ȳ) = 0.
Note that both Pearson’s R and Kendall’s ⌧ are undefined for example 8.
And finally, Lin’s CCC is undefined in the case that both sets of ratings
are equal and contain repetitions of the same value (Example 9).

• Pearson’s R:
As mentioned in the Literature Review of this thesis, Pearson’s R can be
used to determine whether two variables are linearly correlated. Only in
cases for which a perfect positive or negative correlation exists between
two sets of ratings, Pearson’s R will be 1 and �1, respectively. However,
it is important to observe that Pearson’s R tends to be high in cases where
a positive non-linear relation exists between two variables.

Pearson’s R is given by the following formulae:
P

i(xi � x̄)(yi � ȳ)/(n� 1)

s(x)s(y)

Examples:

1)

⇢
1 2 3 4 5
3 4 5 6 7

�
! Pr = 1 2)

⇢
1 2 3 4 5
5 4 3 2 1

�
! Pr = �1

3)

⇢
2 2 2 3
2 1 2 3

�
! Pr = 0.791 4)

⇢
2 1 2 3
2 1 2 3

�
! Pr = 1

5)

⇢
1 2 3 4
5 6 7 7.5

�
! Pr = 0.990 6)

⇢
1 2 3 4
1 8 27 64

�
! Pr = 0.943

7)

⇢
2 2 1 2
2 2 2 2

�
! Pr = NaN

One can observe that when one can fit a line through all the data points,
Pr = 1 _ Pr = �1 depending on whether the two variables are positively
or negatively correlated (See examples 1, 2 and 4). When a datapoint that
deviates from the fitted line is added, Pr decreases (See examples 3 and
5). Depending on whether the anomalous datapoint merely countersug-
gests the existence of a linear relationship between the two variables (See
example 5) or that it even suggests that they are not correlated at all (ex-
ample 3), the decrease in Pr will be minimal or substantial, respectively.
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Example 6 demonstrates that two variables that are perfectly exponen-
tially related will still yield a high Pr, therefore one must be cautious to
conclude that a linear relationship exists in case of a Pr that is close to 1
or �1, although it does provide strong evidence that the two are somehow
correlated. Pearson’s R is undefined for example 7, because one of the
sets of ratings contains only one value, which implies that the standard
deviation for the corresponding variable is 0, which results in a division
by zero.

• Kendall’s Tau:
Kendall’s Tau (equivalently ⌧) only considers the relative frequencies of
concordant and discordant pairs of data points. A concordant pair is a
pair of observations (xi.yi) and (xj .yj) such that either xi < xj^yi < yj or
xi > xj ^ yi > yj . By contrast, a discordant pair is a pair of observations
(xi.yi) and (xj .yj) such that either xi < xj ^ yi > yj or xi > xj ^ yi < yj .
Similarly to most other coe�cients, �1  ⌧  1. The more concordant
pairs, the higher the value of ⌧ and the more discordant pairs, the lower
the value of ⌧ .

Kendall’s ⌧ is given by:

⌧ =
C �D

1

2
n(n� 1)

Where, C denotes the number of concordant pairs, and D denotes the
number of discordant pairs.

Examples:

1)

⇢
1 2 3 4 5
3 4 5 6 7

�
! Pr = 1 2)

⇢
1 2 3 4 5
1 8 27 64 125

�
! Pr = 1

3)

⇢
2 2 2 3
2 1 2 3

�
! Pr = 0.775 4)

⇢
2 1 2 3
2 1 2 3

�
! Pr = 1.0

5)

⇢
2 2 2 2
2 2 1 2

�
! Pr = NaN 6)

⇢
5 4 3 2
5 6 7 7.5

�
! Pr = �1.0

While Kendall’s ⌧ is generally believed to be similar to Pearson’s R, the
examples shown above clearly reflect some key di↵erences. So long as
the two variables are either perfectly correlated or inversely correlated
⌧ = 1 _ ⌧ = �1. That is, if all pairs of datapoints are concordant or all
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are discordant, ⌧ = 1 and ⌧ = �1, respectively. similarly to what we
observed for Pearson’s R, if one of the ratings contains only one value, ⌧
is undefined.

• Krippendor↵ ’s Alpha:
Lastly, we consider the Krippendor↵’s Alpha (equivalently ↵), introduced
by Klaus Krippendor↵ [17]. Of all the statistics presented in this section
so far, the Krippendor↵’s Alpha along with the Percent Agreement are the
only statistics that can be used directly in order to measure the agreement
across entire datasets. Krippendor↵’s ↵ is given by the following [28]:

↵ = 1� Do

De
=

1�
PV

v=1,v0=1 ovv0 �(v, v
0
)

1�
PV

v=1,v0=1 evv0 �(v, v0)

where ovv0 =
NX

u=1

Pm
i 6=i0 I(viu = v)⇥ I(vi0u = v

0
)

mu � 1
= ov0v

and evv0 =

Pm
i 6=i0 I(viu = v)⇥ I(vi0u = v

0
)

n� 1

where v iterates over the values (i.e. label categories, 1, 2, 3 and 4 in our
case), and u iterates over the so-called units, and in this context, unit
means the same as sample. Note that �(v, v

0
) depends on the scale that

is used, which can be nominal, ordinal or continuous. Furthermore,
ovv0 aims to quantify how often a combination of ratings as provided by
a pair of raters is observed. For instance o1,2 quantifies how often it has
occurred that rater assigned label 1 to a sample, while rater 2 assigned
label 2 to that same sample, over all pairs of raters. e1,2 is an estimate
of the probability that the first rater assigns label 1 and the second rater
assigns label 2, based on how often this pair of values occurs across the
dataset. One could say that in that regard, the Krippendor↵’s ↵ is at
least partly inspired by Cohen’s . For further reading I recommend [17]
and [28].
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Chapter 3

Interrater Reliability

3.1 Motivation

In this section, we shed light on the variability among assessments of the degree
of similarity between pairs of cracked facades, as provided by masonry experts
during the labelling task. Earlier discussions on the assessment of damage in
masonry structures have highlighted the complexity of this task [29]. Addi-
tionally, those whose research relates to masonry structures mostly agree that
there is a wide variety of potential causes of damage to these settlements [30].
Furthermore, it has been suggested that crack assessment can be somewhat sub-
jective, which implies that significant di↵erences between assessments provided
by di↵erent masonry experts exist.

It is important to note that the automation of similarity assessment of pairs of
images of cracked facades requires a neural network to be trained on similarity
assessments as provided by masonry experts, and that a low rate of agreement
among these masonry experts will most likely result in a poor level of perfor-
mance of the neural network. Krishna Ajithkumar Pillai provided evidence for
this in her Master Thesis [4]. Her results show that the degree to which experts
agree in their assessments, as measured by Krippendor↵’s Alpha, seems to be
correlated with the predictive power of the neural network.

It stands to reason that in order to successfully automate the task of assessing
the degree of similarity between pairs of cracked facades, those who provide
the similarity assessments of the data used to train the neural network should
strongly agree. Even if a fitted siamese network yields a decent performance on
assessments provided by masonry experts who exhibit poor inter-rater agree-
ment, it is questionable whether the network has learnt anything that will be
useful to a masonry expert. First of all, since we do not know what the network
has exactly learnt in such a case. The learnt function will be based on some
average of a set of divergent ratings provided by multiple masonry experts who
apparently hold di↵erent views on the concept of similarity in the context of
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cracked masonry facades. And secondly, since masonry experts’ opinions are
quite divergent, it is doubtful whether such an automated tool will be useful to
said experts, since any assessments or views provided by the tool might strongly
conflict with their own assessments and views, and therefore cause confusion
rather than aid them in their decision-making.

This motivates e↵orts to not only determine the extent to which masonry experts
agree on the assessment of the similarity of pairs of cracked masonry facades,
but also to investigate the nature of the disagreement that we observe in the
data in order to better understand the causes thereof, and hopefully what could
be done to improve the rate of agreement.

Hence, I strive to address the first research question, RQ1, by means of this
extensive analysis. Additionally, to further enhance our understanding of the
variability among raters, we find it instructive to investigate for which types of
samples raters tend to disagree more strongly. Thus, this analysis also addresses
the second research question, RQ2.

Additionally, we will investigate the degree of correlation between sets of ratings
provided for each of the three similarity questions by single raters, in order to
verify whether correlations exist between the similarity questions. The three
questions will be described in the following section.

3.2 Scope of Statistical Analysis

It is important to note that this discussion is limited to similarity assessments
performed on pairs of synthetically simulated cracked facades that are modelled
based on the crack archetypes that were mentioned earlier in this work. This
work reports on the interrater variability as measured on three datasets (D1,
D2 and D3), henceforth referred to as the Markov-Walk Dataset, the Mixed
Dataset and the FEM Dataset. Each dataset will be described in more detail
in the following section (3.3).

The labelling task consists of three questions. I have decided to perform separate
statistical analyses for the annotations provided for each of the three questions.
This granular approach will allow us to determine the degree of agreement for
each of the questions separately, and will also allow for maximal flexibility in
deciding how to combine these three degrees of agreement into one, should we
deem it appropriate to combine them into a single measure. Questions are
shown below in the order in which they were shown to the participants during
the labelling task. Note that a brief account of how the three questions are
related, and why they were formulated as such is postponed to section 3.7 (on
Q-to-Q Correlations).
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1. How similar are the settlement damage cause and the pattern of
these two crack patterns?

2. How similar is the severity of damage in both of the crack pat-
terns?

3. Overall, how similar are the cracks?

For each of the three questions, each of which concerns a comparison between
two synthetic images of crack patterns, the raters assigned one of the following
five labels: Very Dissimilar , Dissimilar , Similar , Very Similar and I
Cannot Say

Note: The “I Cannot Say” label only occurs in the Markov-Walk Dataset,
and is viewed as an “outside category” rather than it being on the likert scale
from very dissimilar to very similar.

Note: For the Markov-Walk dataset, we excluded all samples that were rated
as “I Cannot Say” at least once (for any of the three questions).

3.3 Datasets

In this section I explain how each of the three data-sets were obtained, and
provide insight into their underlying structure. The identities of those who
were involved in rating the similarity of the samples will not be mentioned here,
for privacy reasons.

In total, 28 raters were involved in labelling the samples of the three datasets.
Based on their level of expertise and experience, we divided the 28 raters into
three categories, each of which will be described below.

• MSc. Is currently enrolled in a Master’s program at the faculty of Archi-
tecture and the Built Environment at the TU Delft.

• Ph.D. Had been, or is currently a Ph.D. candidate in a topic which is
very closely related to the assessment of masonry strucures.

• Expert Has extensive experience in the assessment of damaged masonry
structures, and holds a Ph.D. Many of the raters in this category are em-
ployed as researchers in the field of structural engineering, either in in-
dustry or in academics
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3.3.1 Markov Walk Dataset

This dataset consists of images that were generated using a Markov Walk Model
developed and programmed by Dr. Arpad Rozsas in the popular programming
language Python3. Each of the crack types that can be generated with the data
simulation model are represented in the dataset [5]. As mentioned before the
included crack archetypes are 18, 20, 21, 23, 24, 30, 31, 32, 101, 102, 103 and
201 as described by Ilse de Vent in her Ph.D. thesis [2]. Three examples of
samples (pairs of crack patterns) that were rated, are shown in Figures 6.1, 6.2,
and 6.3. The raters are indexed from 1 up to and including 28, raters 1 through
7 are experts, raters 8 through 14 belong to the Ph.D. category (described in
the previous section) and the remaining raters are Master Students. In total
2968 samples were labelled at least once, 2587 of which were labelled at least
three times, and 2466 were labelled three times and were never assigned the
label “I cannot say”. I have excluded all samples that were rated as “I cannot
say”, as well as all samples that were rated fewer than three times. There are
two reasons for this. First of all, a single rater may accidentally select the wrong
degree of similarity for a given sample, and secondly, since raters may disagree,
ratings from multiple raters will provide a more reliable estimate. In total,
9372 labelling instances have been completed, 8 of which were duplicates, which
yields a total of 9364 labelling instances (the first of each of the 8 duplicates
were ignored). The distribution of the labels across each of the three questions
is shown in table 3.1 below:

Label: 1 Label: 2 Label: 3 Label: 4

Q1 1476 2399 2943 2423
Q2 1304 3012 2980 1945
Q3 1294 2989 3156 1802

Total 4074 8400 9079 6170

Table 3.1: Markov-Walk Dataset: Distribution of the ordinal similarity labels
across the three di↵erent questions

The following pairs of crack archetypes are deemed to be more similar by the
masonry experts: (18, 20), (31, 32), (20, 21), (23, 30), (24, 32), (101,
102), (103, 201)
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The pairs of crack archetypes shown above were also considered as similar in the
criteria based on which we formed pairs of cracked facades in order to construct
the Markov-Walk data-set. The composition of this data-set is as follows:

• 25% of the samples consist of pairs of crack archetypes that are considered
to be similar and have similar widths.

• 20% of the samples consist of pairs of crack archetypes that are considered
to be similar and have independently sampled widths (which may or may
not be similar).

• 25% of the samples consist of pairs of cracked facades that belong to the
same crack archetypes and have similar widths.

• 20% of the samples consist of pairs of cracked facades that belong to the
same crack archetypes and have independently sampled widths (which may
or may not be similar).

• 10% of the samples consist of pairs of cracked facades that are inde-
pendently, randomly picked with and have independently sampled widths
(which may or may not be similar).

3.3.2 FEM Dataset

This dataset consists of pairs of images that were generated using a simulation
model that is based on Finite Element Analysis. It was implemented in Diana
by Krishna Ajithkumar Pillai. In her e↵orts to develop this model, she was
supervised by Giorgia Giardina,Arpad Rozsas and Arthur Slobbe.[4] In total,
7 of all of the 28 raters were involved in labelling samples from this data-set.
It consists of 500 samples, and 1522 labelling instances were completed, 5 of
which were duplicates. The distribution of the labels across each of the three
questions is shown in table 3.2 below:

Label: 1 Label: 2 Label: 3 Label: 4

Q1 654 232 331 300
Q2 487 422 327 281
Q3 686 311 212 308

Total 1827 965 870 889

Table 3.2: FEM Dataset: Distribution of the ordinal similarity categories across
the three di↵erent questions
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3.3.3 Mixed Dataset

This dataset consists of images from both aforementioned simulation models as
well as real-world images. In total 3 of the 28 raters were involved in annotating
the image pairs, all of whom are considered to be experts. In total, 150 labelling
instances were completed, none of which were duplicates. Moreover, this dataset
contains 50 samples in total, and each of the three raters rated all of the 50
samples.

Label: 1 Label: 2 Label: 3 Label: 4

Q1 39 32 42 37
Q2 22 62 54 12
Q3 40 44 43 23

Total 101 138 139 72

3.4 Approach and Outline

In order to quantify the variability among the assessments provided by the
28 involved raters, and to investigate the nature of observed disagreement, I
performed multiple analyses. Each of these will be described briefly in the
following

3.4.1 Mean Biases

Separately for each dataset, for each of the three questions, and for each of
the raters, I have computed the average of all similarity ratings given, and
visualized these results with bar charts. These charts will clearly reflect whether
specific raters tend towards one of the extremes of the similarity spectrum (Very
Dissimilar and Very Similar) and to what extent.

3.4.2 Relative Biases

Whereas the Mean Biases serve to provide insight into the individual labelling
behaviour of each of the raters, the relative biases are the di↵erences in bias
between pairs of raters, computed over sets of commonly rated samples.

3.4.3 Overall Agreement

In this analysis, the rate of agreement is measured by means of di↵erent statis-
tics and coe�cients for complete datasets. Whether thresholds are met that
indicate whether the rate of agreement is su�cient will be reflected by using
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di↵erent colors, green to indicate a satisfying rate of agreement, orange to indi-
cate substantial yet insu�cient agreement, and red to indicate poor agreement.

3.4.4 Question to Question Correlations

This section will provide insight into the degree of correlation between ratings
given for each of the questions, computed separately for all users. Since the
third question asks the rater to estimate the Overall Similarity while the first
and second question address two di↵erent aspects of what could be thought to
constitute the notion of similarity, one could argue that the rating provided for
question three could represent some weighted average of the ratings provided
for the first two questions. Whether the ratings provided by the raters actually
support this hypothesis, and the precise relation between ratings provided for
the three di↵erent questions, is discussed in this section.

3.4.5 Problematic Samples

I have strived to determine which samples, in terms of involved crack archetypes,
are subject to disagreement among the raters, and identify what is common
among those samples. This section presents my findings with regards to this
e↵ort. How I have quantified the rate of disagreement for individual samples is
discussed, as well as the types of samples for which the raters exhibit a poor
level of agreement that I have identified using this method.

3.4.6 Outline

In the remainder of this chapter, the correspondence of the indexed raters be-
tween the three datasets is discussed first, followed by a discussion of the afore-
mentioned (sub)analyses in the order in which they have been presented previ-
ously.

3.4.7 Cross Data-Sets Rater Correspondences

In order to respect the privacy of the involved raters, non-suggestive names were
used to represent them. Across all three datasets, all raters are referred to as
Rater(i) for some i  n, where n = 28. However, it is not always the case that
Rater(i) in one dataset refers to the same rater as Rater(i) in one of the other
dataset. For instance, Rater5 represents a di↵erent person in the Markov-Walk
dataset than it does in the FEM dataset. In fact, Rater5 represents an Expert
in the Markov-Walk dataset, whereas it represents a Master Student in the
FEM dataset, and the mixed dataset has only three raters. The correspondence
between rater indices across the three datasets are shown in Figure 3.1.
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3.5 Mean Similarity Assessments

In this section the mean of the ratings for each question and for each rater
are presented, separately for each of the three datasets. Quite surprisingly, the
mean of the ratings provided for each of the three questions vary significantly
between raters. For the Markov-Walk dataset, the results are shown separately
for MSc. students, PhD. students and expert raters, whereas for both the FEM
and Mixed data-sets, the results are shown in single bar charts, since those
data-sets involve only 7 and 3 raters, respectively.

3.5.1 Agreement vs. Di↵erence in Bias

While a di↵erence in bias for a particular question among a pair of raters reflects
that the rate of agreement among those raters is suboptimal, the reverse does
not hold, namely that equal biases among a pair of raters should reflect that
they perfectly agree. To see this, consider the following pair of ratings, provided
by Rater A and Rater B for the same question and for the same set of samples:

RaterA ! {1, 5, 1, 5, 1, 5, 1, 5, 1, 5}
RaterB ! {2, 3, 4, 3, 3, 3, 3, 3, 3, 3}

Figure 3.1: This diagram shows the correspondences between the rater indices
across the three di↵erent datasets.

While both raters have the same bias (same average rating across the sample
set), the level of agreement is clearly quite low. One might wonder if considering
the rater biases is even useful, in addition to merely computing the amount of
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agreement between raters. I deem it relevant to compute the average ratings
and di↵erences in average ratings, since these values clearly illustrate whether
or not certain Raters are more likely to rate samples as more similar or more
dissimilar, as well as whether such tendencies are present in all raters, and
whether they vary between raters. Hence, this analysis provides a better under-
standing of how di↵erent raters have rated the data di↵erently.

After all, the goal is not just to measure the amount of agreement, but to gain
a better understanding of the di↵erences between the labelling behaviours of
the various raters, and what could be done to improve overall agreement. The
overall agreement among raters, measured by means of the di↵erent coe�cients
discussed earlier, will be covered in the Overall Agreement section of this chap-
ter. In the remainder of this subsection, first an example will be given of how
the mean rating is computed for a specific rater and question. Then, the results
of the analyses will be discussed.

Example
Suppose Rater A has provided the following n ratings for n samples for the
second question: {2, 3, 2, 4, 3, 5, 4, 3, 4, 2, 1, 3, 2, 4, 3, 5}. The mean rating
given for the second question by Rater A will be:

2 + 3 + 2 + 4 + 3 + 5 + 4 + 3 + 4 + 2 + 1 + 3 + 2 + 4 + 3 + 5

16
= 3, 67

3.5.2 Markov-Walk Data-Set

The average ratings for each of the three questions which were given by each
of the 28 raters who were involved in labelling the Markov-Walk dataset, are
shown in Figure 3.2. A close inspection of these results allow one to make various
observations. First of all, the mean ratings provided by the experts seem to be
more similar, then those provided by the Ph.D Raters, and much more similar
than those provided by the MSc. Raters. Rater 19 who has labelled 907 of
the 2466 samples, has rated the samples across all three questions roughly as
dissimilar, whereas Rater 26 rated, who labelled 517 samples, roughly rated
them as similar across all three similarity questions. That is a di↵erence of one
class, which is significant, given that there are only 4 ordinally scaled similarity
classes. we also see a huge discrepancy between the average ratings provided by
Raters 19 and 20.

Note: One might argue that Figure 3.2 does not provide a reliable estimate
of the di↵erence in bias, since the biases are computed over di↵erent sets of
samples. However, since the criteria based on which pairs are formed contains
only 5 classes, and the smallest class accounts for 10%, if both raters have rated
at least 50 samples. it is unlikely that the sample sets are wildly di↵erent, given
that they come from the same distribution
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Note: Raters 7 and 24 have only rated 1 and 4 samples respectively. Obviously,
the standard deviation of the provided ratings equals 0 if only a single rating is
present. Rater 24 has provided the following ratings, which yields a standard
deviation of 0 for question 3.

Relative Biases

A closer look at the Relative Biases (Figure 3.3), plotted separately for 1) all
pairs of raters; 2) all pairs of expert raters; 3) all pairs of Ph.D. raters; and 4)
All pairs of MSc. Raters, we see a somewhat similar trend. While the median
di↵erences across all three questions are comparable for the MSc. Raters and
the Expert raters, one can observe that the amount of di↵erence in the 25’th
percentile and above, is remarkably higher among the MSc. Raters than for
the Expert raters. Overall, across all subsets of Raters, we see a much higher
variation among the average ratings given for the second question than for the
first and third questions. One surprising observation, especially in light of the
bar charts shown in figure 3.2, is that the di↵erences in bias seem to be lowest
among the Ph.D. population of raters. Note, however, that this anomalous
result might be due to the fact that there are such few pairs of raters among the
expert raters that have at least 8 commonly rated samples, only 6 such pairs
exist. All in all, one observes that the rater’s biases, for each question, tends
to vary by almost half a class (almost .5). This is a significant di↵erence, given
that there are only 4 classes, and the ratings are supposed to reflect the same
ground truth.

3.5.3 FEM Data-Set

The biases of each of the seven raters for all questions and the di↵erences be-
tween the biases of pairs of these raters across commonly rated samples are
shown in Figure 3.4. Perhaps the first observation one would make, is that the
experts (Raters 1 through 3) all have rated the samples for the second ques-
tion as 2.5, on average, which is right in the middle between the two extremes,
whereas the MSc. raters (Raters 4 through 7) have provided an average rating
of roughly 2 for the second question (2 = dissimilar).

The di↵erences between the averages for pairs of Raters further confirm that
the expert raters have similar averages for question 2. Across all questions, the
averages of the ratings tend to vary more among the MSc. raters, while the
di↵erences between MSc. raters and expert raters tend to be greater (top-right
boxplot).

It is interesting to note that Raters 1 through 3 have been involved in the
crack assessment automation project since its initiation in 2019. Perhaps, close
collaboration and joint discussions have led them to provide assessments that
are more aligned.
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Figure 3.2: Markov-Walk: Mean Ratings per Question - Expert Raters

Figure 3.3: Markov-Walk: Mean Ratings per Question - Ph.D. Raters
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Figure 3.4: Markov-Walk: Mean Ratings per Question - MSc. Raters
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Figure 3.5: Markov-Walk: Relative Biases - All Raters

Figure 3.6: Markov-Walk: Relative Biases - Expert Raters
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Figure 3.7: Markov-Walk: Relative Biases - Ph.D. Raters

Figure 3.8: Markov-Walk: Relative Biases - MSc. Raters
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Figure 3.9: FEM: Mean Ratings per Question - All Raters

Figure 3.10: FEM: Relative Biases - All Raters
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Figure 3.11: FEM: Relative Biases - Expert Raters

Figure 3.12: FEM: Relative Biases - Ph.D. Raters
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Figure 3.13: Mixed Dataset - Mean Ratings per Question - All (Expert) Raters

3.5.4 Mixed Data-Set

Interestingly, for the mixed dataset, no boxplots of the di↵erences between the
biases of pairs of raters are needed, because all three raters have labelled the
same set of samples which consists of 50 image pairs. Hence, we will only
consider the bar chart shown in Figure 3.5 to get an idea of how the averages
of their ratings are distributed.

We see some discrepancies between the averages of the provided ratings across
all three questions. Whereas, Rater 1 assigned an average score of 2 (dissimilar)
for question 1, both Rater 2 and Rater 3 tend to rate the overall similarity
as 2.5 (between similar and dissimilar). The greatest di↵erence that one can
observe, is the di↵erence between the average ratings provided for question 2
by Raters 1 and 3, approximately around 1.95 and 2.75, respectively. This
clearly demonstrates that the raters have di↵erent biases. Note that all three
of the raters are experts. Furthermore, one can observe that the standard
deviation for the ratings provided for question 1 by Rater 3 is significantly
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smaller than the standard deviation of the ratings provided by Rater 2 for the
same question. All in all, the results shown in this subsection motivate a more
thorough examination of why the raters demonstrate di↵erent biases in the
labelling task.

3.6 Q-to-Q Correlations

In this section I shed light on the extent to which ratings provided by the same
rater for the three di↵erent questions are correlated. In the summer of 2021
discussions were held in which masonry experts questioned the suitability of
the then current set-up of the labelling task. At that particular time, only a
single dataset of pairs of images of cracked facades existed (395 samples), the
annotations of which had been provided by Dr. Giorgia Giardina. Each sample
was annotated with a similarity interval. The similarity intervals were:

• 0.0 - 0.4
• 0.4 - 0.59
• 0.59 - 0.79
• 0.79 - 0.89
• 0.89 - 0.96
• 0.96 - 1.00

Upon close inspection of the two pairs of synthetically generated cracked ma-
sonry facades, Dr. Giardina suggested that the first pair has high similarity
in terms of damage pattern/cause (See Figures 5.1 and 5.2 in the Appendix),
whereas the cracked facades of the second pair were highly similar in terms of
severity (See Figures 5.3 and 5.4).

This observation motivated Dr. Giardina to propose a more fine-grained ap-
proach to the assessment of the degree of similarity between pairs of cracked
facades. The initial set-up was deserted, i.e. a single similarity score, expressed
as one of the aforementioned similarity intervals, and three novel notions of
similarity were proposed.

1. Similarity in terms of Damage Pattern/Cause
2. Similarity in terms of Severity
3. Overall Similarity

The general expectation was that the ratings provided for the third question
would roughly represent a weighted average of the ratings provided for the first
and second questions. However, no specific instructions were provided to raters
involved in labelling our datasets on how to interpret the third question in
relation to the first two questions. In that sense, it was argued, raters would
be given the freedom to decide for themselves how these questions were to be
viewed in relation to one another. Furthermore, we decided to switch to four
similarity intervals instead of the original six. These are the following
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• 0.0 - 0.25

• 0.25 - 0.50

• 0.50 - 0.75

• 0.75 - 1.00

In order to better understand the relations between these questions as evidenced
by the provided ratings, I have used the mean di↵erence as well as Lin’s CCC.
(See Figure 3.6)

In the following, the question to question correlations for all three pairs of
questions are visualized separately for each rater. The results of this analysis
are discussed separately for the Markov-Walk, the FEM and the Mixed datasets,
in the order in which they are stated here.

3.6.1 Q-to-Q Markov-Walk

The Q-to-Q Correlations for each of the 28 raters of the Markov-Walk Data-
Set are shown in Figures 3.6 to 3.8. As discussed previously, one would expect
questions 1 and 3, and questions 2 and 3 to be at least somewhat correlated.
When analyzing these charts, one will likely observe that for most raters, the
ratings provided for question 1 and question 3 show the strongest correlations,
but there are several exceptions to this rule (Raters 9, 12 (Ph.D.) 15, 17, 21 and
23 (MSc.)).

Quite surprisingly, questions 1 and 2, are also quite correlated. One could
argue that cracks with similar width and length, two factors that are generally
considered to underlie the notion of similarity in terms of severity, would also
be considered slightly more correlated in terms of damage pattern/cause. This
would imply that the concepts of damage pattern/cause and severity are not
independent of one another (i.e. they somewhat overlap).

Another possible explanation for this phenomenon is that people are inherently
biased to provide ratings for the di↵erent questions that are somewhat similar.
Stated di↵erently, people are less likely to provide wildly di↵erent assessments
for the three di↵erent questions (e.g. Q1: Very Dissimilar, Q2: Very Similar).
Unsurprisingly, one can observe that the correlations expressed by Lin’s CCC
and the Mean Di↵erence are roughly inversely correlated.
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Figure 3.14: Markov-Walk: Correlations between Ratings for Question Pairs -
Expert Raters - Lin’s CCC

‘

Figure 3.15: Markov-Walk: Correlations between Ratings for Question Pairs -
Expert Raters - Mean Di↵erence
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Figure 3.16: Markov-Walk: Correlations between Ratings for Question Pairs -
Ph.D. Raters - Lin’s CCC

‘

Figure 3.17: Markov-Walk: Correlations between Ratings for Question Pairs -
Ph.D. Raters - Mean Di↵erence
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Figure 3.18: Markov-Walk: Correlations between Ratings for Question Pairs -
MSc. Raters - Lin’s CCC
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Figure 3.19: Markov-Walk: Correlations between Ratings for Question Pairs -
MSc. Raters - Mean Di↵erence
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3.6.2 Q-to-Q FEM

The correlations between the di↵erent questions for each of the seven Raters
are illustrated in Figure 3.9. Similarly to what we observed in the question to
question correlations for the Markov-Walk dataset, the expert raters tend to
provide highly similar ratings for questions 1 and 3. Note that the Lin’s CCC
scores for question 1 and question 3 are in excess of .9 for all Expert Raters.
Especially for the third Rater, one finds that the Lin’s CCC score is roughly
.96, which is so high, that the ratings provided for questions 1 and 3 by Rater
3 are virtually interchangeable.

As is the case for the Markov-Walk dataset, one can observe that all pairs
of questions are somewhat correlated, including questions 1 and 2. Perhaps
the most remarkable observation is that there is a clear di↵erence between the
labelling behaviours of the Experts and that of the MSc. Raters. Across the 4
MSc. Raters, the correlations between all pairs of questions are .75 and above,
and for Raters 4 to 7 .85 and above. Furthermore, questions 2 and 3 are more
correlated than questions 1 and 3 across all MSc. Raters, whereas the reverse
holds true for the Expert Raters. This is somewhat alarming.

One would be inclined to ask Why is there such an enormous di↵erence
between the Experts and the MSc. Raters? and Why are all Q-to-
Q correlations so high for all MSc. Raters? As mentioned previously,
regarding the former question, one could argue that the three involved Expert
Raters have collaborated closely throughout this project and that this has some-
how resulted in similar rating behaviour across these three raters. A possible
explanation regarding the latter question is that the MSc. raters would get tired
after rating a certain number of samples, and hence, as their labelling e↵orts
proceeded, they increasingly tended to assign the same similarity label to all
three questions, rather than to carefully inspect the two cracked facades and
consider the three questions separately.

Regardless of what truly brought about these di↵erences, these results strongly
motivate a more thorough analysis of the labelling behaviour of the raters, and a
reconsideration of the validity of the current set-up of the similarity assessment
task at large.
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Figure 3.20: FEM: Correlations between Ratings for Question Pairs - All Raters
- Lin’s CCC

Figure 3.21: FEM: Correlations between Ratings for Question Pairs - All Raters
- Mean Di↵erence
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3.6.3 Q-to-Q Mixed Data-Set

Figure 3.22: Mixed Dataset: Question to Question Correlations for each of the
three Raters, expressed by Lin’s CCC (Left) and Mean Di↵erence (Right)

3.6.4 Q-to-Q Mixed Data-Set

The correlations between the di↵erent questions for each of the three Raters
are illustrated in Figure 3.10. Upon close inspection of the two plots, one can
conclude that for all three raters, questions 1 and 3 are most strongly correlated,
a finding that is consistent across all three datasets. For Raters 2 and 3, the
ratings provided for question 1 and question 3 are extremely similar. For the
first Rater, the question to question correlations are slightly lower than for
Raters 2 and 3, across all three pairs of questions. All in all, the results across
all three datasets show that questions 1 and 2 are not given equal weightage in
determining the degree of overall similarity.
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Models
All Raters Expert Raters MSc. Raters

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Krippendor↵’s Alpha 0.674 0.562 0.733 0.694 0.527 0.737 0.629 0.654 0.673
Unweighted Kappa 0.342 0.189 0.380 0.282 0.170 0.329 0.395 0.333 0.335
Weighted Kappa 0.509 0.367 0.570 0.481 0.352 0.552 0.528 0.510 0.527
Lin’s CCC 0.637 0.524 0.711 0.637 0.528 0.725 0.628 0.646 0.661
Pearson’s R 0.671 0.587 0.730 0.663 0.598 0.737 0.662 0.676 0.688
Kendall’s Tau 0.606 0.499 0.625 0.570 0.531 0.595 0.611 0.592 0.616
Mean Di↵erence 0.615 0.775 0.534 0.588 0.715 0.518 0.676 0.623 0.652
Percent Agreement 0.545 0.400 0.589 0.551 0.420 0.551 0.580 0.538 0.538

Table 3.3: Overall Agreements and Correlations FEM Data

Models
All Raters Expert Raters Ph.D. Raters MSc. Raters

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Krippendor↵’s Alpha 0.634 0.519 0.618 0.804 0.543 0.740 0.667 0.562 0.663 0.621 0.493 0.613
Unweighted Kappa 0.268 0.226 0.261 0.468 0.328 0.437 0.252 0.322 0.366 0.186 0.160 0.196
Weighted Kappa 0.458 0.363 0.437 0.657 0.446 0.613 0.445 0.459 0.500 0.375 0.304 0.378
Lin’s CCC 0.621 0.499 0.601 0.804 0.573 0.764 0.624 0.596 0.640 0.545 0.447 0.546
Pearson’s R 0.711 0.593 0.707 0.868 0.660 0.826 0.678 0.632 0.681 0.675 0.557 0.695
Kendall’s Tau 0.648 0.538 0.654 0.811 0.601 0.764 0.622 0.573 0.639 0.614 0.501 0.641
Mean Di↵erence 0.645 0.706 0.619 0.419 0.576 0.427 0.592 0.536 0.460 0.736 0.772 0.690
Percent Agreement 0.469 0.442 0.484 0.568 0.495 0.586 0.536 0.512 0.582 0.427 0.377 0.445

Table 3.4: Overall Agreements and Correlations Markov Walk Data

Models
All Raters

Q1 Q2 Q3

Krippendor↵’s Alpha 0.780 0.316 0.700
Unweighted Kappa 0.374 0.161 0.306
Weighted Kappa 0.600 0.259 0.517
Lin’s CCC 0.774 0.361 0.700
Pearson’s R 0.812 0.442 0.755
Kendall’s Tau 0.739 0.383 0.686
Mean Di↵erence 0.507 0.693 0.560
Percent Agreement 0.520 0.420 0.480

Table 3.5: Overall Agreements and Correlations Mixed Dataset

3.7 Overall Agreement (per Dataset)

To provide an overview of the inter-rater reliability (amount of agreement) be-
tween raters for all three datasets, I have computed the average correlations
and agreements between all pairs of raters for each dataset, excluding pairs who
share less than eight commonly rated samples. These results are shown in the
three tables shown above (Tables 3.3 - 3.5). The three di↵erent colors that are
used to display the values (green, yellow and red) are interpreted as follows:

• Green: su�cient agreement/correlation
• Yellow: Moderate, yet insu�cient agreement/correlation
• Red: Insu�cient Agreement/Correlation.
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Furthermore, regarding the interpretation of the used coe�cients, i.e. which
range of values corresponds to green, yellow or red, and for which coe�cient,
I apply the following criteria for the following coe�cients, mostly based on
guidelines presented in the literature as covered in the Literature Review section
of this thesis:

• Kendall’s Tau/Pearson’s R:

– Moderate Agreement: 0.60� 0.80

– Su�cient Agreement: 0.80� 1.00

• Krippendor↵’s Alpha:

– Moderate Agreement: 0.67� 0.80

– Su�cient Agreement: 0.80� 1.00

• Kappa Statistics

– Moderate Agreement: 0.50� 0.75

– Su�cient Agreement: 0.75� 1.0

• Lin’s CCC

– Moderate Agreement: 0.9� 0.95

– Su�cient Agreement: 0.95� 1.0

Any values that are below the Moderate Agreement threshold are considered to
provide evidence of poor agreement.

3.7.1 Discussion of Results

The results confirm, beyond any doubt, that the rate of agreement among the
28 raters is generally insu�cient, and in many cases even poor. Especially
for the second question there is poor agreement among the raters across all
datasets, including all sub-populations of raters. One can observe that there
is slightly more agreement among the expert raters than there is among any
other sub-population of raters. However, this holds true mostly for the Markov-
Walk dataset, and only for the first and third questions. Regarding the second
question, there is no more agreement among experts than there is among MSc.
raters, Ph.D. raters or all raters.

The most promising result is the amount of agreement measured among the ex-
pert raters for the first question for the Markov-Walk dataset. Its corresponding
column contains three green-colored values. It also stands out that across all
three datasets, the experts agree most on samples belonging to the Markov-
Walk dataset. Their agreement is clearly higher for the Markov-Walk dataset
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than for any other dataset, even for the second question, which suggests that the
samples from the Markov-Walk dataset might visually be the clearest and most
convenient to interpret. Another interesting observation is that the agreement
among the experts is highest for the first question, except when one considers
samples generated with the FEM, in the latter case the agreement is highest for
the third question.

Furthermore. one notes that the results of the linear weighted kappa and the
Krippendor↵’s Alpha are somewhat conflicting. As discussed in the Literature
Review of this thesis, this sometimes happens, since no agreement coe�cient is
perfect, and most agreement coe�cients fail to express the amount of agreement
in alignment with one’s intuition in at least some cases.

All in all, the agreement among raters, including expert raters, is clearly too low,
but the agreement among the experts for the Markov-Walk dataset is hopefull.
Especially the degree of agreement for the first question shows that this approach
has potential, provided that e↵ective steps are taken to further improve the rate
of agreement.

3.8 Low Agreement Samples

As a part of my e↵orts, I have strived to quantify the amount of agreement for
individual samples. That is, given a collection of samples, each of which was
rated by multiple raters, how do we compute the relative amount of disagreement
that we observe among ratings provided for single samples? The advantage of
this endeavour is that it allows one to identify characteristics of samples for
which the agreement is comparatively low.

The remainder of this section is organized as follows. First, I explain how I
have quantified the amount of disagreement by means of an illustrative example.
Then, I will discuss the findings and results for each of the three aforementioned
datasets, separately. And finally, I provide a summary of the findings and
conclusions.

3.8.1 Quantifying Disagreement per Sample

Suppose that the following set of ratings were provided for a pair of cracked
facades:

• Rater1: {2, 2, 3}
• Rater1: {3, 3, 3}
• Rater1: {2, 2, 4}
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These three sets of ratings (all w.r.t. the same sample) allow for three pairwise
comparisons presented below:

⇢
2 2 3
3 3 3

�
! Total Di↵erence = 2

⇢
2 2 3
2 2 4

�
! Mean Di↵erence = 1

⇢
3 3 3
2 2 4

�
! Mean Di↵erence = 3

Sum of Total Di↵erences

Total number of Comparisons
! 2 + 1 + 3

9
= 0.67

3.8.2 Markov-Walk Dataset

As stated previously, the Markov-Walk Dataset consists of 2466 samples. For
each of these 2466 samples, I have quantified the amount of disagreement. An
overview of the pairs of crack archetypes that occur among the 250 samples
with the highest degree of disagreement are shown in Table 3.6, along with their
occurrence frequencies. We find that the following pairs of crack archetypes are
especially problematic in terms of agreement. These are:

• 101, 102

• 103, 103

• 103, 201

• 20, 21

• 201, 201

• 102, 102

Some examples of problematic samples belonging to the categories listed above,
are shown in the Appendix (FiguresWhen one purely determines how problem-
atic a pair of crack archetypes is (in terms of maximizing disagreement) it would
seem natural to consider the fraction of the samples corresponding to the pair
over the entire dataset, that occurs among the x% most problematic pairs. For
example, one might argue that the pair (23, 102) should have been listed as
well since 40% of its samples are among the 10% of samples with the lowest
agreement. Here, I have chosen a trade-o↵ between the fraction and the total
number of samples that occur in the set of samples that are least agreed on.
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Archetypes Occurrences Total Occurrences

(101 , 102) 56 154
(103 , 103) 25 100
(103 , 201) 22 156
(20 , 21) 21 155

(101 , 101) 18 114
(23 , 30) 17 165

(102 , 102) 14 71
(201 , 201) 13 89
(24 , 32) 11 181
(31 , 32) 8 181
(30 , 30) 8 81
(24 , 24) 7 107
(32 , 32) 6 96
(18 , 20) 3 131
(30 , 102) 2 9
(23 , 102) 2 5
(18 , 18) 2 78
(31 , 31) 2 106
(20 , 20) 2 88
(32 , 103) 1 1
(31 , 101) 1 6
(102 , 103) 1 4
(23 , 23) 1 103
(23 , 24) 1 4
(31 , 103) 1 2
(30 , 32) 1 3
(18 , 101) 1 1
(24 , 103) 1 3
(21 , 21) 1 103

(101 , 103) 1 5

Table 3.6: Markov-Walk Dataset: All pairs of crack archetypes that
occur (and how often) among the 250 lowest agreement samples,
and how often these crack pairs occur in the entire dataset (2466
samples)

Archetypes Occurrences Total Occurrences

(23 , 24) 13 23
(24 , 103) 11 23
(20 , 21) 9 23
(18 , 102) 9 14
(23 , 103) 6 11
(101 , 102) 6 15
(18 , 20) 6 23
(18 , 101) 5 14
(103 , 103) 4 14
(18 , 21) 4 23
(24 , 24) 3 12
(23 , 102) 3 12
(101 , 101) 2 15
(20 , 102) 2 14
(102 , 102) 2 12
(101 , 103) 2 11
(102 , 103) 2 4
(20 , 101) 2 14
(20 , 20) 1 13
(23 , 23) 1 13
(18 , 18) 1 15
(18 , 23) 1 14
(21 , 102) 1 11
(23 , 101) 1 10
(24 , 102) 1 10
(18 , 103) 1 14
(21 , 101) 1 11

Table 3.7: FEM Dataset: All pairs of crack archetypes that occur
(and how often) in the 100 poorest agreement samples, and how
often these crack pairs occur in the entire dataset (500 samples)

3.8.3 FEM Dataset

The FEM Dataset consists of 500 samples. An overview of the pairs of crack
archetypes that occur among the 100 samples with the highest degree of dis-
agreement are shown in Table 3.7, along with their occurrence frequencies. For
this dataset, one can identify the following pairs of crack archetypes that are
problematic in terms of agreement:

• 23, 24
• 24, 103
• 20, 21
• 18, 102
• 23, 103
• 101, 102

Examples of samples with high disagreement are shown in the Appendix
Figures 5.5 - 5.8.
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Image1 Image2 Disagreement

32 0 A 123.npy 21 10x3 0.4 0 40000.npy 0.0
102 6x4 0.2 3 210.npy 21 0 A 106.npy 0.074
21 8x4 0.5 0 5000.npy 31 0 B 110.npy 0.074

30 0 A 113.npy 18 10x3 0.5 0 50004.npy 0.074
23 0 C 100.npy Facade 1.npy 0.074

201 1 A 103.npy 23 10x3 0.5 0 50000.npy 0.074
20 0 A 101.npy 20 10x3 0.4 0 40000.npy 0.074
Facade 2.npy 101 1 A 106.npy 0.074

23 0 A 104.npy 23 10x3 0.5 0 50000.npy 0.074
201 1 A 103.npy 23 6x4 0.2 0 200.npy 0.074
103 2 C 103.npy 103 10x3 0.2 7 20000.npy 0.148

18 6x4 0.2 0 200.npy 20 0 A 101.npy 0.148
31 0 B 110.npy 24 4x4 0.4 0 41.npy 0.148
Facade 2.npy Facade 3.npy 0.148

24 4x4 0.4 0 41.npy 31 0 B 110.npy 0.148
Facade 3 Real.npy 201 2 A 105.npy 0.148

18 10x3 0.5 0 50004.npy 103 2 C 103.npy 0.148
Facade 3 Converted.npy 30 0 A 113.npy 0.148

Facade 3 Real.npy 30 0 A 113.npy 0.148
32 0 A 123.npy 102 6x4 0.2 3 210.npy 0.148
102 1 B 102.npy 102 6x4 0.2 3 210.npy 0.148
23 0 A 104.npy 23 6x4 0.2 0 200.npy 0.222

21 8x4 0.5 0 5000.npy 20 0 A 101.npy 0.222
101 10x3 0.4 8 40010.npy 32 0 A 123.npy 0.222

18 0 B 119.npy 18 6x4 0.2 0 200.npy 0.222
23 0 C 100.npy Facade 2.npy 0.222

Facade 3 Converted.npy 201 2 A 105.npy 0.222
20 0 A 101.npy 20 4x4 0.4 0 40.npy 0.222

101 6x4 0.3 2 301.npy 18 0 B 119.npy 0.22
30 0 A 113.npy 102 6x4 0.2 3 210.npy 0.22
103 2 C 103.npy 103 4x4 0.5 1 50.npy 0.22

101 10x3 0.4 8 40010.npy 102 1 B 102.npy 0.22
101 1 B 108.npy 101 6x4 0.3 2 301.npy 0.22

Facade 1.npy 201 2 A 105.npy 0.22
Facade 2.npy 32 0 A 100.npy 0.22

102 1 B 102.npy 102 10x3 0.3 9 30024.npy 0.22
21 0 A 106.npy 21 8x4 0.5 0 5000.npy 0.22
Facade 4.npy 101 1 A 106.npy 0.22
Facade 4.npy 201 1 B 100.npy 0.22

101 1 B 108.npy 101 10x3 0.4 8 40010.npy 0.296
18 0 B 119.npy 18 10x3 0.5 0 50004.npy 0.296

102 6x4 0.2 3 210.npy 18 0 B 119.npy 0.296
24 0 A 117.npy 24 4x4 0.4 0 41.npy 0.296

103 4x4 0.5 1 50.npy 103 2 C 103.npy 0.296
24 0 A 117.npy 24 10x3 0.5 0 50001.npy 0.296
31 0 B 110.npy 18 6x4 0.2 0 200.npy 0.296
21 0 A 106.npy 21 10x3 0.4 0 40000.npy 0.296
201 1 B 100.npy Facade 1.npy 0.370

Facade 1.npy 201 1 B 100.npy 0.370
Facade 3.npy 101 1 A 106.npy 0.370

Table 3.8: Mixed Dataset: The names of the cracked facade matrices which
form the 50 samples along with the corresponding amount of disagreement

3.8.4 Mixed Dataset

Since the Mixed Dataset contains only 50 samples, I have decided to compute
the amount of disagreement for each of the 50 samples. The results are shown
in Table 3.8.

One can observe that image pairs that consist of one cracked facade generated
by one of the simulation model and one of the real-world cracked facades tend
to maximize disagreement among the expert raters.
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Chapter 4

Neural Network
Experiments

This chapter covers the deep learning experiments that I have conducted to
address the third and fourth research questions defined in chapter 1.

4.1 Introduction

As briefly discussed in the introduction of this thesis, the main goal is to help
automate the assessment of cracked facades. In order to achieve this, I have
fitted the neural network using various train/test splits, and evaluated its per-
formance. As stated previously, three datasets have been amassed to support
the goal of crack assessment automation, and I have fitted the model to both the
Markov-Walk and FEM datasets, separately. One can distinguish three di↵erent
types of train/test splits, all of which are outlined below:

• Random-Split: 75% of the samples are randomly assigned to the train
set and the remaining 25% is assigned to the test set.

• Leave-One-Crack Out: All samples that contain the leave-out crack
archetype will be assigned to the test set, and all remaining samples are
assigned to the training set.

• Leave-One-Class Out: All samples that belong to the leave-out simi-
larity class are assigned to the test set, and all remaining samples are
assigned to the training set

4.2 Outline

The remainder of this chapter is organized as follows. First, an overview of the
architecture of the neural network is provided, as well as how it is trained. Sec-
ondly, I cover how multiple annotations given by multiple raters are converted
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to a set of labels used to train the neural network, and how the cracked facades
are fed to the network. And finally, I present and discuss the experiments and
the corresponding results.

Figure 4.1: Architecture of the Siamese Network used for learning the similarity
between crack archetypes.

4.3 Neural Network Architecture

As stated in the introductory chapter of this thesis, I have used the same neural
network architecture that Wyke Pereboom and Maarten Kruithof have proposed
[3]. An overview of this architecture is shown in Figure 4.1. The architecture is
similar to that of the classification network shown in Figure 1.13. Note that the
parallel sets of layers represent the same network. Furthermore, the second-last
(dense) layer has size 2048, while the last layer has 64 neurons.

4.3.1 Similarity Computation

As shown in Figure 4.1, the images (81 pixels long and 161 pixels wide) are
run through the network in paralell. In essence, both images are run through
the same convolutional neural network (CNN), and each is mapped to a vector
in 64-dimensional space. Then, we compute the Euclidean distance in this
64-dimensional space (implemented with torch.norm function from PyTorch),
and subsequently quantify the similarity of two points in this space as follows:
1� tanh(d), where d denotes the computed distance between the two vectors.

tanh(d) =
sinh(x)

cosh(x)
=

ex � e�x

ex + e�x

Note that the co-domain of tanh(x) is the interval [�1, 1], and d > 0 !
tanh(d) � 0, and since d � 0, we have that 0  1� tanh(d)  1.

The performance of the neural network is measured by computing the so-called
loss which reflects how much the predicted similarity di↵ers from the actual
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similarity scores. In this case, the loss is computed by means of the Mean

Squared Error (MSE), which is defined as MSE =
1

n

Pn
i=1 (Yi � Ŷi)

2
, where

n denotes the number of samples, Yi denotes the ground truth similarity score for
sample i and Ŷi denotes the similarity score predicted by the Siamese Network
for sample i. Note that in our particular case, the MSE is always a scalar from
the interval [0, 1]. The MSE di↵ers from the Mean Absolute Error (MAE) in
that the di↵erences between the true similarity and predicted scores are squared.

Additionally, I also compute the accuracy, F 1, the precision and the recall for
both training and test sets. While it is more common to assess the performance
of a regression model by means of the MAE or MSE, this case is unusual in the
sense that the original annotations can be viewed as similarity intervals rather
than scalars in the continuous interval [0, 1]. Hence, predicted scores will fall
into one of a number of intervals that cover the domain [0, 1] which justifies
the treatment of neural network predictions as assignments to one of the four
similarity classes mentioned earlier.

The network is trained in a number of so-called epochs. In each of these epochs,
the network is updated, and a corresponding updated model is obtained. This
process is also known as the training phase. In each epoch, the dataset is split
up in so-called mini batches. Rather than running all n samples through the
network at once, the samples are propagated through the network in a per batch
fashion, and the weights of the network are updated for each batch, separately.

I have used batches of 16 samples for all experiments. The network is trained
by updating its weights in each epoch, which is done by backpropagating the
error signal, that is the loss on the training set, in a backwards manner from the
last layer to the first layer. Note that only the loss over the training set a↵ects
the updation of the network.

It is customary to pre-define the criteria for termination of the training phase.
In the original set-up of the training phase, as defined by Wyke Pereboom and
Maarten Kruithof, the network was trained for 50 consecutive epochs and the
model resulting from the last epoch was used for regression.

I have decided to take a slightly di↵erent approach. The model would usually
improve iteratively for the first 20 epochs and then its performance would hoover
around, getting better in some epochs, and worse in others.

I decided to set the number of epochs to 75, and terminate the process once no
improvement is obtained over 20 consecutive epochs, as this set-up allows for
incremental improvements, even after 20 to 30 epochs, while avoiding the pitfall
of training indefinitely without achieving better performance. Once training has
terminated, it is not the model resulting from the last epoch that is returned,
but the model that best minimizes the loss on the training set.
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4.4 Annotations

As discussed in the Inter-Rater Reliability chapter of this thesis, most samples
were rated by multiple raters. As stated before, we have decided to eliminate all
samples that were rated fewer than three times from the dataset (See Section
3.3.1). However, since the neural network can only handle a single true similarity
score per sample, this calls for a policy on how to combine these multiple ratings
into a single rating.

We have jointly discussed this matter and have identified three distinct ways in
which this can be achieved.

1. Majority Voting:
In the case that n raters have rated a given sample, one simply picks the
majority vote as the true similarity score for this sample. Note that this
is not always possible, since a majority vote may not exist. However, it
has the nice property that all samples will fall nicely into the center of
one of the similarity bins. Cases for which no majority vote exist will be
handled di↵erently (to be discussed later).

2. Averaging:
A possible alternative to majority voting is to take the average rating of a
set of n ratings (provided by n raters). The upside to this approach is that,
unlike majority voting, it can always be applied. The downside is that it
can prove to be problematic when one treats the similarity regression task
as a classification task, especially when the average falls on the boundary
between two similarity bins (to be discussed later).

3. One Sample per Labelling Instance:
A third alternative is to have one sample for each labelling instance. That
is, if n raters have labelled the i-th sample, one simply feeds the i-th sample
to the network n times, once for each of the n ratings. This alternative
was briefly discussed, but we quickly decided to drop it.

In the following, the conversion from the provided assessments to annotations,
on a per sample basis, will be discussed in more detail.

4.4.1 Conversion Annotations to Labels

As stated previously, all assessments were provided as one of the four ordinal cat-
egories that were mentioned before. I have chosen to convert these to so-called
similarity intervals (or ranges). The correspondences between the categories
and intervals are shown below:

• Very Dissimilar: 0.00 - 0.25, Center: 0.125

• Dissimilar: 0.25 - 0.50, Center: 0.375

• Similar: 0.50 - 0.75, Center: 0.625
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• Very Similar: 0.75 - 1.00, Center: 0.875

All assessments are converted to their corresponding range, and the center of
each range will be used as the ground truth, i.e. the center of a range of a
sample i will be used as its true similarity, Ŷi. Examples of how majority voting
and averaging are applied to obtain the annotations are given below.

Suppose we have the following three ratings provided by three separate raters
for some sample:

• {Q1: Very Dissimilar, Q2: Similar, Q3: Dissimilar}
• {Q1: Dissimilar, Q2: Similar, Q3: Similar}
• {Q1: Similar, Q2: Similar, Q3: Similar}

Majority Voting

Note that majority voting can only be applied to the ratings pertaining to Q2
and Q3. Three di↵erent ratings were provided for Q1, hence no majority vote
exists. For Q2, all three raters assigned the ratings Similar, hence 0.50� 0.75
will be the similarity interval assigned to Q2, and the true similarity will thus
be 0.625. For Q3, we have two occurrences of Similar and only one occurrence
of Dissimilar, hence the similarity interval will be 0.50� 0.75 and the true
similarity score will be set to 0.625.

Averaging

Averaging can be applied in any case. For each question, the average similarity
interval corresponding to the three provided ratings will be used to represent
the ground truth similarity interval. For Q1, we have {Very Dissimilar, Dis-
similar, Similar} which corresponds to {0.0-0.25, 0.25-0.50, 0.50-0.75}.
The lower bound of the resulting similarity interval will be the mean of the lower
bounds, and the upper bound will be computed similarly. The resulting bounds
and similarity interval will be:

Lower-Bound =
0.0 + 0.25 + 0.50

3
= 0.25,

Upper-Bound =
0.25 + 0.50 + 0.75

3
= 0.50,

9
>=

>;
! 0.25-0.50 ! Mean = 0.375

One can verify that similar computations for Q2 and Q3 will yield the following
averages:

Q2average = 0.50-0.75 ! Mean: 0.625

Q3average = 0.417-0.667 ! Mean: 0.567
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Selected (Hybrid) Approach

I have decided to apply majority voting whenever possible, and average the
various ratings in the case that no majority vote exists. While the results of
averaging and majority voting are not necessarily meaningful, this approach
enables us to convert all provided assessments to annotations that can be used
to train the neural network. Still, di�culties may arise when computing the
accuracy, F1, Recall and Precision. These di�culties, and how to deal with
them, will be discussed next.

Averaging: Divergent Similarity Intervals

Suppose that we have the following set of ratings for a given sample and for
one of the questions: {Similar, Dissimilar, Similar, Dissimilar}. We have
two occurrences of both Similar and Dissimilar. Once could easily verify that
this yields an average similarity interval of 0.375-0.625, its center being at 0.5,
which is right at the boundary between similarity classes Similar and Dissimilar.
How then, does one decide to which similarity class this sample belongs? Picking
one of the two classes to assign such boundary cases to seems quite arbitrary.

In other cases, the center of a similarity interval resulting from the application of
averaging, might fall within the boundaries of one of the original bins. Consider
the case where the following five ratings were provided for a given question and
sample: {Similar, Dissimilar, Dissimilar, Dissimilar, Dissimilar}. One
can verify that this yields the average interval 0.30-0.55. Frequent occurrences
of divergent similarity intervals, that is similarity intervals other than the origi-
nal intervals, can give rise to issues when computing and evaluating the accuracy
of the neural network.

Example: Divergent Similarity Intervals

Suppose that one is faced with a set of assessments provided by multiple raters,
and obtains the following annotations by means of applying averaging:

• 0.0-0.25, center: 0.125, 45 occurrences

• 0.25-0.50, center: 0.375, 57 occurrences

• 0.417-0.667 center: 0.542, 120 occurrences

• 0.50-0.75 center: 0.625, 65 occurrences

• 0.625-0.875 center: 0.75, 240 occurrences

• 0.75-1.00 center: 0.875, 84 occurrences

One can see that the first two bins together with the last two bins, are the
original bins. Since 240 samples (almost half of all samples) fall on the boundary
between the third and fourth bin, the neural network that one obtains through
training will likely misclassify many of the 240 boundary cases. Moreover, there
are 120 samples that are associated with the similarity interval 0.417-0.667.
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While these samples are not boundary cases, if one views them as belonging
to the similarity class 0.50-0.75, then the margin to the boundary with the
similarity class 0.25-0.50 will only be 0.042. hence these are also much more
likely to be classified incorrectly.

Handling Divergent Similarity Intervals

While there probably is no flawless way to handle such cases properly, one
can think of some strategies to handle them. When outlining such strategies
one can distinguish between two distinct categories, namely boundary cases
and non-boundary cases. Di↵erent dealing strategies that are appropriate for
dealing with one of these categories, as well as strategies that work for both,
are outlined separately below.

• Boundary Cases

– Ignore Samples: An alternative is to ignore the boundary cases
when computing the accuracy. Note that this doesn’t a↵ect the train-
ing phase of the neural network, nor does it influence the mean
Ssuared error and mean absolute error of the resulting model.

– Accept Both Adjacent Classes: Another alternative is to make
an exception for boundary cases when computing the model’s accu-
racy. Whenever a boundary case presents itself, one considers it cor-
rectly classified when the predicted similarity falls within the bound-
aries of either of the adjacent similarity intervals. Thus, if the true
similarity is set to 0.75, predictions 0.77 and 0.73 will both result in
a correct classification.

• Non-Boundary Cases

– Do Nothing: The least costly approach to dealing with the occur-
rence of non-boundary cases is to leave them as be. This approach
works since the center of such similarity intervals falls well within
the bounds of one of the original bins.

• Boundary and Non-Boundary Cases

– Intermediate Bin: One strategy is to introduce an intermediate bin.
Consider the example from the previous subsection. There are 240
boundary cases between the adjacent similarity intervals 0.50-0.75
and 0.75-1.00. One could simply move the upperbound and lower-
bound of the former and latter down and up by 0.0625, respectively, to
introduce the intermediate bin 0.5625-0.6875. Similarly, for the 120
samples associated with similarity interval 0.417-0.667 with center
0.542, a similar policy would yield new similarity bins 0.25-0.4585,
0.4585-0.4585-0.5835 and 0.5835-0.75. When one wants to intro-
duce new similarity intervals to cover both cases, one could simply
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consider the centers of all represented bins in increasing order, in
this particular case 0.125, 0.375, 0.542, 0.625, 0.75 and 0.875 and de-
fine new boundaries in the middle between subsequent center values
to obtain similarity intervals 0.0-0.25, 0.25-0.4585, 0.4585-0.5835,
0.5835-0.6875, 0.6875-0.8125 and 0.8125-1.000

– Convert to Original Bin: Another alternative for dealing with both
boundary and non-boundary cases is to simply replace their similarity
bins with one of the original bins, specifically the nearest bin, which
implies that the true similarity of these samples will also shift. Of
all the dealing strategies proposed thus far, this is the only one which
a↵ects the true similarity score of the sample as resulting from the
application of averaging.

Note: Introducing narrower similarity intervals will cause a sharp drop in accu-
racy, since it significantly reduces the margin around the bin centers. However,
the MSE and MAE will not be a↵ected by the number of similarity classes.

4.5 FEM Dataset Experiments

In this section I report on neural network Experiments performed on the FEM
dataset. First, I discuss how the labels were obtained for this dataset. Secondly,
I discuss how the di↵erent cracked facades were fed as input to the neural
network, and then the three di↵erent experiments are discussed.

4.5.1 FEM Dataset Annotations

This section sheds light on the distribution of the labels. As discussed in the
previous section, converting annotations from multiple raters to labels some-
times requires averaging of multiple annotations which may result in divergent
similarity intervals. Therefore, after conversion of the annotations to labels, an
additional post-processing step is often required to handle such cases. Table 4.1
shows the distribution of labels before and after handling divergent similarity
intervals. The Before columns show the distribution of the labels of the sam-
ples right after applying the hybrid approach to obtain the labels (discussed in
Section 4.4.1), while the After columns show the distribution of the labels after
handling the divergent similarity intervals (after post-processing step). Note
that there are samples that are not associated with any of the 4 original similar-
ity intervals in the Before column, namely all those that are not associated with
similarities 0.125, 0.375, 0.625 or 0.875. Out of a total of 499 samples, there are
only 12 such samples for Q1, 15 for Q2, and 13 for Q3, a small fraction of the
total number of samples. Hence, I have decided to convert each of these samples
to the nearest original bin. That is, all similarity intervals were converted to
the original similarity intervals, and thus, the resulting similarity intervals are
{0-0.25, 0.25-0.50, 0.50-0.75, 0.75-1.00}.
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Similarities
Q1 Q2 Q3

Before After Before After Before After

0.125 206 206 154 155 224 226
0.25 0 0 1 0 2 0
0.375 84 84 149 155 104 106
0.458 0 0 4 0 1 0
0.5 0 0 2 0 1 0

0.542 11 0 6 0 7 0
0.625 94 106 94 102 58 67
0.75 1 0 2 0 2 0
0.875 103 103 87 87 100 100

Table 4.1: FEM Dataset: Distribution of the true similarity scores of all samples
before and after handling of divergent similaritie intervals

In the following, The Random-Split, Leave One Crack Out and Leave
One Class Out experiments will be discussed in order.

4.5.2 Preparing Cracked Facades for Training

In order to fit a neural network to a dataset which consists of pairs of cracked
facades, one must feed these cracked facades to the network. To this end, we
have decided to represent the cracked facades as numpy matrices. For the FEM
dataset, these cracked facades were originally modelled in Diana by Krishna
Ajithkumar Pillai [4]. An important consideration in this context is that the
cracked facades modelled in Diana have di↵erent shapes and aspect ratio’s.
Hence, the resulting numpy matrices have di↵erent shapes as well. In order
to still enable fitting the network to these di↵erent cracked facades, we have
decided to resize the images to size (height = 81px, width = 161px). The code
for this was provided by Wyke Pereboom and Krishna Ajithkumar Pillai. In
order to minimize the amount of information lost in the process of resizing,
nearest neighbour interpolation from the cv2 Python library was used. In the
resulting numpy matrices, cracks are represented by values > 0, the facade itself
by 0 and openings are represented by �1.

4.5.3 Random-Split

This section presents the results of the Random-Split Experiment on the FEM
dataset.

Experimental Set-Up

In this experiment, 75% of the entire dataset was assigned to the training set,
and 25% to the test set. To shu✏e the data in order to ensure that samples
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are assigned to either sets at random, I have used np.random.shu✏e. The
training set is then fed to the neural network for training. Upon termination of
the training phase, the best model encountered thus far is returned and used for
prediction. This entire process is repeated 10 times in order to obtain reliable
estimates of the model’s performance. In each of the 10 runs, the MAE, MSE,
F1, accuracy, precision and recall as well as the underlying confusion matrices,
are computed. After all 10 runs have finished, these same metrics are averaged
across the 10 runs, including the confusion matrices.

In order to present a detailed overview of the neural network’s performance,
I have computed several scores including F1, accuracy, precision, recall, MAE
and MSE and calculated confusion matrices. Furthermore, I have identified
common characteristis of samples for which the neural network performed rela-
tively poorly (see Section 4.5.6).

In the following, first the results for each of the three questions will be shown.
Then, a discussion of all results follows.

Results Q1

Runs
MSE MAE Accuracy F1 Precision Recall

Train Test Train Test Train Test Train Test Train Test Train Test

Run 1 .0104 .0112 .0766 .0781 .794 .776 .804 .805 .794 .776 .837 .884
Run 2 .0091 .0096 .0708 .0748 .810 .816 .821 .825 .810 .816 .860 .843
Run 3 .0106 .0068 .0775 .0601 .799 .856 .812 .862 .799 .856 .848 .890
Run 4 .0108 .0109 .0762 .0813 .805 .744 .816 .760 .805 .744 .863 .817
Run 5 .0085 .0095 .0672 .0745 .829 .824 .838 .836 .829 .824 .866 .874
Run 6 .0081 .0103 .0647 .0763 .856 .752 .862 .771 .856 .752 .882 .817
Run 7 .0106 .0070 .0757 .0650 .791 .896 .806 .900 .791 .896 .851 .914
Run 8 .0118 .0089 .0809 .0714 .770 .832 .785 .842 .770 .832 .827 .879
Run 9 .0107 .0067 .0763 .0607 .786 .896 .802 .899 .786 .896 .848 .913
Run 10 .0104 .0079 .0753 .0659 .791 .848 .803 .859 .791 .848 .844 .898

Averages .0101 .0089 .0741 .0708 .803 .824 .815 .836 .803 .824 .853 .873

St.devs .0011 .0016 .0047 .0071 .0229 .0501 .021 .045 .023 .051 .015 .034

Table 4.2: FEM Dataset: Random-Split Performance by various metrics, Q1.

2

664

113.7± 3.95 40.1± 5.43 0.9± 0.54 0.0± 0.0
4.3± 0.9 52.2± 3.76 6.9± 1.51 0.8± 0.4
0.0± 0.0 10.8± 2.09 65.6± 3.23 1.9± 0.83
0.0± 0.0 0.0± 0.0 7.9± 2.12 68.9± 5.01

3

775

Figure 4.2: Confusion Matrix, Train, Q1.
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2

664

38.6± 4.08 12.6± 4.1 0.1± 0.3 0.0± 0.0
1.2± 1.33 16.2± 4.14 2.4± 1.56 0.0± 0.0
0.0± 0.0 3.0± 1.67 24.3± 3.23 0.4± 0.49
0.0± 0.0 0.0± 0.0 2.3± 1.19 23.9± 4.3

3

775

Figure 4.3: Confusion Matrix, Test, Q1.

Figure 4.4: Mean F1 per class, Train, Q1. Figure 4.5: Mean F1 per class, Test, Q1.

Figure 4.6: Mean precision per class, Train, Q1. Figure 4.7: Mean precision per class, Test, Q1.

Figure 4.8: Mean recall per class, Train, Q1. Figure 4.9: Mean recall per class, Test, Q1.
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Results Q2

Runs
MSE MAE Accuracy F1 Precision Recall

Train Test Train Test Train Test Train Test Train Test Train Test

Run 1 .0175 .0165 .0974 .1005 .703 .736 .704 .736 .703 .736 .729 .770
Run 2 .0160 .0148 .0950 .0921 .722 .760 .721 .761 .722 .760 .749 .767
Run 3 .0175 .0159 .0996 .0980 .690 .712 .689 .714 .690 .712 .720 .731
Run 4 .0176 .0128 .0994 .0864 .690 .784 .691 .786 .690 .784 .708 .813
Run 5 .0163 .0159 .0965 .0944 .717 .744 .716 .741 .717 .744 .736 .756
Run 6 .0138 .0242 .0920 .1072 .746 .696 .746 .690 .746 .696 .777 .705
Run 7 .0162 .0124 .0946 .0872 .730 .792 .729 .796 .730 .792 .741 .807
Run 8 .0185 .0127 .0996 .0899 .719 .768 .715 .768 .719 .768 .764 .776
Run 9 .0167 .0188 .0982 .1019 .714 .712 .716 .712 .714 .712 .742 .723
Run 10 .0184 .0144 .1016 .0917 .701 .776 .702 .776 .701 .776 .718 .798

Averages .0168 .0158 .0974 .0949 .713 .748 .713 .748 .713 .748 .738 .765

St.devs .0013 .0034 .0027 .0065 .0168 0.0317 0.017 0.033 0.017 0.032 0.020 0.035

Table 4.3: FEM Dataset: Random-Split Performance by various metrics, Q2.

Figure 4.10: Mean F1 per class, Train, Q2. Figure 4.11: Mean F1 per class, Test, Q2.

2

664

62.6± 5.12 54.7± 3.8 0.5± 0.5 1.6± 0.66
19.0± 4.9 88.8± 6.05 7.8± 1.78 0.0± 0.0
0.8± 0.6 12.6± 2.15 60.2± 3.06 1.8± 1.25
0.0± 0.0 1.0± 0.77 7.5± 3.01 55.1± 3.86

3

775

Figure 4.12: Confusion Matrix, Train, Q2.

65



2

664

20.6± 4.27 14.6± 3.14 0.1± 0.3 0.3± 0.64
5.8± 2.04 30.7± 4.65 2.9± 1.7 0.0± 0.0
0.2± 0.4 4.0± 1.0 21.6± 1.43 0.8± 1.08
0.0± 0.0 0.4± 0.49 2.4± 1.11 20.6± 3.64

3

775

Figure 4.13: Confusion Matrix, Test, Q2.

Figure 4.14: Mean precision per class, Train, Q2. Figure 4.15: Mean precision per class, Test, Q2.

Figure 4.16: Mean recall per class, Train, Q2. Figure 4.17: Mean recall per class, Test, Q2.

2

664

131.1± 3.21 38.3± 3.82 0.8± 0.75 0.2± 0.4
4.8± 1.89 66.9± 3.83 6.0± 1.1 0.0± 0.0
0.0± 0.0 3.2± 1.47 48.1± 2.84 0.3± 0.46
0.0± 0.0 1.0± 0.63 6.5± 1.28 66.8± 2.68

3

775

Figure 4.18: Confusion Matrix, Train, Q3.
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Results Q3

Runs
MSE MAE Accuracy F1 Precision Recall

Train Test Train Test Train Test Train Test Train Test Train Test

Run 1 .0108 .0100 .0729 .0719 .834 .816 .841 .825 .834 .816 .873 .864
Run 2 .0096 .0097 .0677 .0745 .853 .832 .858 .840 .853 .832 .879 .872
Run 3 .0109 .0085 .0732 .0678 .821 .856 .830 .859 .821 .856 .870 .884
Run 4 .0104 .0113 .0713 .0781 .829 .792 .837 .802 .829 .792 .871 .850
Run 5 .0106 .0081 .0710 .0667 .824 .848 .833 .850 .824 .848 .863 .859
Run 6 .0086 .0145 .0675 .0859 .837 .784 .843 .796 .837 .784 .865 .840
Run 7 .0093 .0138 .0703 .0829 .834 .792 .842 .799 .834 .792 .880 .839
Run 8 .0095 .0082 .0661 .0693 .861 .872 .866 .876 .861 .872 .888 .895
Run 9 .0087 .0111 .0693 .0698 .832 .848 .838 .854 .832 .848 .858 .880
Run 10 .0104 .0100 .0726 .0724 .842 .824 .848 .833 .842 .824 .878 .858

Averages .0099 .0105 .0702 .0739 .837 .826 .843 .833 .837 .826 .872 .864

Stdevs .0008 .0021 .0023 .0061 .0119 .0286 0.011 0.026 0.012 0.029 0.009 0.018

Table 4.4: FEM Dataset: Random-Split Performance by various metrics, Q3.

Figure 4.19: Mean F1 per class, Train, Q3. Figure 4.20: Mean F1 per class, Test, Q3.

2

664

42.3± 4.8 12.8± 1.66 0.5± 0.81 0.0± 0.0
1.8± 0.98 24.1± 4.09 2.4± 0.8 0.0± 0.0
0.0± 0.0 1.3± 1.35 14.0± 2.61 0.1± 0.3
0.0± 0.0 0.2± 0.4 2.6± 1.36 22.9± 2.3

3

775

Figure 4.21: Confusion Matrix, Test, Q3.
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Figure 4.22: Mean precision per class, Train, Q3. Figure 4.23: Mean precision per class, Test, Q3.

Figure 4.24: Mean recall per class, Train, Q3 Figure 4.25: Mean recall per class, Test, Q3

Discussion of Results Q1

Figures 4.2 through 4.9 and Table 4.2 reflect the performance of the network
concerning Q1.

One can observe that the accuracy is roughly 80% on both training and test
sets. Earlier experiments in which the neural network was fitted to annotations
provided by a single rater resulted in significantly higher accuracy scores in
excess of 90%. I suspect that this drop is due to the low overall agreement among
the raters. As pointed out in chapter 3, there is substantial disagreement among
all subsets of raters, including the raters who are considered to be experts.
One can imagine that raters who hold di↵erent views may provide di↵erent
ratings for similar samples, which implies that the neural network is faced with
conflicting logic, resulting in more incorrect classifications. Another interesting
observation is the low average precision achieved for the second class.(values
in the interval [0.25,0.5]). This is further supported by the confusion matrices
for both training and test sets, which show that many samples which belong to
class 1 were wrongly assigned to class 2, 40.7 samples for the training set, and
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13.5 for the test set.

Discussion of Results Q2

Figures 4.10 through 4.17 and Table 4.3 reflect the performance of the network
for the second question.

Compared to the results obtained for Q1, one finds that the average accuracy on
both training and test sets are significantly lower, just over 70%. The average
MAE scores for both the train and test sets are in accordance with this, the
average MAE was about 0.074 for Q1 and 0.96 for Q2, which is quite a di↵erence,
especially when one considers that the similarity classes have a margin around
the bin centers of 0.125. This is further evidence that the rate of agreement
among the raters for a given dataset and the performance of a neural network
fitted to that dataset are strongly correlated. When one compares the confusion
matrices for Q1 and Q2, one finds that the recall for class 1 is still low combined
with a low precision for the second class, but moreover, contrary to Q1, for Q2
one finds that the precision and f1 scores of class 1 are also quite low. This
is not simply due to the fact that the relative number of samples belonging to
class 1 that were classified as belonging to class 2 is higher (entry (0,1): 61.4
correct vs 54.7 incorrect for train set), but also 20% - 30% of the assignments
to the first class actually belong to class 2 (entry (1,0) 17.7 samples for train
set, 6.9 for test set).

Discussion of Results Q3

Figures 4.18 through 4.25 and Table 4.4 reflect the performance of the network
for the third question.

The neural network performed best for Q3, and this is supported by almost all
scores. However, the di↵erence in performance between Q1 and Q3 is small, the
accuracy is slightly higher for Q3 and the MAE slightly lower. Once more, one
can easily verify that the distinction between class 1 and 2 is most problematic.
Furthermore, one can verify that the distinction between class 3 and classes
2 and 4 is somewhat problematic for the neural network, although less than
the distinction between classes 1 and 2. All in all, these results support the
suspicion that the rate of agreement and the performance of the neural network
are strongly correlated, and show that the distinction between class 1 and 2
are most problematic. In fact, the performance of the neural network across
the di↵erent questions follows the same trend as the overall agreement, the
performance is best for Q3, followed by Q1, and significantly worse for Q2. In
general, one can argue that the network is somewhat biased towards the middle
of the similarity spectrum, that is, it is more likely to wrongly classify very
similar samples as being less similar and very dissimilar samples as more similar,
than it is to classify similar as very similar or dissimilar as very dissimilar. This
could be due to there being more disagreement between these adjacent classes
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(1 and 2, and 3 and 4). This is something that could be investigated in future
work.

4.5.4 Leave-One-Crack-Out

This section presents the results of the leave one crack out experiments for the
FEM dataset. This dataset contains eight di↵erent crack archetypes, 18, 20,
21, 23, 24, 101, 102 and 103. First, the set-up of the experiments is described.
Secondly, the results are presented for all three questions, followed by an inter-
pretation of the results.

Experimental Set-Up

This experiment consists of eight sub-experiments, one for each crack archetype
present in the dataset, namely: 18, 20, 21, 23, 24, 101, 102 and 103.. For
each of these sub-experiments, the samples are assigned to the training and
test sets as follows. If a sample contains one or two cracks that belongs to
the crack archetype to be left out, assign it to the testset, otherwise, assign
it to the training set. Each sub-experiment is repeated three times, and the
results are averaged in order to obtain reliable estimates of the performance.
Furthermore, the entire experiment is conducted three times, once for each of
the three questions. In the following, the results are shown for each question,
separately. For each of the questions, the average accuracies obtained on train
and test sets are shown for each crack archetype, as well as the average MAE
and MSE. These averages are taken over the three runs. This yields one bar
chart and one table for each question.

Results Q1, Q2 and Q3

Figure 4.26: Mean Train/Test Accuracies per Crack

Crack-ID
MSE MAE

Train Test Train Test

102 .0097 .0144 .0727 .0966
18 .0088 .0109 .0684 .0801
24 .0088 .0098 .0690 .0686
20 .0111 .0121 .0805 .0819
23 .0094 .0083 .0713 .0634
103 .0110 .0052 .0787 .0531
21 .0107 .0064 .0765 .0615
101 .0088 .0117 .0675 .0866

Table 4.5: MAE/MSE - Leave out Crack, Q1, FEM
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Figure 4.27: Mean Train/Test Accuracies per Crack

Crack-ID
MSE MAE

Train Test Train Test

102 .0173 .0139 .0970 .0945
18 .0142 .0243 .0912 .1158
24 .0163 .0157 .0945 .0996
20 .0138 .0300 .0919 .1277
23 .0171 .0161 .0959 .1006
103 .0175 .0085 .0995 .0703
21 .0170 .0137 .0965 .0910
101 .0173 .0141 .0980 .0941

Table 4.6: MAE/MSE - Leave out Crack, Q2, FEM

Figure 4.28: Mean Train/Test Accuracies per Crack

Crack-ID
MSE MAE

Train Test Train Test

102 .0097 .0114 .0674 .0864
18 .0088 .0123 .0675 .0772
24 .0097 .0106 .0714 .0734
20 .0093 .0158 .0723 .0848
23 .0102 .0106 .0713 .0761
103 .0110 .0058 .0755 .0530
21 .0108 .0062 .0744 .0554
101 .0100 .0089 .0689 .0773

Table 4.7: MAE/MSE - Leave out Crack, Q3, FEM

Discussion of Results

Figures 4.26 through 4.28 and tables 4.5 through 4.7 are shown side-by-side, and
reflect the performance of the network for the leave one crack out experiments
for the FEM dataset on all three questions, separately.

The main aim of these experiments is to determine whether there is a universal
logic that underlies the assessment of the similarity for di↵erent pairs of crack
archetypes. For example, one may wonder whether the process of assessing the
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similarities between cracked facades of archetypes 18 and 101 is similar to as-
sessing the degree of similarity between cracked facades belonging to archetypes
23 and 24.

The results clearly show that this is the case to some extent, because the test
accuracies are generally not far lower than the train accuracies. In fact, in quite
a few cases, the test accuracy even exceeds the train accuracy, which is very
surprising. Especially for crack archetype 103, the test accuracy exceeds the
train accuracy by around 15%, which is remarkable.

Interestingly, the test accuracy exceeds the train accuracy for crack archetypes
103 and 21 across all three questions, while for crack archetype 23 this is only
the case for the first question and for crack archetype 101 it holds true for the
second and third question. It would be interesting to further investigate what
underlies the phenomenon that the test accuracy sometimes exceeds the train
accuracy.

4.5.5 Leave One Class Out

This section presents the results of the leave one class out experiments on the
FEM dataset.

Experimental Set-Up

This experiment consists of four sub-experiments, one for each similarity class
present in the dataset, namely: {0-0.25, 0.25-0.50, 0.50-0.75, 0.75-1.00}.
For each of these sub-experiments, the samples are assigned to the training and
test sets as follows. If a sample contains belongs to the crack similarity class to
be left out, assign it to the testset, otherwise, assign it to the training set. Each
sub-experiment is run three times from scratch, and the results are averaged in
order to obtain reliable estimates of the performance. This entire experiment
is, of course, conducted three times, once for each of the three questions.
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Figure 4.29: Mean Train/Test Accuracies per Crack

Class-ID
MSE MAE

Train Test Train Test

0 .0080 .0135 .0644 .0893
1 .0099 .0093 .0727 .0738
2 .0096 .0067 .0728 .0620
3 .0099 .0064 .0748 .0546

Table 4.8: MAE/MSE - Leave out Class, Q1, FEM

Results Q1, Q2 and Q3

Figure 4.30: Mean Train/Test Accuracies per Crack

Class-ID
MSE MAE

Train Test Train Test

0 .0115 .0270 .0785 .1344
1 .0181 .0100 .1003 .0812
2 .0170 .0102 .1006 .0713
3 .0165 .0112 .0995 .0688

Table 4.9: MAE/MSE - Leave out Class, Q2, FEM

Discussion of Results

Figures 4.29 through 4.31 and tables 4.8 through 4.10 are shown side-by-side,
and reflect the performance of the network for the leave one class out experi-
ments for the FEM dataset on all three questions, separately.

The same phenomenon that was observed in the leave one crack out experiments,
can also be observed in the results for the leave one class out experiment. Which
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Figure 4.31: Mean Train/Test Accuracies per Crack

Class-ID
MSE MAE

Train Test Train Test

0 .0087 .0172 .0667 .1006
1 .0105 .0071 .0723 .0630
2 .0100 .0038 .0720 .0425
3 .0096 .0077 .0704 .0575

Table 4.10: MAE/MSE - Leave out Class, Q3, FEM

is that test accuracies sometimes exceed train accuracies. In fact, it occurs even
more frequently here.

One can verify that the network generalizes excellently to di↵erent similarity
classes, the test accuracy exceeds the train accuracy across all three questions
when the second, third or fourth similarity class is left out (in order of increasing
similarity).

However, the lowest similarity class is a big exception to this rule. One can see
that the train accuracy is considerably higher than the test accuracy when the
lowest similarity class is left out, across all three questions.

All in all, the results that the process of assessing the similarity between cracked
facades is similar across di↵erent degrees of similarity. That is, assessing the
similarity of a pair of cracked facades that lean towards the similar end of the
spectrum, is comparable to assessing a pair of cracked facades that are less
similar. However, the poor results that one obtains when leaving out samples
belonging to the lowest similarity class points oot caution. Further research is
needed to identify the cause of this strange result.

4.5.6 FEM: Characteristics of Misclassified Samples

This section provides an analysis of the samples for which the network performed
poorly, that is the samples for which the NN’s predictions were farthest o↵ from
the true similarites, in general. Separate analyses are shown for each of the
three questions. Tables 4.11 through 4.13 show which pairs of crack archetypes
were most di�cult to accurately predict for the network.
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Archetypes Occurrences Total Occurrences

(18, 102) 9 14
(18, 21) 9 23
(23, 24) 8 23
(18, 20) 8 23

(20, 101) 7 14
(24, 102) 6 10
(20, 102) 6 14
(20, 20) 4 13

(18, 101) 4 14
(21, 101) 4 11
(18, 24) 4 14

(103, 103) 3 14
(101, 102) 3 15
(24, 101) 3 11
(23, 102) 3 12
(23, 103) 2 11
(20, 24) 2 14

(101, 101) 2 15
(18, 23) 2 14
(20, 21) 2 23
(20, 23) 1 14

(23, 101) 1 10
(24, 103) 1 23
(101, 103) 1 11

(24, 24) 1 12
(23, 23) 1 13

(21, 102) 1 11
(18, 18) 1 15

(18, 103) 1 14

Table 4.11: FEM Dataset, Q1: All pairs of crack archetypes that occur (and
how often) in the 100 samples most poorly predicted by the network, and how
often these crack pairs occur in the entire dataset (500 samples)
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Archetypes Occurrences Total Occurrences

(18, 20) 12 23
(20, 24) 6 14
(18, 21) 6 23
(18, 23) 5 14

(24, 102) 5 10
(18, 24) 5 14
(20, 20) 4 13
(21, 24) 4 10
(23, 24) 4 23
(20, 23) 4 14

(20, 101) 4 14
(23, 101) 3 10
(101, 103) 3 11
(18, 102) 3 14
(23, 103) 3 11
(20, 21) 3 23

(20, 102) 3 14
(24, 101) 3 11
(21, 102) 3 11
(23, 102) 2 12
(20, 103) 2 15
(18, 101) 2 14
(24, 103) 2 23
(21, 103) 2 10
(18, 103) 2 14
(101, 102) 1 15
(21, 23) 1 11

(21, 101) 1 11
(101, 101) 1 15
(102, 103) 1 4

Table 4.12: FEM Dataset, Q2: All pairs of crack archetypes that occur (and
how often) in the 100 samples most poorly predicted by the network, and how
often these crack pairs occur in the entire dataset (500 samples)
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Archetypes Occurrences Total Occurrences

(18, 20) 8 23
(23, 24) 8 23

(18, 102) 7 14
(24, 102) 6 10
(20, 102) 6 14
(101, 103) 6 11

(18, 21) 5 23
(23, 102) 5 12
(20, 20) 4 13

(18, 101) 4 14
(20, 101) 4 14
(18, 24) 3 14

(23, 103) 3 11
(24, 103) 3 23
(21, 24) 3 10

(21, 101) 3 11
(103, 103) 2 14
(23, 101) 2 10
(20, 24) 2 14
(18, 18) 2 15
(20, 23) 2 14
(18, 23) 2 14

(101, 102) 2 15
(20, 21) 1 23

(24, 101) 1 11
(20, 103) 1 15
(21, 23) 1 11

(102, 102) 1 12
(23, 23) 1 13

(21, 102) 1 11
(101, 101) 1 15

Table 4.13: FEM Dataset, Q3: All pairs of crack archetypes that occur (and
how often) in the 100 samples most poorly predicted by the network, and how
often these crack pairs occur in the entire dataset (500 samples)

When comparing Tables 4.11 through 4.13, one notices that the results of the
three di↵erent questions are somewhat similar, but there are some di↵erences.
While pair (18, 102) can be viewed as a problematic pair for the first question,
9 out of the 14 are among the 100 most poorly classified, for question 2 only 3
out of the 14 are poorly classified. On the other hand, pair (18, 20) seems to
be a problematic pair for all three questions. Pairs (18, 20), (24, 102), (18, 24),
(20, 20), (20, 102) and (18, 102) occur more frequently among the 100 most
problematic samples than is to be expected, based purely on how often these
pairs occur in total throughout the dataset.

It is instructive to compare the results for each question to Table 3.7, since
such a comparison may reveal a correlation between the pairs that are hardest
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to predict for the network, and the pairs for which the agreement is generally
lowest. We find that some pairs that are in the top portion of Table 3.7, such
as (23,24), also occur in the top segment of at least one of Tables 4.11 through
4.13, while this is not true for other pairs (e.g. (24, 103)). In relation to this
discrepancy between the problematic pairs for the three questions compared
to the pairs featured in Table 3.7, it is instructive to note that Table 3.7 the
per sample agreement is calculated over all three questions, rather than per
question.

4.6 Markov-Walk Dataset Experiments

In this section I report on neural network experiments that were performed
on the Markov-Walk dataset. All relevant subtopics are presented in the same
order as was done for the FEM dataset.

4.6.1 Experimental Set-Up

The set-up of the random-split experiments is the same as for the FEM-dataset.
The only di↵erences are that this dataset is considerably bigger, consisting of
2466 samples instead of 499, and that it involves 7 similarity classes instead
of 4, namely: {0-0.1825, 0.1825-0.3175, 0.3175-0.4325, 0.4325-0.5625,
0.5625-0.6875, 0.6875-0.8125, 0.8125 - 1.0}.

4.6.2 Markov-Walk Dataset Annotations

This section reports on the annotations obtained for the samples of the Markov-
Walk dataset. Table 4.8 shows the distribution of the true similarity scores for
all three questions, before and after conversion with the hybrid approach.

One can observe that there are far more similarity intervals after converting the
assessments into single annotations per sample than is the case for the FEM
dataset. This is not surprising, given that this dataset contains significantly
more samples, 2466 rather than 499, and considerably more raters are involved
here, 28 instead of 7.

I have postprocessed these annotations by narrowing the original similarity in-
tervals and introducing new similarity intervals to account for boundary cases.
This resulted in the following similarity intervals: {0-0.1875, 0.1875-0.3125,
0.3125-0.4375, 0.4375-0.5625, 0.5625-0.6875, 0.6875-0.8125, 0.8125-
1.0}. Thus, all true similarities were converted to the nearest value from the
following, {.125, .25, .375, .5, .625, .75, .875}. The resulting set of similar-
ity intervals along with the number of corresponding samples for each interval,
are shown below:
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Similarities
Q1 Q2 Q3

Before After Before After Before After

0.125 333 333 229 229 262 262
0.25 50 50 29 29 49 49
0.325 2 0 2 0 4 0
0.375 615 618 868 875 795 804
0.425 1 0 5 0 5 0
0.458 9 0 13 0 3 0
0.5 23 45 45 75 39 52

0.542 13 0 17 0 10 0
0.575 3 0 6 0 4 0
0.625 747 756 735 745 805 813
0.675 6 0 4 0 4 0
0.696 0 0 1 0 1 0
0.75 84 84 51 52 56 57
0.875 580 580 461 461 429 429

Table 4.14: Markov-Walk Dataset: True similarities before and after handling
of divergent similarity intervals.

• 0.0 - 0.1875: Center: 0.125

• 0.1875 - 0.3125: Center: 0.25

• 0.3125 - 0.4375: Center: 0.375

• 0.4375 - 0.5625: Center: 0.5

• 0.5625 - 0.6875: Center: 0.625

• 0.6875 - 0.8125: Center: 0.75

• 0.8125 - 1.0: Center: 0.875

Note that the centers (true similarities) of the lowest and highest similarity
intervals were not modified. All in all, the true similarities of only 36 of the
2466 samples have been a↵ected by this procedure. Next, each of the three
experiments will be discussed, one by one.

4.6.3 Preparing Cracked Facades for Training

By contrast to the FEM dataset, all cracked facades associated with this dataset
have the same size, 100 pixels high and 333 pixels wide. The same procedure
used for the FEM cracked facades was applied here to convert the cracked
facades to numpy matrices of size 81 by 161. There are two motivations for
this. First of all, propagating large numpy matrices through the network is
both memory and cpu intensive. Secondly, converting all cracked facades to the
same size allows one to train and test the network on cracked facades from both
datasets.
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2

666666664

55.6± 8.6 104.8± 14.18 60.6± 4.43 21.2± 2.93 5.0± 2.68 1.6± 1.11 1.8± 0.87
2.6± 1.28 24.5± 2.69 7.6± 2.42 1.2± 0.87 0.2± 0.4 0.5± 0.5 0.0± 0.0

61.8± 16.39 164.2± 24.96 131.0± 12.55 73.2± 7.57 29.4± 4.13 9.2± 2.18 1.2± 0.75
0.0± 0.0 0.6± 0.49 2.6± 0.92 23.8± 2.14 5.2± 1.33 0.1± 0.3 0.0± 0.0
2.6± 1.2 8.7± 2.37 38.3± 6.36 123.3± 10.39 207.8± 12.0 141.5± 8.42 45.6± 7.77
0.0± 0.0 0.0± 0.0 0.0± 0.0 1.5± 0.81 8.8± 2.14 40.0± 2.19 9.8± 2.64
0.0± 0.0 0.1± 0.3 6.3± 2.0 25.7± 3.29 63.1± 7.35 150.3± 10.79 186.1± 10.38

3

777777775

Figure 4.32: Confusion Matrix, Train, Q1.
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666666664

19.4± 3.29 31.0± 6.13 22.1± 3.67 8.0± 2.57 1.0± 0.77 0.3± 0.64 0.6± 0.66
0.8± 0.6 9.5± 2.33 2.3± 1.68 0.5± 0.5 0.2± 0.4 0.1± 0.3 0.0± 0.0

17.2± 5.33 53.2± 8.21 39.3± 5.25 23.0± 5.71 10.8± 1.94 4.0± 2.68 0.5± 0.5
0.0± 0.0 0.3± 0.46 1.4± 1.11 8.7± 1.73 2.2± 1.4 0.1± 0.3 0.0± 0.0
1.1± 0.94 2.3± 1.9 14.4± 3.69 41.9± 7.2 65.1± 6.53 48.0± 4.56 15.4± 4.18
0.0± 0.0 0.0± 0.0 0.0± 0.0 0.6± 0.49 2.8± 1.66 16.4± 3.77 4.1± 1.81
0.0± 0.0 0.1± 0.3 2.7± 1.79 7.7± 3.38 19.0± 5.0 53.1± 6.58 65.8± 7.51

3

777777775

Figure 4.33: Confusion Matrix, Test, Q1.

4.6.4 Random-Split

The results obtained for the random-split experiments for all questions are dis-
cussed in this section. The structure of this section is similar to that of the
random-split section that covers the FEM dataset.

Results Q1

Runs
MSE MAE Accuracy F1 Precision Recall

Train Test Train Test Train Test Train Test Train Test Train Test

Run 1 .0272 .0316 .1273 .1394 .357 .324 .404 .365 .357 .324 .539 .502
Run 2 .0237 .0241 .1197 .1202 .357 .379 .416 .420 .357 .379 .588 .563
Run 3 .0266 .0218 .1265 .1144 .353 .371 .406 .423 .353 .371 .559 .592
Run 4 .0238 .0210 .1192 .1156 .377 .350 .438 .402 .377 .350 .614 .558
Run 5 .0249 .0230 .1224 .1191 .360 .381 .418 .430 .360 .381 .590 .587
Run 6 .0231 .0244 .1184 .1216 .365 .355 .421 .406 .365 .355 .592 .584
Run 7 .0236 .0241 .1197 .1184 .365 .361 .424 .408 .365 .361 .590 .560
Run 8 .0244 .0244 .1221 .1172 .354 .384 .409 .441 .354 .384 .571 .604
Run 9 .0226 .0225 .1171 .1165 .363 .365 .416 .416 .363 .365 .582 .594
Run 10 .0222 .0245 .1167 .1194 .367 .363 .423 .415 .367 .363 .596 .585

Averages .0242 .0241 .1209 .1202 .362 .363 .417 .413 .362 .363 .582 .573

Stdevs .0015 .0027 .0035 .0067 .0068 .0169 0.010 0.019 0.007 0.017 0.020 0.028

Table 4.15: Markov-Walk Dataset: Random-Split Performance by various met-
rics, Q1.
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Figure 4.34: Mean F1 per class, Train, Q1. Figure 4.35: Mean F1 per class, Test, Q1.

Figure 4.36: Mean precision per class, Train, Q1. Figure 4.37: Mean precision per class, Test, Q1.

Figure 4.38: Mean recall per class, Train, Q1 Figure 4.39: Mean recall per class, Test, Q1
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Results Q2

Runs
MSE MAE Accuracy F1 Precision Recall

Train Test Train Test Train Test Train Test Train Test Train Test

Run 1 .0365 .0342 .1483 .1444 .294 .316 .338 .368 .294 .316 .475 .519
Run 2 .0297 .0308 .1353 .1375 .309 .326 .363 .368 .309 .326 .520 .531
Run 3 .0353 .0336 .1463 .1465 .301 .290 .351 .331 .301 .290 .500 .471
Run 4 .0321 .0289 .1399 .1347 .320 .319 .371 .361 .320 .319 .523 .509
Run 5 .0349 .0335 .1474 .1421 .293 .314 .334 .352 .293 .314 .464 .477
Run 6 .0319 .0283 .1389 .1298 .312 .345 .368 .394 .312 .345 .532 .551
Run 7 .0355 .0348 .1470 .1442 .299 .337 .342 .392 .299 .337 .486 .542
Run 8 .0335 .0321 .1426 .1426 .319 .284 .367 .323 .319 .284 .515 .459
Run 9 .0327 .0317 .1413 .1374 .319 .311 .369 .359 .319 .311 .526 .504
Run 10 .0334 .0355 .1427 .1477 .308 .292 .359 .336 .308 .292 .514 .462

Averages .0336 .0323 .1430 .1407 .307 .313 .356 .358 .307 .313 .505 .502

Stdevs .0019 .0023 .0040 .0054 .0097 .0192 .013 .023 .010 .019 .022 .032

Table 4.16: Markov-Walk Dataset: Random-Split Performance by various met-
rics, Q2.

2

666666664

31.4± 6.26 78.8± 5.79 36.8± 5.53 16.8± 1.33 5.5± 2.73 1.4± 0.49 1.4± 0.49
1.1± 1.14 15.2± 2.09 3.3± 1.19 1.8± 0.75 0.2± 0.4 0.0± 0.0 0.0± 0.0

35.2± 12.14 131.2± 12.32 163.7± 20.05 182.6± 9.7 99.9± 7.34 36.8± 6.69 12.2± 2.82
0.3± 0.46 1.7± 1.42 16.0± 2.28 28.0± 3.9 7.1± 1.76 2.5± 1.02 0.0± 0.0
10.1± 4.25 39.0± 5.22 69.8± 6.18 123.5± 6.48 150.7± 8.22 108.7± 7.13 59.1± 9.27
0.0± 0.0 0.1± 0.3 0.4± 0.66 1.7± 0.9 4.7± 1.55 25.9± 3.91 3.7± 2.05
0.8± 0.98 2.8± 1.08 8.2± 2.82 21.4± 4.13 51.7± 5.2 102.4± 6.3 153.4± 6.14

3

777777775

Figure 4.40: Confusion Matrix, Train, Q2.

2

666666664

12.5± 3.23 24.0± 3.38 12.1± 2.34 6.3± 1.9 1.3± 1.0 0.3± 0.46 0.4± 0.49
0.3± 0.46 5.3± 1.95 0.9± 0.7 0.7± 0.78 0.2± 0.6 0.0± 0.0 0.0± 0.0
12.8± 5.19 43.0± 4.29 54.2± 8.34 57.0± 4.12 31.5± 5.64 11.3± 1.49 3.6± 1.2
0.0± 0.0 0.6± 0.66 5.9± 2.21 10.3± 3.32 2.2± 1.83 0.3± 0.46 0.1± 0.3
2.3± 1.55 11.7± 2.45 22.8± 5.23 39.6± 3.41 49.7± 4.29 35.8± 6.19 22.2± 4.71
0.0± 0.0 0.0± 0.0 0.1± 0.3 0.1± 0.3 2.3± 1.42 11.0± 3.26 2.0± 1.73
0.2± 0.4 1.2± 0.98 2.0± 1.55 7.3± 2.37 20.9± 3.62 38.3± 3.9 50.4± 6.12

3

777777775

Figure 4.41: Confusion Matrix, Test, Q2.
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Figure 4.42: Mean F1 per class, Train, Q2. Figure 4.43: Mean F1 per class, Test, Q2.

Figure 4.44: Mean precision per class, Train, Q2. Figure 4.45: Mean precision per class, Test, Q2.

Figure 4.46: Mean recall per class, Train, Q2 Figure 4.47: Mean recall per class, Test, Q2

83



Results Q3

Runs
MSE MAE Accuracy F1 Precision Recall

Train Test Train Test Train Test Train Test Train Test Train Test

Run 1 .0271 .0274 .1292 .1327 .343 .326 .391 .373 .343 .326 .552 .527
Run 2 .0260 .0276 .1266 .1300 .348 .345 .400 .397 .348 .345 .570 .557
Run 3 .0260 .0275 .1281 .1328 .333 .298 .379 .345 .333 .298 .544 .522
Run 4 .0262 .0232 .1280 .1211 .342 .358 .394 .408 .342 .358 .557 .580
Run 5 .0263 .0277 .1281 .1303 .339 .373 .386 .421 .339 .373 .544 .575
Run 6 .0261 .0266 .1270 .1292 .350 .319 .405 .361 .350 .319 .575 .526
Run 7 .0256 .0240 .1249 .1230 .368 .342 .424 .391 .368 .342 .591 .564
Run 8 .0252 .0281 .1247 .1319 .345 .342 .400 .391 .345 .342 .567 .525
Run 9 .0273 .0279 .1301 .1304 .347 .334 .392 .384 .347 .334 .542 .553
Run 10 .0267 .0258 .1288 .1262 .345 .348 .390 .403 .345 .348 .542 .569

Averages .0263 .0266 .1275 .1288 .346 .339 .396 .387 .346 .339 .558 .550

St.devs .0006 .0016 .0017 .0038 .0087 .0198 .012 .021 .009 .020 .016 .022

Table 4.17: Markov-Walk Dataset: Random-Split Performance by various met-
rics, Q3.

Figure 4.48: Mean F1 per class, Train, Q3. Figure 4.49: Mean F1 per class, Test, Q3.
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2

666666664

68.9± 5.52 67.4± 5.57 43.2± 4.66 17.8± 3.52 2.6± 0.66 1.1± 0.83 0.4± 0.49
5.5± 1.91 21.7± 2.72 8.3± 1.49 1.4± 0.66 0.0± 0.0 0.7± 0.46 0.1± 0.3
125.3± 6.02 140.9± 11.42 155.5± 11.88 115.3± 9.8 47.5± 6.04 13.8± 2.68 6.7± 1.35
0.0± 0.0 0.5± 0.5 3.9± 1.7 23.9± 2.74 8.8± 2.09 0.3± 0.46 0.5± 0.5
1.5± 0.81 12.9± 3.56 56.5± 7.42 138.3± 7.52 183.0± 7.21 156.6± 6.99 57.5± 6.0
0.0± 0.0 0.0± 0.0 0.0± 0.0 1.1± 0.54 4.4± 1.74 30.8± 3.03 6.4± 1.11
0.0± 0.0 1.0± 0.63 4.3± 1.35 12.6± 3.17 39.5± 4.13 104.7± 8.52 155.9± 8.13

3

777777775

Figure 4.50: Confusion Matrix, Train, Q3.

2

666666664

21.4± 5.24 19.4± 2.06 13.4± 2.46 4.9± 1.87 0.8± 0.87 0.5± 0.67 0.2± 0.4
2.6± 1.5 5.9± 1.14 2.3± 1.42 0.3± 0.46 0.0± 0.0 0.2± 0.4 0.0± 0.0
39.9± 4.59 46.0± 3.22 50.2± 5.56 39.1± 5.56 16.5± 3.38 5.4± 2.01 1.9± 0.94
0.0± 0.0 0.2± 0.4 1.8± 1.25 8.8± 2.86 2.9± 1.51 0.2± 0.4 0.2± 0.4
0.8± 0.75 4.3± 2.15 20.3± 6.1 44.3± 8.44 58.9± 7.73 57.9± 6.59 20.2± 2.75
0.0± 0.0 0.0± 0.0 0.0± 0.0 0.4± 0.49 1.3± 0.9 10.6± 2.42 2.0± 1.1
0.0± 0.0 0.4± 0.49 1.2± 1.08 5.4± 1.5 15.3± 2.28 35.6± 3.69 53.1± 6.25

3

777777775

Figure 4.51: Confusion Matrix, Test, Q3.

Figure 4.52: Mean precision per class, Train, Q3. Figure 4.53: Mean precision per class, Test, Q3.

Discussion of Results

Figures 4.32 through 4.39 and Table 4.12 show the performance of the network
for the random-split experiments for Q1, Figures 4.40 through 4.47 and Table
4.13 for Q2, and Figures 4.48 through 4.55 and Table 4.14 for Q3.

When comparing the obtained results to the results obtained for the FEM
dataset, one quickly notices that the accuracy is considerably lower across all
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Figure 4.54: Mean recall per class, Train, Q3 Figure 4.55: Mean recall per class, Test, Q3

three questions. Note that this was to be expected, since there are seven simi-
larity categories instead of four, and thus the margins around the centers of the
similarity intervals, which serve as ground truth similarities of the samples, are
smaller.

Nonetheless, the huge di↵erence between the accuracies obtained for the FEM
and Markov-Walk datasets is not entirely due to the fact that there are more
similarity categories. One can make two additional observations which may
explain why the accuracies are much lower than for the FEM dataset. Firstly,
the mean absolute error and mean squared error are higher. The di↵erence
is substantial with the mean absolute error being 50% to 75% higher for all
questions and for both training and test sets for the FEM dataset than for the
Markov-Walk dataset.

Secondly, one can verify that the overall agreements are lower for all three
questions in the case that all raters are involved (See Table 3.4). However,
the latter di↵erence is quite small, as measured by Krippendor↵’s Alpha, the
overall agreement for the FEM dataset amounts to 0.674, 0.562, and 0.733, for
questions one through three, respectively, whereas the overall agreement for the
Markow-Walk dataset amounts to 0.634, 0.519, and 0.618. While the overall
agreement is lower for the Markov-Walk dataset across all three questions, the
overall agreement on the second question for the FEM dataset is much lower
than the overall agreement on the first question for the Markov-Walk dataset.

Yet, averaged across 10 runs, the mean absolute error on the annotations for the
second question for the FEM dataset is around 0.095, while the mean absolute
error on the annotations for the first question for the Markov-Walk dataset
is around 0.125. Hence, the rate overall agreement, alone, is not an accurate
predictor of the performance of the neural network for a given dataset. One
must be mindful of the fact that an existence of a correlation between the rate
of agreement and the performance of the network does not imply that a higher
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rate of agreement always results in better performance. There are other factors
and variables which we do not fully understand that influence the outcome,
which motivates future work to gain a better understanding of these factors.

However, I suspect that the higher number of raters involved in labelling the
Markov-Walk samples might explain the di↵erence. It is evident that the agree-
ment between pairs of raters is typically quite poor. Hence, the involvement of
numerous raters leads to numerous di↵erent views of how similar certain pairs
of cracked facades are, which in turn leads to more inconsistent data which ul-
timately results in poorer performance. To determine whether this is truly the
case, additional experimentation is needed.

Furthermore, the results for the Markov-Walk dataset further support that the
overall agreement and the performance of the network are correlated, the per-
formance is best for Q1, for which the agreement is highest, followed closely by
Q3, for which the agreement is only slightly lower, and it is worst for Q2, for
which the agreement is clearly the lowest.

Regarding the average per class precision, recall, and F1 scores, one finds that
these are far worse for the intermediate intervals than for the original intervals.
One can also tell this from analyzing the confusion matrices which clearly show
that many samples were wrongly classified by a single class. This is likely due
to there being far less samples belonging to these intermediate classes.

In the next section, an analysis of the relation between the network’s perfor-
mance on a per sample level is given. After that, the leave one out experiments,
also referred to as the “generalizability” experiments, will be discussed, starting
with the leave-one-crack out experiments, followed by the leave-one-class out
experiments.

4.6.5 Markov-Walk: Characteristics of Misclassified Sam-
ples

This section provides an analysis of the samples for which the network performed
poorly. that is, the samples for which the NN’s predictions were farthest o↵ from
the true similarites, in general. Separate analyses are shown for each of the three
questions.

Tables 4.18 through 4.20 show how often each pair of crack archetypes that occur
among the n samples (n = 250) for which the network’s predictions were poorest,
how often these pairs of crack archetypes occurred throughout those n samples
(column “Occurrences”) as well as how often these pairs occur throughout the
entire Markov-Walk dataset, separately for the three similarity questions. One
could compute how often a pair of crack archetypes occurs throughout the n
samples relatively to how often it occurs throughout the whole dataset (column
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“Total Occurrences”) to gain a better understanding of how much trouble a pair
of crack archetypes poses to the network in terms of its predictability.

When interpreting the results shown in Tables 4.18 through 4.20, a few con-
siderations must be kept in mind. Firstly, some pairs of crack archetypes may
occur less frequently than others, and yet be more di�cult to accurately predict
as indicated by a higher relative occurrence frequency (touched on in previ-
ous paragraph). On the other hand, if a pair of crack archetypes is scarecely
represented throughout the entire dataset, a high relative occurrence frequency
does not provide strong evidence that a pair of crack archetypes poses problems
to the network. In such cases, it may be wise to generate and annotate more
samples that contain said crack archetypes in order to determine whether it is
a problematic pair.

Furthermore, one observes that there is a correlation between which pairs of
crack archetypes pose di�culty to the network in terms of predictability, and
which pairs of crack archetypes have the lowest rate of agreement. One can
verify this by comparing Tables 4.18 through 4.20 to Table 3.6. One can verify
that pairs (101, 102), (103, 103), (103, 201), (201, 201), (102, 102) are show up
in the top portion of both Tables 3.6, 4.18, and 4.20 which provides evidence
that the rate of agreement for a given pair of crack archetypes is correlated with
how well the network is able to perform on said pair of crack archetypes.

Regarding the relation between the rate of agreement for a given pair of crack
archetypes and its predictability from a neural network perspective, it is impor-
tant to note that the two concepts are somewhat correlated, but not strongly
correlated. This is reflected by the fact that the relative occurrence frequency
of some pairs of crack archetypes greatly varies between Table 3.6 and Tables
4.18 through 4.20. An example of this is pair (101, 102). While it occurs 54
times among the 250 samples with the lowest agreement, it occurs only 19 times
throughout the 250 samples for which the network’s predictions are poorest.

A possible explanation for the di↵erence between the occurrence frequencies for
pair (101, 102) in Table 3.6 compared to Tables 4.18 to 4.20, only 12 times for
question 2 (Table 4.19), is that there is likely much variation in how disagree-
ment among a set of samples featuring the same crack archetypes a↵ects the
true similarities for those samples. For example, suppose that 10 samples con-
sisting of the same pair of crack archetypes, all rated by two raters, are given
similarity assessments Very Dissimilar and Very Similar. While this implies that
the agreement is shockingly low, averaging the ratings will yield a stable 0.5,
which will make it easier for the network to predict the similarity score for these
samples. In other cases, low agreement among a small subset of all samples con-
sisting of a given pair of crack archetypes, might cause the network to poorly
predict many of those samples. Lastly, it is important to keep in mind that
Tables 4.18 through 4.20 reflect results per question, whereas the agreement per
sample takes all questions into consideration at once.
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Archetypes Occurrences Total Occurrences

(103, 201) 34 156
(103, 103) 25 100
(101, 102) 19 154
(201, 201) 16 89

(31, 32) 14 181
(23, 30) 14 165
(20, 21) 11 155
(24, 32) 11 181
(24, 24) 11 107

(102, 102) 10 71
(18, 18) 9 78
(20, 20) 5 88
(23, 23) 5 103
(18, 20) 5 131
(30, 30) 5 81
(24, 31) 4 6
(32, 32) 4 96

(101, 101) 4 114
(21, 21) 4 103
(23, 31) 3 4
(31, 31) 3 106
(21, 23) 3 8
(18, 23) 2 4
(21, 30) 2 3
(18, 24) 2 6
(23, 24) 2 4
(21, 24) 2 4

(24, 103) 2 3
(20, 23) 2 6
(20, 32) 2 3
(18, 30) 2 2
(30, 31) 1 1

(31, 101) 1 6
(21, 102) 1 5
(30, 102) 1 9
(30, 101) 1 2
(30, 32) 1 3
(20, 30) 1 2

(102, 201) 1 1
(101, 103) 1 5

(21, 32) 1 2
(23, 201) 1 2
(18, 32) 1 2

(24, 201) 1 3

Table 4.18: Markov-Walk Dataset, Q1: All pairs of crack archetypes that occur
(and how often) among the 250 samples most poorly predicted by the network,
and how often these crack pairs occur in the entire dataset (2466 samples)
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Archetypes Occurrences Total Occurrences

(23, 30) 26 165
(103, 201) 24 156

(24, 32) 23 181
(31, 32) 21 181
(24, 24) 16 107

(103, 103) 15 100
(20, 21) 14 155
(18, 20) 13 131

(101, 102) 12 154
(23, 23) 11 103
(31, 31) 11 106
(18, 18) 9 78
(20, 20) 8 88
(30, 30) 6 81
(21, 21) 6 103

(102, 102) 4 71
(201, 201) 4 89

(32, 32) 4 96
(18, 24) 3 6
(23, 31) 2 4
(18, 23) 2 4
(23, 24) 2 4

(101, 101) 2 114
(24, 101) 1 5
(21, 24) 1 4
(18, 32) 1 2

(31, 101) 1 6
(101, 201) 1 4
(102, 201) 1 1
(24, 201) 1 3
(21, 30) 1 3

(102, 103) 1 4
(20, 30) 1 2
(18, 31) 1 4
(24, 31) 1 6

Table 4.19: Markov-Walk Dataset, Q2: All pairs of crack archetypes that occur
(and how often) among the 250 samples most poorly predicted by the network,
and how often these crack pairs occur in the entire dataset (2466 samples)
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Archetypes Occurrences Total Occurrences

(103, 201) 27 156
(103, 103) 23 100

(31, 32) 19 181
(23, 30) 19 165

(101, 102) 18 154
(24, 32) 16 181

(102, 102) 12 71
(24, 24) 11 107
(23, 23) 9 103
(20, 20) 8 88
(20, 21) 8 155
(18, 18) 8 78
(18, 20) 8 131

(201, 201) 7 89
(32, 32) 6 96
(31, 31) 5 106
(30, 30) 5 81

(101, 101) 4 114
(31, 101) 4 6
(21, 21) 4 103
(23, 31) 3 4
(21, 30) 3 3
(18, 24) 2 6
(21, 23) 2 8

(102, 103) 2 4
(24, 101) 2 5
(23, 24) 1 4
(18, 23) 1 4
(21, 24) 1 4

(24, 103) 1 3
(30, 103) 1 3
(20, 32) 1 3

(102, 201) 1 1
(23, 102) 1 5
(24, 31) 1 6
(30, 32) 1 3

(24, 201) 1 3
(20, 30) 1 2

(23, 201) 1 2
(20, 101) 1 5
(21, 101) 1 7

Table 4.20: Markov-Walk Dataset, Q3: All pairs of crack archetypes that occur
(and how often) among the 250 samples most poorly predicted by the network,
and how often these crack pairs occur in the entire dataset (2466 samples)

91



4.6.6 Leave One Crack Out

This section presents the results of the leave one crack out experiments on the
Markov-Walk dataset.

Results Q1, Q2, and Q3

Figure 4.56: Mean Train/Test Accuracies per Crack

Crack-ID
MSE MAE

Train Test Train Test

101 .0246 .0224 .1217 .1158
23 .0239 .0315 .1200 .1393
18 .0242 .0246 .1217 .1111
103 .0219 .0331 .1146 .1481
102 .0249 .0276 .1221 .1316
24 .0247 .0262 .1216 .1266
20 .0257 .0188 .1253 .1033
31 .0247 .0217 .1219 .1134
201 .0229 .0324 .1172 .1451
30 .0246 .0282 .1210 .1380
21 .0233 .0228 .1193 .1138
32 .0247 .0180 .1218 .1067

Table 4.21: MAE/MSE - Leave out Crack, Q1, FEM

Figure 4.57: Mean Train/Test Accuracies per Crack

Crack-ID
MSE MAE

Train Test Train Test

101 .0348 .0264 .1460 .1267
23 .0318 .0413 .1392 .1615
18 .0332 .0350 .1425 .1475
103 .0319 .0369 .1396 .1535
102 .0331 .0271 .1431 .1307
24 .0323 .0453 .1411 .1671
20 .0324 .0350 .1411 .1449
31 .0341 .0345 .1446 .1451
201 .0336 .0318 .1430 .1438
30 .0335 .0331 .1427 .1424
21 .0319 .0285 .1407 .1305
32 .0347 .0328 .1456 .1434

Table 4.22: MAE/MSE - Leave out Crack, Q2, FEM
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Figure 4.58: Mean Train/Test Accuracies per Crack

Crack-ID
MSE MAE

Train Test Train Test

101 .0273 .0237 .1303 .1210
23 .0251 .0320 .1245 .1459
18 .0245 .0267 .1234 .1294
103 .0244 .0354 .1235 .1462
102 .0267 .0260 .1287 .1288
24 .0252 .0283 .1247 .1321
20 .0248 .0216 .1244 .1143
31 .0269 .0251 .1290 .1252
201 .0248 .0285 .1240 .1313
30 .0268 .0342 .1281 .1550
21 .0268 .0202 .1296 .1094
32 .0264 .0230 .1277 .1228

Table 4.23: MAE/MSE - Leave out Crack, Q3, FEM

4.6.7 Experimental Set-Up

The set-up of the leave one crack out experiments is the same as for the FEM-
dataset. However, this dataset contains 12 crack archetypes, namely: 18, 20,
21, 23, 24, 30, 31, 32, 101, 102, 103 and 201.

Discussion of Results

Figures 4.56 through 4.58 and tables 4.15 through 4.17 are shown side-by-side,
and reflect the performance of the network for the leave one class out experi-
ments for the Markov-Walk dataset on all three questions, separately.

When one compares these results to those obtained for the same experiment on
the FEM dataset, one quickly notices that the network performs much worse.
This is not surprising since the network also performs far worse on the Markov-
Walk dataset for the Random-Split than it does on the FEM dataset.

Furthermore, one observes the same surprising phenomenon that occurred in the
results for the FEM dataset, that is test accuracies exceeding train accuracies.
This holds true for crack archetypes 21, 32 and 101 across all three questions.

For crack archetypes 18 and 31 it is true for some of the questions. For crack
archetype 18, the test accuracy far exceeds the train accuracy for the first ques-
tion, while for the second and third questions, the reverse holds true. This
strongly suggests that this phenomenon is not archetype specific, but that it
also depends on the question.
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4.6.8 Leave One Class Out

This section presents the results of the leave one class out experiments on the
Markov-Walk dataset.

Results Q1, Q2 and Q3

Figure 4.59: Mean Train/Test Accuracies per Crack

Class-ID
MSE MAE

Train Test Train Test

0 .0200 .0423 .1108 .1655
1 .0241 .0092 .1206 .0595
2 .0255 .0259 .1210 .1345
3 .0247 .0042 .1222 .0432
4 .0267 .0186 .1263 .1087
5 .0242 .0062 .1214 .0554
6 .0239 .0271 .1198 .1289

Table 4.24: MAE/MSE - Leave out Class, Q1,
Markov-Walk

Figure 4.60: Mean Train/Test Accuracies per Crack

Class-ID
MSE MAE

Train Test Train Test

0 .0318 .0517 .1397 .1803
1 .0329 .0090 .1419 .0649
2 .0336 .0331 .1416 .1477
3 .0356 .0120 .1478 .0829
4 .0328 .0342 .1409 .1478
5 .0346 .0071 .1467 .0550
6 .0331 .0352 .1431 .1437

Table 4.25: MAE/MSE - Leave out Class, Q2,
Markov-Walk
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Figure 4.61: Mean Train/Test Accuracies per Crack

Class-ID
MSE MAE

Train Test Train Test

0 .0237 .0352 .1221 .1440
1 .0256 .0123 .1267 .0721
2 .0252 .0324 .1224 .1480
3 .0270 .0082 .1300 .0667
4 .0281 .0232 .1302 .1241
5 .0278 .0055 .1316 .0529
6 .0255 .0252 .1266 .1208

Table 4.26: MAE/MSE - Leave out Class, Q3,
Markov-Walk

4.6.9 Experimental Set-Up

The set-up of the leave one class out experiments is the same as for the FEM-
dataset. However, as mentioned before this dataset contains 7 similarity classes
instead of 4, namely: {0-0.1875, 0.1875-0.3125, 0.3125-0.4375, 0.4375-
0.5625, 0.5625-0.6875, 0.6875-0.8125, 0.8125-1.0}. Thus, there are 7 sub-
experiments.

Discussion of Results

Figures 4.59 through 4.61 and tables 4.18 through 4.20 are shown side-by-side,
and reflect the performance of the network for the leave one class out experi-
ments for the Markov-Walk dataset on all three questions, separately.

It is useful to compare the results of these experiments to the results that were
acquired for the same experiments on the FEM dataset. One notices that the
model is not able to accurately assess the degree of similarity for samples that
belong to the lowest similarity class when it is fitted to samples belonging to
the other classes.

Furthermore, it is quite remarkable that the model performs best when leaving
out one of the intermediate similarity classes: 1, 2, or 3. In those cases, the test
accuracies far exceed the train accuracies. Note that these intermediate classes
contain few samples, therefore the network has more samples to train with if
one of those classes is left out. However, the fact that the network has more
samples to train on, alone, does not explain the huge discrepancy between the
train and test accuracies.

One can observe that the MAE and MSE roughly provide similar views of the
networks performance, i.e. if the test accuracy is higher than the train accuracy,
then the MAE on the testset is generally lower than the MAE on the trainset,
and vice versa.

All in all, these results further highlight the importance of further research in
order to better understand under which circumstances the network is able to
generalize well and under which circumstances it is not.
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Chapter 5

Future Work and
Conclusions

This section provides various suggestions for future work. First, I discuss how
one could proceed with the Inter-rater Reliability in order to gain a better un-
derstanding of the di↵erences between the ratings provided by di↵erent masonry
experts, and what can be done about these. One must be mindfull of the fact
that the suggested experiments involve people, and their willingness to cooperate
and invest their precious time to help advance this project is greatly appreci-
ated. Secondly, I provide suggestions on how to improve the performance of
the Neural Network as well as how to more e↵ectively determine the network’s
ability to generalize to inputs from di↵erent parts of the distribution.

5.0.1 Inter-rater Reliability

In the following, several ideas are presented on how to extend the Inter-rater
reliability analysis. One must be mindful of the fact that the suggested experi-
ments involve people, and while their willingness to cooperate and invest their
precious time to help advance this project is greatly appreciated, for the sake of
the goal of partially automating the assessment of cracked facades, it is essential
to provide the Neural Network with consistent ratings that reflect an objective
ground truth, which highly motivates the suggested experiments:

• One can imagine that there are external factors that a↵ect the labelling
behaviour of raters. An obvious factor that could play a role when raters
are asked to label many samples in a single labelling session is fatigue. As
the raters proceed, they can become tired which results in a decrease in
focus. In order to determine at what point raters get tired, i.e. how many
samples raters can typically rate before the quality of their judgement
takes a dip, the following experimental design could be useful.
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Invite n masonry experts to label N samples (with N large, N � 200),
and have each of the n raters label all of the N samples in the same
order. Compute the Inter-rater agreement over the whole set of samples,
as well as over samples 1 through 50, samples 51 through 100, samples
101 through 150, etcetera. If the Inter-rater agreement gradually decreases
after c samples have been rated (c < n), this suggests that c can be viewed
as a sort of cut-o↵ point, and raters should not be asked to label more
than c samples in a single session. Furthermore, one could sprinkle some
duplicates and samples with identical images through the dataset. Of
course, samples that feature the same cracked facade image twice should
be rated as Very Similar across all questions, while the duplicated samples
can be used to determine the Intra-rater Reliability of the di↵erent raters,
and how it fluctuates as a function of how many samples have already
been labelled by the rater in question.

• In order to to filter out unreliable raters, one can sprinkle some duplicate
samples through the dataset, as well as pairs of samples that are one
another’s reverse, that is both samples show the same cracked facades but
in the opposite order. Note that reversed samples as well as duplicates
should be rated identically, because the degree of similarity between image
A and image B is the same as the degree of similarity between image B
and image A (images reversed). Duplicate samples should receive the same
ratings for obvious reasons. By adding such pairs of samples throughout
the dataset, one can measure the Intra-rater Reliability of a given rater
over di↵erent samples that should have received the same ratings. Note
that the Inter-rater Reliability can be measured within a single labelling
session as well as across labelling sessions.

• Finally, one could consider a di↵erent labelling set-up in which raters are
asked to motivate their judgements. To this end, one could add a small
text box that allows the masonry experts to motivate their decisions. Since
this will be much more time-consuming for the raters, it would be wise to
include fewer samples per labelling session.

5.0.2 Neural Networks and Generalizability

Several suggestions to improve the network’s performance as well as to better
evaluate its ability to generalize to di↵erent parts of the input distribution are
summarized below:

• Across all experiments reported in chapter 4 of this writing, one can ob-
serve that the epoch in which the best model is produced, i.e. the model
that minimizes the mean squared error on the training set, varies consid-
erably between the di↵erent experiments. In order to explain the neural
network’s search for a configuration of the weights that minimizes the loss
on the training set, the landscape metaphor is oftentimes used. In this
metaphor, the weights of the network can be viewed as points in the (x, y)
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plane, whereas z denotes that objective function, the loss which is often
represented by the mean squared error. In order to navigate the space to
lower the value of z, gradient descent is used which is based on the partial
derivatives with respect to the individual weights. These determine in
which direction the search space is navigated in each epoch. The learning
rate, l, determines the step size, i.e. the size of the step that is taken in the
given direction. If the step size is too large, the network may overshoot
the target, and the loss might increase. To avoid this, one can decrease
the learning rate throughout the training phase of the network. To this
end, several policies can be implemented. One can think of linearly and
exponentially decreasing learning rates, to name but a few.

• As mentioned previously, the di↵erent pairs of crack archetypes are not
equally represented in any of the three datasets. While it may be justified
from the point of view of a structural engineer to include more samples
that feature a specific pair of crack archetypes, and fewer samples that
feature another pair of crack archetypes, in order to improve the network’s
performance, it may be wise to balance the degree of representation of the
di↵erent pairs of crack archetypes, or at least ensure that each pair of
crack archetypes is su�ciently represented in each dataset. One could,
for instance, include a minimum number of samples for each pair of crack
archetypes.

• In order to better understand why the network is able to generalize well
to certain crack archetypes but not to others, it would be instructive
to determine whether a correlation exists between how well the model
generalizes to samples that contain a given crack archetype and to what
extent the masonry experts tend to (dis)agree on samples that contain the
given crack archetype.

• In order to better evaluate the network’s performance on the leave one out
experiments, in the case that the test accuracy is far lower than the train
accuracy, it may be instructive to check whether samples that contain the
given crack or class to be left out of the training set are also more often
misclassified in the random split experiments. If this is indeed the case,
this suggests that the poorer performance of the network on samples that
contain the specific crack archetype can not be explained by a di↵erence in
how the similarity is to be determined between these problematic samples
and other samples, but that it is rather due to a sample somehow posing
problems to the network in terms of its predictability.

5.0.3 Conclusions

In this concluding section, all of the research questions are addressed individ-
ually. First, all research question will be listed along with the conclusions for
each:
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RQ 1: The raters clearly agree much more than one would expect ratings to agree
based purely on chance. However, for the purpose of automating the assessment
of crack similarity, a higher rate of agreement is probably needed.

RQ 2: Seperately, for the FEM and Markov-Walk dataset, I have identified
characteristics of samples that experts tend to disagree on. For the Markov-
Walk dataset, pairs (101, 102) and (103, 103) were identified as samples for
which the agreement is low, and for the FEM dataset, pairs (23, 24), (24, 103)
and (18, 102) appear to be most problematic in terms of agreement.

RQ 3: Whether a neural network is able to learn to assess the similarity of pairs
of cracked facades as assessed by experts, is dependent on the rate of agreement
among the raters. If the agreement is high or the data was judged by a single
rater, the neural network can do this quite well, but if the agreement is low and
many raters are involved, the network typically performs poorly.

RQ 4: My results show that the network can generalize reasonably well across
di↵erent degrees of similarity as well as di↵erent crack archetypes. That is it
is somewhat able to assess the similarity of a pair of cracked facades, even in
the case that one of the cracked facades is not present in the training set. This
suggests that there may exist a notion of similarity in the context of pairs of
cracked masonry facades that underlies all pairs of cracked facades, regardless
of the patterns of the involved cracks. However, the discrepancies between the
performances yielded for di↵erent leave out cracks suggests that more exten-
sive research is needed to understand the limitations of the network when it is
expected to generalize.
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Chapter 6

Appendix

Figure 6.1: Markov-Walk: Pair of cracked facades

Figure 6.2: Markov-Walk: Pair of cracked facades

Figure 6.3: Markov-Walk: Pair of cracked facades
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Figure 6.4: Problematic samples - Archetypes 101 (Left) and 102 (Right)

Figure 6.5: Problematic samples - Archetypes 103 (Left) and 103 (Right)

Figure 6.6: Problematic samples - Archetypes 201 (Left) and 201 (Right)

Figure 6.7: Problematic samples - Archetypes 102 (Left) and 102 (Right)
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Figure 6.8: FEM: Problematic samples - Archetypes 24 (Left) and 103 (Right)

Figure 6.9: FEM: Problematic samples - Archetypes 23 (Left) and 24 (Right)

Figure 6.10: FEM: Problematic samples - Archetypes 18 (Left) and 102 (Right)

Figure 6.11: FEM: Problematic samples - Archetypes 20 (Left) and 21 (Right)
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Figure 6.12: Crack Archetype 24
Figure 6.13: Crack Archetype 30

Figure 6.14: Crack Archetype 24
Figure 6.15: Crack Archetype 30
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