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Abstract

Making predictions about when students want help can provide teachers and Intelligent
Systems with possibly useful information, as they can use this data to help students without
them needing to ask for it. This could prove to be especially useful in cases where, for example,
students are too ‘shy’ to ask for help. In this paper we propose a system that encodes facial
expressions with FACS and uses this to predict when a student will click on an ‘ask for
help’-button in a learning environment. The system can predict when someone will ask for
help with up to 60% accuracy from a data set that has a 50% chance of students asking for
help. This data set was collected from experiments with 17 students. The methods used to
make these predictions are based on frustration and confusion detection techniques. Looking
at the accuracy of the predictions, the method used may prove relevant for predicting when a
student is about to ask for help in intelligent tutoring systems.
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1 Introduction

Improving education with automated tutoring systems has been a large area of interest over last
several decades. Often, the goal is to design intelligent tutoring systems (ITS) that are able to
provide one-one-one tutoring and track progress of students [18], which comes down to providing
personalized education. Examples are Snappet which is able to teach basic courses on elementary
schools while showing teachers a detailed view of the progress of students [5, 6] or Duolingo which
teaches foreign languages [2].

Most of these ITS are also able to give on-demand help, just like human teachers. To give on-demand
help, some kind of assessment must be made to see if a student wants or needs help [30]. ITS
generally make these assessments with algorithms like fuzzy logic [7] that can for example look at
progress of students and make decisions accordingly. So ITS can for example show a help message
when a student makes some mistakes repeatedly. Often, it also is possible for students to ask for
help with a simple help button. Human teachers may assess this by monitoring facial expressions,
like frowning, eye squinting or generally looking confused.

Research in affective computing has shown that ITS can, similarly to human tutors, also use
predictions about affective data like facial expressions to improve assessments they make [22]. ITS
in the past have, for example, already been able to respond appropriately upon recognizing emotions
that are relevant for learning [18]. Some of these relevant learning emotions are boredom, hope and
enjoyment [26].

However, these affective tutoring systems (ATS) have not been able to specifically recognize if
students want help by looking at their facial expressions. This application of facial expression
recognition could provide teachers and intelligent systems with possibly useful information, as they
can use this data to make better informed decisions about when to provide on-demand help to
students. This additional information could prove to be especially useful in situations where, for
example, students are too ‘shy’ or embarrassed to seek help.

Students could non-verbally ask for help by expressing emotions like confusion and frustration, as
psychological research found [13]. Moreover, these emotions have proven to play a critical role in
the learning process [26, 22]. These expressions of emotions can already be automatically detected
from facial expressions [34, 9, 19, 25, 16]. This means that it is likely also possible to automatically
recognize if people want help from facial expressions.

1.1 Thesis goal and overview

The ultimate goal of this research is to make predictions about if people want help by looking at
their facial expressions.

The structure of the paper is as follows. Section 2 shows related work for facial expressions
classification, predictions using facial expressions and intelligent/affective tutoring systems. Section 3
describes how a dataset is created that contains data about people wanting help, and how this is
used to classify when people want help. Section 4 list all results. Section 5 and 6 interpret, discuss
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and make conclusions about these results, and conclude if the goal of this research is reached.

2 Related Work

2.1 Classifying facial expressions

Figure 1: An illustration of Ekman’s basic emotions, from [20].

Humans can express many intentions and emotions with their face. There are many techniques
to recognize these expressions. A basic technique is to label certain expressions with Ekman’s 5
basic emotions, illustrated in 1. In the literature, there are also other (additional) labels that can
be used to describe emotions and facial expressions [10]. However, labeling of expressions could
introduce biases. People could be influenced by sounds, the environment and their own mood. And
more importantly, labels of expressions can be interpreted differently in different cultures [28].

The Facial Action Coding System (FACS) prevents this by encoding facial expressions in Action
Units (AU) [28]. AUs define contractions of one or more facial muscle(s) that are responsible
for changes in facial expressions. Current FACS parameterize expressions with 28 main AUs,
as summarized in figure 2. A recent blog describes many more AUs related to head pose and
movements [15].

Other techniques that can encode facial expressions in the literature include: Face Animation
Parameters (FAP), Maximally Discriminative Facial Movement Coding System (MAX) and Monadic
Phases Coding System (MP) [34]. However, FACS has become the dominant technique for parame-
terizing facial expressions [28, 34].

2.2 Automatic detection of facial expressions

The process of automatic facial expression analysis (AFEA) generally consists of the following
steps [28]:

1. Face Acquisition: locate and/or track a face in a video or image;

2. Facial Expression Extraction: extract facial expression data from the face, which can for
example be achieved with FACS encoding;
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Figure 2: A visual representation of the first action units [27].

3. Expression Recognition: identify expressions like anger or happiness using the extracted
features.

The literature includes ready-to-use implementations of AFEA that are able to reliably extract AU
from facial expressions from video feed, some with academic background. The ones considered for
this research are Open Face [8], Automated Facial Affect Recognition (AFAR) [14], Face Reader
and mocap4face [4].

AFAR, Open Face and Face Reader were compared in [24]. AFAR and Open Face were both able to
recognize AUs well beyond the ‘chance level’. However, Open Face is able to detect more AUs from
images than AFAR, possibly making it better AU detection software. Face Reader underperformed
compared to both AFAR and Open Face. Table 1 summarizes the predictions of the three considered
AFEA solutions. The researchers tested only the first 26 main action units, also listed in figure 2.

In the wild In conversation Posed
AFAR 0.649 0.730 0.831
Open Face 0.723 0.717 0.891
Face Reader 0.667 0.581 0.550

Table 1: A summary of the mean prediction scores of 26 different AUs [24]. The best mean result is
picked when multiple configurations were tested.

For mocap4face there are no clear methodologies or metrics made available that describe the
accuracy of the predictions. However, a large ‘selling-point’ of this library is that it is able to
recognize facial expressions based on FACS in browser-based environments out of the box.
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2.3 Making predictions from facial expressions

AFEA is commonly used to make predictions about emotions or other cognitive states. FaceReader
7.1 can for example predict Ekman’s emotions using Action Units. Much more recently, much
research has also been targeting prediction of non-classical emotions like confusion, frustration or
other ‘non-primary’ affective states, like cognitive engagement or depression, from facial expressions,
often using deep learning techniques. Cognitive processes are very complex and intermingled, but
it’s clear that Ekman’s basic emotions are rarely present in learning [26]. So especially techniques
for predicting emotions like confusion and frustration can prove to be useful for this research as
argued in the introduction.

A paper published in 2019 reports an average accuracy of 83.71% for classifying confused, happy,
negative and neutral facial expressions, using AUs extracted with FaceReader [9]. The classifier
considers AUs over a range of time (a time series) of 2 seconds instead of one moment/frame. The
researchers implement this with a Long-Short-Term-Memory (LSTM) layer in a neural network,
which excels at making predictions about series of dependent data like time series [23]. When
comparing this model to a standard model that’s incorparated in FaceReader 7.1, they found that
the misclassification of confusion as ‘neutral’ was reduced. Their model was able to recognize the
more subtle, almost neutral, confused expressions because it also considered the temporal context,
which is especially useful for confused expressions; A confused expression starts with an almost
neutral expression, but does change over time. They also found that filtering action units was
crucial, because many introduced noise in the dataset, introducing misclassifications. However, their
dataset was not large enough to accurately see what AUs could be dropped as their dataset only
includes 34 sequences of facial expressions in total.

Recently, a more specific study about confusion detection was published where, again, sequences of
images were analysed [19]. Their best classifier was able to achieve an accuracy of 96.3415% (using
Quadratic Discriminant Analysis (QDA)). In this study, the researchers used a much larger dataset
of 490 sequences to train their classifiers. The researchers determine which AUs can be dropped
(AU 1, 2, 9, 14, 15, 17, 20, 25, 26, 28), and which are essential for confusion detection (AU 4, 5, 6,
7, 10, 12 and 23).

In the field of frustration detection, early research already identified significant action units in
identifying frustrated expressions [17]. Automatic frustration detection from AUs requires reliable
AFEA, which did not exist until toolboxes like the Computer Expression Recognition Toolbox
(CERT) were created, that use FACS. A paper published in 2013 used CERT with the significant AUs
1, 2, 7 and 14 to show that frustrated expressions are able to be classified with linear regression [16].

One of the most recent publications about a classifier that can also classify frustration follows the
deep learning trend, similar to the mentioned classifier that uses a LSTM [25]. This classifier is
able to classify sleepy, yawning, boredom, frustration, confusion and focus from single images using
a convolutional neural network (CNN), with an average accuracy of 73.68%.

Table 2 contains a summary of the AFEA processes that are used and their results of the mentioned
papers, and additional ones.
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Reference
Facial expression

extraction
Expression recognition Results

[19]

Extracts AU 1, 2, 4, 5, 6,
7, 9, 10, 12, 14, 15, 17,
20, 23 and 25 uses
’Constrained Local Neural
Field’ (CLNF) fitting on
detected face.

Recognizes confused
expressions (with QDA)
from 490 clips of 10-30
images that each are
encoded with 15 AUs.

A detection
accuracy of
96.34%, only
with AUs 4, 5,
6, 7, 10, 12
and 23.

[9]

Using FaceReader 7.1
that extracts 20 AUs: 1,
2, 4, 5, 6, 7, 9, 10, 12, 14,
15, 17, 18, 20, 23, 24, 25,
26, 27 and 43.

Recognizes confused,
happy, negative and neutral
expressions (using an
LSTM layer in a neural
network) from clips of 2
seconds with in total 30
frames with each 20 AUs.

An average
detection
accuracy of
87.07%.

[16]

Using CERT that extracts
20 AUs: 1, 2, 4, 5, 6, 7, 9,
10, 12, 14,15, 17, 18, 20,
23, 24, 25, 26, 28 and 45.

Recognizes frustrated
expressions using linear
regression on single
frames of AUs.

A root mean
squared error
(RMSE) of
8.5%.

[25]
No feature extraction,
only face aquicition.

Recognizes sleepy, yawning,
boredom, frustration, confusion
and focus from static images of
extracted faces using a
convolutional neural
network (CNN).

An average
detection
accuracy of
73.68%

Table 2: An overview of notable AFEA approaches with their methodology and results.
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2.4 Overview of intelligent and affective tutoring systems

There are many papers that discuss implementations of affective computing in ITS (which are
called Affective Tutoring Systems). Table 3 summarizes how they collect and use affective data.
This related work is considered and mentioned because the research in ATS aims to, similarly to
this research, apply automatic recognition of affect in a learning-environment.

Reference Measured data Affective data Goal(s)

[29] Heart rate
Positive/negative
emotional state

Send motivational messages
to maintain positive
emotional state.

[12]
Posture, facial
expression

Boredom, confusion,
frustration, surprise

Send motivational messages
to help improve learning gains.

[21]
Emotional feedback
text, facial
expression

Positive/negative
emotional state

Show virtual tutor with
supporting emotions and adjust
difficulty of the material to
help maintain postive learning
emotions.

[31]

Emotional feedback
text, facial
expressions,
learning progress

Ekman’s basic 5
emotions

Show virtual tutor with
supporting emotions and
inform teacher of the measured
emotional state and progress
of students.

[32]
Answers to
emotional questions

Positive/negative
emotional state

Guide students towards
positive emotions by asking
questions that are associated
with positive emotions.

Table 3: An overview of how ATS collect and use affective data. Positive and negative emotional states
refer to emotions or general affective states that influence the learning process respectively positively and
negatively.

3 Methods

This research consists of two parts: (1) creating a dataset and (2) making predictions from this
dataset. We opted to make predictions from time series of facial expression data, because
including the temporal component proved to be fruitful in earlier research [9, 19], as also described
in section 2.
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3.1 Dataset creation

To collect necessary data about facial expressions and students ‘wanting help’, we designed an
experiment in which participants needed to solve puzzles (also referred to as answering questions),
and could ask for help if they got stuck. Participants could participate in this experiment by
visiting a website (https://www.jellekeulemans.nl) on a laptop or computer. In total, 17 people
participated in this experiment. 3 Participants were observed while participating in a pilot version
to test and improve the experiment.

3.1.1 Website creation

The website was built using the Jspsych framework [11], which is able to show survey-like questions,
and handle user input out-of-the-box. We chose to use this framework because it facilitates a
clear user interface (UI), and because there are many plugins and extensions available for the
framework that can make the application capture interesting data like mouse movements or eye
gazes. Additionally, Jspsych captures response times, can shuffle the puzzles and shows a progress
bar.

To capture help seeking of participants, we created a custom plugin for Jspsych that is able to show
puzzles in a survey-like format with a help-button, and show hints when pressing this button. The
plugin records when participants press this help button (the help time). After clicking, this button
changes to an ‘I don’t know’-button to prevent users from guessing, and provide ‘a way out’.

To record facial expression data during this experiment, we used the Mocap4face toolbox. This
toolbox is able to extract a set of AUs (summarized in section 3.1.3) from video feed of the camera
of the participants in the browser. Mocap4face has no scientific background and has not been
evaluated by any scientists as mentioned in section 2.2, but has the advantage that no video data
needs to be recorded and sent because it can already be encoded in the browser of the participant,
meaning that only facial expression encoding is collected, sent and stored. Additionally, it is really
easy to setup, because there are many examples available of setting up mocap4face that could be
consulted when programming the data collection experiment. The frame rate at which the toolbox
can extract AUs from the video depends on the processing speed of the computer and environmental
factors like lighting.

3.1.2 Steps of the experiment

Before the main part of the experiment starts where the participant solves puzzles, three pages
are shown as listed in figure 3. The first page asks for camera permission and starts tracking the
participants face, and extracting the features. After this step, the participant will be notified if
their face cannot be tracked. The features are not recorded until the puzzle-solving part of the
experiment begins.

The next page informs about the data collected and when to use the help button. Participants were
instructed to use then help button only when they got stuck solving the puzzle, and to not guess
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(a) First page that is shown that asks permission for
camera access.

(b) The next page informs the participant
about the experiment and asks for consent.

(c) Here the participant is
asked several demographic

questions.

Figure 3: Screenshots of the pages that are shown before starting the experiment.

answers.

Next, participants are asked to answer several demographic questions. Demographic information
might be crucial as different types of people could respond with different facial expressions, as was
also discussed in [19]. Table 5 lists the submitted demographic information of the participants.

The main experiment consists of 12 questions, which are all listed in table 12 in Appendix A.
Figure 4 shows a screenshot of a question and the interface. The user can navigate to the next
question by entering an answer and clicking ‘next’, or by clicking the ‘help’ and ‘I don’t know’
buttons sequentially. It is not possible for users to go back and change submitted answers. The
order of the questions is randomized to reduce biases, which could be introduced when, for example,
the focus of a participant reduces towards the end.
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Figure 4: An screenshot of one of the questions that is presented in the actual experiment.

3.1.3 Data collection

First of all, it is not clear from the documentation of Mocap4face which action units it extracts, as
also noted in section 2. From a test where we personally tried how Mocap4face would respond to
our facial expressions, we concluded that mocap4face uses a modified version of FACS encoding.
In table 4, the standard FACS paramaterization is compared and mapped to the mocap4face
parameterization. These parameters are also called features.

When a participant finished a puzzle, the recorded data for that puzzle was sent to a server that
saved it. There are 12 puzzles in total. The recorded data includes:

• A list of captured facial expressions with Mocap4face features (which are mapped to AUs
in table 4), of which each captured facial expression is linked to the time at which it was
captured. Each participant’s computer attempts to capture as many facial expressions as
possible;

• The time at which a participants pressed the help button;

• An ID for every participant;

• The IP address of the participant;

• The corresponding question;

• The participant’s answer and correct answer to the corresponding question;

• Mouse movements;

• Demographic information (this same data is sent with each submitted question).

The server saves this data in a Javascript serialized object notation (JSON) file (the raw data).
Every JSON file contains the recorded data of a participant solving one puzzle. So the server saves
12 files with captured data for a participant who submitted all 12 puzzles.
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Action unit description mocap4face parameterization

1 inner brow raiser browInnerUp L, browInnerUp R
2 outer brow raiser browOuterUp L, browOuterUp R
4 brow lowerer browdown L, browdown R
9 nose wrinkler noseSneer L, noseSneer R
10 upper lip raiser mouthUpperUp L, mouthUpperUp R
12 lip corner puller mouthSmile L, mouthSmile R
15 lip corner depressor mouthFown L, mouthFrown R
16 lower lip depressor mouthLowerDown L, mouthLowerDown R
17 chin raiser mouthShrugUpper
18 lip puckerer mouthPucker
20 lip stretcher mouthLeft, mouthRight
22 lip funneler mouthFunnel
25, 26, 27 lips part, jaw drop, mouth stretch jawOpen
28 lip suck mouthRollLower, mouthRollUpper
44 eye squint eyeSquint L, eyeSquint R
45 blink blink L, blink R
51 head turn left headLeft
52 head turn right headRight
53 head up headUp
54 head down headDown
55 head tilt left headRollLeft
56 head tilt right headRollRight
63 eyes up eyeLookUp L, eyeLookUp R
64 eyes down eyeLookDown L, eyeLookDown R

Other tongueOut, cheekPuff, jawLeft,
jawRight, eyeLookIn L, eyeLookIn R,
eyeWide L, eyeWide R

Table 4: The action units from standard FACS paramaterization with their descriptions mapped to the
slightly modified paramaterization of mocap4face. All AUs that are mapped in the table are AUs 1, 2, 4,
9, 10, 12, 15, 16, 17, 18, 20, 22, 25, 26, 27, 28, 44, 45, 51, 52, 53, 54, 55, 56, 63, 64.

The combination of the IP address and unique ID ensures that, even though the participants
are anonymous, participants cannot participate multiple times, unless they are actively trying to
sabotage this experiment by intentionally changing their IP address.

In case an issue occurs with sending the data, a file containing the data of the failed puzzle
submission is automatically downloaded onto the computer of the participant. The participant is
then asked to send this file over e-mail.
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3.1.4 Security

To ensure that the website was secure, and no data could be leaked, it uses several techniques:

• Both the website and the server that collects data have a valid and registered (with https:

//www.letsencrypt.org) SSL certificate, which enables them to send and receive data over
HTTPS protocols. This means that the data that is sent between the server and participant
is encrypted and unreadable for anyone eavesdropping.

• All communication and traffic from the server is routed through a Cloudflare proxy [1], which
hides its actual address. This also hides possible entry points for hackers like the ssh port of
the server, making it much harder for attackers to break into the system. They will first need
to find the address of the server. Additionally, this proxy also protects against simple denial
of service (DOS) spam attacks, that could overload the server.

• The server ensures that all sent files originate from https://jellekeulemans.nl, ensuring
that no other sites are sending (untrustworthy) data to the servers.

3.1.5 Pilot experiment

To ensure that the experiment runs smoothly, and to gain insight in how participants behave during
the experiment, we conducted a pilot experiment with three students. During these experiments,
we monitored their facial expressions, and noted any problems with the experiment that they had.
These are the conclusions of the pilot:

• One of the participants seemed so stubborn to the extend that he/she would rather give an
incorrect answer than to use a hint;

• Some questions just took too long, making the participants ask for help, just to save time;

• One of the participants clearly squinted with his/her eyes before asking for a hint, which
looked like a confused expression, which we could also see in the captured facial expression
as shown in figure 5: there clearly are many high measurements of the eye squinting AU
around the time when help is asked. More concretely, Figure 5a shows high eye squinting
values roughly from 58000 to 65000 milliseconds and Figure 5b shows this from 62000 to
83000 milliseconds.

We removed the puzzles that took too long for the participants to answer, and clarified the
instructions by adding that it’s better to use the help button than to guess answers.

3.1.6 Demographic information

Mostly students participated in the experiment. They were asked about their gender, age, education
level and latest study they they were educated in if any. In Table 5 all demographic information of
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(a) Answered incorrectly and asked help. (b) Answered correctly and asked help.

(c) Answered correctly without help. (d) Answered incorrectly without help.

Figure 5: Plots of a set of action units (AUs 1, 2 and 44 looking at table 4) captured from a participant
in the pilot experiment. The x-axis shows time, and y-axis the activation of the parameters. This figure
includes two out of three plots of puzzles where help is needed, and two random ones of puzzles where
no help is needed. The blue lines represent when the participant asks for help. Each caption of each plot
describes if they were answered correctly. From these plots, we can mainly see eye squinting, as you can for
example see in Figure 5a around time 60000. Almost all nonzero data points in all graphs are red, which
corresponds to eye squinting of the right eye.

the participants is listed, including the puzzles they completed, how often many times they asked
for help and how many puzzles they answered correctly. In total, 17 people participated with the
main experiment.

3.1.7 Constructing the dataset

In total 16 participants answered all 12 questions, and one participant only answered 11. This
resulted in 213 files of captured data, including 77 files that recorded a participant asking for help.
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Gender Age Education Study
Puzzles
made

Help
asked

Correct
answers

Female 21 Start of Master’s Degree
Computer Science: Data
Science

12 3 9

Male 23 Start of Master’s Degree Computer Science: AI 12 3 7
Male 22 Bachelor’s Degree Computer Science 12 5 7

Other 23 Start of Bachelor’s Degree
Cultural Anthropology and
Development Sociology

12 4 10

Male 21 Bachelor’s Degree Computer Science 12 1 5
Female 61 Bachelor’s Degree Pabo 12 7 5
Male 21 Start of Bachelor’s Degree Economie en recht 12 6 8
Male 22 Start of Bachelor’s Degree Bio Pharmaceutical Sciences 12 3 6

Male 22 Start of Bachelor’s Degree
Public Administration
(Bestuurskunde)

12 5 6

Female 20 Start of Bachelor’s Degree Psychology 12 5 8
Male 22 Start of Master’s Degree Biology 11 5 8
Female 22 Start of Bachelor’s Degree Psychology 12 4 6
Female 30 High School Industrial design engineering 12 11 7

Female 24 Bachelor’s Degree
International business and
languages

12 5 3

Female 21 Start of Bachelor’s Degree Criminology 12 2 9
Male 25 Start of Master’s Degree Computer Science 12 6 8
Male 18 Start of Bachelor’s Degree Artificial Intelligence 12 3 6

Table 5: Demographic information about the participants of the main experiment. This also includes the
amount of times they asked for help and answered correctly.

The received data includes data that the classifier does not need like mouse movements, or is
formatted incorrectly for the classifier like the help time. So, first, each raw data file (which
represents captured data of a participant making one puzzle) is parsed to form a comma separated
values (CSV) file with the following column names:

t (in milliseconds), used hint (0 or 1), ...all mocap4face parameters

Each row in this CSV file represents a ‘frame’ (which basically is one extracted and encoded facial
expression) of captured data, which is described using these columns. Captured data of one puzzle
of one participant can for example include thousands of frames of captures facial expressions. t
represents the time elapsed in milliseconds since starting the corresponding puzzle. The used hint

column is filled with 0’s, except in the row with a t-value that’s closest to the help time, which is
then labeled with a value of 1. And finally, all the mocap4face features are spread out over the
remaining 46 columns. Each of these features has values ranging from 0 to 1.

Now, the data still is not ready for the classifier. For the classifier, we needed to sample series
of data (time series) that each contain the same number of items, and have a constant interval
between the items. Each of these time series also needs to be labeled with ‘wants help’ or ‘does not
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want help’, depending if the participant asked for help just after the time series.

For making the frame rate constant, a constant sampling frame rate is picked that is high enough
to maintain the same variance in the data when sampling at this frame rate, but still as low as
possible to form a time series with only the nontrivial and existing data. A metric that can describe
the variance between the data points is the Mean Squared Error (MSE), because it averages out
the squared distance (which is the ‘error’) between the points. Variance in data increases when the
data for example includes more extreme values, or outliers. It would for example also increase if
there are many changes of features (which are the facial expressions) over time.

(a) Distibution of the intervals between con-
secutive frames in the entire dataset. Every
bar represents a bin that contains all intervals
that fall within the corresponding range. Each
interval is counted interval times.

(b) Distribution of the mean squared errors
(MSE) of consecutive frames, per interval. Each
bar shows the average MSE of all MSE that are

placed into that bin.

Figure 6: Illustrations of the frame rate distribution and mean squared errors that belong to those frame
rates of the entire dataset.

To find the desired frame rate, we looked at the MSE of the mocap4face features between consecutive
rows, and the interval between these two measurements. These MSE are then added to one of 20
‘bins’, depending on the interval. When all MSE are calculated and added to the appropriate bins,
the MSE are averaged out per bin. Figure 6b shows these average MSE per bin. Additionally, we
counted the distribution of the frame intervals for the same bins, which is done by counting each
interval interval times in each bin, resulting in Figure 6a. This figure describes the time span of all
data in the corresponding bin.

From these results, a resampling frame interval of 35 milliseconds seems optimal.

Figure 6a shows that almost all captured data has a higher frame interval than 35 milliseconds.
Resampling with a lower frame interval than the data essentially means that it has to create new
data to match this higher frame rate. So when resampling with a frame interval of 35 milliseconds,
the resampling method won’t need to create much data that does not exist (also called hallucinating
data), or sample the same data multiple times. Hallucinated data or repeated samples could reduce
the accuracy of a classifier if it for example doesn’t follow a pattern that’s present in all other data,
which could make it harder for the classifier to find these now ‘hidden’ patterns.
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From the distribution of the MSE in Figure 6b it’s also clear that this interval of 35 milliseconds is
sufficient for sampling. The MSE significantly drops before and after the peak of bin 30-35. When
sampling just above this bin, it is possible to keep a similar variance in the data when sampling,
because the average distance between the data in this bin is roughly the same. To clarify: if we
would for example sample at a much higher frame interval, the sample would not contain as much
changing data because it would often sample points that have roughly the same values, and ignore
the points in between that have significant values. With the sampling interval of 35 milliseconds,
some measurements have to be skipped, but a good random sample could still accurately represent
the entirety of the data, because random missing data won’t affect the MSE (or standard deviation)
significantly because there are a significant amount of data points in each file.

The drop of MSE in bins with higher intervals than the 35-40 bin could be partly caused by
randomness because the amount of items in these bins only represent roughly half an hour of
captured facial expressions, whereas the other data accounts for roughly 5 hours. These are rough
estimated values derived from Figure 6a to give an idea of the significance. Also, slower capture
rates can indicate that some measurements are missing, which can for example happen in poor
lighting conditions that makes the face harder to track. We noticed that this was the case when
testing the experiment in a poorly lit room.

Finally, to make the data usable for our classifier, the data is resampled using the found optimal
frame interval of 35 milliseconds. The goal with this is to create time series with constant sizes and
frame intervals of facial expression data that accurately represents the data is was picked from, and
label them with yes or no depending on if a hint was used after the time series.

Figure 7: An illustration of the offset constraint used with window picking.

Each time series (also called window), is picked from the previously constructed CSV files.
However, before filling them with data, they are first defined as ranges (that store the start and end
times of the windows) with a set of constraints defined by positive_offset, negative_offset,
negative_ratio, and window_size. In figure 7 the process of defining these windows is illustrated.
For positively labeled windows, the distance between the end of the time series and help seeking
has to be exactly positive_offset milliseconds. Windows that are labeled negatively, have to
have a minimal distance of negative_offset milliseconds from any help-seeking. The size of these
windows is defined with window_size, and the ratio of negative to positively labeled windows
is defined by negative_ratio. The window picking algorithm also enforces the windows to not
overlap, and that as many as possible windows are created (meaning that every help asking moment
is used).

After the windows are defined, they have to be filled with data from the CSV files using the found
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Figure 8: An example of the values (on the y-axis) of the eye squint parameter of a random window that
was sampled. The x-axis shows the index of the parameter. The size of this window is 143 · 0.035 = 4
seconds. It is labeled with help asking because the positive offset for this window is 500 milliseconds, and
exactly 500 milliseconds after the window, help was asked.

optimal frame interval. Each window is filled with floor(
window length−1

frame interval ) items that are spaced
evenly. The CSV file contains items without a consistent frame interval, and with different time
intervals than the window. Sampling data from this is done by picking the closest real data point to
every frame in the window. So, for example, if a window would be defined with tstart = 1, tend = 5
and a frame interval of 2, it would sample data points that are closest to t = 1, t = 3 and t = 5.

The resulting data structure of each window is an array of an arrays of mocap4face-type Action
Units. For example, a window that spans 3.5 seconds, will contain 3.5

0.035
= 100 arrays of action units

arrays. This window is then paired with a 1 or 0, indicating if the it represents facial expressions of
when help was asked or not. Figure 8 shows another example of the values of a feature in the data
that a window contains.

3.2 Classification

The goal of the classifier is to predict if a participant will ask for help shortly after a time series
of facial expressions (also called a window). More specifically, the classifier has to predict which
windows are labelled with a 1, and which are labeled with a 0. This was implemented with a deep
neural network that uses (a) convolutional layer(s), dense layers and/or a Long-Short-Term Memory
(LSTM) layer. In creating this classifier, several experiments have to be conducted to see which of
these layers to use, which data should be used and which ‘hyper parameters’ (explained later on)
should be chosen.
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Figure 9: A summary of the architecture of the proposed neural network.

3.2.1 Neural network structure

A layer in a neural network transforms a set of input values to a (often smaller) set of output values
using some calculations that are based on ‘weights’ and input values. A combination of such layers,
like the proposed structure illustrated in Figure 9 can transform a window into a single value, like
in this case a 1 or 0, which is the prediction of the network.

This proposed architecture of the neural network is based on [9].

This neural network can learn to make accurate predictions by optimizing the weights. This is done
by continuously trying to fit a set of labeled training data, and by using an optimizer algorithm
that tries to minimise the error that it makes (the loss) in the predictions. This optimizer can be
configured with several so-called hyper-parameters that are mentioned in section 3.2.3.

Figure 10: An illustration of how a kernel of a convolutional layer would ‘walk’ (also called convolve)
through a window with a step size (strade) of 1, and a kernel size of 3× 1. F1 · · · Fn represent all AUs and
x is the amount of items in the window. The orange arrows show the kernel moving over the first three
rows, and the blue arrows show where the kernel starts to convolve over the second to fourth rows.

The proposed convolutional layer is special because it can ‘highlight’ patterns with filters comprised
of weights that walk over a window. The way it walks over the data is defined by a specified size
and strade of the filter(s). The reason for using a convolutional layer to highlight patterns of feature
activations over time. To do this, the layer has filters (also called kernels) of width 1 and a height
that can be specified and experimented with. The amount of kernels can also be specified. We made
it walk over the window one step at a time, as illustrated in figure 10. The goal of this method is
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for example to highlight short frowning expressions which have been linked to frustration [16].

These described filter(s) convolute over all features because the purpose of the filters is to highlight
simple patterns that could be present in all features, like sudden high activation values, or short
activations. When the filters were trained for each feature individually, they would be able to
highlight more specific patterns, which is not necessary because the LSTM layer is intended for
this.

Similarly to the convolutional layer, the LSTM is also ‘special’. The LSTM layer does not only
pass its output to the next layer, but also feeds it back into itself. Because of this, it is a type of
recurrent neural networks (RNN), which are good at finding relationships between multiple rows of
dependent data like time series [23], because it can consider previous data points. A LSTM-layer
takes this even further by also keeping a state. This layer can therefore also be used for classifying
the sampled windows. An important (hyper)parameter that this layer uses is the filter count.

The other layers in the neural network are dropout and dense layers. A dropout layer will act as
an intermediate layer that will pass the data that it receives to the next layer, but will randomly
leave out some items by setting them to 0, depending on the specified dropout rate. This helps to
prevent ‘overfitting’.

A dense layer is a classical fully-connected layer that consists of an input and hidden layer. The
size of the hidden layer is defined by another hyper parameter.

3.2.2 Implementation

This proposed neural network is implemented with the Tensorflow 2.8.0 library and the Keras
package. Keras contains ready-to-use convolutional, LSTM, dense and dropout layers and optimizer
algorithms. Additionally, it contains a specialized LSTM layer (called CudnnLSTM) that runs
faster on graphics cards using CUDA.

The neural network is trained on a computer with an intel i7 6700 processor, 16GB DDR4 memory
and a nvidia geforce gtx 1060 6gb graphics card.

3.2.3 hyper parameters

hyper parameters are the set of values that influence the learning process of the neural network [33].
Some are already briefly discussed in the description of the architecture of the proposed neural
network, like the size of the kernel of the convolutional layer, or the filter count of the LSTM
layer. For the experiments, we assigned default values to all hyper parameters, which can then be
seperately tested and optimized. Table 6 lists all the hyper parameters and default values.
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Hyper parameter Default value Description

train, test, validation
split

70:10:20
How the sampled windows are split to
train, validate and test the network.

epochs 100
How many times the neural network fits
the training data.

optimizer function Adam
The algorithm that attempts to change the
weights to fit the data better.

learning rate 5e-4
Specifier of step size at which the model
learns to fit the data.

loss function binary crossentropy
The function that calculates how the
model fits the data

dropout rate 0.3
The percentage of values that are randomly
discarded between each pair of layers.

conv count 1
The amount of convolutional + pooling
layers at the start of the network.

conv filters 20
The number of filters that each
convolutional layer trains.

conv height 3
The count of rows that the kernel of the
convolutional layers spans.

lstm filters 64
The amount of hidden nodes that the
LSTM layer uses. TODO...

dense count 2
The amount of dense layers at the end
of the network.

activation relu
The function that almost each node uses to
decide what value to output, given the
input values.

final activation sigmoid
The function that outputs a 1 or 0
depending on the values it receives.

batch size 32
The number of items from the training set
that are passed through the neural network
simultanuously.

window size 5000 The size of the windows in milliseconds.

window positive offset 500
The difference in time between the end
of a positively labeled window and
help asking.

window negative offset 5000
The difference in time between the end
of a negatively labeled window and
help asking.

Table 6: An overview of all hyper parameters and assigned default values.
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3.2.4 Proposed experiments

For experimentation with the neural network, we split the dataset into a training set, validation
set and testing set according to the ‘train, test, validation split’ ratio’s described in table 6. This
split is done randomly, but balanced, meaning that each of the splits has a 50/50 ratio of positive
versus negative cases. The model is trained with the training set, meaning that the weights will
be optimised by only looking at the training set. To see how well it performs after each round of
optimisation, the model is evaluated with the validation set. Finally, to see if any optimisations of
the model had no bias towards randomly learning to also fit the validation set, but not any other
left out data, the model is evaluated with the testing set.

Hyper parameters

We conducted several experiments that monitor the training process, with the goal of obtaining
useful information to be able to optimize it by fine-tuning hyper parameters. We monitor the
training process by visualizing the accuracy and loss (of the training and validation sets) over the
epoch index (the training ‘round’ index). The accuracy shows how accurate the predictions of the
NN are, and the loss represents how sure it is of the predictions.

With monitoring the ‘training process’, we identified and visualized several characteristics:

• Increasing accuracy and/or a decreasing loss show that the network is still learning. When
this change stagnates, the optimal amount of epochs (for the given set of hyper parameters)
have been reached.

• When the training accuracy increases over the amount of epochs, while the validation accuracy
decreases or stagnates, the model is overfitting. This means that it is learning to fit patterns
that are present in the training data, but not in any other data like the validation set.

• A high variation (more than 0.1) in the validation accuracy over a small amount of epochs
indicates that the model is sometimes randomly fitting the validation set because of good
random initialization. This model therefor cannot classify data that it has not seen before
with the same accuracy.

First of all, when the training process shows a high variation in validation accuracy, we need to
monitor the averages of multiple training processes instead of one. For this experiment, we will
take averages of 30.

When the model is overfitting, it could learn to ignore general patterns that are also present in
the validation and test sets, because it could find patterns that are more reliable for getting a
good training accuracy. The goal of this research is to make a model that’s useful for all data, also
for data that the NN has not seen before. Therefore we experimented with reducing overfitting.
Measures against overfitting that we experimented with are to increase the dropout rate from 0.3
to 0.5 and to reduce the amount of trainable weights of the model by halving the conv_filters

and lstm_filters, one at a time. We monitored the training process for each change individually.

In case the validation accuracy decreased when taking these measures, we concluded that these
measures countered our goal to optimise the model, because in the process of overfitting, the NN
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was also able to learn patterns that are present in the validation set, which are therefore possibly
also useful for classification of data that it has not seen before. We always prioritised maximising
evaluation accuracy over preventing overfitting. If this is not the case, and if the difference between
the training and validation accuracy and/or loss decreased, we concluded that these changes were
effective.

When it was clear which overfitting measures were effective, and what effects the changes of those
parameters had on the amount of epochs required, we proceeded to do a grid search to find the
best combination of considered parameters for validation accuracy. For this we used the amount of
epochs that showed optimal losses and accuracies. The grid search includes the following values of
hyper parameters:

• dropout (if it was an effective overfit measure): [0.4, 0.5, 0.7];

• dropout: [0.3, 0.5];

• conv filters (if it was an effective overfit measure): [1, 5, 10, 20, 40];

• conv filters: [10, 20, 40, 80, 160];

• lstm filters (if it was an effective overfit measure): [8, 16, 32, 64];

• lstm filters: [16, 32, 64, 128];

From this grid search, we recorded the combinations of parameter values that gave the best
validation accuracy, and used those for the next steps.

Specific data selection

Next, we experimented with fine tuning the window size and window offset of the window selection.
We used the found hyper parameters in the previous step as a base line for plotting validation
accuracies over different window sizes and window offsets. We did this because this can filter out
noise, and allows for a more specific answer to our research question: if we find good window
parameters, we can exactly say when and for what duration participants show expressions before
asking for help.

We do this in two steps:

1. Plot the validation and training accuracy of trained models on shifting windows of length
1000 over a sampled window with length 20000. This means that the model’s accuracy is
plotted for 20 different offsets.

2. Perform a grid search on different combinations of offsets and window sizes. This step should
include combinations of offsets and window sizes that reach the found good offsets that
are found in the previous step. So, for example, if an offset of 6000 had a good accuracy
in step 1, we know that the windows contain important information from t = 6000 to
t = 7000. This data is then included in some or multiple combinations of the grid search like
{offset: 2000, length: 7000}.
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For step two, we created the following set of values of the window lengths and offsets, of which all
combinations were considered for the grid search. This was tweaked during experimentation when
a good offset needed to be ‘reached’.

window lengths = [1000, 2000, 5000, 7000, 10000]

window offsets = [500, 1000, 5000, 6000]

The best offset and window length combination was used for the next experiments.

Next, we looked at which features were used in the classification. This was analyzed by leasing one
feature at a time when training the model. If the validation accuracy did not decrease significantly
when ignoring a feature, the feature was considered useless for the classifier. We did not lease
the trivial features in the next steps of experimentation, because it is not necessary for model
optimisation, as the model should be able to ‘learn’ which features to ignore.

Similarly to looking at how features influence the validation accuracy of trained models, we looked
how participants influenced the training process. To do this, the model was trained individually for
each participant. So, it was trained 17 times. Again, the (average) validation accuracy is reported
for each participant.

Finally, we evaluated the model with confusion matrices that show the predictions against the
ground truths. This allows us to gain an insight in the precision (true positives to false positives
ratio) and the recall (true positives to false negatives ratio).
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4 Results

There are two types of experiments conducted to train and evaluate the model: (i) optimizing hyper
parameters and (ii) specific data selection.

4.1 Hyper parameter optimization

(a) The recorded (training and validation) binary
cross entropy loss of one fitted model plotted over

epochs.

(b) The recorded (training and validation)
accuracies of one fitted model plotted over

epochs.

(c) The average recorded (training and
validation) binary cross entropy losses of 30 fitted

models plotted over epochs.

(d) The recorded (training and validation)
accuracies of 30 fitted models plotted over

epochs.

Figure 11: Graphs of the average training and validation losses and accuracies over the number of epochs.

Figure 11 shows the progressing accuracies and losses when a neural network is trained with 300
epochs. It also includes averages of these values of 30 trained neural networks, because there was a
high degree of randomness in 11b and 11a. The model is overfitting because the training accuracy
is much higher than the validation accuracy, and because the training loss reduces, while the
validation loss increases. This means that we next need to look at halved filter counts and increase
the dropout rate to 0.5 to see if these measures can be effective.
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(a) Mean square loss over epochs. (b) Accuracy over epochs.

Figure 12: Graphs of average (from 30 runs) training and validation losses (12a) and accuracies (12b)
over the number of epochs for a set of hyper parameter changes.

Figure 12 shows the effect on the training process of changing the hyper parameters dropout,
conv_filters, lstm_filters. It shows that the difference between the training and validation
results decreases, but that the accuracy actually decreases when doing so. The overfitting model
seems to be able to best fit the validation set.

It is also clear that the model needs around 100 epochs for the best accuracy, which holds true
for every hyper parameter change. After 100 epochs, the accuracy does not increase, and seems to
even slowly decrease.

So, to more specifically see the effect of changing hyper parameter values, only 100 epochs need to
be used. The next step described in the methodology is to conduct a grid search of filter counts
and dropout rates. The described values that we use in this grid search are:

• dropout: [0.3, 0.5];

• conv filters: [10, 20, 40, 80, 160];

• lstm filters: [16, 32, 64, 128];

Table 7 shows the results of the grid search. The parameter values of the top result are used in the
next experiments, which are dropout = 0.3, conv filters = 10 and lstm filters = 128.
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avg validation accuracy dropout conv filters lstm filters
0.588889 0.3 10 128
0.581111 0.5 10 128
0.574444 0.3 40 64
0.574444 0.3 20 64
0.5711111 0.5 20 128
0.567778 0.5 40 128
0.565556 0.5 20 64
0.564444 0.5 80 64
0.564444 0.5 40 64

Table 7: The best results of the grid search for the dropout, conv filters and lstm filters hyper parameters.

4.2 Window picking optimisation

In the next couple of experiments, the influence of the window length and offset are analysed.

Figure 13: A figure that shows the accuracies of a window that is 1 second long with different offsets
from when the hint was used.

Figure 13 displays the average validation and training accuracy of the model that’s trained on the
20 segments that each span 1 second of a window that spans 20 seconds. For each segment, the
average results are taken from 30 models that were trained on that segment.
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In the next experiment we did a grid search of a set of window lengths and window offsets. The
described set of values are:

window lengths = [1000, 2000, 5000, 7000, 10000]

window offsets = [500, 1000, 5000, 6000]

This set of values needs to be tweaked to reach good segments shown in figure 13. Good segments
are 1000-2000, 5000-6000, 16000-17000 and 17000-18000. The segments spanning 16000 to 18000 are
not yet included in the grid search. We include them by changing the offset 6000 to 7000. Table 8
shows the 10 combinations of parameters with the best average validation accuracy when training
the model with those parameters.

Average validation acc window length window offset
0.671111 11000 500
0.645556 11000 1000
0.611111 5000 500
0.601111 7000 1000
0.565556 7000 500
0.558889 7000 6000
0.556667 1000 500
0.545556 11000 5000
0.544445 1000 1000
0.541111 2000 500

Table 8: The results of a grid search of combinations of window length and window offset values.

It’s clear from table 8 that a window length of 11000 milliseconds with an offset of 500 milliseconds
gave the best results. We used this result in the next experiments.
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4.3 Relevant Features

This experiment shows the effect on the validation accuracy of each feature when ‘ignoring’ it in
training and validation by setting all values of the feature in the dataset to 0. Table 9 lists the
results.

Ignored feature
Avg.
val.
acc.

Ignored feature
Avg.
val.
acc.

Ignored feature
Avg.
val.
acc.

None 0.6722 jawLeft 0.6522 eyeLookDown R 0.6944
browOuterUp L 0.6756 cheekPuff 0.6700 eyeLookIn R 0.6822
browInnerUp L 0.6700 mouthShugUpper 0.6833 eyeLookOut R 0.6911
browDown L 0.6767 mouthFunnel 0.6856 eyeLookUp R 0.6911
eyeBlink L 0.6611 mouthRollLower 0.6889 eyeWide R 0.6700
eyeSquint L 0.6733 jawOpen 0.6811 eyeSquint R 0.6800
eyeWide L 0.6689 tongueOut 0.6833 eyeBlink R 0.6467
eyeLookUp L 0.6856 mouthPucker 0.6811 browDown R 0.6667
eyeLookOut L 0.6722 mouthRollUpper 0.6822 browInnerUp R 0.6856
eyeLookIn L 0.6967 jawRight 0.6800 browOuterUp R 0.6778
eyeLookDown L 0.6689 mouthLowerDown R 0.6978 headLeft 0.6756
noseSneer L 0.6978 mouthFrown R 0.6711 headRight 0.6667
mouthUpperUp L 0.6833 mouthRight 0.6956 headUp 0.6689
mouthSmile L 0.6933 mouthSmile R 0.6667 headDown 0.6556
mouthLeft 0.6744 mouthUpperUp R 0.6833 headRollLeft 0.6756
mouthFrown L 0.6778 noseSneer R 0.6833 headRollRight 0.6700
mouthLowerDown L 0.6822

Table 9: The average validation accuracies when training the model on a dataset 30 times where a feature
is ‘ignored’.

4.4 Training on individual participants

Next, the model was trained on 17 datasets, each containing the data of one participant. Some
datasets did not contain enough items to train a model on. The results are listed in Table 10.
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Training
set size

Validation
set size

Average
validation
accuracy

4 2 83.3%
4 2 55.0%
6 4 32.5%
2 0 -
9 5 60.0%
8 4 55.8%
4 2 43.33%
6 4 72.5%
6 4 50.0%
6 4 40.0%
4 2 10.0%
14 8 50.8%
6 4 46.7%
3 1 -
5 3 65.6%
8 4 34.2%
4 2 40.0%
0 0 -

Table 10: The average (from 30 trained models) validation accuracy where the model is trained on
datasets from individual participants.

4.5 Model evaluation

Actual
yes

Actual
no

Predicted
yes

9 2
precision

81.8%
Predicted
no

6 13

recall
60.0%

accuracy
73.3%

(a) Validation confusion matrix.

Actual
yes

Actual
no

Predicted
yes

4 3
precision

57.1%
Predicted
no

3 5

recall
57.1%

accuracy
60.0%

(b) Test confusion matrix.

Table 11: Confusion matrices of a trained model on the validation and the test sets, that include the
precision, recall and accuracy.

Finally, the neural network was evaluated. The results are shown in confusion matrices in Tables 11.
Table 11a shows the predictions of the model on the validation set, and table 11b shows the
predictions on the left out test set.
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5 Discussion

In this study we created a quiz where participants could ask for help by pressing a button, captured
their facial expressions through their webcam, and designed and tested a neural network that was
able to make predictions about help asking.

The goal of this study was to predict when students want help, which is not exactly the same as
a student asking for help, which we captured in the experiment. In this context, the relationship
between wanting help and actually seeking help by pressing a button is somewhat unclear. Although
research points out that students may ask for help non-verbally, through expressions (so without
asking for it) [13], it is unclear if they would also ask for help non-verbally if there is an easy-to-use
help button. Further research could experiment with a similar system, but also review when students
look like they want help to gain more insight into this relationship.

We were able to run the experiment on a website, enabling everyone to participate from home. This
is very similar to popular ITS applications like Snappet [5] or Duolingo [2]. Moreover, the same
data capturing methods could actually be added to both ITS. The data collection of this research
is (intentionally) very practical, and highly anonymous because no video data is collected or sent.

However, we noticed a few caveats with this approach. The frame rates at which data was captured
was not constant, and could even contain gaps of data when someone’s face could not be tracked
for a while. A poor camera or poor lighting conditions could cause this. This meant that we had to
(re)sample the data to be able to use it in the classifier. Also, participants’ facial expressions could
be not related to seeking help, and making the quiz, if they were, for example, talking with family
members or listening to music while participating in the experiment, introducing noise into the
dataset. Further research could enforce better, more constant, conditions or monitor participant’s
camera feed.

The library Mocap4face [4] that was used to capture facial expressions, was able to capture facial
expressions directly in the browser of participants. However, it uses non-conventional FACS encoding,
as shown in Table 4. This meant that we could not focus on the selected AUs of frustration and
confusion detection for classification. Further research could use another toolbox like Open Face, in
order to compare which AUs are needed for the classification.

We took samples of sequential data, which we call windows or time series, from all captured data,
which have a constant time interval between each item and a constant length. We succeeded in
analysing which frame interval to pick to be able to sample data without biases. In this process, the
same number of windows were sampled with (positively labeled) and without (negatively labeled)
the window ending in the participant asking for help, to form a balanced dataset.

Our classifier was able to predict if those windows ended with the participant asking for help or
not. This classifier used a convolutional layer and a Long-Short-Term Memory (LSTM) layer to be
able to remember patterns of facial expressions over time (temporal context), similar to [9]. The
final testing accuracy was 60%, as shown in Table 11b.

However, for this final evaluation, a very small testing set was used that included 15 items. This
uneven amount also means that the dataset could not be balanced: 7 items were labeled with yes,
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while 8 are labeled with no. The confusion matrix shows that the model is able to predict negatively
labeled windows better than positively labeled windows, implying that the accuracy on a balanced
test dataset might be lower.

Also, it is clear from the validation accuracy in Table 11a, that there is a high degree of randomness
in the accuracy. Earlier results in Table 9 show an average validation accuracy of 67.22%, which
means that the validation accuracy can fluctuate by at least 73.3 − 67.2 ≈ 6.1%.

Another thing that we found when ‘monitoring’ the training process in Figure 11, is that the model
was overfitting, because it got a 90% accuracy on the training set while only achieving 60% or lower
accuracy on the validation set. When reducing the number of trainable weights, and increasing
the dropout rate in Figure 12, the training accuracy reduced, but so did the validation accuracy.
Therefore we did not take any measures against overfitting. We think that the model was overfitting
because there might be much noise in the captured data and/or too little training validation and
testing data. The variation (or randomness) in accuracy confirms this.

This noise could be caused by the earlier described caveats in the data collection of the experiment,
and the yet unknown relationship between expressing ‘wanting help’ while not explicitly asking for
help. It could be impossible for the classifier to distinguish between expressions that participants
make when ‘wanting help while not asking for it’ and ‘asking for help’, because the expressions
could be the same.

After monitoring the training process, we were able to find a good combination of conv filters,
lstm filters and the dropout hyper parameters as listed in Table 7. We specifically chose to optimise
the conv filters and lstm filters because they were most directly responsible for the amount of
trainable weights in the model, and therefore also for the complexity of the model and its ability to
overfit. In hindsight, it was not necessary to experiment with the dropout rate, because the top 2
results of the grid search include the 2 different dropout values, meaning that it was most-likely
trivial.

In this grid search, there are no real significant changes in validation accuracy, especially if we
consider that the model’s accuracy is very random, and could easily have a confidence interval
of ±0.1, even when taking an average of 30. However, from the grid search, it seems that there
still is a pattern: the more convolutional filters we use, the less LSTM filters we need, and vica
versa. But again, it is very difficult to find such patterns in data with a very low variation and a
large confidence interval. Further research could circumvent this by using a larger dataset, with less
noise.

The results in specifying the exact start time and end time of considered data show a clear pattern.
Figure 13 shows that when a model trained on any windows that span the last 0-1, 1-2, 2-3, 3-4,
4-5, 5-6, 6-7 and 8-9 seconds of the window (so before the point where help is asked), that there
was enough data for the model to perform better than random, and also from 16-17 and 17-18
seconds. However, it is noteworthy that the average accuracy drops substantially after 18 seconds
and before 16 seconds. We suspect that this happened because the validation set was randomly
selected, and did not contain any data with patterns before 16 seconds and after 18 seconds by
chance. Further research could circumvent this by using a larger validation set.
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The grid search of a good window length with offset, summarized in Table 8, shows a combination
that includes the first 11.5 seconds, which is in line with the findings of the previous experiment,
apart from not including the peak of information from 16 to 18 seconds. This confirms that this
peak could be caused by chance, making the model overfit to the validation set. We could also have
looked at the accuracy on the test set, but this could introduce a bias to also overfit on the test set
when optimising the model’s hyper parameters with the best results of the grid search.

The best window length is 11 seconds, with an offset of 500 milliseconds, which is the minimal
offset that we included in the grid search to prevent biases. It seems that longer window sizes with
small offsets are substantially better for the model to classify wanting help. This leads us to believe
that the relevant data is at the end of the window, towards the point where help is asked. It could
also be the case that it is easier for the model to learn from longer time series which windows are
labeled negatively.

These large window sizes indicate that the architecture of the model is sufficient to analyse (longer)
time series. We suspect that temporal context also plays a role in the classification of seeking help,
like [9] also concluded for confusion detection. Further research could analyse the role of temporal
context in this classification problem.

The results about which features are relevant for the training process seem random, and are
not in line with earlier observations of for example eye squinting being relevant. When lesioning
some features like eyeLookIn˙L, the validation accuracy actually increased from 0.6722 to 0.6967,
indicating that it might be worth researching which features should be excluded. However, no
features seemed essential to be included in classification. The most sustantial ones are eye blinking
(left: 0.6611, right: 0.6467), head down (0.6556) and jaw left (0.6522). These features weren’t linked
to confusion or frustration in earlier research, but they could be important indicators of wanting
help. Further research is needed to prove that these values are not caused by chance.

Training on data from individual participants seems to be very fruitful, as listed in Table 10.
Even though the data sets are small, the validation accuracy of the model seemed to fluctuate
substantially when trained on different participants. This indicates that individuals may express
wanting help differently. However, because of the small data sets, it is not clear if these results are
random. Further research could focus on individual differences.

After the optimisation of all hyper parameters with the described grid searches, the model performs
better on the validation set than on the testing set that was left out. This indicates that the
model overfitted to the validation set in the process of optimising the hyper parameters. Especially
optimising the window-picking parameters could have caused this, because it could have selected
window lengths and offsets to form windows that contain patterns that are both present in the
training and validation sets, but not in the testing set.

Despite this, the model is able to perform slightly better than chance (60% versus 53.33%), meaning
that it is likely able to predict when people are about to ask for help, in a balanced dataset. Further
research could experiment with improving the accuracy, with unbalanced datasets and applying
this in an ITS.
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6 Conclusions

The goal of this research was to predict if students want help by looking at their facial expressions.
To capture if students want help, we set up an experiment where they were able to ask for help while
their facial expressions were captured. We then constructed a classifier that was able to predict
with up to 60% accuracy if people were about to press the help button. We also saw indications
that the model performed better when trained on some participants than others. From previous
work it’s clear that this could be a useful prediction to make in intelligent tutoring systems (ITS).
However, in the results there are many signs that the dataset was insufficient in size. These signs
include (i) random results, (ii) unclear significance of individual FACS parameters and (iii) very
‘extreme’ accuracies on individuals ranging from 10% to 83.3%.
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A Puzzles in the data collection experiment

Question Hint

Q1

Q2

Q3

Q4

Q5

Q6
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Q7

Q8

Q9

Q10

Q11

Q12

Table 12: All the questions and hints used in the data collection experiment. Q3 to Q12 are from [3].

36


	Introduction
	Thesis goal and overview

	Related Work
	Classifying facial expressions
	Automatic detection of facial expressions
	Making predictions from facial expressions
	Overview of intelligent and affective tutoring systems

	Methods
	Dataset creation
	Website creation
	Steps of the experiment
	Data collection
	Security
	Pilot experiment
	Demographic information
	Constructing the dataset

	Classification
	Neural network structure
	Implementation
	hyper parameters
	Proposed experiments


	Results
	Hyper parameter optimization
	Window picking optimisation
	Relevant Features
	Training on individual participants
	Model evaluation

	Discussion
	Conclusions
	References
	Puzzles in the data collection experiment

