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Abstract

As software becomes increasingly complex, and its demand keeps growing, development teams
are continually looking for ways to improve how software is created. Solutions to increased com-
plexity and size can potentially be found in the large amount of data left by tooling used by
development teams. Utilized tools store digital footprints of actual actions performed by team
members throughout these processes.

Within this paper, an architectural design and case study using this design is presented to
identify areas of Scrum improvement and measure transformations for an agile software devel-
opment team. Using process mining from a control-flow perspective, the actual workflows of a
.NET software development team working on large projects are analyzed and compared with
the team’s desired workflows. Event logs are generated by extracting data from Jira, the project
management tool used by this team. The generated event logs are used during process discovery
to create Petri net models of team workflows. Extending the event logs with data gained from
the process discovery stage, data sets can be created with which to make predictions. The target
values (issue work ratio, issue fitness, and issue next status) were predicted using a decision tree
regressor, support vector regressor, and neural network. Unfortunately, the machine learning
techniques were unable to accurately predict the target variables. Despite this, a proposed way
to use accurately trained machine learning techniques to provide workflow recommendations is
provided.

The contribution of this paper is threefold. First, an architectural design, based on the literature,
for process mining Jira Scrum board data and providing recommendations is developed. Second,
this architectural design is implemented in the form of a prototype process mining tool. Finally,
by evaluating different process mining algorithms, a recommendation is made as to which process
miner should be used and why. By comparing different control-flow miners, the data suggests that
the heuristics miner is the most appropriate to use when analysing agile software development
team data as well as that there is a missing fifth model quality metric: usability.
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1 Introduction

We live in a world where there is an increasing dependency on IT systems. Since the latter part
of the 1990s, digitalization was a key issue for governments and businesses (Anttiroiko, Valkama,
& Bailey, 2014). Everything from banking to sending mail or packages use IT systems to help
facilitate and coordinate the processes. These system digitization trends have continued to evolve
over the last years, becoming increasingly complex, especially when taking into account elements
like the internet of things (IoT), web services, cloud- and edge computing (Gill et al., 2019).

As technological developments continue, so does the need for firms to actively integrate digital
technology into products, services, and operations to achieve - and then sustain - a competitive
advantage in their market (Koch & Windsperger, 2017). This requires felicitous digital service
design. The application of artificial intelligence (AI) and big data analytics can then be used to
solve business problems and this application “is growing in leaps and bounds” (Chui, Manyika, &
Miremadi, 2018).

While the different types of technology are fast developing, organizations are often very slow in
nature and rigid in thinking. Despite their inherent inflexibility, organizations do need to take
advantage of opportunities provided by technology to facilitate continual competitiveness in the
market. As such firms are increasingly implementing environmental technologies; which are “pro-
duction equipment, methods and procedures, product designs, and product delivery mechanisms
that conserve energy and natural resources, minimizing the environmental load of human activi-
ties” (Shrivastava, 1995). Conservation of energy and resources, including human resources, along
with process improvement can help reduce cost. Energy and human resource application reduction
are some of the types of problems AI and big data analytics can help with.

Despite the intrinsic interest of organizations in cost reduction, it is widely known that most soft-
ware development projects suffer from time- and cost-overrun. This naturally conflicts with the
desire to reduce human or other resource expenditure, and with the strategic and market need to
satisfy customers.

An attempt to approach, and solve, the problem of time-overrun is found in Development Opera-
tions (DevOps) which aim to automate and structure certain processes to reduce time on repetitive
tasks. This is often done by way of CI/CD (Continuous Integration/Continuous Deployment), where
a central code repository is used for version control and deployment (to production) is automated.
Part of DevOps is also to define and improve team standards and workflows.

AIs have proven effective in industries like manufacturing (Monostori, 2003) or around supply chain
management (Souza, 2014) in reducing cost as well as improving processes. The question is then
how similar principles of process improvement and cost reduction can be applied to digital service
design to help organizations take advantage of the incrementally growing technology and techno-
logical possibilities?

The Netherlands has a highly digitalized economy, being, as of writing, the fifth largest data center
nation in the world (Cloudscene, 2018). To lead in the next technological wave, Dutch companies
need to be better in the digital service domain than their competing nation economies. IT develop-
ment and service delivery development provide enhanced strategic capabilities for many companies



and governments, enabling further sustainable growth.

Electricity grid companies might need to double their energy output or web development companies
might need to increase their client turnover. Digital service design can help reach these goals by
making work easier and less resource-consuming while still maintaining or even increasing output.
To apply digital service design in such a way that it helps companies reach their goals, digital service
design itself needs to be improved through cost and time reduction by way of process improvement.
Setting up a digital service delivery team is often difficult: forming and training a professional team
is expensive while picking up on and applying best practices takes time and money. Scaling these
best practices becomes difficult due to constant domain developments and new best practices being
defined.

While process improvement through AI-driven process mining has been applied in areas like man-
ufacturing (Lee, Choy, Ho, & Lam, 2016), its application is viewed as less suitable for project
management and service design primarily due to the “inherent uniqueness of projects by defini-
tion” (Auth, JokischPavel, & Dürk, 2019). Despite this issue, many different design and development
life-cycle methods have been proposed like agile and waterfall. This inherent uniqueness makes it
difficult to define a single straightforward process that all digital service delivery teams should fol-
low to deliver any relevant products. This also often leads to digital service design teams following
radically different processes to deliver the same type of product.

The applications of (AI-driven) process mining have been implemented to tackle many different busi-
ness problems including manufacturing optimization (Lee et al., 2016), healthcare (Rojas, Munoz-
Gama, Sepúlveda, & Capurro, 2016), supply chain management (Lau, Ho, Zhao, & Chung, 2009),
construction (Van der Aalst et al., 2007), and financial services (De Weerdt, Schupp, Vanderloock,
& Baesens, 2013). In these industries, process mining aims to construct models reflecting observed
behavior and processes while also allowing for bottleneck identification and process optimization
opportunities.

Business analytics applications for project management have been categorized into descriptive,
predictive, and prescriptive analytics (Souza, 2014), the latter two of which are often heavily AI
dependent. Descriptive analytics aims to present and describe the project itself. Predictive analyt-
ics attempts to forecast project outcomes based on resource allocation and the current situation.
This can be useful in predicting the required time and cost and is heavily dependent on previous
data. Finally, prescriptive analytics is generally regarded as a less well-matured extension of de-
scriptive and predictive analytics (Hagerty, 2017) and has gained increasing research interest over
the last few years (Lepenioti, Bousdekis, Apostolou, & Mentzas, 2020). Answering what to do and
why to do it is still a problem and is considered “the next step towards increasing data analytics
maturity and leading to optimized decision making, ahead of time, for business performance im-
provement” (Lepenioti et al., 2020).

Despite the difficulties of defining set processes to inherently unique projects, like those taken
on by digital service design teams, this paper aims to provide an example architectural overview
and implementation, building upon industry standards, in applying process mining combined with
machine learning techniques to provide descriptive, predictive, and prescriptive analyses of the
processes these teams go through.



1.1 Research Objective

Digital service design teams often focus on the design, development, and delivery of digital services
in the form of computer programs or (web-)applications, like APIs that provide a central connec-
tion point between different applications. Since the development of the first computer program,
arguably by Ada Lovelace in 1834, many different software development life-cycle methodologies
have been proposed. The different suggested methodology styles has exploded since the 1970s,
leading to common methodologies like Waterfall, Agile, and more recently SAFe and DevOps. The
most commonly applied software life-cycle methodology used nowadays is agile, which in itself often
encompasses other methodologies and elements like Scrum and DevOps.

As these methodologies have become popular and widely used by the growing number of software
development teams so have the number and capabilities of digital tools that facilitate these pro-
cesses while also logging the steps taken by these development teams. One of these widely used
tools is the online project management software tool Jira.

Process mining is a promising field of study in analysing event data and has been growing rapidly
in popularity over the last two decades(Van der Aalst, 2012b; Homayounfar, 2012). Despite its re-
pute, process mining can seem like a daunting task, especially when applied in process improvement
for software development. The objective of this paper will be to provide an architectural design for
process mining of agile software development teams Scrum board workflow data based on relevant
literature and best practices combined with a case-study applying this proposed framework built in
Python.

A case study will be used to investigate the Jira Scrum board logs of an agile software development
team. During this investigation, the logs will be used to provide process mining driven descriptive
and predictive analysis and attempt to provide prescriptive advice for this team. This analysis and
advice will be developed using (control-flow) process mining of the Scrum board logs combined
with the industry-standard machine learning techniques. The application will be built completely
in Python.

1.2 Research Questions

Based on the above-stated research objective, this research paper will aim to answer the following
question through a case study of an agile software development team’s project management soft-
ware (Jira) event log data:

How can process mining be used to suggest Scrum improvements for an agile software
development team, and what kind of architectural design is required to investigate
and provide these recommendations?
This broad thesis question can be further divided into, and extended with, the following supporting
questions:

1. What does process mining entail, what kinds of process mining exist, and what are the
industry standards?

2. How do process mining techniques and standards compare?

3. How is process mining applied in (agile) software development?



4. What machine learning techniques are industry standards in analyzing process mining data
and how do they fare during the case study?

1.3 Research Scope

In this exploratory research paper, a single agile software development team has been identified
and its Jira Scrum board event log data is extracted and analyzed. This research will therefore
be structured as a single-case study over the course of about a year. Despite the definitive data
extraction being done towards the end of the research period, writing the paper, collecting data,
and building a Python application to perform the research will take around a year, after which the
researcher will be expected to graduate.

With this research, the aim is to analyze data of an actual software development team working in
the industry. For this reason, several restrictions will be placed on the type of team to analyze. The
requirements of the type of team to analyze are as follows:

• Agile software development team (what this entails is discussed in Section 2).

• Uses Jira as their project management tool.

• At least data of 10 projects to analyze.

• Preferably working on large-scale projects (multiple components developed across multiple
teams) - working with multiple teams on a single large project.

Most process mining research is done using frameworks and tools like ProM or Celonis, which in
themselves do not have machine learning capabilities built-in. Machine learning research is often
done in Python. For this reason, a Python application is developed and published on Github
to allow the combination of process mining (using PM4PY) and machine learning (using Scikit
Learn) in one place. This application, with which to extract, explore and analyze data, is part of
this research paper and an architectural design for this application is also presented to help guide
any further research in this area that wishes to combine machine learning and process mining in a
single application.

1.4 Project overview

This paper will consist of six sections:

• Section 1: The introduction, which you just finished reading, contains the research objective,
question, and scope.

• Section 2: The literature review contains background information to help guide understanding
and analysis of the data while also aiming to answer some of the supporting research questions.

• Section 3: The method, where the methodology of the research will be discussed in detail.

• Section 4: Architecture of the Python application that will be built to combine Jira data
collection, process mining, and machine learning into a single application.

• Section 5: The experiments and results of the experiments will be presented.



• Section 6: The discussion of the results where the results will be interpreted and an under-
standing of the meaning of the results will be formed.

• Section 7: The conclusion, where the main findings will be presented relative to the objects
of this research paper.



2 Literature Review

For the literature review, this Section will be split into several subsections in an attempt to approach
and answer several of the supporting research questions. For this reason, this Section will define and
describe different software development methodologies, what process mining entails, and how it is
applied in agile software development. Finally, a summary and gap analysis to bridge the presented
knowledge, answering several of the supporting research questions.

2.1 Agile and other software development methodologies

As early as the 1970s software development life-cycles have been defined as a way of alleviating
the issues that arise from software projects with growing complexity. Royce defined what would
become the classic waterfall model in 1970(Royce, 1987) which was later redefined and coined as
such in 1976 by Boehm(Boehm, 1976).

Every software development model acts as a set of rules or guidelines while moving through the
general steps of building a system(Despa, 2014). As software projects become more complex they
often lead to general problems. These problems include cost overrun, time overrun, the software
being unreliable, and the software failing to meet the users’ needs or expectations(Davis, Bersoff,
& Comer, 1988).

These types of problems often arise from incorrect work and resource alignment by the project
director(Bassil, 2012). Phases are delayed because of insufficient resource allocation or phases
become idle by way of excess resource allocation, causing bottlenecks between the phases and
their sub-elements, eventually leading to operational project delivery failure through time and cost
overrun(Bassil, 2012).

By defining a structure for the software development process, these models aim to tackle some
of these problems that arise in complex projects. The waterfall method, for example, approaches
these problems by encouraging requirements definition and system design before building; planning
of component interactions; tracking development progress to identify overrun early; documentation
to assist in testing and maintenance; reducing maintenance costs; and stimulating structured and
manageable system development(Davis et al., 1988).

The approaches suggested by different development models aim to help the project manager struc-
ture the project in such a way as to avoid time and cost overrun. To this end, the models aim to
maximize development process utilization by keeping all team members and resources busy while
keeping the pace of project elements and decreasing idle time(Bassil, 2012).

As many as 32 different software development models have been defined(Despa, 2014). Each of
these models have their own respective advantages and disadvantages. While different in nature,
seven broad stages have been identified and agreed upon to be part of every software development
process. Each of these stages can be defined by having its own deliverables, specific time frame,
and can be assigned a weight of importance as compared to the other stages in the overall project.
Every project contains a research, planning, design, development, testing, setup, and maintenance
stages(Despa, 2014).



Despite many different models being defined, these models can be divided up into two distinct
types. Firstly, there is the more traditional heavy weight model type. These models are “derived
from the waterfall model and emphasizes detailed planning, exhaustive specifications and detailed
application design”(Despa, 2014). This coincides with projects where detailed planning is permitted
by the required software complexity and requirements are unlikely to change. Secondly, there are
the light weight model types which are “derived from the agile model and promote working soft-
ware, individuals and interactions, acceptance of changing requirements and user feedback”(Despa,
2014). Contrary to heavy weight models, light weight models work well for projects where software
complexity is difficult to estimate and requirements can or are likely to change.

Figure 1: Waterfall development stages(Despa,
2014)

The waterfall methodology, described by
Royce, is the first project development
model to generally be accepted as dedi-
cated to software development(Bassil, 2012).
Being the precursor for many other mod-
els, it is important to understand the
workings of the waterfall method. While
several different namings for the stages
exist, the waterfall model is structured
in sequential stages, each of which have
their own deliverable and which reflect the
stages present in every software project: Re-
search, planning, design, development, test-
ing, feedback, setup, maintenance. A feed-
back stage has been added between test-
ing and setup when compared to the orig-
inal workflow of the waterfall methodol-
ogy. These stages can be viewed in Figure
1.

While the stage name generally describes the workings of that stage, the research stage requires
extra attention due to its importance in defining the project scope and success, especially impor-
tant the waterfall model. Exhaustive planning only works if the right amount of knowledge of the
project and its dependencies is present at the start. During the research stage, functional and non-
functional requirements are set, helping to set the scope of the project. Functional requirements
are the “use cases which describe the users’ interactions with the software”(Bassil, 2012), while
non-functional requirements consist of “various criteria, constraints, limitations, and requirements
imposed on the design and operation of the software rather than on particular behaviors”(Bassil,
2012).

Feedback from the project owner is only given after development and testing, which makes the
planning and (non-)functional requirements definition extremely important. The nature of this de-
velopment model makes applicable during small-scale projects with clear requirements and where
detailed planning is easily drafted(Despa, 2014).

Unfortunately, not all software development projects allow for clear requirements definition. In
fact, it is very common for functional or non-functional requirements to change during software



development. Some would even go so far as to say “software development projects are notorious for
frequently changing initial specifications”(Despa, 2014).

Requirements can change for several reasons: new business opportunities are identified by the
project owner; there can be a lack of consensus around the expected outcome, spurred by the tech-
nical nature of the project; the original specifications were misunderstood or poorly illustrated;
technical limitations or lack of experience on the part of the development team; changes in the
context of software usage; or simply the launch of new technologies in market place (Despa, 2014).

Figure 2: Iterative and incremental development model(Despa, 2014)

As a way to keep up with changing (non-)functional requirements and project specifications, iter-
ative and incremental development models were suggested. These light weight models emphasized
building the project one step at a time, in an iterative manner, enhancing and expanding the system
as development continued. In this way modules of the system were not disregarded or redefined but
extended(Davis et al., 1988). Each iteration would consist of its own planning, designing, devel-
opment, and testing phases(Davis et al., 1988). After each iteration a fully functional system can
be presented for feedback. These types of models gave birth to agile development models as agile
methods are regarded as a branch of iterative methods(Larman, 2004).

Figure 3: Comparison between Agile and Traditional (Waterfall) methods(Leau et al., 2012)

Agile software development is focused around a manifesto consisting of four major pillars(Lau et



al., 2009). First, there is early, active and continual customer involvement to ensure alignment
between the customers evolving wishes and the development team. Secondly, development should
take place in an iterative manner, involving the customer actively after each iteration. Thirdly, the
development team should self-organize to allow for the most creative development process. Finally,
an agile method requires active adaption to change, welcoming change over renouncing it.

The agile manifesto suggests twelve agile principles that are supposed to guide the development
team. These principles are as follows(Williams, 2010):

1. “Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.”

2. “Welcome changing requirements, even late in development. Agile processes harness change
for the customer’s competitive advantage.”

3. “Deliver working software frequently, from a couple of weeks to a couple of months, with a
preference to the shorter time scale.”

4. “Business people and developers must work together daily through the project.”

5. “Build projects around motivated individuals. Give them the environment and support they
need, and trust them to get the job done.”

6. “The most efficient and effective method of conveying information to and within a develop-
ment team is face-to-face conversation.”

7. “Working software is the primary measure of progress.”

8. “Agile processes promote sustainable development. The sponsors, developers, and users should
be able to maintain a constant pace indefinitely.”

9. “Continuous attention to technical excellence and good design enhances agility.”

10. “Simplicity - the art of maximizing the amount of work not done - is essential.”

11. “The best architectures, requirements, and designs emerge from self-organizing teams.”

12. “At regular intervals, the team reflects on how to become more effective, then tunes and
adjusts its behavior accordingly.”

The agile principles would later be extended and tuned by Mary and Tom Poppendieck in 2003 in
the form of the lean principles(Poppendieck & Poppendieck, 2003). Lean development became pop-
ular in the 1990s and referred to Toyota and Honda automobile manufacturing principles(Womack,
Jones, & Roos, 2007). The Poppendiecks definition of the lean principles are listed below and a
comparison of the Agile principles with the lean principles can be found in Appendix A.

1. “Eliminate waste”

2. “Build quality in”.

3. “Create knowledge”

4. “Defer commitment”

5. “Deliver fast”

6. “Respect people”

7. “Optimize the whole”



As many as 32 agile practices can be applied by development teams and development teams define
and integrate their own subset of these practices(Williams, 2010). Popular groupings of these prac-
tices gave rise to different agile software development methodologies. The most used agile method-
ology is by far the Scrum methodology(Moniruzzaman & Hossain, 2013), followed not-so-closely
by a Extreme Programming(XP)-Scrum hybrid, see Figure 4. All of these agile methodologies have
their own defined subset or extension of the above mentioned 32 agile practices.

Figure 4: Comparison usage of agile software methodologies (Moniruzzaman & Hossain, 2013)

The scrum methodology was initially introduced in 1995 by Jeff Sutherland and Ken Schwaber.
Six years later, in 2001, it was codified in “Agile Software Development with Scrum”, a book by
Schwaber and Mike Beedle. Kent Beck defined Extreme Programming (XP) in 1996, publishing a
book defining the methodology in 1999. Both of these light weight and iterative software develop-
ment methodologies are aimed at tackling the seemingly unavoidable problems in the development
process like high project failure rates, cancellations, and project delays(Anwer, Aftab, Shah, &
Waheed, 2017). The general life cycle of both of these methodologies are presented in Figure 5 and
follow the above mentioned general development stages in an iterative manner.



(a) Scrum lifecylce (b) XP lifecycle

Figure 5: XP and Scrum lifecycles (Anwer et al., 2017).

While there are many agile practices, and many alterations on these practices, some standout due to
their importance in popular methodologies. Both Scrum and XP have a product or sprint backlog,
for example, which entails “an evolving, prioritized queue of business and technical requirements
that needs to be developed into a system during the release”(Williams, 2010) where each item is
placed in a category, is given a priority value, is assigned a resource usage and/or time estimate
and needs to be unique for that project.

Items in the backlog can be defined as Story Cards or Features. This aims to clearly define and
structure the task. As a story, for example, the task is structured as a < usertype > wanting to
< performaction > to achieve a < result >; for a feature it could be < action > < leads to >
< object >. In this way non-ambiguous requirements are set for the task so that the developer
can immediately see what needs to be done; simplicity is key. If this feature is too large to develop
by the team within a set maximum amount of time or within a single iteration, the task should
be made into an epic and split into subtasks. Tasks are subsequently assigned resource or time
estimations during the (iterative) planning phases in both Scrum and XP. In Scrum, this is done
with activities like Planning Poker in which the team uses collective knowledge to make estimates.

The tasks are then tackled during Sprints which are a defined time slots, representing a single devel-
opment iteration, of one to four weeks in which tasks are completed such that after each iteration a
fully functional (although maybe not complete) system can be presented. During a sprint iteration,
the backlog for the next iteration should be filled. Both XP and Scrum introduce Standups (called
scrum meetings in Scrum) in which the team gets together daily for at most 15 minutes to discuss
what they have done, what they will do, and what problems they are running into. After each
sprint, a retrospective meeting can be performed to discuss what went well and could be improved
from the just completed sprint.

XP goes on to emphasize the importance of Pair Programming, in which two developers work to-
gether on a single task from one machine(Anwer et al., 2017). This aims to improve code quality
as well as increase task turnover.

Both Scrum and XP have their own defined roles within the development process. XP defines a



Manager, Coach, Tracker, Programmer, Tester, and Customer. Scrum defines a Product Owner,
Scrum Master, and Developer. For both XP and Scrum a team member can sometimes be assigned
multiple roles, for example in Scrum a Developer can also be the Scrum Master and in XP a Pro-
grammer can also be a Tester.

Both XP and Scrum can apply Done Criteria to tasks as well as demand Continuous Integration,
Automated Testing, and Coding Style Guidelines. A comparison of XP and Scrum can be found
in Appendix B. The application of agile principles in XP and Scrum allow for more flexible and
adaptive development emphasising simplicity and agility; exactly what the agile principles and
practices aim to enforce to increase customer satisfaction, enable the ability to process changing
requirements, and increase the project success rate.

2.2 Process mining

Process mining is a relatively young research field which has been growing over the last two
decades(Van der Aalst, 2012b; Homayounfar, 2012). The main objective of process mining is to
“discover, analyze, and improve business processes based on event data” (Van der Aalst, 2012a). In
2012, van der Aalst and colleges released a Process Mining Manifesto (Van der Aalst et al., 2012)
defining terms and general process mining principles. This manifesto aims to guide stakeholders,
like developers, business managers, and end-users, in improving “the (re)design, control, and sup-
port of operational business processes”(Van der Aalst et al., 2012).

Different activities performed by people or software often leave some form of footprint or trace in
the form of an event log(Van der Aalst, 2012a) which are required for all forms of process mining.
These event logs record sequential events, where each event reflects a well-defined step (activity)
in the process and is associated with a specific case (process instance)(Van der Aalst et al., 2012).
The manifesto also encourages the possibility to extend these event logs with defined resource(s)
(person executing the task, for example), timestamp of when the activity was executed, and other
data elements further defining the event.

As mentioned in the Process Mining Manifesto, by using event logs, processes can be identified,
analyzed, and possibly improved. Van der Aalst et al. defined three types of process mining with
regard to input and output: discovery, conformance checking, and enhancement(Van der Aalst et
al., 2012). Dos Santos Garcia et al. extend these three categories with a fourth: supporting areas(dos
Santos Garcia et al., 2019). All of these categories will be described in the following sub-sections.

2.2.1 Process Discovery

During process mining discovery, an event log is used to extract knowledge, identify sequential
activities and develop a control-flow model without prior knowledge or information about the pro-
cess(es). The actual processes teams use are revealed using only the behavior stored in the event
logs(Van der Aalst, 2012b). In this way, process discovery can help managers identify the exe-
cuted cases, frequency paths between activities, and how path frequency is distributed over all the
paths(De Medeiros & van der Aalst, 2008).



Process discovery aims to produce a control-flow-model that should be sufficiently comprehensive
and accurate with regard to the listed cases in the event log while avoiding unneeded complex-
ity (De Weerdt, De Backer, Vanthienen, & Baesens, 2012). To this end, a balance between recall
accuracy, precision, and generalization is intended(dos Santos Garcia et al., 2019) where the F-score
methodology is used to assess model accuracy(De Weerdt et al., 2012). The suggested models are
developed using process discovery algorithms or ‘miners’.

Hundreds of different types of miners have been proposed over the years(dos Santos Garcia et
al., 2019). As early as 1972 Biermann and Feldman’s suggested the KTAIL algorithm (Biermann
& Feldman, 1972). Other example algorithms include the in 1995 by Cook and Wolf suggested
Recurrent Neural Network, and a, statistically based, Markov model for process discovery on fi-
nite state machines(dos Santos Garcia et al., 2019). Since then many new algorithms have been
suggested including: Agrawal (Agrawal, Gunopulos, & Leymann, 1998), Alpha miner (Van der
Aalst, Weijters, & Maruster, 2002), Heuristic miner (A. J. Weijters & Van der Aalst, 2003), social
miner (Van der Aalst & Song, 2004), genetic miner (Van der Aalst, De Medeiros, & Weijters, 2005),
Integer linear programming (ILP) miner (Jansen-Vullers, van der Aalst, & Rosemann, 2006), Fuzzy
miner (Günther & Van Der Aalst, 2007), Declarative miner (Lamma, Mello, Montali, Riguzzi,
& Storari, 2007), Region-based miner (Bergenthum, Desel, Lorenz, & Mauser, 2007), Inductive
miner (Leemans, Fahland, & van der Aalst, 2013), Multi-paradigm miner (De Smedt, De Weerdt,
& Vanthienen, 2014), and the Fodina miner (Van den Broucke & De Weerdt, 2017).

Each of these miners have their own respective benefits and disadvantages. By far the most pop-
ular miner is the heuristic miner, and its many variations, see Figure 6. This popularity could be
because of the algorithms robustness and capability to “deal with noise and exceptions in unstruc-
tured processes”(dos Santos Garcia et al., 2019).

Figure 6: Distribution of process mining algorithms by use (dos Santos Garcia et al., 2019)

The type of miner to use is often based on the process mining perspective to be analyzed. The
process mining manifesto identifies four general perspectives: control-flow, organizational, case and



time perspectives(Van der Aalst et al., 2012). While several alternative or extending perspectives
have been provided, Rubin et al. neatly defines four over-arching perspectives(Rubin et al., 2007).
First, the most applied perspective is the control-flow perspective where the process is defined by
sequential, and sometimes looping, activities in a visual process model, like a Petrinet or a BPMN
model. Secondly, the resource perspective (organizational perspective) analyzes the actors involved
in the process and their relationships. This more closely resembles social network analysis(Gupta,
Sureka, & Padmanabhuni, 2014) and can offer c-level support in employee allocation decisions(dos
Santos Garcia et al., 2019). Next, there is the performance perspective from which the timestamp
attribute of an event is used to identify performance frailty and it location in the process. Finally,
the information perspective which aims to take a high level view of the activities, clustering similar
activities to expose potentially hidden dependencies.

Several different miners have been applied in process discovery in (agile) software development from
a control-flow perspective. Selecting a miner can be difficult, as different miners can offer similar
but not equivalent results. To be able to evaluate and compare the different miners, Rozinat et
al. proposed a framework consisting of four quality dimensions(Rozinat, de Medeiros, Günther,
Weijters, & van der Aalst, 2007). The first metric is that of fitness, indicating how well the event
data is captured by the proposed model. Second, precision measures how well the event log activity
sequences fit into the model without the model over-generalizing (under-fitting). The third metric,
generalization, does exactly the opposite, by assessing how well the model avoids over-fitting. The
final metric, simplicity, is that of the structure of the proposed model, measuring how easy the
model is to read. This final metric is heavily dependent on the vocabulary and formalism of the
modeling language. These metrics become especially important when discussing the conformance
checking type of process mining, see Section 2.2.2.

For this paper, we will only be describing the most popular control-flow miners. These include the
heuristics, Alpha (and variations) and evolutionary-based miners, see Figure 6. We will also include
the Inductive Miner due to its polynomial complexity and enforcement of soundness and fitness
(more on this further below).

Often regarded as the most basic algorithm for process mining(Shani, Sarno, Sungkono, & Wahyuni,
2019), the Alpha miner proposed by van der Aalst(Van der Aalst et al., 2002) in 2002 aimed to
discover workflow models by designing Petri nets during computation. Unfortunately, the initial
proposal was unable to properly process incomplete event logs, identify short loops, map non-
local dependencies, handle non-free choice constructs, and was simply non-resilient to noise(dos
Santos Garcia et al., 2019). Many process miners aimed to extend the Alpha miner, the most im-
portant of which to mention is its namesake, the Alpha+ algorithm introduced in 2006 by Wen et
al.(Wen, Wang, & Sun, 2006). Alpha+ solved some of the issues around its predecessor including
the ability to process short loops, but was unable to properly process noise or calculate activity
frequency(Shani et al., 2019).

The Heuristics algorithm is another control-flow discovery miner that was proposed by van der
Aalst together with Weijters(A. J. Weijters & Van der Aalst, 2003) a year after the Alpha miner
was presented. This algorithm aimed to further extend the Alpha algorithm and has certain advan-
tages over the Alpha+ algorithm(Shani et al., 2019). The heuristics miner is able to identify noise
in the process(Zayed & Farid, 2016), analyze path frequency, use dependency frequency to develop
a heuristic net starting from the event logs instead of the process model design (as done with



the Alpha miner). Dependency thresholds are used to help differentiate noise from low frequency
pattern(A. Weijters, van Der Aalst, & De Medeiros, 2006). Three threshold values are defined:
dependency threshold (direct sequential relationship), and threshold (looping to self sequentially),
and finally two loop threshold ([indirect] sequential relationship)(A. Weijters & Ribeiro, 2011). The
higher the threshold, the more often the path as to occur to be included in the model. While the
model cannot guarantee total soundness, as less frequently visited paths are not included in the
model (being limited by the threshold values), it does ensure good fitness and the ability to compare
actual event processes with a handmade model(dos Santos Garcia et al., 2019). The benefits and
robustness of this algorithm have allowed it to become the most used and extended process mining
algorithm.

The in 2007 by Günther et al. proposed Fuzzy miner(Günther & Van Der Aalst, 2007) which
further built upon the Heuristics miner. This new miner was designed to identify unstructured
logged processes(Zayed & Farid, 2016) and visualize activity relationships. This method “com-
bines complex topology concepts from cartography, such as aggregation, abstraction, emphasis,
and customization”(dos Santos Garcia et al., 2019). Unfortunately, soundness and fitness are not
ensured with the Fuzzy miner.

Two years before the Fuzzy Miner was presented by Günther et al., van der Aalst, Alves, de
Medeiros, and Weijters proposed using Genetic Algorithms - a subdomain of evolutionary algo-
rithms - for process discovery(Van der Aalst et al., 2005). Each individual (case) in the population
was represented in the form of a two dimensional casual matrix which could be transposed into a
petri-net. Using a genetic algorithm, the casual matrices of the individuals in the population were
mutated, and a fitness function was used to simulate Darwinian survival of the fittest. This allowed
for the identification of duplicate activities as well as silent activities(Van der Aalst et al., 2005).
Silent activities are those that do not appear in the event log but still take place.

The final discovery algorithm to highlight is the Inductive miner, also called the B’ algorithm
(Leemans et al., 2013). This miner aims to identify both sound and fit block-structured models
in polynomial-time. “It also incorporates several criteria such as: frequency analysis, clustering,
detection of deviations and frauds, analysis of times and bottlenecks, general vision, and process
understanding and evaluation of values by outcome”(dos Santos Garcia et al., 2019) into a single
mining solution.

Despite the Inductive miner, given its polynomial complexity and enforcement of soundness and
fitness, showing much promise over its alternatives it has not (yet) become the most prevalently
used miner, as reflected in 6. The Heuristics miner and its descendant, the Fuzzy miner, are the
most applied miners. Both of these miners have a resilience to noise in unstructured processes which
might explain their popularity(dos Santos Garcia et al., 2019).

2.2.2 Conformance Checking

Having discussed the discovery type of process mining, the conformance checking side of process
mining should be highlighted next. With conformance checking the quality of a process model is
measured, applications of these quality measurements are defined and can then be used for active
process monitoring. Model quality is measured along the four quality dimensions proposed by Rozi-



nat et al.(Rozinat et al., 2007): fitness, precision, generalization, and simplicity. These metrics have
already been described above in Section 2.2.1.

While often used interchangeably, conformance and compliance checking differ slightly. Confor-
mance checking requires analysis of completed event logs after the project(s) is(/are) finished,
while compliance checking is a form of monitoring using uncompleted event logs during (project)
run-time(Ly, Maggi, Montali, Rinderle-Ma, & van der Aalst, 2015). Despite having a subtle differ-
ence between them, these forms of checking are heavily influenced by the level of completeness and
structure of the event logs being analyzed.

The conformance checking type of process mining is where c-level interest is sparked as this
type focuses on conformance with established norms and identifying where rules or expectations
are not followed. De Medeiros and van der Aalst approached the c-level questions that can be
tackled with process mining from both the discovery as well as the conformance checking type
perspectives(De Medeiros & van der Aalst, 2008). Questions like: “What is the communication
structure and dependencies among people? Who are the important people in the communication
flow? Are the process rules [and] constraints indeed being obeyed? What are the business rules in
the process model? How compliant are the cases (i.e. process instances) with the deployed process
models?”(De Medeiros & van der Aalst, 2008). The complete list of approachable question sug-
gested by de Medeiros and van der Aalst are listed in Figures 7a and 7b.



(a) Questions to answer with process discovery

(b) Questions to answer with process conformance checking

Figure 7: Questions to ask and answer with process discovery and conformance checking as proposed
by de Medeiros and van der Aalst(De Medeiros & van der Aalst, 2008)

De Medeiros and van der Aalst went on to describe how event logs and models can be used to rep-
resent relationships, defining different ontologies in the processes being analyzed. Ontologies can be
summed up as “a set of concepts used by people to refer to things in the world and the relationships
among these concepts”(De Medeiros & van der Aalst, 2008). Simply put, the what of the processes.
Examples of these ontologies can be Task ontology, Role ontology, and Performer ontology, which
are also presented in Figure 8. These ontologies are very similar to the different perspectives of
process mining defined in the previous sub-section - the control-flow -, organizational -, case- and
time perspectives.

Ten general functions have been identified and placed in a framework for the exercise of analyzing
process conformance and exploring the relevant ontology. These are the Compliance Monitoring
Functionalities (CMFs) which can be used to evaluate different compliance checking approaches.
These ten functionalities have been defined by Ly et al. along the following constraints: time con-
straints; data constraints; resource constraints; supporting atomic (spanning one time interval)
and non-atomic activities; supporting activity lifecycle; multiple-instance constraints; reactively
detecting and managing compliance violations; pro-actively detecting and managing compliance vi-
olations; explaining the cause of the violation; and finally, quantifying the degree of compliance(Ly,
Maggi, Montali, Rinderle-Ma, & van der Aalst, 2013). Conformance checking thus aims to compare



Figure 8: Example of process ontologies.(dos Santos Garcia et al., 2019)



and measure processes along these CMFs.

2.2.3 Process Enhancement and Predictive Techniques

Thirdly, there is the process mining type of process enhancement. This type of process mining
focuses on enhancing the process model with information from outside the event log. The incorpo-
ration of relevant extra information can be combined with the process model using statistical and
machine learning techniques to generate predictions(dos Santos Garcia et al., 2019) or offer differ-
ent perspectives. These extended models and their associated predictions can be used to provide
operational support, the most ambitious process mining form, and providing a powerful tool for
data scientists(Van Der Aalst, 2016).

Linking process enhancement back to the c-level questions to be answered in Figure 7, de Medeiros
and van der Aalst suggest that the answers to questions around topics like average-case through-
put time; decision probabilities; critical activity, or resource identification; and (estimated) activ-
ity duration(De Medeiros & van der Aalst, 2008) can be answered when supported by process
enhancement(dos Santos Garcia et al., 2019).

While not all too obvious, predictive methods and techniques can be considered to fall under pro-
cess enhancement. These methods often require enhanced event logs containing more than just the
basics of the case, activity, timestamp. As such, predictive techniques aim to use as much of the
data available to make predictions about cases and activities.

Process mining has been combined with different predictive methods when trying to answer sev-
eral of the c-level questions that can be asked, like instance duration, delay identification, and
recommended execution path. These methods include but are not limited to, Bayesian indicators,
“decision trees, case based-reasoning, recommender systems, and neural networks”(dos Santos Gar-
cia et al., 2019). In 2014, Polato et al. were able to use the Naive Bayes principle combined with
a Support Vector Regressor to predict both case path as well as estimate case duration(Polato,
Sperduti, Burattin, & de Leoni, 2014).

In the end, of course, we would like to use these techniques to be able to provide real-time decision
support, allowing for better business agility. A general application of predictive process mining is to
provide suggestions in real-time to help reduce risk. In 2017, Marquez-Chamorro et al. suggested ap-
plying an evolutionary algorithm combined with process mining to provide active business process
predictions(Márquez-Chamorro, Resinas, Ruiz-Cortés, & Toro, 2017). The evolutionary algorithm
used is the genetic algorithm. This is akin to Darwinian evolutionary concepts in which over a
random probability distribution iterative population-based optimization using a fitness function is
performed to, over the course of several (simulated) ’generations’, allow the ’fittest’ of the popula-
tion to remain (survival of the fittest).

In the same year, Evermann et al. suggested using deep learning to predict activity sequence and
case behavior in a business process(Evermann, Rehse, & Fettke, 2017). By using recurrent neural
networks combined with natural language processing, a process model did not need to be created.
This avoids the (sometimes difficult) task of diving into the model quality metrics debate, making
this option ideal if a model is difficult to generate(dos Santos Garcia et al., 2019).



Active prediction of the next activity was done by Lakshmanan et al. in 2013 by using decision
tree learning methods while also providing an estimated degree of accuracy(Lakshmanan, Shamsi,
Doganata, Unuvar, & Khalaf, 2015). The technique suggested using instance-specific probabilis-
tic process models to discover the likelihood of given case sequential activities and outcomes. By
transforming the probabilistic process model into a Markov chain, future tasks to execute can be
predicted with higher accuracy than conditional probability methods(Lakshmanan et al., 2015).
This technique allows cases to be viewed in parallel.

When trying to monitor and predict cases in active real life situations, it can be difficult to be able to
view each case individually and as disjunct. Many running cases in the real world will be dependant
on other cases being executed in parallel. To tackle this problem Senderovich, Francescomarino and
Maggi proposed a framework in 2019 that analyzes the cases over a two-dimensional state-space
of intra-case dependencies (information about only the case) and inter-case features (properties
linking cases) for process prediction(Senderovich, Di Francescomarino, & Maggi, 2019). The latter
encodes features using either a knowledge-driven or data-driven encoding approach. A derivation
function is also used to reduce the dimensionality of the feature space - focusing only on the relevant
N -features, avoiding the dreaded curse of dimensionality. This allowed for a data-driven approach,
using an alteration of the K-Nearest Neighbor technique to estimate the ‘distance’ between cases.
Senderovich et al. showed that their approach works when predicting actual execution-time and
that a data-driven encoding approach ”has a better or comparable accuracy” when compared to a
knowledge-driven encoding approach, despite having no prior knowledge of the case type.

In 2017, Yang et al. took process prediction one step further by providing a data-drive process rec-
ommendation framework using a regression model(Yang et al., 2017). Their suggested framework
consists of two broad phases: process analysis and process recommendation, the former of which
is subsequently divided into its own respective sub-phases. Process analysis consists of “(1) clus-
tering of historic traces based on similarity; (2) determining the cluster prototypes that represent
the established process enactment for each cluster; (3) regression analysis to explore the correlation
between cluster membership and context attributes; and (4) interactive visualization and statistical
analysis of process traces”(Yang et al., 2017). The emphasis of this framework centers around the
proper clustering of cases. This is done by using their proposed Trace Similarity based on Time
Wrapping, which looks at the time performance of each case over its activities, and Exemplar-based
Clustering using Hierarchical Clustering, Affinity Propagation and Density-Peak based Clustering.
Cluster prototypes are generated by (1) “discovering the time-warped prototype using time warping
paired with a divide-and-conquer strategy”; (2) “unwarping the timeline to find the prototype” ;
and (3) “filtering and repairing the prototype for easier interpretation”(Yang et al., 2017). Finally,
a regression model is trained to identify which cluster a case is most likely to belong to.

Using this regression model, Yang et al. moved on to the recommendation phase of their framework.
In this phase, the regression model is used to define to which cluster a new case belongs. Having
identified a cluster, the recommendation system suggests using the prototype process belonging to
that cluster. While not mentioned by Yang et al., this type of process recommendation can be used
to estimate total case time execution based on the created data-driven process prototype.



2.2.4 Process Mining Support Areas

As stated above, dos Santos Garcia et al. added a fourth type of process mining category to van
der Aalst et al.’s initially defined three(dos Santos Garcia et al., 2019; Van der Aalst et al., 2012).
This fourth category is support areas for process mining which acts as a kind of supplemental ad-
hesive between all the categories by including elements like process mining applications, methods
for process mining projects, architecture and tools, background, gathering, and cleaning of event
logs and the previously mentioned ontologies of process mining(dos Santos Garcia et al., 2019).

Figure 9: Number of process mining papers by application domain in 2019 (dos Santos Garcia et
al., 2019)

Process mining has been applied in many different fields, the most prevalent of which are fields
like Healthcare, ICT, and Manufacturing - with Healthcare taking the lead by far (see Figure 9).
With the growing popularity of process mining and its application in many different fields, different
architectures and tools have been developed and released to offer increased support in areas like
Business Intelligence, Business Process Management, and Enterprise Performance Management.
Most publications around process mining use the ProM framework despite alternatives being of-
fered like Celonis Discovery, Disco from Fluxicon, Software AG, RapidProM(dos Santos Garcia
et al., 2019), and recently the PM4PY Python package released by the Fraunhofer Institute for
Applied Information Technology. These frameworks are further supported by a heterogenic data
source format in the form of Extensible Event Stream (XES) files(X. W. Group et al., 2016).

For tackling process mining projects and combining it with other techniques, methods for process
mining projects have also been suggested. This starts, again, with our process mining protagonist
van der Aalst back in 2011. Van der Aalst suggested using the five staged L∗ life-cycle model when
applying process mining to a project(Van Der Aalst, 2011). These five stages are structured as
follows:

1. Plan and justify: this is where you ask the C-level questions you will likely explore.

2. Extract and explore the knowledge available, collecting and storing event logs.

3. Discover a process model using the previously collected event logs and the chosen mining al-
gorithm. After having created a presentable model, perform conformance checks, and analyze



the activities and deviations to the expected model.

4. Use process enhancement to extend the model and gain new perspectives and insights.

5. Operational support: detect and predict unwanted workflows and provide recommendations.
“This is the most advanced level of computational support, for example, the process mining
tool should be capable to alert (email) on deviation cases, provide advice about bottlenecks,
recommend resource setup or reallocation, ect.”(dos Santos Garcia et al., 2019).

The data gathered during the extract (and explore) stage of van der Aalst’s proposed application
of the L∗ life cycle to process mining can come from many different sources. This brings with it
fundamental issues around data quality. Event logs can have many issues including missing events;
incorrect or imprecise timestamps; imprecise activity names; and irrelevant events(Bose, Mans, &
van der Aalst, 2013). Ways of improving data (and thus event logs) quality can vary. These include
identification and solving of imperfections, like misspelled activity names or different date-time
formats(Suriadi, Andrews, ter Hofstede, & Wynn, 2017), or tracking different abstraction levels of
activities in the process(Baier, Mendling, & Weske, 2014). The guiding principle around data qual-
ity and handling data in process mining is that it should be treated like a first class citizen(Van der
Aalst et al., 2012).

Treating data like a first class citizen has become another one of those buzz terms, but it is
quintessential to understand what that essentially means. These first class citizens are to be con-
sidered entities or objects in the computer science sense. In the 1960s Robin Popplestone already
defined first class items as having fundamental rights: being able to be passed as parameters to a
function; being able to be returned as a result of a function; being able to be subject of an assign-
ment statement; and being able to be tested for equality(Popplestone, 1968). These items or objects
can perform actions but they remain their own object. The more modern colloquial definition of
data as a first class citizen refers to making it central to the process being analyzed instead of
keeping it as a ‘by product’ for debugging or profiling(Van der Aalst et al., 2012). Treating data
(in the objects it is presented) as a first class citizen has scientific benefits: “(i) to allow assessment
of the reproducability of results; (ii) to be reused by the same or by a different scientist; (iii) to be
repurposed for other goals than those for which it was originally built; (iv) to validate the method
that led to a new scientific insight; (v) to serve as live-tutorials, exposing how to take advantage
of existing data infrastructure, etc.”(Belhajjame et al., 2012) By storing the data in the form of
first class objects that can perform actions as well as have actions performed on them, the data
becomes central in the analysis of the process, preventing it from becoming a ‘by product’.

2.3 Process mining in agile software development

As discussed in Section 2.2.4, process mining in the ICT domain is one of the most written about
research areas in process mining. While the ICT domain is extremely broad, one of its subdomains
that have drawn interest over the years is that of process mining in agile software development. This
in itself can also be split in one of two directions: process mining of user actions to help software
development teams improve the system or product being developed; and process mining of the
actions software development team members take to analyze, identify and improve the processes
team members go through when developing software.



In 2014, Rubin, Lomazova, and (of course) van der Aalst published a paper discussing the for-
mer (Rubin, Lomazova, & Aalst, 2014). The specification and design of (large) systems is a chal-
lenge, leading to designers often trying to anticipate possible software changes and working in a
prescriptive top-down manner, reacting to feedback rather than predicting it. Rubin et al. would
argue that this does not make ideal use of modern agile development methodologies which can
enhance the development process by adding a bottom-up perspective to the design process. Agile
development methods, which ever you choose, generally have one thing in common: iterate often
over a minimal viable products while integrating active user feedback after each iteration. By cre-
ating event logs of user actions, the development team can integrate process mining into the design
process. This allows the designers to combine a prescriptive top-down approach with a data-drive
bottom-up analysis of real user and system run-time behavior, using user behavior to improve de-
sign and usability(Rubin et al., 2014).

While an interesting area of research, for this paper we will be focusing on the alternative direction:
process mining of development teams to help identify and improve team processes during develop-
ment. Using process mining, teams can identify the actual (agile) processes they go through while
identifying unwanted workflows and improving agility(Erdem, Demirörs, & Rabhi, 2018).

In 2014, Mittal and Sureka used process mining to analyze the software development life-cycle of 19
undergraduate student teams taking part in a software engineering course(Mittal & Sureka, 2014).
Data was collected from three different software repositories, reflecting three general stages of de-
velopment the students went through for their course: team wiki for the requirements engineering
stage; version control system for the development and maintenance stage; and issue tracking during
the corrective and adaptive maintenance stage. All of this data was placed in a SQL database and
processed from there looking into Process Verification and Conformance, Development Activity, Ac-
tual Process Discovery, Team-Work Collaboration, and Product-Process Correlation. In this way,
Mittal and Sureka aimed to gain insights into the “degree of individual contributions, quality of
commit messages, intensity and consistency of commit [activity], bug fixing [processes and quality],
component and developer entropy, process compliance and verification”(Mittal & Sureka, 2014).
This was done using visualizations, like radar charts of team member contribution and line graphs
of the number of commits over time; metrics, like mean repair time of bugs; and algorithms, like
the Fuzzy Miner for process discovery and comparing estimated with actual execution time. These
visualizations of data shed light on unequal work distributions, commit patterns, and crunch be-
fore a deadline. Mittal and Sureka end by pointing out a crucial element to take into account when
assessing individual contribution to projects: “While the metrics and visualization proposed are
useful for the instructor, they should be handled with care when used for grading, because they can
be easily tricked by redundant or needless commits or issues (bug reports)”(Mittal & Sureka, 2014).

Several years later, in 2017, Erdem and Demirörs published a case study looking into the appli-
cability of process mining as a process management technique for an agile software development
team using the Scrum methodology(Erdem & Demirörs, 2017). The team being looked into defined
their workflow which was then compared with their actual workflow using process discovery and
conformance checking. It became clear that definitions for ‘Done’ cases were not being upheld,
reflecting a misinterpretation of the Scrum method, providing an improvement opportunity. One
of the important notes to come out of the research done by Erdem and Demirörs is that event logs
should be treated as first-class citizens which will allows for higher quality process mining analysis.



A year later, Erdem and Demirörs continued their work with Rabhi in a mapping study of pro-
cess mining in agile software development(Erdem et al., 2018). In this study Erdem et al. found
that due to the lightweight and people centric elements of agile approaches to software develop-
ment, development processes are not formalized, leading to development teams defining their own
sequential event process. This can cause inconsistency, instability, and unpredictability of the de-
velopment process. Erdem et al. would go on to mention that agile methodologies like Scrum and
Extreme Programming can help alleviate this problem by providing a prescription to achieve agility.

In the same year as Erdem et al.’s mapping study, Marques, Mira da Silva, and Ferreira published
a case study looking into process mining the Jira (agile project management software) data over
two projects of an IT organization using the agile Scrum methodology(Marques, da Silva, & Fer-
reira, 2018). Marques et al. approached the event logs from the case, control-flow, performance,
and organizational perspectives. This allowed them to identify the most common issue paths, the
issue paths with the longest average turnover, and the team member roles and activity types. While
providing a fair amount of insight, this is, of course, limited as can be noticed by the inability to
determine if stories are actually closed at the end of a sprint and some central Scrum activities not
being recorded in Jira. Marques et al. conclude by emphasising that process mining can be used to
analyze the previously difficult to measure implementation and processes of agile teams.

The following year, Caldeira and Cardoso published a study looking into using process mining
to evaluate software development teams’ efficiency(Caldeira, e Abreu, Reis, & Cardoso, 2019). In
this study, Java programmer teams were assigned the same software quality task to be performed
using the Eclipse IDE. The different actions performed in Eclipse while performing this task were
recorded and stored in an event log. This event log was then mined to “discover development pro-
cess models, evaluate their quality and compare variants against a reference model used as ‘best
practice’”(Caldeira et al., 2019). Caldeira and Cardoso found that teams with a complex process
model were less effective and vice-versa. The more complex a process model became, the more spu-
rious actions were being executed, reflecting less focused teams. In this way, process discovery and
conformance checking could be used to measure team effectivity. Caldeira and Cardoso wrap up by
stating that making team members self-aware of their processes helps improve process effectiveness
and that identifying corrective actions could lead to better deliverables.

As can already be inferred, a quintessential part of process mining is directed at big data analysis
of data that can be collected around the team or workflow being analyzed. This is all but explicitly
mentioned when it comes to the extract and explore knowledge stage of the L∗ life-cycle. In 2021
Biesialska et al. published a systematic mapping looking at the use of big data analysis in agile
software development(Biesialska, Franch, & Muntés-Mulero, 2021) by looking at over 350 studies
spanning different publication sectors and continents, analyzing 88 of them. This systematic map-
ping shows data-driven software development in the literature directs itself at five general fields:
“code repository analytics, defects/bug fixing, testing, project management analytics, and applica-
tion usage analytics”(Biesialska et al., 2021). Regression, classification, clustering and optimization
were the four types of problems and a fourth type of business analytics category were identified. The
fourth BA category is adaptive analytics in which environments automatically adapt to changes to
improve ongoing learning (think reinforcement learning).

BA insights are heavily dependent on the target metrics used. Discovering metrics with which
to analyze data collected can be difficult. Olszewskatelal et al. suggested four areas of interest,



each with two quantitative metrics, for measuring large-scale agile transformations in software de-
velopment organizations(Olszewska, Heidenberg, Weijola, Mikkonen, & Porres, 2016). These met-
rics are Request Journey Interval (customer service request lead-time), Process Interval (feature
lead-time), Hustle Metric (resource, like money, spent), Business Value metric (number of releases
per time period), Pacemaker Metric (continuous integration commit frequency), Bottleneck Gauge
(responsiveness of feature handover in organization), Snag Metric (number of external trouble re-
ports/bugs/incidents), and finally, Typical Snag Metric (average number of days externally trouble
reports remain unresolved). These metrics are presented in Figure 10.

Figure 10: Quantitative metrics for measuring large-scale agile transformation in software
organization(Olszewska et al., 2016)

Building upon the works of Olszewskatelal et al. and others, Boon and Stettina looked at using Jira
backlog data to guide agile transformations with the aim of imporving organizational performance.
By analysing Jira data over eight agile release trains, Boon and Stettina were able to provide
a proof of concept on measuring agile transformation impact using Jira data, provide empirical
assessments of transformations at FinOrg, and finally, compare their results with contemporary
literature(Boon & Stettina, 2022). In providing a proof of concept, a table relating transformation
objects, FinOrg transformation results, quantitative metrics, impact dimensions and the balanced
scorecard (proposed back in 1992 by Kaplan and Norton(Kaplan & Norton, 2021)) was created and
is presented in Figure 11.



Figure 11: “Insights in how measures, objectives and perspectives are linked by establishing a con-
nection between the Balanced Scorecard, the impact dimensions, and the measurements conducted
during the transformation at FinOrg.”(Boon & Stettina, 2022)

2.4 Literature review summary and gap analysis

This Section aims to summarize the entire literature review and fill in some of the gaps between the
elements discussed. To help guide this summarization, this subsection will be structured according
to the sub-Research Questions that it will be answering.

What kind of software development methodologies are used by software development teams? As
software projects grow in complexity so do the seemingly unavoidable and inherent software devel-
opment problems around cost overrun, time overrun, the software being unreliable, and the software
failing to meet the users’ needs or expectations(Davis et al., 1988). In an attempt to alleviate these
issues, many software development life cycles and methodologies have been suggested since the
1970s. These methodologies can generally be split into heavy- and light-weight models, where the
former is very planning and design-oriented - think waterfall - and best applied for projects where
requirements are not likely to change and complexity is easily estimated. The latter, on the other
hand, is used for projects where requirements are likely to change, complexity is difficult to es-
timate, and more iterative - think agile. Whatever the methodology, most software development



projects go through the stages of Research, planning, design, development, testing, feedback, setup,
maintenance. Agile does so iteratively and has become the most popular development methodology.

A lot of different agile methodologies exist that all aim to emphasize customer involvement, it-
erative MVP development, self-organizing teams, adaption to change(Lau et al., 2009). Up to 32
agile practices have been defined in the Agile Manifesto(Williams, 2010), different subsets of which
are used by different agile methodologies. The most popular agile methodologies are Scrum and
an Extreme Programming-Scrum hybrid(Moniruzzaman & Hossain, 2013). Common agile practices
include Story Cards, backlogs, epics, tasks, standups, Sprints, and team roles.

What does process mining entail, what kinds of process mining exist, and what are the industry
standards? Process mining is a relatively young research field that has been growing over the last
two decades(Van der Aalst, 2012b; Homayounfar, 2012). The main objective of process mining is
to “discover, analyze, and improve business processes based on event data” (Van der Aalst, 2012a).
In 2012, van der Aalst and colleges released a Process Mining Manifesto (Van der Aalst et al.,
2012) defining terms and general process mining principles.
Several types of process mining have been defined with regard to input and output: process discov-
ery, conformance, and enhancement. The data being analyzed consists of logs containing records
of sequential events, where each event reflects a well-defined step (activity) in the process and is
associated with a specific case (process instance)(Van der Aalst et al., 2012).

During process mining discovery, an event log is used to extract knowledge, identify sequential
activities and develop a control-flow model without prior knowledge or information about the pro-
cess(es). The actual processes teams use are revealed using only the behavior stored in the event
logs(Van der Aalst, 2012b). Process discovery is done using miners, the most common of which are
the Alpha and Heuristics miners (and variations)(dos Santos Garcia et al., 2019). There are four
general perspectives to take into account when process mining: control-flow, organizational, case
and time perspectives(Van der Aalst et al., 2012). These perspectives are very similar to process
mining ontologies that aim to define the what of process mining.

With hundreds of different miners proposed over the years(dos Santos Garcia et al., 2019), choosing
the correct process miner can be difficult. To be able to evaluate and compare the different miners,
Rozinat et al. proposed a framework consisting of four quality dimensions(Rozinat et al., 2007):
fitness, precision, generalization, and simplicity. These quality metrics allow different miners to be
compared which each other and to see how well a mined model represents the event log data, which
is very important during conformance checking.

With conformance checking the quality of a process model is measured along the quality metrics,
applications of these measurements are defined and can then be used for active process monitoring.
While often used interchangeably, conformance and compliance checking differ slightly. Confor-
mance checking requires analysis of completed event logs after the project(s) is(/are) finished, while
compliance checking is a form of monitoring using uncompleted event logs during run-time(Ly et
al., 2015). Compliance Monitoring Functionalities - like reactively detecting and managing com-
pliance violations; and supporting activity lifecycle - have been defined to assist in analyzing and
exploring relevant ontologies(Ly et al., 2013).

Process enhancement focuses on extending the created model with information from outside the



event log. The incorporation of relevant extra information can be combined with the process model
using statistics or machine learning to generate predictions(dos Santos Garcia et al., 2019) or of-
fer different perspectives. Predictive techniques can consequently use the extended data models to
make predictions about cases and activities. Predictive methods have been used to answer several
of the c-level questions (see 7) that can be asked, like instance duration, delay identification, and
recommended execution path. Commonly used predictive techniques include machine learning al-
gorithms like Suppor Vector Regressors, Decision Tree Regressors, and Neural Networks.

Dos Santos Garcia et al. added a fourth type of process mining category to van der Aalst et al.’s
initially defined three(dos Santos Garcia et al., 2019; Van der Aalst et al., 2012) which acts as a
kind of supplemental adhesive between all the categories by including elements like process mining
applications, process mining methods, tools, and cleaning of event logs and the previously men-
tioned ontologies of process mining(dos Santos Garcia et al., 2019). One of the process mining
project methodologies to use is the five staged L∗ life-cycle model proposed by van der Aalst(Van
Der Aalst, 2011), which divides the process up into: Plan and Justify; Extract and Explore; Dis-
cover Processes and Conformance Check; Process(/Model) enhancement; and Operational support
(predictive and prescriptive).

How is process mining used in predictive and prescriptive analytics? Process mining can be used
in predictive and prescriptive analytics to answer different c-level questions, like instance duration,
delay identification, and recommended execution path. These methods include but are not limited
to, Bayesian indicators, “decision trees, case based-reasoning, recommender systems, and neural
networks”(dos Santos Garcia et al., 2019). These techniques can be applied to be able to provide
real-time decision support, allowing for better business agility. Extending data models and applying
machine learning techniques allow researchers and teams to detect and predict unwanted workflows
and provide recommendations, for example in the form of alerts or emails(dos Santos Garcia et al.,
2019). Depending on the machine learning technique applied, this method, combined with statistics,
can be used to identify feature importance and effect on predictions, providing a prescriptive-like
tool to help direct teams as they process unwanted workflows and try to find alternatives.

How is process mining applied in (agile) software development? Two general application areas of
process mining in agile software development have been identified: process mining of user actions
to help software development teams improve the system or product being developed; and process
mining of the actions software development team members take to analyze, identify and improve the
processes team members go through when developing software. Rubin et al. investigated the former
where development teams can integrate process mining into the development process allowing the
designers to combine a prescriptive top-down approach with a data-drive bottom-up analysis of real
user and system run-time behavior, using user behavior to improve design and usability(Rubin et
al., 2014). Mittal and Sureka, Erdem et al., and Caldeira and Cardoso have used process mining of
development teams to help identify and improve team processes during development. Using process
mining, teams can identify the actual (agile) processes they go through, while identifying unwanted
workflows and improving agility(Erdem et al., 2018).



3 Method

In this Section, the methodologies used to perform this research will be discussed. The goal of
these methods will be to help answer the research question of this paper: How can process mining
be used to suggest Scrum improvements for an agile software development team, and what kind of
architectural design is required to investigate and provide these recommendations?

The nature of software development teams is inherently complex and social in nature. With process
mining, the emphasis is put on team workflows, which inherently are complex, social phenomenon.
To analyze this synthesis of events, which are often unique to different teams, a case study of an
agile software development team’s workflow data will be used. For a little under a year, I was an
active member of the team that will be analyzed, throughout which I was able to conduct informal
interviews and observe the workings of the team. This allows for a mixed methodological choice
where quantitative data of the team over several years can be combined with information gathered
during the informal interviews and observations over a longitudinal time horizon.

The goal of analyzing the workflow data intrinsically pushes the data collection and analysis of
this research towards a process mining project. Van der Aalst (one of the most prominent writ-
ers about process mining) suggested that all process mining projects should follow the L∗ life-cycle
model(Van Der Aalst, 2011), presented in Figure 12. This life-cycle aims to guide all process mining
projects through the different types of process mining (discussed in Section 2) towards a system that
can offer active operational support. This operational support is often provided through predictive
and prescriptive analytics using machine learning techniques. For this reason, data collection and
analysis will be done following the L∗ life-cycle model. This model will also be the basis for the
architectural design for this research for the same reason. The structuring of Sections 4, 5 and 6
will reflect the L∗ life-cycle model structure. In Section 4 an architectural design towards applying
process mining to analyze Jira workflow data is presented.



Figure 12: L∗ life-cycle model (Van Der Aalst, 2011)

3.1 Research strategy: case study

During this case study, I will be part of the software development team giving me an understanding
of the workings and dynamics of the team. By way of this case study, I want to create a deeper
understanding of the workflows the team goes through. This case study will use event log data,
from a software development team using an agile development method, which will be collected,
processed, and then analyzed using the different types of process mining: process discovery, confor-
mance checking, and process enhancement with predictive techniques. The techniques used will be
based on the techniques and best practices presented in Section 2. The resulting information will be
incorporated into a predictive and prescriptive decision support system to allow for greater agility
in agile software development by encouraging a data-centric approach to project management.

Data will be collected from the Connectivity .NET team at Indicia in Tilburg1. This team focuses
mainly on developing APIs and other backend systems using Microsofts .NET Framework and
.NET Core. This teamwork on large projects, including those that span several different teams,
both internally within the company and externally. The team applies a Scrum methodology and
uses Atlassian’s Jira project management software. Jira allows teams to create projects, epics, tasks,
set time estimations, set sprints, assign responsibilities, log time spent on a task in work logs, and
visualize all properties over a Scrum board and other visualization tools. Jira also has an API that
allows for easy and comprehensive data retrieval from projects.

1Indicia, Spoorlaan 348, 5038CC Tilburg. https://www.indicia.nl

https://www.indicia.nl


The .NET team at Indica logged their first Jira sprint the first week of 2019. This means the team
has been using Jira for a little over three years. From this team’s Jira scrum board, data over 31
projects could be collected spanning these three years. Some of these projects are still in progress,
while the rest are marked as completed. As many as 92 team members have contributed to events
associated with data over the team’s scrum board. As of writing, I have been part of this develop-
ment team for a little less than a year.

The team uses an agile Scrum methodology to approach and complete projects. The team consists
of developer roles (including a team lead), a Scrum Master (who also functions as a developer), and
a (project/delivery) manager. Each day a stand-up occurs at 09:30 in which each team member
defines what (s)he is working on and what was completed the previous day, and takes anywhere
between 10 minutes and a half-hour. Tasks are generally created as needed and often consist of
a summary describing the problem or what to do and done criteria are not explicitly defined by
the creator of the task but can be inferred. No planning-poker occurs. Each sprint consists of two
weeks and starts with a retrospective of the previous sprint. Team members often work on different
projects simultaneously, where each project is assigned two or more team members. The team uses
GitLab for version control and implements CI/CD through GitLab. Recent projects have been
extended with unit tests to help this process. Along with unit tests, the team has applied a rule of
testing the code during the review stage but is not always applied.

3.2 Data collection and data analysis: L* life-cycle

Using the above-mentioned approach, process mining will be used to identify actual processes the
agile software development team goes through, identifying unwanted workflows and using suggested
machine learning techniques to identify these unwanted workflows early in and during development,
improving team agility.

To help guide this project, the L∗ life-cycle model will be applied as suggested by van der Aalst(Van
Der Aalst, 2011) and discussed in Section 2.2.4. The structuring of this sub-section will thus reflect
the L∗ life-cycle model and as such define the methodology behind data collection and analysis. In
Section 4, an architectural design for applying a L∗ life-cycle model towards process mining of Jira
workflow data will be presented. Sections 5 and 6 will also reflect this life-cycle structure.

3.2.1 Plan and justify

Data will not be sampled but rather all Jira issue data will be imported and stored in a local
database. This data will then be analyzed using process mining and machine learning techniques to
see if it can be used to provide both predictive and prescriptive analysis. Because this will mainly
be a process mining exercise, the entire methodology and experimentation will be structured ac-
cording to the L∗ life-cycle model, as discussed above. To assist in the planning and development
of a Python application that can be used to perform this kind of research, an architectural design
following the L∗ model will be designed and presented in Section 4.

The importance of treating data as a first-class citizen was emphasized by van der Aalst et al. in



the Process Mining Manifesto(Van der Aalst et al., 2012) and again in the results of Erdem and
Demirörs’ process mining study of a development team using Scrum(Erdem & Demirörs, 2017).
Both of these cases are discussed in Section 2.3. To ensure that data is treated as a first-class cit-
izen, as defined in Section 2.2.4, the data collected from the agile software development team will
be structured into clearly defined entities, all code and UML diagrams will be publically available
to allow reuse, and this paper should serve as an example or tutorial to allow other researchers to
reuse the infrastructure created. The collection, processing, eventual decision support system will
all be built-in Python. The code of this project will be available on Github2.

This research project can be justified as an attempt to make process mining more accessible and less
daunting to apply to actual software development teams in the field. By creating an architectural
design, researchers can use this to help guide and structure their efforts. Furthermore, this paper
aims to present a comparison between popularly applied process mining and machine learning tech-
niques presented in the literature (see Section 2).

3.2.2 Extract and explore knowledge: collecting and storing event logs

Using the Jira API several different collections of entities and their associated attributes can be
retrieved. A collection of the projects, issues (tasks) with their associated changelogs, and team
members are among the entity sets that can be collected. A connection to the Jira API will be
made using the Python Jira package3 and the entities will be managed and worked with using the
Object Relationship Manager (ORM) elements of Python’s SQL Alchemy4.

As discussed in Section 2.2.4, it is important to treat our data as first-class citizens. For this rea-
son, models reflecting the entity structure will be defined and used as their own respective class,
being able to use the entity as a parameter, return value, in an assignment statement, and test it
for equality. Furthermore, the infrastructure to be used should initially be designed and presented
in unified modeling language (UML) models and Archimate to provide a clear and manageable
infrastructure, thus allowing for (infrastructure) reproducibility and reuse. An architectural design
follow the L∗ model will be presented and discussed in Section 4.

The data will be stored following the entity-relationship diagram (ERD) presented in Appendix
C. In total 10 different entities will be stored and processed. These entities are Project; Issue
(task); Issue Type; (issue) Priority; (issue) Status; Status Category; (issue) Time Tracking; (issue)
Progress; (issue) Worklog Item; and Team Member; To be able to properly process the models of
the entities, the from Jira collected values of these entities will be stored in a (local SQL) database
and processed using the Python ORM SQL Alchemy.

Despite having collected a large amount of data from Jira, this data still needs to be structured
in such a way as to form an event log and be ethically usable. Ethical implications are discussed
further in Section 3.2.4. The Jira data is a collection of footprints and these footprints need to be
structured in such a way as to provide meaningful information. Van der Aalst defined the contents
of an event log as consisting of a collection of events reflecting sequential activities associated with

2Full details: https://github.com/akannangara/ProcessMiningThesis
3Python Jira package: https://pypi.org/project/jira/
4SQL Alchemy full details: https://www.sqlalchemy.org//

https://github.com/akannangara/ProcessMiningThesis
https://pypi.org/project/jira/
https://www.sqlalchemy.org//


a case, and are often - but not always - accompanied by timestamps and resources(Van der Aalst,
2012a). This was discussed in Section 2.2. The most basic form of an event log, which will be
applied, is a collection of activities and timestamps associated with a set of cases.

Having structured the data in such a way as to make it reflect actual event logs, the file needs to
be converted to the heterogenic data source format that is generally used in process mining. At
this point, the event logs data will still be structured as entities or objects in Python. As discussed
by Group et al.(X. W. Group et al., 2016), most process mining frameworks are supported by the
XES file format, a data source file format designed to help with event-based data. Many frame-
works, including ProM or PM4PY, also accept CSV files. For simplicity, the event log data will be
converted to CSV files before being used for the process mining steps itself.

3.2.3 Discover a process model: process discovery and conformance checking

Having developed a usable event log, the next steps will be to discover the actual processes the
team goes through and compare them with the expected processes; process discovery followed by
conformance checking. This will be the first real experiment performed during this research, where
different miners building models of the event log are compared along with the quality metrics.
This aims to partially answer the sub-research questions: How do process mining techniques and
standards compare?

Given the type of data that can be collected with the Jira API, the focus will be put on how and
when issues move across the Jira Scrum Board. This will reflect processes that can be defined by
sequential activities over the Scrum Board and will fall into the control-flow perspective of process
mining discovery. The different perspectives of process mining were discussed in Section 2.2.1.

The most commonly used process miners from the control-flow perspective in process discovery are
the Heuristics Miner and Alpha miner (including variations)(dos Santos Garcia et al., 2019). Given
that these are the most popular miners, and the Python process mining framework PM4PY sup-
ports them, both of these miners will be used. As a variation on the Alpha miner, the Alpha+ miner
will be the third miner assessed. The inductive miner will also be used given its polynomial complex-
ity and enforcement of soundness and fitness; and as it is also supported by the PM4PY framework.

These three different miners will then be compared and evaluated according to the four quality
dimensions defined by Roziant et al.: fitness; precision; generalization; and simplicity (Rozinat et
al., 2007). These were described in detail in Section 2.2.1.

The Heuristics and Inductive miners both have threshold parameters that have to be defined. For
the Heuristics miner, the parameters ate the dependency threshold, length-one loops threshold, and
the length-two loops threshold, which usually have the same value and are usually set to 0.9(A. Wei-
jters & Ribeiro, 2011). Varying threshold values can have a profound influence on the quality of the
generated model and as such should be considered before actual application(Suhendar, Wisudiawan,
& Herdiani, 2018). The threshold values that will be considered for the heuristics miner are will vary
between (0.0, 1.0), and will be compared by Bayesian optimization using Gaussian Processes, aiming
to minimize the inverse quality score (in other words: maximize quality score). The Inductive miner
only has one threshold value, the accepted noise threshold value. While usually set to 0.0(for Applied



Information Technology, n.d.), the values {0.0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
will be considered.

The most suitable process discovery miner for the given event log will be selected based on the
average score of fitness, precision, generalization, and simplicity, and used when generating a pro-
cess model for the desired scrum board control flow. Generated process models will be subject to
process conformance and compliance checking (the difference was discussed in Section 2.2.2) when
comparing the desired workflow with the actual event log. The team Scrum Master, Team Lead,
and Manager will be asked to define the desired workflow for issues across the Scrum board. This
desired workflow will be developed into a model using the most suitable process discovery miner
(defined above) and compared to the actual event log by way of conformance checking using the
quality metrics. The questionnaire used to collect the desired workflow is presented in Appendix F.

By comparing the event log with the desired workflow model, each issue can be assigned a fitness
value. This value reflects how well the issue follows the desired workflow path (control-flow).

3.2.4 Use process enhancement: process enhancement by extending the model

During process enhancement we will extend the event logs with additional information, using this
incorporated information combined with the developed process models to make predictions on the
control flow of issues by way of machine learning or statistics. This can then be used to provide
predictive and prescriptive analysis. Process enhancement is discussed in detail in Section 2.2.3.
To stick with the L∗ stages structure, predictive techniques used to generate predictions will be
discussed in the next subsection, Section 3.2.5, and as such this subsection will only handle model
enhancement and not predictive techniques.

During this stage of the L∗ life-cycle, the methodology will be directed at extending the basic event
log with more comprehensive information to gain more insight and be able to make predictions
in the long run. The first enhancement was already discussed in the previous subsection, where
each issue is assigned a fitness value as compared with the desired workflow. The event log will be
converted to a data set to be used during the machine learning stage. A new entity model is created
for this step to clearly define all of the fields to be analyzed in the next stage by way of machine
learning techniques.

This is where ethical implications of the data come into play and have to be thoroughly considered.
In her book Weapons of Math Destruction, Cathy O’Neil dives into how AI’s might heavily base
their decisions or suggestions on a piece of information that we as humans might not deem relevant
or morally acceptable to take into account. For example, in a recidivism program used by judges
in several states in the United States, race and gender were the most heavily weighted factors for
the AI that would assess the recidivism chances of a convicted criminal(ONeil, 2016). This often
stems from the misconception that AIs, if properly implemented, will consider the correct aspects.
But the aspects any AI will take into account are all of the aspects provided.

Given that we will later be using different AI algorithms to help assess and identify the likelihood
a task belongs to a certain subset of tasks, we have to look into the morality of the data being
processed. Team members are one of the resources associated with a task, and one of the resources



that can easily be identified and singled out. To avoid singling out a team member in front of
management, all team members will have to be anonymized before moving on to the next step and
processing the newly generated event logs. The team members will be categorized into groups to
be defined by the Team Lead or Manager. Any further steps should therefore not be processing the
team member individually, but the team member category to avoid any predictive system focusing
on a single team member.

Each issue status change (item of the event log and machine learning data set) will also be extended
with inter-issue information. As noted in Section 2, and emphasized in the paper by Senderovich et
al.(Senderovich et al., 2019), cases cannot be viewed individually or as disjunct. Issues will of course
influence each other. If for example too many issues are planned in one sprint, the team might be
overwhelmed and their productivity could be affected. To allow for inter-case information to be
added to each data set item, items will be enhanced with the number of issues in the sprint, the
sprint week number (numbered fortnight of the year, 1 to 26), and the sum of the sprints estimated
time. These are all fields that are not automatically associated with an issue in Jira. For this reason,
these fields have to be calculated. Active issues are difficult to identify in this way since non-active
issues (not part of the sprint) can still be marked as ’To Do’ instead of ’Backlog’. For this reason, the
number of issues in the sprint and its time estimate should be considered more as rough estimates.
The issues to view (with their status at the time) will be those that are not yet marked as com-
pleted before the end of the sprint, which have had a change registered in the changelog during that
sprint, or which have been moved to that sprint. How often the sprint has changed since the issue
was created and since the issue status was last changed is also registered as a variable in the data set.

The machine learning data set will be an extension of the event log containing only completed
issues, being extended with an issue fitness value and the eventual work ratio of the completed
issue. A class diagram containing a model of the machine learning data set item is presented in
Figure 13. The computed fields in this diagram are values that cannot automatically be taken from
the completed issue, as they might change while an issue is being worked on, and thus have to
be discovered by scanning the issue changelog. An issue item is marked as changed (either since
the last status change or since creation) if the issue priority, issue type, summary, description,
attachment, assignee, or due date is changed. Values like priority or current status are inherently
ordinal so only require assigning an integer value to these fields. Properties like issue type and
assignee member are nominal in nature and as such need to be encoded using one-hot encoding.
This machine learning data set will be stored as a CSV file, being used to try and make predictions
and provide recommendations.



Figure 13: Class diagram of ML dataset. The computed fields in this diagram are values that
cannot automatically be taken from the completed issue, as they might change while an issue is
being worked on, and thus have to be discovered by scanning the issue changelog. An issue is
marked as changed (either since the last status change or since creation) if the issue priority, issue
type, summary, description, attachment, assignee, or due date is changed.

3.2.5 Operational support: apply predictive techniques to provide recommendations

In this section of the methodology, we will be using machine learning techniques on the extended
event logs (machine learning data set) to try and identify and predict task fitness (as compared with
the desired workflow), task work ratio, and next issue status as tasks move across the Jira Scrum
board, and the next status the issue will take on the Scrum board. The application of machine
learning techniques to generate predictions in process mining was discussed in Section 2.2.3.

The issue fitness values will have been identified during the conformance checking stage of the L∗

lifecycle model discussed in Section 3.2.3 and issues will have already had an assigned work ratio
value as all issues in the data set are completed. In this case, either the fitness value, work ratio,
or next issue status are the target values for the machine learning techniques.

Each (completed) Jira task has a work ratio value. This is calculated simply by



WorkRatio = T imeSpent
T imeEstimate ∗ 100. By using this value as the target value, machine learning tech-

niques can be used to estimate this value based on all of the properties provided in the machine
learning dataset. In this step, it would be important not to include other target values or the issue
ID as that should not be relevant when predicting the time-overrun of a newly created task. For
all machine learning techniques, only the relevant target variable is included and the issue ID is
excluded.

When estimating work-ratio and issue fitness with machine learning techniques, only the completed
issues will be used in the data set. Completed issues are issues that have been marked either Done
or Rejected. The data set will thus contain a little under eleven thousand issues each extended with
their issue fitness and work ratio, and so around 27 thousand samples.

The next step is to define the machine learning algorithms to use to make the predictions for the two
test cases. A lot of different machine learning techniques have been applied in recent years around
process prediction, as discussed in Section 2.2.3, ranging from Bayesian indicators, decisions trees,
and neural networks to Support Vector Machines and multiple regression. For simplicity, three al-
gorithms will be selected to compare that can be used for both test cases.

Based on the literature discussed in Section 2.2.3, three machine learning techniques stand out as
usable in process control-flow prediction while having comprehensive a Python package and support
in the Python SciKit Learn package5. The first machine learning algorithm to use is decision trees,
which were also applied by Lakshmanan et al. in their 2013 process mining study into the likelihood
of case sequential activities and outcomes(Lakshmanan et al., 2015).

The second selected machine learning algorithm to use is a Support Vector Regressor, which was
also applied by Polato et al. in their 2014 study estimating case duration(Polato et al., 2014).
A support vector regressor is a subdomain of Support Vector Machines which unfortunately has
a time complexity of more than quadratic the input. Due to the high time complexity, a linear
support vector regressor is recommended for data sets larger than several tens of thousands of
elements(sklearn.svm.SVR, n.d.). Our dataset has about eleven thousand completed issues, span-
ning 28000 data elements, so the Linear Support Vector Regressor will be used as our second
machine learning technique.

The final machine learning algorithm to be used is neural networks. In 2017, Evermann et al. used
deep learning to predict sequence and case behavior. Similarly, neural networks can be applied to
predict the activity sequence, or rather associated issue control-flow, for a given case.

The accuracy of these three machine learning techniques will be compared over the entire extended
event log for the three test cases - estimating fitness, estimating work ratio, and predicting the
next issue status. To this end, the machine learning data set will be divided into train and test
sets into the industry standard of 80% train and 20% test. For each of the total 9 experiments
(three machine learning algorithms over 3 cases), the train and test set will be newly generated
from the extended event log. Accuracy for each of the three algorithms over the three test cases
will be measured using a R2-score.

5SciKit Learn Python: https://scikit-learn.org/stable/index.html

https://scikit-learn.org/stable/index.html


Finally, for each of the three trained machine learning models, feature importance will be presented.
Feature importance can be used to provide prescriptive analysis as these are the features to pay the
most attention to. While this is easy for the SVR and Decision Tree Regressor models (these models
in Scikit Learn have attributes that represent feature importance), it is extremely complicated
for a black-box neural network. For the neural network, feature importance will be defined by
comparing Pearson’s R (regression) and mutual information(Kraskov, Stögbauer, & Grassberger,
2011) (regression) over the data set.
Each of the machine learning algorithms that will be applied has several collections of different
hyperparameters that can be tuned to improve the performance of the machine learning pipeline.
Finding the right combination of hyperparameter values can result in huge pipeline performance
boosts(Yu & Zhu, 2020). Brute forcing hyperparameter tuning can be a long and exhaustive pro-
cess, costing a lot of computing power and time.

Due to the relatively small number of features used to predict the target variables (60) more than
half of which is generated by one-hot encoding, feature selection will not be applied before training
or testing of the machine learning techniques.

To avoid this tedious process, several techniques have been suggested to optimize the process of hy-
perparameter tuning. One of the suggested techniques to apply is Bayesian Optimization, proposed
by Snoek et al. in 2012(Jasper Snoek & Adams, 2012) and at the time state-of-the-art. This same
technique is used to define threshold values for the Heuristics Discovery Miner (see Section 3.2.3).
Bayesian hyperparameter optimization was shown to achieve better results with fewer function
evaluations than a standard-grid search over all hyperparameters or a random-grid search(Jones,
2001), outperforming other global optimization algorithms.

Despite more complex hyperparameter optimization algorithms having been developed since 2012
and bayesian optimization not being the standard, it will be applied in hyperparameter tuning
due to its simplicity and ease of implementation within the Python Scikit Learn package, which is
already used to implement the desired machine learning algorithms.

Using the trained machine learning models, by keeping all values constant at the mean or median
(in the case of one-hot encoded features) values, the effect of the most important features on the
predicted target variable can be shown. If the predictor is accurate, this technique can be used to
identify how features affect the target variable and so identify areas of improvement for the team
being analyzed.



4 An architectural design for process mining of Jira backlog data

In this Section, the architectural design for the experimentation will be presented and briefly dis-
cussed. The design will be created using The Open Group’s enterprise architecture modeling lan-
guage called ArchiMate and supported by Unified Modeling Language (UML) models. ArchiMate
aims to provide a single language within which business processes, organizational structures, in-
formation flows, IT systems, and technical infrastructure can be defined(Visual-Paradigm, n.d.-b).
The core framework defines three layers to any system, a business, application, and technology
layer, which are then parsed over three aspects, a passive structure, a behavior aspect, and an
active structure. These core layers make up part of the TOGAF (The Open Group Architectural
Framework) model which is shown in Figure 14a. The complete ArchiMate framework as of version
3.0 extends the core elements and is presented in Figure 14b.

(a) ArchiMate core framework relative to
the TOGAF framework(Visual-Paradigm,
n.d.-b)

(b) ArchiMate 3.0 framework.(Josey et al., 2016)

Figure 14: ArchiMate framework

To assist in developing an architectural model, viewpoints can be used. Viewpoints are diagrams
representing a part of the system architecture developed for a given purpose and directed at rel-
evant stakeholders by representing the relationships between ArchiMate elements. In total, the
ArchiMate 3.1 specifications define 23 unique viewpoints that can be used as a starting point when
defining system architecture(T. O. Group, n.d.). These viewpoints are meant as a starting point
and can be fused or extended where necessary. Four general viewpoint categories are defined: Ba-
sic, consisting of the core layers Business, Application, and Technology; Motivation, consisting of
the motivational aspect across the system layers; Strategy, which presents a high-level description
of enterprise strategy; and finally, Implementation and Migration, consisting of program-project
relationships and architectural change management models(Visual-Paradigm, n.d.-a).



Figure 15: ArchiMate model of L* life-cycle approach to research from an extended Application
Usage viewpoint

To define the architecture of the L* life-cycle approach to using process mining and machine learn-
ing to analyze Jira Scrum Board workflow data, the Application Usage viewpoint from the Basic
viewpoints category will be used and extended. This viewpoint gives a broad number of potential
stakeholders, including end-users, architects, and developers, while being used for system design
and defining system composition and aggregation(T. O. Group, n.d.). The basic version of this
viewpoint usually only consists of a business and application layer, showing the relationship be-
tween the two. To allow for a more complete view of the application being built to use during
experimentation, the technology layer will also be included where needed.

A general overview of the system design in an ArchiMate model is presented in Figure 15. The
design aims to show the system as a product focusing on the L* life-cycle of the process mining
approach to this research. Two general business roles will be identified, that of the agile software
development team member, consisting of a Team Lead, Scrum Master, and Manager, and that of
the researcher who will be comparing and contrasting different process discovery miners and ma-
chine learning techniques.



The four application components shown in Figure 15 can be expanded into their own models using
an extended version of the Implementation and Deployment viewpoint which focuses on designing
for the application architects. These components are presented in Figures 16, 17, 20, and 21.

The first (Figure 16) shows the importation steps of collecting the Jira data and storing it in a
local database. This database is then used to create an event log.

Figure 16: ArchiMate model Jira data importer from the Implementation and Deployment viewpoint



Figure 17: ArchiMate model process discovery and conformance checking from Implementation and
Deployment viewpoint. This component is fairly large and can be divided into two small models.
The component Process Enhancement is referenced simply because the fitness score of each issue
as compared with the desired workflow is calculated by the Process Conformance component but
stored by the Process Enhancement component.

The architecture of process discovery and conformance can be further split into two components,
process discovery and conformance checking with the desired workflow. During process discovery,
the Alpha, Alpha+, Heuristics, and Inductive miner experiments are conducted and their compar-
ative results presented. Using the selected algorithm (with the selected threshold values), a model
of the desired workflow can be created. The desired workflow is defined by the Team Lead, Scrum
Master, and manager as discussed in Section 3.2.3. Architectural models for these two components



are presented respectfully in Figures 18 and 19.

Figure 18: ArchiMate model of model discovery from the Implementation and Deployment view-
point



Figure 19: ArchiMate model of conformance checking compared with the desired workflow from the
Implementation and Deployment viewpoint

Figure 20 presents the general workings of the process enhancement component. This shows how
the fitness per issue is transferred to the process enhancement component, which adds the fit-
ness element to each issue. The model also shows the steps of assigning each team member a team
member type (discussed in detail in Section 3.2.4) and finally creating the machine learning data set.



Figure 20: ArchiMate model of model enhancement from the Implementation and Deployment
viewpoint

Finally, Figure 21 presents the Predictive Techniques component. The component uses the machine
learning algorithms Multilayered Perceptron, Linear Support Vector Regressor, and a Decision Tree
Regressor to try and predict issue fitness or work ratio using the data set created in the previous
L∗ life-cycle stage. The hyperparameters of these machine learning algorithms are tuned using
Bayesian optimization over a Gaussian process. The train and test data sets are the same size over
the three algorithms (test size of 0.2).



Figure 21: ArchiMate model predictive techniques from the Implementation and Deployment view-
point



5 Experiments and results from implementing the process mining
architecture

As discussed in Section 3, this Section looking into the experiments and results will be structured
according to the L* life-cycle stages. This also reflects the structure followed by the experimentation
application, designed and defined in Section 4.

The first stage of the L* life-cycle will be skipped as it was completely covered in Section 3 and
then extended with the architecture models presented in Section 4. The second stage, Extract and
Explore Knowledge, will be presented here but slightly awkwardly as it will only contain results
summarizing the data collected from Jira. The fourth stage, Model Enhancement will also be
presented in this Section despite not being part of an experiment due to its relevant role in the
data extension process for creating a machine learning data set.

5.1 Extract and explore knowledge

This subsection will contain a summary of the data collected from Jira. While this is not an experi-
ment, the results will be used and discussed in Section 6 in relation to the results of the experiments
that will follow in the next subsections.

A summary of the collected Jira data is presented in Table 1. More than 12500 issues were collected
over 31 projects spanning more than three years with 74 identified team members. 10889 of these
issues are labeled as completed, having either the status Done or Rejected. While the number of
team members is extremely high for an agile team, it is important to note that this figure includes
project and delivery managers, clients, interns, and contributors from other (agile) teams. Everyone
with a Jira account inside the organization (including guests) that was marked as an issue assignee,
reporter, or creator is included. At the time of writing this paper the team whose data is being
analyzed consists of six developers.

In total, the 15 issue statuses can be divided over 6 swim lanes (To Do, In Progress, Review, Test,
Acceptance, and Done). In the To Do swim lane the issue types ‘Reserved’, ‘To Do’, ‘Backlog’,
‘Pre-Refinement’, and ‘Refinement’ can be found. The In Progress swim lane only consists of the
issue type ‘In Progress’. Issue types ‘In Review’ and ‘Ready to Review’ can be found in Review,
while ‘Ready to Test’, ‘In Test’, and ‘Ready to Deploy to Acceptance’ can be found in Test. Ac-
ceptance consists of the issue types ‘Ready for Acceptance’, ‘In Acceptance’, and ‘Ready to Deploy
to Production’. Finally, in Done the issue types ‘Done’, and ‘Rejected’ can be found. An image of
the scrum board configuration with swim lanes and their respective issue types can be found in
Appendix D.

Throughout the event logs, only six issue types have been identified: Story, Epic, Task, Bug, Inci-
dent, and Sub-Task. When creating a standard issue in Jira it is not possible to immediately set
the issue type as a Sub-Task. This can only be done by selecting a specific Jira issue and adding a
sub-task to it. This means that a sub-task can be a child to any of the available issue types, includ-
ing another sub-task. The number of times a given issue type occurs in the database is shown in
Figure 22. A comparison between bug issues created and sprint issue count is presented in Figure 23.



Database collection property Value

Number of projects 31
Number active projects 8
Number of issues 12654
Average number of issues per project 409
Lowest issue count in project 6
Highest issues count in project 3587
Number issue types 6
Number unique issue statuses 15
Number of events 42631
Number of team members 94
Number of team member types* 11
Number completed issues 10998
Number uncompleted issues 1656
Number uncompleted issues in active projects 1347
Number uncompleted issues in nonactive projects 309
Average issue work ratio of completed issues 59.55
Average original time estimate if provided (hours) 6.42
Average time spent (completed issue) in seconds 12879

Table 1: Summary of imported Jira data. *The number of team member types is included here but
only collected in Section 5.3

Figure 22: Number of times a given issue type occurs in the database



Figure 23: Number of bug issues created per sprint and sprint issue count

Active projects are defined as those present on the Scrum board at the time of the data import. In
total there are 8 active projects, as of writing, with 1347 uncompleted issues. Issues are defined as
completed if they are present in the Done swim lane of the Jira Scrum board (see Appendix D),
so either marked as Done or Rejected. Interestingly, there are as many as 309 issues that have not
been completed but are part of inactive issues.

After having imported all of the issue data, the sprint data could be imported and extended with
values like issue count and the sum of the time estimate over all issues in that sprint. In total
data could be collected over 81 sprints, where each sprint is two weeks long. This is a little over 3
years of data. The issue count and sum of the time estimate of these issues is presented in Figure 24.



Figure 24: Issue count and sum of time estimate per sprint

During (control-flow) process discovery, how issues move across the scrum board and between the
issue types will be analyzed.

5.2 Process discovery and conformance checking

This experimentation subsection will consist of two parts: comparing the Alpha, Alpha+, Heuristics,
and Inductive miners; and Conformance checking of the actual event log over the mined desired
workflow model.

5.2.1 Comparing different discovery miners

This subsection contains the first real experiment of this research paper. In this subsection, the Al-
pha, Alpha+, Heuristics (with varying thresholds), and Inductive (with varying thresholds) miners
will be compared over the four quality metrics proposed by Rozinat et al.(Rozinat et al., 2007):
fitness, precision, generalization, and simplicity - all of which are measured from 0 (low) to 1 (high).

When comparing the miners, the average quality score will be used. Simplicity is calculated over
only the model itself by looking at the number of nodes and edges. This can give a slightly thwarted
understanding of how well the model reflects a high-quality model if simplicity is taken into account
when comparing the average quality score. To express this understandably, look at Figure 25a. This
model has perfect simplicity with a value of 1, but the model tells us very little, only that issues are
created, eventually move to ’To Do’ and after that, they are marked completed. All other events can
lead to completion, but the only causal changes we can infer from the model is that an issue is cre-
ated, usually moves to ’To Do’ and after something happens such that the issue closes. The Alpha+
miner (see Figure 25b) tells us even less, despite also having a perfect simplicity score of 1. For this
reason, all further comparisons between miners will be done using the average score over the ac-
curacy, precision, and generalization as these scores are defined by fitting the event log to the model.



The Alpha miner has an average quality score (ignoring simplicity) of 0.754 and the Alpha+ miner
of 0.333.

(a) Model created from event log using Alpha miner

(b) Model created from event log using Alpha miner

Figure 25: Alpha and Alpha+ created models of event log

For the Inductive miner, the best average score (ignoring simplicity) came from having a very low
noise threshold, between 0.0 and 0.05, with an average score of about 0.898. For a threshold of 0.0,
the created models is presented in Figure 26, with a full paged size version available in Appendix
??. While Figure 26 is difficult to read, its overall structure gives a good idea of the resulting model.
This miner shows us our first silent activities (discussed in Section 2 and represented by black-boxes
on the model). These are activities that are identified by the miner but do not occur in the event
log. In this way, we can notice from the inductive miner that an undefined activity sets whether an
issue can move from ’In Progress’ (in the middle) to a completed state or first has to move through
another activity. A comparison of the inductive miner scores for varying noise threshold values is
presented in Figure 27.



Figure 26: Model created from event log using Inductive miner with a noise threshold of 0.0. A full
paged size version is available in Appendix ??. While the model is very difficult to read, the general
structure gives a good impression of the result.



(a) Quality scores of inductive miner for varying noise threshold values

(b) Average quality score, including and ignoring simplicity, for the inductive miner for varying threshold
values

Figure 27: Quality scoring for the inductive miner

Finally, there is the heuristics miner, which has to be compared over varying values for its three
threshold parameters. Weijters and Ribeiro stated that these three threshold parameters are usu-
ally set to the same value(A. Weijters & Ribeiro, 2011). For this reason, setting the threshold
parameters to the same value will be our initial experiment for the Heuristics miner. The best
threshold parameter value was 0.99, giving an average quality score (ignoring simplicity) of 0.878.
This miner is presented in Figure 29, with a full-page sized version to be found in Appendix E.
While the model is very difficult to read, the general structure gives a good impression of the result.
A heuristics miner with all threshold values equal to 1.0 creates a model similar to that of the Alpha
miner model (see Appendix E. The comparison of quality scores for the varying threshold values is



presented in Figure 28.

(a) Quality scores of heuristics miner for varying threshold values, where all parameters are equal

(b) Average quality score, including and ignoring simplicity, for the heuristic miner for varying threshold
values, where all parameters are equal

Figure 28: Quality scoring for the Heuristics miner



Figure 29: Model created from event log using Heuristics miner with all parameters equal at 0.99.
A full paged size version is available in Appendix ??. While the model is very difficult to read, the
general structure gives a good impression of the result.

Since varying threshold values can have a large influence on the quality scores of the Heuristics
miner(Suhendar et al., 2018), the three threshold values can be fine-tuned using Bayesian optimiza-
tion over a Gaussian process. This was done over 100 iterations the results of which are presented
in Figure 30. The Heuristics miner with the highest average quality (ignoring simplicity) that with
dependency-threshold of 0.979, and-threshold of 0.535, and loop-two-threshold of 0.754, with a
score of 0.896. Using mutual information regression, we can notice that the dependency-threshold
has a dependency to the target variable (average score) of 0.815, the and-threshold a dependency
value of 0.289, and the loop-two-threshold a dependency of 0.001 on the target variable ’average
score ignoring simplicity’. A Petri net of this heuristics miner is presented in Figure 31. This model
is impossible to read, but that is not the goal. Its overall structure gives a good idea of what the
resulting model looks like.



(a) Surface map of the average quality score, including simplicity, over differing values of the dependency-,
and- and two-loop threshold values for the heuristics miner

(b) Surface map of the average quality score, ignoring simplicity, over differing values of the dependency-,
and- and two-loop threshold values for the heuristics miner

Figure 30: Quality scoring for the inductive miner



Figure 31: Model created from event log using Heuristics miner with varying threshold parameters:
dependency threshold: 0.979; and threshold: 0.535; loop-two threshold: 0.754. A full paged size
version is available in Appendix E. This model is impossible to read, but that is not the goal. Its
overall structure gives a good idea of what the resulting model looks like, reiterating the importance
of the suggested usability metric.

A complete comparison of the (average) quality scores over the different miners is presented in
Figure 32.

Figure 32: Comparison of (average) quality scores over the four different miners

5.2.2 Conformance checking with desired workflow

In this next subsection, the best performing discovery miner, the Inductive miner with a threshold
value of 0.0 (see Section 5.2.1) is used to generate the desired workflow model. This is presented
in Figure 33, with a full-page version available in Appendix F along with the questionnaire used
to collect the data to be converted to an event log and an excerpt of the responses. The quality
scoring of the mined desired workflow model, when compared to the event log, is presented in Fig-
ure 34. The average score (ignoring simplicity) was 0.858 with an average fitness per issue of 03.984.



Figure 33: Inductive miner model of the desired workflow. This model again is also difficult to read,
but the general structure of the model points towards the linear nature of the desired workflow.

Figure 34: Quality scores of desired workflow when compared to the event log

5.3 Model enhancement

In this subsection, the model extension stage will be discussed. This entails extending the issues
model with a fitness score as compared with the desired workflow (discovered and presented in
Section 5.2.2), assigning a team member type to each team member, and finally preparing data sets
for the machine learning techniques used in the next subsection. Only done issues will be used and
a detailed description of the data set is provided in Section 3.2.4. While this is not an experiment,
the results will be used in the next subsection and discussed in Section 6.

The quantity of team member types is presented in Figure 35.



Figure 35: Quality of team member types that have contributed to Jira Scrum board

5.4 Operational support - applying predictive techniques

In this section, the training and test results are presented for each of the three machine learning
techniques over the three prediction target variables of completed issues. The three machine learn-
ing techniques that are applied are decision tree regressor (DTR), linear support vector regressor
(SVR), and multilayered perceptron regressor (MLPR). The target variables are issue work ratio,
issue fitness as compared to the desired workflow, and the next issue status.

Each of the experiments starts by showing the mean absolute error per Gaussian process run while
trying to optimize the hyperparameters of the respective machine learning algorithm to maximize
its learning ability. With the selected best hyperparameters the algorithms are trained again over
80% of the data and tested with the remaining 20%. The algorithms are compared with each other
over their R2-score when predicting the test set.

For each of the trained three machine learning techniques, the five most influential variables are
presented along with their importance. For MLPR this is difficult as a neural network is notorious
for being a black box. To get around this issue the mutual information score will be used.

5.4.1 Predicting work ratio

Figure 36 shows the mean absolute error per GP run while trying to find the optimum algorithm
hyperparameters when predicting work ratio.



(a) Mean absolute error per run count of GP for
DTR

(b) Mean absolute error per run count of GP for
MLP

(c) Mean absolute error per run count of GP for
SVR

(d) Mean absolute error per run count of GP for
DTR, MLPR and SVR

Figure 36: Mean absolute error of machine learning technique over run count when optimizing
hyperparameters using Gaussian process (GP) when estimating work ratio

ML algorithm R2 − score

DTR -0.0000127
MLPR 0.0029654
SVR -24.0202063

Table 2: R2-score of machine learning techniques when estimating work ratio



Algorithm Ranking metric Rank Variable Value

1 N/A 0
DTR GINI 2 N/A 0

3 N/A 0

1 Project Issue Number 1.1348999
MLPR Mutual information 2 Time Original Estimate 0.9261337

3 Size Description 0.2954805

1 Time Spent 0.0093151
SVR Weight coefficient 2 Time Estimate 0.0003280

3 Time Original Estimate -0.0002978

Table 3: Feature importance when predicting work ratio as defined by the DTR, SVR or mutual
information score. N/A shows that the algorithms has identified no importance features and as
such all features have an importance value of 0

Feature
Low
value

Low value
target value

High
value

High value
target value

Project issue number 1 70 4000 70

Time original estimate 0 70
28800
(8hours)

70

Size description 1 70 100 70

Table 4: Results of estimated work ratio when for varying feature values while keeping all other
features constant. As we can see with our given MLPR model, changing values of the features with
the highest mutual information does not alter estimations; reflecting an inaccurate model.

5.4.2 Predicting issue fitness

Figure 36 shows the mean absolute error per GP run while trying to find the optimum algorithm
hyperparameters when predicting fitness.



(a) Mean absolute error per run count of GP for
DTR

(b) Mean absolute error per run count of GP for
MLP

(c) Mean absolute error per run count of GP for
SVR

(d) Mean absolute error per run count of GP for
DTR, MLPR and SVR

Figure 37: Mean absolute error of machine learning technique over run count when optimizing
hyperparameters using Gaussian process (GP) when estimating fitness

ML algorithm R2 − score

DTR -0.3909058
MLPR -0.5335134
SVR -538.9894137

Table 5: R2-score of machine learning techniques when estimating fitness



Algorithm Ranking metric Rank Variable Value

1 N/A 0
DTR GINI 2 N/A 0

3 N/A 0

1 Project Issue Number 1.2382365
MLPR Mutual information 2 Size Description 0.3723560

3 Sprint Sum Estimated Time 0.3371259

1 N/A 0
SVR Weight coefficient 2 N/A 0

3 N/A 0

Table 6: Feature importance when predicting fitness as defined by the DTR, SVR or mutual infor-
mation score. N/A shows that the algorithms has identified no importance features and as such all
features have an importance value of 0

5.4.3 Predicting next issue state (status)

Figure 36 shows the mean absolute error per GP run while trying to find the optimum algorithm
hyperparameters when predicting the next issue state.



(a) Mean absolute error per run count of GP for
DTR

(b) Mean absolute error per run count of GP for
MLP

(c) Mean absolute error per run count of GP for
SVR

(d) Mean absolute error per run count of GP for
DTR, MLPR and SVR

Figure 38: Mean absolute error of machine learning technique over run count when optimizing
hyperparameters using Gaussian process (GP) when estimating next state of issue

ML algorithm R2 − score

DTR -0.0000874
MLPR 0.0377237
SVR -3.0018992

Table 7: R2-score of machine learning techniques when estimating next state



Algorithm Ranking metric Rank Variable Value

1 N/A 0
DTR GINI 2 N/A 0

3 N/A 0

1 Current Status 0.4501339
MLPR Mutual information 2 Time Since To Do 0.2988391

3 Sprint Issue Count 0.1792191

1 N/A 0
SVR Weight coefficient 2 N/A 0

3 N/A 0

Table 8: Feature importance when predicting next issue status as defined by the DTR, SVR or
mutual information score. N/A shows that the algorithms has identified no importance features
and as such all features have an importance value of 0

Feature
Low
value

Low value
target value

High
value

High value
target value

Current status
3
(To do)

10
(Ready for
Acceptance)

13
(In Acceptance)

10
(Ready for
Acceptance)

Time since to do
1800
(0.5 hours)

9
(In Test)

259200
(3 weeks)

9
(In Test)

Sprint issue count 1
9
(In Test)

2500
9
(In Test)

Table 9: Results of estimated next issue state when for varying feature values while keeping all
other features constant. As we can see with our given MLPR model, changing values of the features
with the highest mutual information does not alter estimations; reflecting an inaccurate model.



6 Discussion

This Section will present a discussion of the results of experimentation and how it relates to the
literature. This will consist of interpreting the data, suggesting the implications, discussing the
limitations, and providing recommendations.

The discussion will be approached along the lines of the L∗ life-cycle model to keep with the
structure used in Sections 12, 4 and 5. This will allow the experiments and their results to be
discussed structured to their respective subsections. After having discussed the results the research
question will be readdressed and answered.

6.1 Identifying areas of improvement through exploration of the Jira process
data

During the L∗ stage of extracting and exploring knowledge in Section 5.1, Jira data was imported
and a summary of that data was presented. From this data, several note-worthy points about the
data and the workings of the team need to be addressed.

6.1.1 Enforcing workflows to avoid outliers and simplify workflow

Based on initial exploratory analysis, there are 15 possible issue statuses allowed over the investi-
gated team’s Scrum board. While some issue statuses occur more often than others, each of these
statuses are used by at least one issue in the issue history. Possible movement between these sta-
tuses is not defined or enforced within Jira, despite Jira offering this service. A given issue can
therefore theoretically move from ’Done’ back to ’To Do’, despite a ’Done’ issue being completed
and not adjustable again. By allowing this type of undesirable movement, the team opens itself up
to uncontroversial or undesired workflows, without directed team discussion of the issue. A simple
recommendation can be to enforce desired workflows, allowing issues that required undesired status
changes to be flagged by the team as a whole, forcing it to be discussed during a stand-up. Erdem
and Demirörs (Erdem et al., 2018) also emphasized that formalizing and standardizing development
processes is essential in reducing inconsistencies, instability, and unpredictability of the develop-
ment process.

6.1.2 High bug count leading to over-planned sprints

The next important issue to note is the high number of Bug issue types in the database (see Figure
22). About 20.7% of all issues are bugs. This is undoubtedly an undesirably large number of bugs
compared to the total number of issues being worked on. A deep dive into why such a high number
of bugs occurs can be recommended. Reducing bug quantity can greatly improve team performance
while also allowing the team to continue moving forward. If completed projects still lead to iden-
tified bugs by the service desk (internal team that processes client requests after delivery), the
investigated team will continually be pulled back into completed projects, without actually having
time for them.

It can also be noted that there has been a steady increase in the number of issues, and their as-
sociated sum of time estimates, over the last year. The last year has been fairly interesting for



the investigated team as the team continued to expand in a slightly turbulent fashion. While team
members joined, several also left. This can also be a result of the work-from-home policies due to
COVID-19 (and variants). The number of issues peaked just before the new year of 2022. This is
not too strange as projects are often aimed to be completed before the new year. The relationship
between the number of issue bugs created in a sprint and a rise in the number of issues in the
next sprint is shown in Figure 23, where a high number of bugs created leads to a high number of
issues in the next few sprints. This could be reminiscent of turbulence in the team and could be an
interesting area to investigate; the effect of increased bug count of project planning for the next few
weeks. This could also reflect bugs moving from one sprint to the next, or bugs pushing planned
issues from one sprint to the next, piling on the workload. Either way, a clear area of improvement
would be to reduce bug count. A simple way to reduce bug count would be to apply test-driven
development methods. While unit tests have been integrated over the last year to improve CI/CD,
full integration tests have not. Full integration tests would help identify problems in the review and
test phases of issues. This further emphasizes the importance of tests. This is built upon in Section
6.2.

It should also be noted that there is a large number of uncompleted issues in completed projects.
These issues should be either completed or moved to rejected as needed and required by the agile
process. After a project is completed the backlog should be clear of issues.

6.1.3 Non-agile number of contributors: how desirable is this?

It can also be noted that a large number of different team members contribute, by being either an
assignee, creator, or reporter of an issue, to the issues on the investigated teams Scrum board. In an
agile workspace, teams are generally very small, up to 8 members, allowing for a targeted approach
to issues. Having a lot of different members contribute to the issues on the Scrum board can reduce
issue understanding before development or tackling of that issue. From Figure 35 it can be seen
that up to 10 different people from management (including executive level) have contributed to the
Scrum board. As many as 13 members from an entirely different team (the social team) have also
contributed. The high number of developers that have contributed (up to 42) is also worrisome if
the team is supposed to be agile.

This does not immediately mean that the team is not working agile, but rather that the Scrum
board might not be directed at the team level, as can usually be assumed, but rather at (inter-team)
project or portfolio level. It can not be assumed that this is undesirable and does not reflect agile
work as it does reflect the agile principles of work being directed at people. With active iterations
of an MVP, different teams and member types (including customers or the social team) can reflect
and add desired functionality directly into the teams’ backlog. The important part that has to
be decided by the investigated team is whether these elements added from outside the team are
of high quality and reflect what needs to be done. This could also explain the high number of
uncompleted issues in completed projects as the (non-)functional requirements defined by those
(externally added) issues have already been handled and thus point to work overlap. The contri-
butions of external project members like clients of the social team might also effect the suitability
of feature or issue descriptions, again emphasizing the importance of checking input quality.



6.1.4 Defining (non-)functional descriptions in agile fashion to allow clear project
overview and avoid misunderstandings

Finally, many issue descriptions do not follow the proposed agile structure of defining tasks or
stories. These structures should follow the lines of < usertype > wanting to < performaction >
to achieve a < result > for stories, or for a feature < action > < leads to > < object >. Issue
summaries generally simply describe the problem or a state a desired component, like “Cluster
algorithm” (a feature which can easily be better described or even split into several issues).

When working on projects, you will often notice that you are the one creating your own issues in
Jira and therefore generally have a good understanding of what is meant or required, leading to
colloquial or lackadaisical issue descriptions. This is problematic for two reasons. Firstly, you will
not be the only one working on a project at any one time and have to be able to efficiently discuss
your work during standups. Clear and complete issue descriptions will allow for concise and effective
task overview for project managers during standups. Secondly, requiring clear feature descriptions
has to be considered while taking into account the a high number of contributors and their roles.
Without clear issue definition structuring, contributors are likely to misunderstand requirements.
Clear feature descriptions assist in understanding the relevant done criteria. Erdem and Demirörs
(Erdem & Demirörs, 2017) identified done citeria as often not being upheld, leading to miss matches
between desired workflow and actual workflow.

6.2 Comparison of control-flow discovery miners: why the heuristics miner is
the most appropriate to use

During the process discovery and conformance checking phase of experimentation (see Section
5.2.1), different process miners are used to created models of the event log and are compared using
the quality metrics of fitness, precision, generalization, and simplicity. The control-flow discovery
miners that were used are the Alpha, Alpha+, Heuristics, and Inductive miners.

6.2.1 Usability: the missing miner quality metric

It is quickly noticed that a high simplicity value does not necessarily add value or understanding.
This can be noticed by the resulting models of the Alpha and Alpha+ miners (see Figure 25) which
have very high simplicity but relatively low accuracy and precision. In fact, for the heuristics, miner
accuracy and precision drastically decrease as simplicity increases (see Figure 28). Unfortunately,
as simplicity scores decrease, so does the readability of the model as model complexity greatly
increases. This would suggest a missing quality metric of usability, which would be hard to define
due to its subjectivity, but would add extra depth to model comparison.

The highest scoring miner, based on model quality ignoring simplicity, is the inductive miner. De-
spite not being in the list of the most popular miners (see Figure 6), it does appear to be the best
functioning miner for the event log. Unfortunately, the models created by the inductive miner do
not give great insight into the unique moments of issues through the Scrum board. This is done
better by the Heuristics miner models (see Figures 29 and 31). This again points towards the need
for a new miner quality metric measuring usability.



6.2.2 Why the Alpha miners perform poorly while Inductive and Heuristics miners
perform well

The low average quality scores of both the Alpha and Alpha+ miners can be explained by the
inherent limitations these sibling algorithms have. Both cannot handle loops, are unable to identify
silent transitions, cannot guarantee soundness and are weak to noise. The heuristics and inductive
miners on the other hand, can identify silent transitions and short loops while the inductive miner
can also guarantee soundness.

The need for models to be able to handle loops is self-evident in that issues can move backwards
in the workflow, for example from In Review back to In Progress. Further more, the identification
of silent transitions is required as not all issues will flow the standard sequence through all possi-
ble states as some states can and likely will be skipped (not all issues require going through the
Refinement state for example). Finally, there is the issue of noise in the data. Some issues in the
data follow drastically unexpected workflows (jumping from Done back to In Progress for example),
a problem that might arise from an enforced workflow management in Jira. These domain based
requirements suggest an explain to the fitness and precision weaknesses of the Alpha and Alpha+
miners.

Soundness of a petrinet looks at the guarantee of proper completion of firing sequences in the
model. This should not be a problem since no Jira issue can be in two states at a single time due
to the sequential processing nature of software feature issues across the Scrum board. This can
explain the almost negligible average quality metric values between the optimized inductive and
heuristics miners since both miners can handle noise, loops, and identify silent transactions. The
difference between these miners then comes in the suggested new quality metric of usability. While
the heuritics miner has a lower simplicity, with much low readability, the produced model does
show a more sequential nature to the processing of issues. This might explain why, according to
the literature, the heuristics miner the the more popular choice control-flow miner as its usability
is suggested to be higher. Dos Santos Garcia et al. also suggested the heuristics miner to be the
most popularly used miner due to the algorithms robustness and capability to “deal with noise and
exceptions in unstructured processes”(dos Santos Garcia et al., 2019).

This higher usability can then be used to better analyze processes and sequential steps along with
frequency count. From the Heuristics miners, we can notice that relatively few issues move into
either the ’In Review’ or ’In Acceptance’ phases, 845 and 709 of 12506 respectively. This can ex-
plain the high bug rate at intervals over all the sprints and further emphasizes the importance of
test-driven development with unit tests and (full) integration testing combined with active review
sessions. While this might not necessarily reflect missing integration tests or hastily performed
review, it could point towards limited feature description refinement, which later can lead to mis-
labeled ‘bugs’.

6.2.3 Event log data fitting well into the desired workflow

When comparing the event log with the desired workflow, it is clear that most issues fit in well
with the desired workflow. But average fitness, as well as generalization, are high, hitting 0.98
and 0.88 respectfully. Precision is relatively low, on the other hand, suggesting under-fitting of the



data. The desired workflow model is very clear though and identifies silent activities (see Figure
33). While not all silent activities are interesting, take the one corresponding to ’Ready to Review’
as an example, there are activities that hold weight, like those representing circular movement
through the model (the silent activity after ’In Acceptance’ for example). These desired possible
workflow moments can be enforced in Jira but have not yet been done by the team. Enforcing the
possible workflows can potentially help increase precision while also reducing movement error and
identifying problematic issues immediately by way of blocked issue placement.

The investigated team having a fairly simple (desired) workflow fits well into the agile goal of effec-
tiveness. The issues analyzed were from a single scrum board and not a collection of issues flowing
across multiple boards at an inter-team or portfolio level. This inherently makes the (desired) flows
simplistic due to a single scrum board needing to be orderly and manageable. A simple workflow
is desirable as discussed by Caldeira and Cardoso (Caldeira et al., 2019) since complex process
models often reflect a lack of effectiveness. If the dataset were to be extended with additional data
to reflect inter-team issues or portfolio-level data, the process models will inherrently become more
complex as they have to reflect the workflows of all the teams being managed. This will likely also
greatly reduce the usability of any mined control-flow model.

Having compared the different control-flow process mining algorithms across the quality metrics,
either the inductive or heuristics miners can be suggested to use when analyzing the Scrum board
workflow of an agile software development team. If we take the newly suggested quality metric
of usability into account, the heuristics miner would be the best choice due to the created model
giving better insight into the actual workflow of the team.

6.3 Understanding why the applied machine learning techniques failed to ac-
curately predict the target variables and potential improvements

In this section, the results from the predictive machine learning techniques and why they were
unsuccessful are discussed. Using a SVR, DTR, and MLPR over the data set (defined in Section
3.2.4) an attempt was made to predict the work ratio, fitness, and next status of issues moving
through the Scrum board. Unfortunately, these predictive techniques were unsuccessful in accu-
rately predicting any of the target variables.

There are many reasons why machine learning models fail to converge or produce desired accuracy
scores. Ways to improve accuracy scores include, but are not limited to, data preprocessing, fea-
ture engineering, feature selection, algorithm selection, hyperparameter tuning and simply using
more data. While an attempt was made to apply most of these improvement methods, they will
be discussed individually, reiterating application and suggesting potential improvements for further
research.

6.3.1 Handling outliers and missing values

Data preprocessing often involves handling missing values and identifying outliers in an attempt to
reduce model bias. The simple way in which this was applied was to only include completed tasks
in the dataset. Incomplete tasks would, for example, not include values like eventual work ratio,



nor would be the fitness of the issue be accurate.

While an attempt was made at avoiding missing values, outliers were not identified and removed.
This is a potential further improvement. Furthermore, the dataset consists independent variables
extracted directly from Jira where they all have values defined. These values were not extended
with additional data (outside of Jira) or transformed (both of which are discussed in the following
subsections).

6.3.2 Feature engineering

Feature engineering often takes on the form of feature transformation, where values are normalized
or grouped, and feature creation, where new variables are defined based on other variables or sum-
marized. Aside from adjusting the timeSpent value of Rejected issues (which was kicked up to a
maxium values), no attempt was made at feature transformation.

For feature creation, several computed variables were included and are summarized in the Inter-
IssueInformation table in Figure 13. These are computed fields that summarize differences in sprint
information.

Feature engineering is a potential way to improve accuracy during further research by summarizing
variables and discovering hidden relationships.

6.3.3 Feature selection

During feature selection, statistical methods are used, like PCA or Mutual Information, to reduce
dimensionality and identify relationships and correlations between variables. While the use of Mu-
tual Information scores is touched upon in Section 5.4 to identify potential features to teak when
providing recommendations, feature selection was not applied in this paper.

6.3.4 Selecting the right ML algorithm

Many different machine learning algorithms exist and selecting the right one to use can greatly
increase model accuracy. The diversity of machine learning techniques to use in big data analysis
of agile software development is summarized well by Biesialska et al.(Biesialska et al., 2021) who
identified more than 12 possible algorithms to used divided over 4 general types of problems.

Selecting the right algorithm to use is tough. The algorithms that were selected to be used were
based on the literature, identifying three algorithms that showed promising results in analyzing
agile software development team data: SVR, MLPR and DTR. A further exploration of possible
algorithms to apply could be interesting for further research.

6.3.5 Hyperparameter tuning

Almost all machine learning algorithms are accompanied by different parameters that set and define
the finer workings of that algorithm. Discovering optimal values for those parameters can greatly
increase accuracy. To this end Baysian Optimization was used to tune the parameters of the different
machine learning algorithms. The paper on which this approach is based dates back almost a decade.
In recent years there have been other suggested algorithms and the exploration of these could help



improve learning and accuracy. This would not likely greatly improve accuracy though. Baysian
Optimization has proven effective(Jasper Snoek & Adams, 2012) and the accuracy of the applied
machine learning techniques were so bad that a slightly different selection of hyperparameters would
not have greatly improved accuracy.

6.3.6 More data, always more data

Finally, another common way to improve model accuracy is by adding more data to use to train
and test. This can take on two dimensions: increasing sample size or, closely related to feature
engineering, increase sample dimensionality.

The dataset consisted of almost 27,000 items all of which were relatively homogeneous. Due the
the size of the dataset and the similarity of the items, increasing the sample size would probably
not have greatly improved model accuracy.

Instead, the low accuracy scores of the machine learning models could point towards the necessary
variables, or the necessary combination of variables, not being present in the dataset. Different
variables from different sources could help enhance the dataset and result in better accuracy scores.

Software development is a vary dynamic field of work with new technologies and methodologies
constantly being introduced. Furthermore, running a team over the span of several years bring
an inherent sense of volatility, with team members joining and leaving, or the projects (and their
types) changing. Despite Jira being a powerful tool, it cannot store and process all of these changing
factors, even less so if logging and usage is not enforced.

Having said this a potential source of extra data within Jira could be the worklogs in which team
members log the actual time they work on issues. This will obviously better reflect time spent on
issues instead of using the less reliable measure of logging when tasks change status. But this again
requires tool usage enforcement.

6.4 Stimulating innovation by way of data-driven DevOps technique compari-
son

The inherent rigidity of companies often stems from the fact that people themselves are often rigid.
As soon as someone has a certain ‘correct’ method in their minds, it is often difficult to convince
them to try new things. This is especially the case when financial and time risk mitigation are cen-
tral to most, if not all, business decisions. Despite this, we have come to know and understand that
calculated risk taking is essential in driving innovation. Furthermore, continual innovation remains
quintessential in business stability and growth.

Selecting which new paradigm to embrace and which dogma to shun is extremely difficult and
requires careful consideration. A nudge in the right direction can be provided by using data-driven
reasoning to select which (hybrid) development methodology to encompass. Olszewskatelal et al.
suggested using project management tool data to measure the effect of agile transformations on re-
sponsiveness, throughput, workflow distribution and quality(Olszewska et al., 2016). By using these
metrics the effectiveness of seemingly intangible or abstract changes could actively be measured
and compared in a quantifiable manner. This provides a data-driven way of comparing methods



with each other.

Marques et al. suggested using process mining to measure implementations and processes of agile
teams(Marques et al., 2018), providing a clear and concise way to gather the data to quantify the
magnitude of change. In this paper an architectural design and case study implementation on using
process mining to analyse a teams workflow data was developed and discussed. While this appli-
cation aimed (and failed) to accurately apply predictive techniques to provide recommendations,
the application was able to give (visual) insight into the workflows as well as provide quantifiable
data around responsiveness (time estimates), throughput (work ratio) and quality (number of bugs).

The architectural design (and its implementation) in itself suggests a clear way of collecting, parsing
and gaining knowledge from the Jira Scrum board data. This data can then be used, as suggested
by Marques et al. and Olszewskatelal et al., to measure and compare different (agile) methodologies
and the transformation between them. Properly applying this tool should make it easier to break
the rigid thinking of teams or the organization itself by providing clear data to measure changes in
methodology. This will make methodological changes more palpable and thus hopefully stimulate
teams to continually try new things, moving in the direction that measures the most success for
that team.

6.5 Answering the research question

The research question for this paper is: How can process mining be used to suggest Scrum
improvements for an agile software development team, and what kind of architectural
design is required to investigate and provide these recommendations?

Process mining provides a data-driven way to gain visual insights into actual processes of teams
and organizations. This form of data analysis can be used to uncover hidden processes and lead
to better business intelligence. Business intelligence and analytics are generally divided into three
fields: descriptive, predictive, and prescriptive. Olszewska et al. identified a fourth: adaptive ana-
lytics. These fields can be used to gain deeper insight into businesses while estimating future events
or values and providing recommendations to improve value by, for example, reducing time- or cost-
overrun. An example field where time- and cost-overrun are notoriously high is that of software
development. To be able to make accurate predictions, data needs to be collected and analyzed
which is where process mining comes into play. Using process mining, further insight can be gained
while providing extra information with which to make predictions. These predictions can then be
used to make recommendations to avoid undesirable workflows and the potentially resulting time-
or cost-overrun. These recommendations can in turn help improve DevOps by identifying and im-
proving areas of overrun.

To help guide any process mining project, the undisputed God Father of process mining van der
Aalst suggested using the L∗-lifecycle(Van Der Aalst, 2011). This would divide the project up into
five stages, extending and enhancing the three types of process mining. In keeping with this project
structure, this paper has suggested an architectural design for research projects using Jira backlog
data. This design is presented in Section 4.

How do process mining techniques and standards compare? For the event log generated by the Jira
data of the .NET team analyzed for this paper, the inductive miner performed best across the



quality metrics. The heuristics miner, with optimized values, came in a close second. As discussed
above the quality metrics used for analyzing models developed by discovery miners do seem to lack
a metric for model usefulness.

How is process mining applied in (agile) software development? Two general application areas of
process mining in agile software development have been identified: process mining of user actions
to help software development teams improve the system or product being developed; and process
mining of the actions software development team members take to analyze, identify and improve
the processes team members go through when developing software.

How is process mining used in predictive and prescriptive analytics? Process mining can be used
in predictive and prescriptive analytics to answer different c-level questions, like instance duration,
delay identification, and recommended execution path. These predictive methods include “decision
trees, case based-reasoning, recommender systems, and neural networks”(dos Santos Garcia et al.,
2019). These techniques can be applied to be able to provide real-time decision support, allowing
for better business agility. Extending data models and applying machine learning techniques allow
researchers and teams to detect and predict unwanted workflows and provide recommendations.
Depending on the machine learning technique applied, this method, combined with statistics, can
be used to identify feature importance and effect on predictions, providing a prescriptive-like tool
to help direct teams as they process unwanted workflows and try to find alternatives.

What machine learning techniques are industry standards in analyzing process mining data and
other retrieved process data?Process mining is still a very young field of research, dating not much
more than a few decades. Due to the unmatured nature of this research field, no set collection of
machine learning techniques has been defined. Different machine learning algorithms to use include
Bayesian indicators, decision trees, support vector machines, and neural networks. During process
enhancement, for the developed data set, three machine learning techniques are used to attempt to
predict issue work ratio, fitness, and next issue status. These algorithms are decision tree regressors,
support vector regressors, and multilayer perceptron regressors (neural network). All three machine
learning techniques used failed to predict issue work ratio, fitness, or the next issue status.



7 Conclusion

This section will serve to conclude this research paper. To this end, the paper will be summarized
and potential future work will be discussed.

The objective of this paper was to provide an architectural design for process mining of agile soft-
ware development teams Scrum board workflow data. To help guide this research objective, the
following research question was defined: How can process mining be used to suggest Scrum improve-
ments for an agile software development team, and what kind of architectural design is required to
investigate and provide these recommendations?

This was achieved by providing a proof of concept through a case-study investigation of an actual
software development team that uses Jira. During the period of this case study I worked as a
part-time software engineer within the team being investigated. Using the Jira Api to extract team
data since the usage of Jira was introduced over three years before, data over 31 projects, spanning
12,650+ issues, was collected and a machine learning data set consisting of 26800+ elements was
built.

The contribution of this paper is threefold. First, an architectural design, based on the literature,
for process mining Jira Scrum board data and providing recommendations is developed. Second,
this architectural design is implemented in the form of a prototype process mining tool. Finally, by
comparing and contrasting different process mining algorithms, a recommendation is made as to
which process miner should be used.

To conclude, Jira data can be extremely unstructured reflecting the human nature of the process of
software development. Alignment of actual human workflow to the workflow in Jira - self improve-
ment, where the structure inherently comes more from the social aspect of tool usage. This means
that usage of this tool requires team wide structuring of processes.

7.1 Future research

Unfortunately, the predictive machine learning techniques were unable to accurately predict the
proposed target variables. A possible area of future work would be a deeper dive into collectible
data, extending the machine learning data set, to be able to make accurate predictions of target
variables. Using these trained machine learning techniques combined with statistics, feature im-
portance can be defined and how these features affect the target variable, providing prescriptive
recommendations. While this was attempted, unfortunately, the data set was not large enough or
the required features for accurate prediction were not present.

An area for data set improvement would be to not only use the event log but the actual work log,
containing logged hours of work by the team members. These work logs and cases can be clustered
using time warping (an example of this was discussed in Section 2). While this can be calculated
from the issue change logs, coming it with an organizational perspective of process mining can
allow the identification of bottlenecks in the process. If reviews could only be performed by senior
developers, for example, these work logs combined with an organizational perspective can highlight
the bottlenecks in ‘Review’ while also showing the effectiveness of these seniors outside of reviews.



Another potential area of further research would be to use the architectural design and its developed
solution to measure agile transformations within teams. The application could be used to provide
quantitative data that allows teams to compare different methodologies and find the one that best
suits them in a data-driven fashion.

Finally, by using work logs combined with an organizational, control-flow, and resource perspectives,
a development simulation environment could be created. With a simulation environment further
AI techniques, including reinforcement learning can be applied to suggest work time coordination
for team members. Think of if a team member should drop the issue they are working on at the
moment to fix a bug, or if more value is contributed to the team by first finishing up what is being
worked on before moving on to the bug. Creating this simulation environment with which to test
proposed actions provides a great recommendation system.
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A Agile vs Lean Principles

Figure 39: Comparison between Agile and Lean principles (Poppendieck & Poppendieck, 2003)



B Comparison Scrum and XP

Figure 40: Comparison between Scrum and XP (Anwer et al., 2017)



C Entity relationship diagram of Jira data

Figure 41: UML ERD showing the relationship between entities retrieved from Jira



D Scrum board layout and issue creation
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Figure 43: Example of Jira issue creation



E Models generated by different discovery miners

In an attempt to reduce the file size of this document, all appendix images can be found in the
projects Github repository6. For this reason only a description is provided with a direct link to that
image in the repository.

Alpha miner model: Link.

Alpha+ miner model: Link.

Heuritics miner petrinet model with threshold 1.0: Link.

Heuritics miner petrinet model with threshold 0.99: Link.

Heuritics miner petrinet model with threshold 0.95: Link.

Heuritics miner petrinet model with threshold 0.90: Link.

Heuritics miner petrinet model with threshold 0.85: Link.

Heuritics miner petrinet model with threshold 0.75: Link.

Heuritics miner petrinet model with threshold 0.60: Link.

Heuritics miner petrinet model with threshold 0.5: Link.

Heuritics miner petrinet model with threshold 0.40: Link.

Heuritics miner petrinet model with threshold 0.30: Link.

Heuritics miner petrinet model with threshold 0.20: Link.

Heuritics miner petrinet model with threshold 0.10: Link.

Heuritics miner petrinet model with threshold values 0.979; 0.535 and 0.754. Generated using op-
timum threshold values found by Gaussian process: Link.

Inductive miner petrinet model with noise threshold 0.0: Link.

Inductive miner petrinet model with noise threshold 0.1: Link.

Inductive miner petrinet model with noise threshold 0.15: Link.

Inductive miner petrinet model with noise threshold 0.25: Link.

6Full details: https://github.com/akannangara/ProcessMiningThesis

https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DiscoveryMiners/Alphaminer.png
https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DiscoveryMiners/AlphaPlusMiner.png
https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DiscoveryMiners/1.0HeuristicsMiner.png
https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DiscoveryMiners/0.99HeuristicsMiner.png
https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DiscoveryMiners/0.95HeuristicsMiner.png
https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DiscoveryMiners/0.9HeuristicsMiner.png
https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DiscoveryMiners/0.85HeuristicsMiner.png
https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DiscoveryMiners/0.75HeuristicsMiner.png
https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DiscoveryMiners/0.6HeuristicsMiner.png
https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DiscoveryMiners/0.5HeuristicsMiner.png
https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DiscoveryMiners/0.4HeuristicsMiner.png
https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DiscoveryMiners/0.3HeuristicsMiner.png
https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DiscoveryMiners/0.2HeuristicsMiner.png
https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DiscoveryMiners/0.1HeuristicsMiner.png
https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DiscoveryMiners/optimumHeuristicsMiner.png
https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DiscoveryMiners/0.0InductiveMiner.png
https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DiscoveryMiners/0.1InductiveMiner.png
https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DiscoveryMiners/0.15InductiveMiner.png
https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DiscoveryMiners/0.25InductiveMiner.png
https://github.com/akannangara/ProcessMiningThesis


Inductive process tree model with noise threshold 0.0: Link.

Inductive process tree model with noise threshold 0.1: Link.

Directly follows graph: Link.

https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DiscoveryMiners/0.0ProcessTreeInductive.png
https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DiscoveryMiners/0.1ProcessTreeInductive.png
https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DiscoveryMiners/DFG.png


F Desired Workflow questionnaire, answers, and developed model

In an attempt to reduce the file size of this document, all appendix images can be found in the
projects Github repository7. For this reason only a description is provided with a direct link to that
image in the repository.

Desired workflow questionnaire to be filled in by team Scrum master, team lead and manager: Link.

Extract of answers to desired workflow questionnaire: Link.

Desired workflow model built using inductive miner with threshold 0.0: Link.

7Full details: https://github.com/akannangara/ProcessMiningThesis

https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DesiredWorkflow/desiredProcessQuestionnaire.PNG
https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DesiredWorkflow/extractQuestionnaireAnswers.PNG
https://github.com/akannangara/ProcessMiningThesis/blob/main/Appendix/DesiredWorkflow/0.0DesiredInductiveMiner.png
https://github.com/akannangara/ProcessMiningThesis
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