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Abstract

In this thesis, we research real-time monophonic
pitch estimation. Specifically, we focus on Fourier
transform based methods. The limiting factor with
these methods is the trade-off between latency and
spectral resolution. In order to discern the two low-
est notes of a typical guitar (E2 and F2), we need a
frequency resolution of 4.9 Hz, equating to a latency
of 200 milliseconds. This significantly exceeds our
real-time constraint of 20 milliseconds. Through in-
terpolation, we were able to reduce the latency to 43
milliseconds.
In order to push latency to a minimum, we devel-

oped a pitch estimation framework called Digistring.
Digistring provides a wide range of pitch estima-
tion tools; from efficient implementations of common
pitch estimation functions to extensive feedback and
experimentation tools. Furthermore, Digistring can
synthesize audio and drive existing MIDI synthesiz-
ers in real-time based on the pitch estimations of the
incoming audio.
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1 Introduction

Pitch estimation, which is also referred to as f0 es-
timation, is a subtask within the field of Automatic
Music Transcription (AMT). The goal of pitch esti-
mation is to estimate the pitch or fundamental fre-
quency f0 of a given signal. In the context of AMT,
pitch estimation is used to determine which notes
are played in a given signal [19].

Real-time pitch estimation is a subproblem where
we want to estimate the note associated with the
measured pitch while the musician is playing it with
minimal latency. This entails we have to use the
latest received signal. In contrast to non-real-time
methods, we have no knowledge of what may happen
ahead of time as we cannot peak-ahead and the signal
corresponding to previous notes is mostly irrelevant.
This limits the methods we can use to solve this
problem.

If pitch estimation can accurately be performed in
real-time, it can be used to create a digital (MIDI)
instrument from an acoustic instrument. This digital
instrument can then be used as an input for audio
synthesizers, allowing musicians to produce sounds
from a wide variety of instruments. Furthermore,
accurate real-time pitch estimation can be used to
automatically correct detuned instruments by pitch
shifting the original signal to the closest harmonious
note.

Pitch estimation often relies on the Fourier trans-
form. The transform decomposes a signal into the
frequencies that make up the signal. Predominant
frequencies in the signal show up as spectral peaks
in the frequency domain. These peaks are important
to human perception of melody [1]. Other popular
signal processing based methods used for pitch es-
timation include autocorrelation and non-negative
matrix factorization. Popular data driven methods
use neural networks and hidden Markov models.

Our research focuses on monophonic pitch estima-
tion of the signal from an electric guitar. Here, we
assume the signal contains at most one note. It is
much easier to perform monophonic pitch estimation
compared to polyphonic pitch estimation [6], espe-
cially when using Fourier transform based methods,
as fundamental limits of the Fourier transform in-
hibit our ability to discern two low pitched notes [2].
Furthermore, hexaphonic guitar pick-ups are becom-
ing more widespread, which allows us to view the
guitar as six monophonic instruments instead of one
six-way polyphonic instrument. State of the art com-
mercial guitar synthesizer solutions also use these
hexaphonic pick-ups, which indicates accurate and
responsive real-time polyphonic pitch estimation is

challenging.

This thesis builds upon a preliminary research
project [5]. In our research project, we found that
Fourier transform based pitch estimation methods
might not be well suited for real-time use due to fun-
damental limitations of the Fourier transform [14].
In this work, we will further research if Fourier trans-
form based methods are viable, as real-time pitch esti-
mation research often relies Fourier transform based
methods.

Researching pitch estimation is not accessible, as
many other small problems have to be solved in or-
der to produce a working prototype on which exper-
iments can be performed. Furthermore, automated
experimentation is challenging to implement and as
a consequence, pitch estimation research often only
includes some informal testing or no experiments at
all. To combat these problems, we set out to cre-
ate a pitch estimation framework called Digistring.
Digistring provides a live execution environment for
arbitrary pitch estimation algorithms, as well as tools
to perform experiments on them. In addition, it pro-
vides tools such as data visualizers and estimation
based sound synthesis, which aid in developing and
fine-tuning pitch estimation algorithms. Digistring
is available at github.com/lucmans/digistring.

2 Related work

Much research has been performed on Fourier trans-
form based real-time pitch estimation. All research
we found relies on obtaining a high resolution fre-
quency domain in which spectral peaks can be iso-
lated and notes can be associated with. These meth-
ods are deemed infeasible by some due to low fre-
quency resolution resulting from using short signal
frames needed to achieve low latencies [14]. Some
papers circumvent this problem by choosing a very
high real-time constraint [15, 16], however, this in-
hibits the use for real-world applications. On top
of the latency from the pitch estimation algorithm,
conventional operating systems also have a latency
when delivering audio samples to your program due
to how audio drivers work [17].

A big problem with Fourier based pitch estima-
tion is the occurrence of overtones [27]. Especially
octaves are a problem, as the fundamental and all
overtones of the higher note overlap with overtones
of the lower note. This is referred to as the octave
problem [29]. Overtones are periodic in nature, as
they diminishingly repeat every multiple of the fun-
damental frequency. As a consequence, they could
also be detected using a subsequent Fourier trans-
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form [28] on the frequency domain. However, this
does not solve the octave problem.

Many different transform have been researched for
pitch estimation, however, the Fourier transform re-
mains popular as it has been broadly studied and
its behavior is well known [18]. Lately, the CQT
transform is gaining popularity as it may provide
higher resolution in some parts of the frequency do-
main [26] at the cost of lower computational effi-
ciency [25]. However, the CQT transform is effi-
ciently implemented using Fourier transforms [24].
The main problem with Fourier transform is the fun-
damentally low frequency resolution on short frames,
thus the fundamental problem remains. An often
mentioned advantage of the CQT transform is that
the frequency bins can perfectly align with the notes
of an instrument [23]. However, as described in Sec-
tion 3.4, overtones are dissonant with respect to our
notes and consequently, the CQT bins do not align
with the overtones. If a note perfectly aligns with a
Fourier bin, all overtones will also align. In order to
cover every note, we could instead perform 12 Fourier
transforms in parallel.

Until recently, signal processing driven pitch es-
timation methods outperformed data driven meth-
ods, due to the scarcity of annotated datasets [21].
Current state-of-the-art pitch estimation algorithms
include CREPE [20], SPICE [21] and SWIPE [22].
SWIPE is the current state-of-the-art signal process-
ing driven pitch estimation method. It compares the
input spectrum to the spectrum of sawtooth waves
to estimate the pitch. CREPE uses a data driven
method consisting of a deep convolutional neural net-
work which requires supervised training. SPICE uses
a self-supervised learning technique to overcome the
scarcity of annotated datasets. These three methods
perform similarly [21].

3 Preliminaries

In order to effectively research Fourier transform
based real-time pitch estimation, it is important to
have a thorough understanding of how computers
deal with audio and how the Fourier transform is
implemented in computers. Furthermore, in order
to use the output of the Fourier transform, we need
to understand the characteristics of the sound gener-
ated by instruments. Moreover, in order to interpret
the results of our estimated pitch and reason about
the performance of the used algorithms, some mu-
sic theory is necessary. Lastly, we will discuss the
concept of real-time in depth, as there are multiple
definitions for real-time which often leads to incorrect

use of the concept.

3.1 Audio in computers

Audio in computers is represented through a series
of equally spaced samples. A sample is the height
of the audio wave at a specific point in time. The
sample rate determines the number of samples per
second used for representing the audio. The sample
format determines how the height of the audio wave
is represented in a sample. Often used formats are
8/16/24 bit integers and 32 bit IEEE-754 floating
point numbers (which we will refer to as floats). The
integer samples uniformly spread the range of the
waveform over the range of the integer [32]. Float
samples typically take values in [−1, 1]. Samples with
values outside this range are considered to be clip-
ping. Because float samples have 24 bits precision
(23 mantissa bits and a sign bit [31]), 24 bit integer
samples can be converted lossless to float samples.
The 8 exponent bits can be used to scale the samples
to a different order, which allows us to describe very
soft and loud audio with less range or accuracy re-
spectively. Float samples have many advantages over
integer samples for digital signal processing, such as
reduced quantization noise and increased dynamic
range [32]. Because of this, we will always use float
samples throughout this thesis.

When working with audio input/output in comput-
ers, a small latency is always introduced [33]. One
part of the latency comes from the used audio hard-
ware and is not configurable. The other part comes
from the audio driver’s buffers. Audio drivers work
on a buffer of samples instead of single samples for
computational efficiency. A full buffer of data has
to be gathered from the audio input, or a full buffer
has to be send to the audio output, so the first or
last sample respectively is one buffer length behind.
The buffer length is calculated by dividing the num-
ber of samples in the buffer by the sample rate. In
order to minimize latency, the number of samples
per buffer has to be minimized and the sample rate
has to be maximized. As these latencies are outside
of Digistring’s control and can be mostly circum-
vented by running Digistring’s algorithms on special-
ized hardware, we will not take them into account in
this thesis.

3.2 Fourier transform

The Fourier transform is a mathematical transform
which transforms a function of time to a complex
valued function of frequency. Here, the magnitude
represents the amplitude and the argument repre-
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sents the phase of the corresponding frequency com-
ponent. The function which maps the frequencies
to amplitudes is called the spectrum of the time de-
pendent function. The Fourier transform works on
continuous functions and assumes an infinite time
interval. Concepts such as continuous and infinite
cannot be represented by a computer. Consequently,
the discrete Fourier transform (DFT) has to be used
for Fourier analyses on computers. The DFT can effi-
ciently be calculated using the fast Fourier transform
(FFT) algorithm.

The DFT transforms a finite sequence of equally
spaced samples, which we will refer to as a frame,
into an equal number of complex values representing
the amplitude and phase, which we refer to as bins.
Technically, the magnitudes of the bins do not form a
spectrum as they are not continuous, however, within
digital signal processing it is still referred to as the
spectrum of the frame. When working with audio,
the samples are real valued, and the DFT output
is symmetrical. Because of this, we can discard the
second half of the output. In the rest of this thesis,
we will only consider the first half of the output.
Each bin corresponds to a specific frequency. All
other frequencies are spread out over multiple bins.
This is called spectral leakage and will be discussed
later. Given a frame F , the number of samples in
the frame is nF = |F |. Using nF and sample rate
fSR, we can calculate the distance between bins in
Hz:

∆fbin =
fSR
nF

This is also referred to as the frequency resolution.
Closely related to the frequency resolution is the
frame length, which is calculated as follows:

tF =
nF

fSR
= ∆fbin

−1

Given a bin number i ∈ [0,
⌊
nF

2

⌋
], the frequency of a

bin can be calculated as:

fbin = ∆fbin ∗ i

The magnitude of the 0 Hz bin corresponds to the
DC offset, which is the average amplitude of the sig-
nal. The frequency corresponding to the last bin
is called the Nyquist frequency and is equal to half
the sample rate. The Nyquist frequency is impor-
tant for two reasons [30]. The first relates to the
sampling theorem, which states that if a continuous
function is sampled at a rate of fSR and only con-
tains frequencies f for which f ≤ fSR

2 , the samples
will completely determine the original function. In
other words, the samples perfectly describe the orig-
inal waveform. Secondly, frequencies f for which

Figure 1: Distortion caused by misaligned framing.

f > fSR
2 are spuriously moved into [0, fSR

2 ]. This im-
plies we cannot simply downsample the input signal
for an easy performance gain, as it might introduce
noise.

The DFT assumes the frame to be periodic. In
other words, the frame is regarded as infinitely re-
peating. This may distort the waveform if the be-
ginning and end of a frame do not align and leads
to artifacts in the spectrum. For example, in Fig-
ure 1, we take a frame shown by the red lines. The
frame is not aligned to a period of the waveform
and causes a distortion when repeated as seen in the
second graph. In our example, the distortion intro-
duces high frequencies components from suddenly
going up and down around the frame border. It also
introduces low frequencies components, as the dis-
tance between two peaks within a frame is shorter
than the distance between two peaks between frames.
The introduction of these new frequencies is a form
of spectral leakage, as the peak in the continuous
spectrum corresponding to a frequency component
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leaks into multiple bins. We can smooth the distor-
tion around frame borders by forcing the beginning
and end of a frame to align. This is commonly done
by applying a window function to the frame, which
forces both ends of the frame to zero.
Given signal s(n) and window function w(n), we

get the resulting windowed signal res(n) using:

res(n) = s(n) ∗ w(n)

Figure 2 shows the working of a window function on
a frame graphically.
The characteristics of spectral leakage from fram-

ing can be controlled using different window func-
tions, see Figure 3 for some examples. Applying no
window function is referred to as using a rectangular
window, as all the ”wanted” samples from the sig-
nal are multiplied by 1 and all other samples by 0,
effectively framing the signal.
The leakage behavior of a window function can

be quantified by performing a Fourier transform on
the window function. The resulting frequency do-
main shows the amount of leakage in neighboring
bins compared to the power of the center bin. To
show the leakage behavior of frequencies which do not
align with a bin, we can zero-pad the window func-
tion, which causes over-sampling in the frequency
domain. Zero-padding is further discussed in Sec-
tion 4.4. Figure 4 shows the leakage of a rectangular
window when a frequency exactly matches the center

Figure 2: An example of applying a window function
to a signal.

frequency of a bin and the leakage when a frequency
is exactly between bins. Here we can see the leakage
spectrum has lobes of leakage. The lobe containing
the center bin is called the main lobe and the other
lobes are called side lobes. The different window
functions trade-off between having a narrow main
lobe width and low side lobe levels [10].

The performance of window functions is often de-
scribed using equivalent noise bandwidth, coherent
power gain and scalloping loss [35, 34]. Equivalent

Figure 3: Examples of the spectral leakage patterns
of some window functions. On the left are the graphs
of the different window functions and on the right
the frequency response of the window function.
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noise bandwidth signifies the variation in noise floor
compared to using a rectangular window. In other
words, when transforming a signal, all the noise in
the signal will result in some power in every bin,
creating a floor in the spectrum. Window functions
raise this noise floor by a consistent amount, which is
quantified using equivalent noise bandwidth. Apply-
ing a window function causes the overall amplitude
of a frame to decrease, which in turn decreases the
power of bins. This reduction is called the coherent
power gain and signifies the loss of power in the spec-
trum. As mentioned earlier, when a signal does not
fit a frame, it leaks into other bins. Scalloping loss
is the amount of decibel lost in the bin containing
the main lobe when transforming a frame containing
a signal halfway between bins compared to a signal
containing the center frequency of a bin.

In order to accurately describe the signal power, we
would need to correct for these effects. Equivalent
noise bandwidth and coherent power gain can be
described by a fixed value for each window function,
but scalloping loss depends, along with the sample
rate and frame size, on the spectral content of the

signal, which we have no control over. Since absolute
signal power estimations are not required for the
content of this thesis, we will rely on relative power
estimations instead.

3.3 Music theory and notation

Modern western music uses the twelve-tone equal
temperament (12-TET) music system. This system
divides an octave, which is the interval between a
pitch and another pitch with double the frequency,
into twelve equally spaced semitones on the logarith-
mic scale. The logarithmic scale is used such that
the perceived interval between two adjacent notes
is constant [3]. As a result, the ratio between two

frequencies in an n-semitone interval is 12
√
2
n
or 2

n
12 ,

invariant to pitch. A semitone can be further divided
into 100 logarithmically scaled cents.

Using scientific pitch notation, every note can be
uniquely identified by combining the traditional note
names A to G (optionally with accidentals such as ♯
and ♭) with an octave number (e.g. E♭

3). An octave

Figure 4: Leakage behavior of the rectangular window. The orange lobes represent the frequency response
of the rectangular window function; the blue lines represent the signal power measured in each bin. In the
top plot, the frequency of the signal exactly matches the center frequency of a bin. Consequently, all signal
power goes into the center bin and nothing into any other bin. In the bottom plot, we shifted the frequency
response half a bin up to simulate a signal with a frequency exactly between bins. This causes signal power
to diminishingly leak into all subsequent bins.
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starts at C, which means the octave number increases
between B and C. This counter intuitively implies
A3 is higher than C3. Note that in 12-TET, C♯ and
D♭ are enharmonically equivalent. In this thesis, we
will always refer to the sharp (♯) note instead of the
enharmonically equivalent flat note (♭). The range
of a typical electric guitar in standard tuning is from
E2 up to E6.
The 12-TET music system only describes the re-

lation between two notes in an interval. In order to
play with other musicians in harmony, an arbitrary
note has to be tuned to a specific frequency. Per ISO
16, the standard tuning frequency of the A4 is 440
Hz within an accuracy of 0.5 Hz [4]. In this thesis,
we will always assume a 12-TET music system with
a 440 Hz tuning note.

Using the above information, we can translate fre-
quencies into scientific note names and vice versa.
In order to numerically work with note names, we
assign a value to each note as shown in Table 1.

name number
C 0
C♯ 1
D 2
D♯ 3
E 4
F 5

name number
F♯ 6
G 7
G♯ 8
A 9
A♯ 10
B 11

Table 1: The numeric values encoding each note
name.

To make calculations easier, we use C0 as a tuning
note instead of A4. We can calculate the frequency
of C0 using the fact that C0 is 57 semitones lower
than A4:

fC0 = fA4 ∗ 2
−57
12 = 440 ∗ 2

−57
12

≈ 16.352 Hz

We can calculate the frequency fNO
, where N is

the note name which is represented by a numerical
value given by Table 1 and O is the octave number
using:

fNO
= fC0 ∗ 2O ∗ 2

N
12

= fC0
∗ 2O+ N

12

To calculate the closest note NO corresponding
to a frequency f , we first calculate the number of
semitones ns between the tuning note fC0

and f :

ns =

⌊
12 ∗ 2log

f

fC0

⌉

Here, ⌊. . .⌉ denotes rounding to the nearest integer.
By rounding, we calculate the semitone distance to
the note closest to f . Using this, we can calculate N
and O as follows:

N = ns mod 12

O =
⌊ns

12

⌋
Note that we assume a mod b always return a number
c for which 0 ≤ c < b. Some programming languages
allow the modulo operator to return a value c for
which −b < c < b, resulting in −13 mod 10 = −3
instead of −13 mod 10 = 7. Furthermore, when us-
ing a conversion to an integer instead of a floor, the
octave number is rounded up when the note distance
is negative.

In order to calculate the error e (in cents) between
the given frequency and the closest tuned note, we
first calculate the tuned frequency ft of the closest
note:

ft = fC0
∗ 2

ns
12

Then the error e can be calculated using:

e = 1200 ∗ 2log
f

ft

In digital music processing, notes are often rep-
resented through MIDI note numbers, as it allows
programmers to refer to notes using integer values.
The MIDI standard defines MIDI note number 69 to
be the standard tuning frequency A4. Every semi-
tone up/down respectively increases/decreases the
MIDI note number by 1. This makes our tuning
note C0 number 12. According to the MIDI specifi-
cation note numbers can take a value from 0 to 127,
however, this is only relevant when communicating
with MIDI devices. The following equations are valid
for any note/MIDI note number.
The MIDI note number m corresponding to the

note closest to frequency f can be calculated using
the semitone distance from a frequency with a known
MIDI note number. Let m(NO) denote the MIDI
note number of NO:

m =

⌊
12 ∗ 2log

f

fNO

⌉
+m(NO)

Conversely, the frequency f of the note correspond-
ing to MIDI number m can be calculated as follows:

f = fNO
∗ 2(m−m(NO))/12

8



3.4 Physical properties of sound

The perceived loudness of a note over time can be
described using an Attack Decay Sustain Release
(ADSR) envelope. The ADSR envelope of a played
note is the convex hull of the waveform of the signal,
see Figure 5 for an example. This convex hull can
be divided into four parts: Attack, Decay, Sustain
and Release. When a note is strummed on the gui-
tar, a percussive sound is generated which causes a
loud and sharp attack along with the note. This per-
cussive sound quickly decays and only the actually
fretted note will sustain. Finally, when the note is
released, it dies out quickly.

The percussive sound generated when strumming
a note is called a transient. Transients contain a
high degree of non-periodic components. Because
of this, transients appear very chaotically in the fre-
quency domain and are often considered noise. As
a transient is of high amplitude, it overshadows the
note which will eventually sustain. Consequently, we
cannot use the samples from a transient for Fourier
based pitch estimation. This in turn increases our
minimum latency, as we have to wait for samples
which do not contain the transient anymore.

When playing a note on an instrument, many sine
waves are generated. The most notable frequency
is called the fundamental frequency and determines
what note is actually played. Integer multiples of the
fundamental frequency can resonate and give rise to
harmonic overtones [7]. In practice, these overtones
are not exact integer multiples due to non-linear ef-
fects resulting from the specific characteristics of the
instrument.

Many other frequencies are generated along with
the fundamental and its overtones. The instrument
specific pattern of these frequencies, along with the
characteristics of the overtones, is called the timbre
of the instrument [8]. The timbre is what differ-
entiates the sound of the same note played on two
different instruments [3]. Generally, the amplitude
of the timbre frequencies is low compared to the fun-
damental frequency and can be disregarded as noise
in the frequency domain. Figure 6 shows the effect
of timbre on a waveform.

In Section 2, we mentioned overtones are dissonant
with respect to notes in 12-TET. This is true for all
overtones, except for octaves, which is every n-th
overtone where n is equal to 2i − 1 for any integer i.
In Table 2, we show an example for the overtones of
C4. Note that the series of errors is always the same,
regardless of what the starting note is.

Figure 5: Example of an ADSR envelope.

Figure 6: Example of difference in timbre between
instruments compared to a sine wave.

n fovertone closest note fnote error
0 261.626 C4 261.626 -
1 523.251 C5 523.251 0
2 784.877 G5 783.991 1.955
3 1046.502 C6 1046.502 0
4 1308.128 E6 1318.510 -13.686
5 1569.753 G6 1567.982 1.955

6 1831.379 A#
6 1864.655 -31.174

Table 2: Example of an overtone series from C4 and
the error of each overtone compared to its closest
note.

3.5 Real-time

Real-time is a difficult concept, as it has multiple
definitions based on what field of research it is used
in. As the formal definitions relate to very differ-
ent concepts, it usually does not cause any problems.
Problems arise when the term is informally used, as
the vernacular definitions often miss an important
aspect of the formal definitions of real-time, which
causes statements made about systems which adhere
to these vernacular definitions to be unreliable or use-
less. Here are a few examples of different definitions
(vernacular definitions are marked bold red):

1. Being synced with actual clock time (or wall
time). This is for instance relevant when play-
ing media such as audio and video. When such
media is played at an incorrect speed, it could be
considered distorted. The hardware which keeps
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track of the clock time is called a real-time clock.

2. A system must response within a specified time
constraint, which is called the real-time con-
straint or deadline. This constraint is usually
a relatively short time. The definition origi-
nates from real-time computing and is relevant
when making car airbags or airplane control sys-
tems. Failing to response within the real-time
constraint leads to failures of the system. Real-
time systems are often classified into hard, firm
and soft real-time based on the impact of miss-
ing the deadline [9].

3. A system which can provide a result or feedback
with no noticeable delay after receiving some
input. Examples of such systems include graph-
ical user interfaces or instant chatting/calling.
There are no hard deadlines which the system
has to respond within and the system does not
fail if some delay does occur. Only user expe-
rience is slightly impacted. In the field of real-
time computing, this is often referred to as near
real-time.

4. A system which can process data faster than it
acquires data. This is technically not real-time,
however, it is often used as such in academic
literature. It is important for real-time systems
to process data faster than it acquires data so
it does not lag behind after some time, how-
ever, this is an implicit deadline. Not having
this deadline explicit may lead to non-sensible
expectations of the system.

Even though the first definition is very relevant when
working with audio, it is not relevant for us. The
audio drivers of operating systems handle all timing
for us. We simply have to wait for samples to be
recorded and made available to our program. We
only have to keep the sampling rate in mind when
working with the samples as shown in Section 3.2.

In order to allow guitarists to use their guitar as a
MIDI instrument, our system has to respond within
a small time frame. On top of that, if the system fails
to respond quickly enough, the usefulness of the re-
sult degrades, as timing is very important when play-
ing an instrument. These restrictions would classify
our system as a soft real-time system per definition 2.
We choose a real-time of constraint of 20 milliseconds.
We elaborate on this choice in Section 4.1.

Other work in real-time pitch estimation often uses
the fourth definition of real-time. This is problem-
atic when using Fourier transform based methods, as
many papers choose large frame sizes to get a high
resolution in the frequency domain. For instance,

in order to discern the two lowest notes on a guitar
which are 4.9 Hz apart, we would need a frame length
of 204 milliseconds. This implicit deadline is well over
our real-time constraint and would be unplayable for
any musician. Other papers we found which do ex-
plicitly set a real-time constraint, choose very high
constraints from 140 ms [15] up to 360 ms [16]. These
constraints were likely chosen with the inherent lim-
its of their solutions in mind. It is very important
to set a real-time constraint solely based on the ex-
pectation of the systems from an outside perspective.
Real-time constraints chosen with the inner working
of the system in mind are merely a measure of perfor-
mance that is hoped to be achieved and claiming a
system is real-time based on such constrains is consid-
ered fraudulent. We have found no Fourier transform
based pitch estimation papers which choose a real-
time constraint close to the latency of commercial
guitar synthesizer solutions, such as the Axon AX
100 described in Section A.

4 Real-time Fourier transform
based monophonic pitch esti-
mation

At the heart of our research lies a pitch estimation
algorithm. The task of a pitch estimation algorithm
is to convert a frame of samples to some represen-
tation of the notes contained in the frame. In this
thesis, we will focus on spectral analysis methods
of pitch estimation. Specifically, we focus on pitch
estimation using the spectra obtained from frames
using the Fourier transform.

4.1 Real-time constraint

Before we start constructing our pitch estimation sys-
tem, let us first choose a real-time constraint. The
goal of our pitch estimation system is creating a dig-
ital representation of the played notes so it can for
example be used for software sound synthesis. Con-
sequently, the real-time constraint should reflect the
critical latency. This is the latency for which the
delay between playing a note and receiving the feed-
back, such as hearing back the synthesized note, be-
comes problematic. The critical latency is highly sub-
jective and may even differ between playing styles.
Note that our real-time constraint only considers
pitch estimation latency. If we want to do anything
with the pitch estimation results in real-time, such
as synthesizing audio, additional latency will be in-
troduced. For this reason, we should not put our
real-time constraint right at the critical latency, but
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leave some headroom for the program using our esti-
mated pitches.
Even though the critical latency is subjective, it

is the factor determining if a real-time pitch estima-
tion system is usable in a musical context. In order
to determine the critical latency empirically, we cre-
ated a tool called delayed playback, which plays back
recorded audio with an arbitrary latency. Using de-
layed playback, we found a latency of 30 milliseconds
is a reasonable latency at which we can still com-
fortably play many songs. Delayed playback can also
be used to verify if a real-time constraint chosen by
someone else is reasonable by your own standards.
There is a limit on how fast we can estimate the

pitch of a played note. For instance, when we con-
sider transients noise, we have to wait for the tran-
sient to pass before we can gather samples containing
the note. Then, we need enough samples such that
the lowest bin of the DFT does not exceed the fre-
quency of the lowest note. In the case of E2, which is
82.407 Hz, we would need a minimum frame length
of 1

82.407 ∗ 1000 = 12.135 milliseconds. Due to spec-
tral leakage, using such small frame lengths is not
feasible.
In order to assess what we can reasonably expect

from our system, we measured the latency of a com-
mercial guitar synthesizer solution. This is described
in depth in Appendix A. Here, we found the Axon
AX 100 MKII at best has a latency of 15 milliseconds
when it is able to guess the note ”the first try”. Oth-
erwise, the latency may reach up to 40 milliseconds.
Taking everything discussed in this section into

account, we choose a real-time constraint of 20 mil-
liseconds.

4.2 Basic algorithm for pitch estima-
tion

Let us start with constructing the most basic Fourier
based monophonic pitch estimation algorithm. Given
a frame of samples and the sample rate, the algorithm
will return the MIDI number of the note closest to
the most prominent frequency in the frame. First,
we apply a window function to the frame and apply
the Fourier transform. Then, we iterate over every
output bin and check which bin has the highest mag-
nitude. From the bin number, we can calculate the
corresponding frequency and subsequently determine
the note closest to this frequency. See Algorithm 1
for a pseudo-code implementation.
To minimize our latency, we want to choose our

frame size as small as possible while still being able
to discern the two closest notes in frequency a typical
guitar can produce. Due to the exponential nature

of notes, the lowest two notes are always the closest
two. For a typical guitar, these notes are E2 and
F2, which have a frequency of 82.407 Hz and 87.307
Hz respectively. This means we need a frequency
resolution of at least 87.307− 82.407 = 4.9 Hz. This
equates to a frame length of 4.9−1 = 0.204 seconds,
or 204 milliseconds. The bin centers do not have to
exactly align with the notes to be able to discern
them, so in practice we could get away with slightly
shorter frames. Still, such large frame lengths are
problematic for multiple reasons. A frame will con-
tain multiple played notes when a guitarist plays
at a moderate tempo (playing eighth notes in 150
BPM corresponds to 200 millisecond notes). Fur-
thermore, if a frame contains the start of a note, the
whole frame might be useless due to the transient.
Lastly, since we have to wait until the audio driver
has enough samples ready for us to fill a frame, the
first samples from that frame will be 200 milliseconds
old. The average latency of processing a sample is
100 milliseconds due to the frame length alone. This
is well over our real-time constraint.

Algorithm: Basic pitch estimation algorithm

input :Frame F and sample rate fSR in Hz
output :MIDI number of estimated note

1 Fw ← apply window function(F);
2 S ← fourier transform(Fw);

3 max index ← 1;

4 for i← 2 to
⌊
|F |
2 + 1

⌋
do

5 if |S[i ]| > |S[max index]| then
6 max index ← i;
7 end

8 end

9 // Most prominent frequency in frame

(assumes arrays start at 0)

10 fe ← max index ∗ fSR
|F | ;

11 return
⌊
12 ∗ 2log fe

440

⌉
+ 69;

Algorithm 1: Basic Fourier based pitch estima-
tion algorithm. Note that this algorithm assumes
arrays to start at 0. The for-loop on line 4 loops
from 2, as the first bin (index 0) corresponds
to the DC offset and is not relevant. Then, we
set the current found max to the second bin (in-
dex 1) and check if any subsequent bin is higher.

We loop till
⌊
|F |
2 + 1

⌋
, as the second half of the

Fourier transform is symmetric due to the purely
real input data and can be discarded.
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We implemented the basic Fourier pitch estimation
algorithm in Digistring (BasicFourier Estimator).
On average, the pitch estimation is performed in 0.13
milliseconds. This means our limiting factor is the
long frame lengths, which implies we should look
for methods which allow for accurate pitch estima-
tion with lower frequency resolution. Furthermore,
especially on low pitched notes, the basic estimator
often picks the note one octave higher than the fun-
damental frequency. Apart from the octave errors,
it does often produce correct results, however, it is
completely infeasible for real-time usage due to the
low frame rate. As we only produce one note es-
timate for every frame, we essentially quantize our
estimator to eight notes on 150 BPM. Lastly, our
basic estimator has no notion of silence. If no note is
played in the frame, we essentially perform pitch esti-
mation on white noise, giving us practically random
note guesses.

4.3 Overlapping frames

As seen in the previous section, a low frame rate is
problematic, as our note output rate is synced to
the frame processing rate, essentially quantizing our
note estimation to the frame processing rate. The
straightforward solution would be to decrease the
frame length, however, the frame length is limited
by the minimum frequency resolution we need. In-
stead, we can increase the frame rate by partially
overlapping subsequent frames.

Overlapping frames has several advantages. Apart
from the increased frame rate, which in turn de-
creases quantization error, it may decrease the aver-
age latency of processing a sample. Furthermore, as
transients are very short in the time domain, having
more frames over a certain period of time decreases
the relative number of frames containing the tran-
sient, which causes more frames to have a useful
note estimate.

As two subsequent frames share information when
overlapping, the estimation from subsequent frames
is correlated. This limits the usefulness of overlap-
ping beyond a certain overlap ratio [36]. However, as
long as we do not overlap so much that samples are
gathered faster than we can process them, overlap-
ping does not incur an addition latency on the pitch
estimation system.

When performing real-time estimation, instead of
overlapping a constant ratio between frames, we can
overlap based on the rate at which the audio driver
acquires samples and our previous frame processing
time. Time spend waiting for samples is effectively
wasted time, as that time could have been spent on

generating note estimations. Instead, we can always
retrieve all currently available samples from the audio
driver and fill the rest of the frame with samples from
the previous frame. This ensures maximum possible
overlap every frame.

4.4 Zero padding

The number of output bins is determined by the
number of samples that is transformed. We can arti-
ficially increase the number of samples in a transform
by appending zeros to the frame. This technique is
called zero padding. As only silence is added to the
frame, it does not alter the spectrum.

As mentioned in Section 3.2, the frequency reso-
lution of a DFT is ∆fbin = fSR

nF
. Let nFP

be the
zero padded frame size. Given that the sample rate
is constant, our frequency resolution will increase
by a factor of

nFP

nF
. In other words, if we zero pad

the frame such that it becomes x times larger, our
frequency resolution will increase by a factor x.

It is important to note that zero padding does
not increase the resolution of the DFT, as no ex-
tra information about the original signal is added
to the frame. It merely interpolates the coarse spec-
trum to become more smooth [12]. Two frequen-
cies closer than ∆fbin together form one big lobe in
the smoothed spectrum. However, the interpolated
peaks may have a higher amplitude than the original
peaks, thus improving the results of our basic pitch
estimation algorithm. See Figure 7 for a graphical
example of this.

Zero padding is relatively compute intensive form
of interpolation [13].

4.5 Quadratic interpolation

A less compute intensive method of interpolation is
quadratic interpolation, also know as Quadratically
Interpolated FFT (QIFFT) [13]. Given a peak bin
and its neighbors, QIFFT interpolates the actual
peak location by fitting a parabola through these
three points. The vertex of the fitted parabola is
the interpolated peak location. See Figure 8 for an
example.

The accuracy of interpolation can be improved
by performing the interpolation on a logarithmically
weighted magnitude spectrum (LQIFFT). In other
words, the error of interpolation is reduced if the log-
arithm of the bin power is used. Since a Gaussian
curve is a parabola on a logarithmic scale, the in-
terpolation is nearly perfect when using a Gaussian
window function on a unweighted spectrum [11]. It
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is not perfect, as a true Gaussian window would need
infinite long tails [37].
Using an exponentially weighted magnitude spec-

trum (XQIFFT) may further reduce the interpola-
tion error [13]. However, this requires carefully choos-
ing the exponent with which to weight the bins, as
some choices may increase the error. As outlined
in Section 5.5, we can iteratively approximate the
optimal exponent. Note that the optimal value is
specific to the exact pitch estimation strategy up to
peak interpolation. For example, if the frame size,
zero-padding factor or window function changes, the
optimal exponent has to be approximated again. In
Section 6.1, we empirically derive the errors for the
different interpolation methods. Note that the expo-
nent factor cannot be zero.
To perform quadratic interpolation, we calculate

a value p ∈ [− 1
2 ,

1
2 ], which is the offset in bins of

the interpolated peak with respect to the peak bin
bj at index j. Using the magnitude of the peak |bj |
and the magnitude of the neighboring bins |bj−1| and
|bj+1|, we define:

α = w(|bj−1|)
β = w(|bj |)
γ = w(|bj+1|)

Figure 7: The top and bottom figure show a DFT
spectrum without and with zero padding respectively.
Zeros are padded such that nFP

= 2 ∗nF holds. The
blue lines represent the bin magnitudes. The orange
lobes represent the frequency content of the frame if
infinite zero padding was applied.

Here, w(x) is an arbitrary weighting function. In the
case of LQIFFT:

w(x) = lnx

Or in the case of XQIFFT with exponent ϵ:

w(x) = xϵ

Then, we can calculate p as follows:

p =
1

2
· α− γ

α− 2β + γ

The weighted amplitude awi corresponding to the
interpolated peak is:

awi = β − (α− γ) ∗ p
4

The non-weighted interpolated amplitude is:

ai = w−1(awi )

Here, w−1(x) is the inverse of w(x). In the case of
LQIFFT:

w−1(x) = ex

Or in the case of XQIFFT with exponent ϵ:

w−1(x) = x
1
ϵ

Given the bin number j of the spectral peak location,
the frequency fi corresponding to the interpolated
peak is:

fi = ∆fbin ∗ (j + p)

Figure 8: Example of QIFFT. The three blue lines
are the peak location and its neighbors, the purple
line is the interpolation parabola and the green line
represents the interpolated location. A zero-pad fac-
tor of 2 was used.
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The Lagrange polynomial describing the interpola-
tion parabola is defined as follows:

L(x) =

1∑
n=−1

w(|bj+n|)

 1∏
m=−1
m ̸=n

x− (j +m)

(j + n)− (j +m)


= α ∗ x− j

(j − 1)− j
∗ x− (j + 1)

(j − 1)− (j + 1)

+ β ∗ x− (j − 1)

j − (j − 1)
∗ x− (j + 1)

j − (j + 1)

+ γ ∗ x− (j − 1)

(j + 1)− (j − 1)
∗ x− j

(j + 1)− j

= α ∗ 1
2
(x2 − x− 2jx+ j + j2)

+ β ∗ (−x2 + 1 + 2jx− j2)

+ γ ∗ 1
2
(x2 + x− 2jx− j + j2)

One often overlooked detail is that the three inter-
polation points need to be in one spectral lobe as we
approximate the shape of the lobe with a quadratic
function. Most window functions have a wide enough
main lobe, causing the three points to always be
within the main lobe. In the case of the rectangu-
lar window, there are at most two bins within the
main lobe. By zero padding, we can increase the
number of bins in the spectrum and in turn get more
than two bins in the main lobe, see Figure 7. In gen-
eral, zero-padding decreases the error of quadratic
interpolation [13].

4.6 Peak picking

As explained in Section 3.4, overtones are generated
along with the fundamental frequency when play-
ing a note on an instrument. On the guitar, the
first overtone is often measured as louder than the
fundamental frequency, causing our basic pitch al-
gorithm to report the first overtone instead of the
fundamental frequency. This is referred to as the oc-
tave problem, as the first overtone is an octave from
the fundamental frequency.
Instead of looking for the bin with the highest

magnitude, we can try to identify all spectral peaks.
Then, using these peaks, we can make a better esti-
mate on what note is played in the frame.

Let us start with the most basic peak picker. Here,
we return each bin which has two neighboring bins
with a lower magnitude. This method does correctly
identify all significant spectral peaks, but also finds
many irrelevant peaks; especially in noisy areas of

the spectrum, as there are many local maxima in
random noise. For now, we can eliminate the peaks
in noise by requiring a minimum peak power, but
if the minimum value is not chosen carefully, the
sustain of a note may be cut short. We need some
method to select which peaks are significant.
One way to determine if a peak is significant

enough is Gaussian average envelope based peak pick-
ing [38]. Here, we first calculate a Gaussian weighted
average envelope of the spectrum. Only peaks higher
than the envelope are deemed significant. Figure 9
shows the envelope filters insignificant peaks near
large lobes caused by spectral leakage.
One envelope point is calculated for each bin in

the spectrum. For each envelope point, we calcu-
late the weighted average of all bins, where a bin’s
weight is determined by the number of bins between a
bin and the bin corresponding to the envelope point.
Given this distance n, the weight is calculated using
a Gaussian function:

w(n) = e−π(n
σ )2

Here, the parameter σ determines the relative weight
of nearby bins compared to distant bins. Higher val-
ues for σ causes nearby bins to have a higher weight-
ing.
Calculating the Gaussian envelope is an compu-

tationally expensive process. As bin weights of far
bins quickly become zero, we can omit these bins in
our Gaussian average calculations, significantly de-
creasing the envelope computation time. To control
the number of bins used in calculating one envelope
point, we allow for a maximum kernel width to be
set. We set this number as a factor of the frame size
and refer to it as the kernel width factor. Further-
more, we can calculate envelope points in parallel for
another significant speed-up.

Figure 9: Example spectrum and its Gaussian enve-
lope.
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4.7 Note selection from peaks

Due to overtones and errors in peak picking, not ev-
ery picked peak corresponds to a note in the signal.
Therefor, we need an algorithm which can determine
which note is likely being played given a set of signif-
icant peaks.

In our basic pitch estimation algorithm, we implic-
itly assume the loudest peak to be the fundamental
frequency of the note contained in the frame. How-
ever, in practice, the first overtone may be louder
than the fundamental frequency, causing octave er-
rors. We could select the lowest peak as the funda-
mental frequency, however, this method is susceptible
to low frequency noise.

Instead of selecting a single peak, we can look for a
group of peaks which form a valid series of overtones,
as played notes always come with overtones. As
mentioned in Section 3.4, overtones are not exact
integer multiples of the fundamental frequency, so
we need to set a threshold on the maximum allowed
difference. Because notes are separated exponentially
in frequency, our threshold should scale accordingly.
This is achieved by using cents as a measure of error.
Then, we can either count the number of overtones
for every peak and return the peak with the most
overtones, or add the heights of the overtones up and
return the peak with the highest overtone power. See
Algorithm 3 for a pseudo-code implementation.

We can make our note selection more resilient to
noise by requiring a minimum number of overtones
for a note to be selected. However, as a note sus-
tains, overtones slowly fade out, which might cause
the number of overtones to fall below the thresh-
old, causing note estimation to be cut short. If note
tracking is implemented, one could only require the
minimum number of overtones for new notes. As we
do not perform note tracking, we opted to disable
this filter. As discussed in Section A, the Axon also
seems to perform this filtering.

4.8 Filtering

As described in the previous sections, during most
pitch estimation stages, we filter peaks/notes based
on conditions such as minimal peak power or mini-
mum number of overtones. Some filtering steps are
however not necessarily tied to a specific estimation
stage. For example, if we know a guitar only pro-
duces notes between E2 and E6 and the note selector
selects a note outside if this range, the signal likely
contains too much noise for an accurate estimation
and we can discard the result. We refer to this filter
as a range filter.

Similar to the minimum peak threshold during
peak picking, we can also set a minimum signal power
before we try to find notes in a frame. We refer to
this threshold as the frame power threshold.

The biggest problem with threshold filters is that
the threshold might not be a constant. For instance,
if a guitarist switches from playing soft to loud, we
need a higher threshold, as the noisy peaks will also
increase in volume. As a consequence, we developed
a signal-to-noise filter, which filters any peak with is
softer than the loudest peak by some constant factor.

During transients, all note estimations are likely
wrong. A straightforward method of detecting tran-
sients comes from the fact that transients occur at
onsets, during which the signal power increases sig-
nificantly. If the signal power in the current frame is
some arbitrary threshold higher than in the previous
frame, we assume the frame contains a transient. We
could not report any note events in such frames, how-
ever, this increases the perceived estimation latency
as the estimator will essentially wait until the tran-
sient has passed. Instead, we can have the estimator
generate a special transient event, which synthesizers
can use to generate a transient-like sound until a true
note is estimated.

4.9 High resolution estimator

We have put all of the above ideas together to cre-
ate the HighRes estimator, see Algorithm 2 for an
overview. Its name stems from the general strategy it
uses to perform pitch estimation, which is obtaining

Algorithm: HighRes estimator

input :Frame frame and sample rate
sample rate in Hz

output : Set of notes contained in the the frame

1 // Note that frame is zero-padded

2 // Only apply the window function to

non-zero-padded samples

3 windowed ← apply window function(frame);
4 freq domain ← fourier transform(windowed);
5 spectrum ← calc norms(freq domain);
6 peaks ← pick peaks(spectrum);
7 interpolated peaks ←

interpolate peaks(peaks);
8 notes ← determine notes(interpolated peaks);

9 return notes;

Algorithm 2: Overview of the HighRes estima-
tor. Here, the input frame is overlapped with the
previous frame.
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Algorithm: Most likely note selector

input : Interpolated peaks i peaks and overtone error threshold overtone error
output :Peak belonging to estimated fundamental frequency

1 if |i peaks| = 0 then
2 return;
3 else if |i peaks| = 1 then
4 return i peaks[0];

5 n harmonics[|i peaks|] ← [0, . . ., 0];
6 overtone power[|i peaks|] ← [0.0, . . ., 0.0];
7 for i← 0 to |i peaks| do
8 for j ← i+ 1 to |i peaks| do
9 peak freq ← i peaks[j ].freq;

10 harm overtone freq ← i peaks[i ].freq ∗
⌊
i peaks[j ].freq
i peaks[i].freq

⌉
;

11 cent error ← 1200.0 ∗ 2log( peak freq
harm overtone freq );

12 if cent error > -overtone error ∧ cent error < overtone error then
13 n harmonics[i ]++;
14 overtone power[i ] += i peaks[j ].amp;

15 end

16 end

17 end

18 max idx ← 0;
19 for i← 1 to i peaks do
20 // Or use overtone power[ ] to find maximum overtone power peak

21 if n harmonics[i ] > n harmonics[max idx] then
22 max idx ← i;
23 end

24 end

25 // Optional filtering

26 if n harmonics[i ] < min overtones then
27 return;

28 Return i peaks[max idx];

Algorithm 3: Note selection algorithm which selects the peak with the most overtones.
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a high resolution frequency domain to approximate
the continuous spectrum with.

Our estimator starts by applying a window func-
tion to the frame. We opted to use the Hann window
function, as it strikes a good balance between a nar-
row center lobe and low leakage, however, changing
the window function has little effect on the estima-
tor’s performance. Note that the frame is already
zero-padded. This is done by creating a larger frame
buffer than needed and zeroing the extra size once.
As the zero-padded area should never be altered, it
provides us with zero-padding for every frame. The
window function only windows the non-padded part
of the frame buffer. We then apply the Fourier trans-
form on the frame buffer, giving us a frequency do-
main. This is converted to a spectrum by calculating
the norm on every Fourier bin. From this spectrum,
we create a list of peak locations using Gaussian
peak picking. The peak locations are then refined
using LQIFFT. From these interpolated peaks, we
select the peak with the most overtones as our note
estimation.

Any of the functions in Algorithm 2 can easily
be replaced to create a different pitch estimation
strategy, as long as the input and output is of the
same kind. For instance, if we want to work on a
logarithmically scaled spectrum, we can use a dif-
ferent calc norms() function which scales its out-
put. Or we can change the peak-picking strategy
to a non-Gaussian envelope based one by replacing
pick peaks().

Our HighRes estimator has many parameters
which have to be tuned for a satisfactory result. The
most important one is the frame size. This deter-
mines the frequency resolution in our spectrum. The
amount of zero-padding is determined by zero-pad
factor. The total frame size is determined by adding
frame size * zero-pad factor to the frame size. In
other words, zero-pad factor determines the number
of zeros to add to the frame size as a factor of the
frame size. The amount of overlap is controlled us-
ing overlap factor, which determines the number of
overlapping samples by multiplying the frame size by
this factor. To prevent peak picking on empty noise,
we require a minimum signal power determined by
power threshold. Every peak also has a separate
threshold peak threshold. In the case of Gaussian
peak picking, we use envelope threshold instead. The
envelope for Gaussian peak picking is controlled by
sigma and kernel width factor as described in Sec-
tion 4.6. Lastly, our signal to noise filter is controlled
by signal to noise factor and the range filter is con-
trolled by lowest note and highest note.

5 Digistring

Researching real-time pitch estimation is challeng-
ing. It is not necessarily difficult to implement some
pitch estimation algorithm, however, such an imple-
mentation would essentially be a black box, as the
resulting note estimation does not provide any infor-
mation on how this estimate came to be. As outlined
in Section 4.9, our pitch estimation algorithm has
multiple stages all with multiple parameters which
affect the performance of subsequent stages. Since
we have extremely limited resolution in the frequency
domain, it is very important all these parameters can
be tuned carefully in order to minimize latency. This
requires extensive feedback from the estimation pro-
cess. Moreover, setting-up automated experiments is
very time consuming, often causing research to only
include some informal tests to verify the performance
of their pitch estimation systems.

To combat these problems, we set out to create a
pitch estimation framework called Digistring. This
framework includes efficient implementations for all
concepts described in this thesis, extensive graphical
and auditory feedback of the estimation process, the
ability to read samples from the audio driver or a file,
tools for automated testing/performance measuring
and an abstraction for pitch estimators such that
all these features work with any arbitrary pitch es-
timation algorithm. Even though this thesis focuses
on monophonic pitch estimation, Digistring supports
both monophonic and polyphonic pitch estimation.

Digistring is implemented in C++, as it is a high
performance language suited for real-time systems.
It uses FFTW3 for efficient Fourier transforms and
SDL2 for graphics and audio. These libraries have
been chosen, as they are both available on most Linux
distributions. Digistring is available at www.github.
com/lucmans/digistring.

5.1 Digistring overview

Digistring is divided into three main components,
shown graphically in Figure 10. The first is the sam-
ple getter, which as the name implies, retrieves sam-
ples from a sample source. The samples are then
given to the pitch estimator, which transform the
frame of samples to a note event list. A note events
consists of a note and onset/offset information rela-
tive to the frame start. Lastly, the constructed note
event list can be used by the different output modules.
For instance, we can generate a JSON formatted file
representing all the note events, which can in turn be
used for automated testing. Digistring also features
a synthesizer module, allowing us to verify if the re-
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Figure 10: Overview of Digistring. The samples getters, estimators and synthesizers support being extended.

sults are, musically speaking, satisfactory. Certain
small errors may completely negate the usefulness
of any application of the pitch estimation algorithm.
Furthermore, some technical errors may actually be
of musical value. For instance, the random estima-
tions during loud transients cause our synthesizer to
produce a percussive sound effect, highlighting the
loud transient.

5.2 Estimator

The main task of the estimator abstraction is sepa-
rating pitch estimation from the rest of Digistring,
such that the pitch estimation algorithm can easily
be replaced. The goal of a pitch estimation algorithm
is to convert a frame of sampled audio data to some
representation of the notes contained in the frame.
Consequently, the interface for an estimator should
be a frame of samples as input and note events as
output. A note event consists of a note along with
onset/offset information expressed as number of sam-
ples relative to the start of the frame. Optionally,
Estimators can set a confidence level for each esti-
mated note events.
Estimators are split up in two phases: the initial-

ization phase and estimation phase. The goal of the
initialization phase is alleviating as much work as
possible from the estimation phase, which minimizes
latency. Examples of initialization phase tasks are
precomputing the window and Gaussian function,
setting up zero-padding buffers and letting FFTW3
optimize the used FFT algorithms.
When using zero-padding, the window function

should be applied as if the input buffer was not zero-
padded. In general, any modification to the input
signal should never affect the zero-padding. Conse-
quently, the padding only has to be zeroed in initial-
ization phase, as it should never be overwritten.
As discussed in Section 3.2, we do not perform

absolute signal power estimation. Instead, all note
amplitudes reported by an estimator are on an arbi-
trary scale. As a consequence, output modules need
to keep track of the maximum reported amplitude to
which a specific note’s amplitude can be compared
to.

5.3 Sample getter

As mentioned in Section 3.1, audio samples can be
represented in different formats. Floating point sam-
ples have many advantages over integer or fixed point
samples [32]. Most audio interfaces and audio file for-
mats support 24 bit integer samples or 32 bit floating
point samples as the best quality samples. Note that
24 bit integer samples can be converted lossless to
32 bit floating point samples. One could convert
to 64 bit floating point samples, which slightly re-
duces the accumulated floating point rounding er-
rors during digital signal processing. However, the
accumulated error is negligible and it would require
us to always convert any input samples. Using our
tool float vs double, we found no difference in nor-
mal sample processing speed between 32 bit and 64
bit floating point numbers, but this may differ per
CPU architecture. When using vector instruction
sets such as AVX, the amount or parallelism is lim-
ited by the number of bits in the vector registers. As
FFTW3 uses these vector instructions, 32 bit float-
ing point number are faster. This can be verified
using our float vs double fftw3 tool. Given these
arguments, we decided to use 32 bit floating point
samples for all our samples processing in Digistring.
Frame overlapping, as discussed in Section 4.3, is

implemented in the sample getter. This way, the
pitch estimator does not need to know about over-
lapping. Furthermore, by implementing overlapping
in the base class, any newly added sample getter
will automatically be able to overlap. There are two
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different overlapping strategies. The first overlaps
two subsequent frames by a constant factor between
0 and 1. The number of samples to overlap is the
frame size multiplied by this factor. We clamp the re-
sulting number between 1 and frame size - 1 to assure
we always overlap at least one sample or at least get
one new sample. The second overlapping strategy is
only applicable when reading samples from an audio
device. Here, the number of overlapping samples is
determined by subtracting the number of samples
ready to be read from the audio driver from the
frame size. The rest of the frame is filled with sam-
ples from the previous frame. To limit the amount
of overlap, we allow for a minimum and maximum
overlap factor to be set. In live usage, the minimum
overlap factor should never be met, as it implies that
the estimation system cannot keep up with the in-
coming samples from the audio driver. In Digistring,
we refer to this second overlapping strategy as non-
blocking overlap, as we try to overlap as much as
possible without blocking on retrieving samples from
the audio driver.

A simple overlap implementation would save a
copy of the entire input buffer, see Figure 11 for
a graphical overview of the algorithm. As we know
the amount of overlap, or at least an upper bound in
the non-blocking case, we can only copy over what
we might need next frame. This saved us both time
and space, as less data has to be stored and less data
has to be copied over. This does however force the
sample getter to never request more samples in sub-
sequent ”get sample” calls, and in turn, it prevents
using a variable overlap strategy. Using our tool
memcpy speed, we measured that the time to copy
a big buffer is negligible compared to the processing
time of a frame. Because of this, we opted to disable
this optimization.

Since estimators are agnostic to overlapping, the
note events reported by the estimator will overlap if
the input frames overlap. Since the output modules
assume every given note event list to directly follow
the preceding one, we have to adjust the note events
to only reflect the newly acquired samples. As a
consequence, it is possible for an estimator to find a
note in the beginning of a frame which was not found
when the note was at the end of the frame. In other
words, it may find a note event completely in the
past which was not found when the relevant samples
were the present. We discard these past note events,
as past information is irrelevant in real time pitch
estimation.

When reading samples from an audio device, there
might not be enough samples ready to fill a frame.
This might cause partial reads on non-blocking au-

Figure 11: Graphical overview of overlap copy-
pasting. The sample getter start with an empty
input buffer and the previous frame stored in the
overlap buffer. First, we copy the relevant part of
the overlap frame to the start of the input buffer.
The rest of the input buffer is filled with new sam-
ples. Lastly, we copy the entire frame to the overlap
buffer for the next get sample call.

dio APIs, which are solved using a basic read loop.
Here, we simply loop the read call until the frame is
filled, which causes high CPU usage. However, using
the sample rate, we can calculate how long we have
to wait until enough samples are ready and sleep
for this duration. This reduces the CPU usage of
Digistring, which makes Digistring run more energy
efficient1. However, this does require the operating
system to guarantee a timely return from the sleep
call, which in Linux is only the case when using the
real-time kernel. Furthermore, modern CPUs scale
down their performance when they are not fully uti-
lized and it may take some time before the CPU is
back in full performance mode, which causes addi-
tional latency after sleeping. As the optimization
does not improve estimation accuracy or latency, we
disabled it in Digistring.

We have implemented four different sample get-
ters in Digistring. The most important one is
audio in, which retrieves samples from the audio

1On an AMD 3700X using the parameters described in
Section 6, we measured a power consumption of 29 and 37
watt with and without the optimization respectively.
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driver. This sample getter allows us to play live
with Digistring. For performing automated exper-
iments and to aid with parameter fine tuning, we
implemented audio file. Currently, it only sup-
ports reading from .wav files. We also implemented
sine generator and note generator, which gener-
ate sine waves tuned to specific frequencies or notes
respectively. These are useful for debugging and test-
ing.

5.4 Real time sound synthesis

To verify if the results of an estimator are musically
sound, we implemented a synthesizer interface in
Digistring. Given a list of note events, a sample
buffer and its size, the synthesizer will fill the buffer
with samples such that, when played back, the re-
sulting sound correctly represents the note events.
Generating the samples has to be done carefully, as
discontinuities in the generated samples may cause
audible plops in the resulting audio.

There are two cases where discontinuities may arise
when synthesizing sine waves. The first is within a
buffer. If we for example want to generate a one
hertz sine wave for 1.25 seconds, the wave would end
at its highest point and go back to silence the next
sample, causing a large discontinuity. We can circum-
vent this by altering the sine wave in such a way that
it does reach a zero crossing before stopping. For
instance, we can keep generating samples until the
waveform reaches a zero crossing, which causes tem-
poral distortion in the synthesized sound. In the case
of sine waves, this quantizes note lengths to half the
frequency, as sine waves have two equally spaced zero
crossings. We can also stop the sine wave early if the
previous zero crossing is closer than the next. Using
this technique, the worst case temporal distortion on
a guitar would be 3 milliseconds, as the E2 has a
zero crossing every 1000

82.41/2 ≈ 6 milliseconds. We can
also alter the end of the sine wave to force the end to
zero, by either amplitude modulating the end of the
wave or by adding samples which quickly go back to
zero. These methods cause spectral distortions.

The second case where discontinuities may arise is
when a note is not finished at the end of a frame. If
the note ended and the next frame contains silence at
the start, the signal should go back to 0 as described
in the previous paragraph. If the note sustains or
another note is played at the start of the next frame,
the synthesizer has to continue the next note with
the same phase. Because of this, a synthesizer needs
some inter-frame communication.

We have implemented several sine synthesizers.
They all share the same base algorithm. We first

start by zeroing the synth buffer. Then, we try to
finish sines which were not zero at the end of the pre-
vious frame. Lastly, we iterate over all note events
and add the corresponding sines to the synth buffer.
If any sines are not zero at the end of a frame, we add
them to a list so that we can finish them next frame.
An example of generating sine waves of a arbitrary
frequency in a sample buffer given a certain sample
rate can be seen in Algorithm 4 on Line 16. Here,
phase offset and last phase are used to make sure
the sine in continuous between frames.

5.5 Optimize XQIFFT exponent

As discussed in Section 4.5, when performing
XQIFFT, we need to carefully choose the exponent
with which to weight the bins. To test the error of
XQIFFT for some exponent ϵ, we generate many dif-
ferent sine waves and perform pitch estimation as
we normally would. As we are transforming pure
sines, we can pick the loudest bin as our estimated
pitch. After finding this bin, we can XQIFFT the
true peak location and return the found pitch. Since
we know the original frequency of the generated sine,
we can calculate a measure of error. For instance, we
can minimize the mean error over all frequencies or
minimize the maximum error. We chose to use the
mean squared error for a combination of the two. See
Algorithm 4 for an example of such an algorithm.

On line 10, we generate a sine for every cent in
an octave starting at a low frequency. We chose
this method because it focuses on lower frequencies,
which need the most resolution. However, we em-
pirically found that the exact series of frequencies
does not influence the results significantly if enough
sines are generated. Moreover, the error may vary
slightly depending on the starting phase of the sine.
To prevent a bias, we generate multiple sine waves
of different phase for every frequency, causing the
phase error of average out.

As error increases for exponents further away from
the optimum, we can iteratively approximate the
optimal exponent. See Algorithm 5 for a pseudo-
code implementation of such an algorithm. Here, we
start our search at some arbitrary range. Then, we
calculate the error of some points in this range. These
points can be calculated in parallel for an enormous
speed-up. If the minimum value is at either end of the
range, we have to search further in that direction. We
always overlap two points with neighboring ranges,
in case the end of the range is the minimum value
for that search resolution. Otherwise, we update
the search range to the two values surrounding the
minimum point and repeat the optimization process.

20



Algorithm: XQIFFT error

input :Error ϵ and pitch estimation algorithm pitch estimation algorithm()

reps per freq and n freqs to control precision of error estimation
output :Mean squared error of all tested sines

1 // Return invalid error on invalid exponent

2 if ϵ = 0 then
3 return -1.0;

4 // Repetitions per frequency

5 reps per freq ← 8;

6 // Generate list of frequencies to test

7 n freqs ← 1200;
8 frequencies[n freqs];
9 for i← 0 to n freqs do

10 frequencies[i] ← 110.0 ∗ 2i/n freqs;
11 end

12 total squared error ← 0.0;
13 foreach f ∈ frequencies do
14 last phase ← 0.0;
15 for r ← 0 to reps per freq do
16 // Generate sine wave

17 phase offset ← last phase ∗ (sample rate / f);
18 for i← 0 to |input buffer| do
19 input buffer[i] ← sin (2.0 ∗ π ∗ (i+ phase offset) ∗ f/sample rate);
20 end
21 last phase ← last phase + (f / (sample rate / |input buffer|)) mod 1.0;

22 detected freq ← pitch estimation algorithm(input buffer, ϵ);
23 hz error ← detected freq − f ;
24 squared error ← hz error ∗ hz error;
25 total squared error ← total squared error + squared error;

26 end

27 end

28 mean squared error ← total squared error / (reps per freq ∗ n freqs);
29 return mean squared error;

Algorithm 4: Calculates the mean squared error of XQIFFT given exponent ϵ and a pitch estimation
algorithm.
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Algorithm: Optimize XQIFFT exponent

input :XQIFFT error estimation algorithm estimate xqifft error(ϵ)
output :Approximation of optimal exponent ϵ

1 // Start at some range

2 min range ← -10.0;
3 max range ← 10.0;
4 steps ← 8 ; // Optimally matches the number of CPU cores

5 step size ← (max range − min range) / steps;
6 exponents[steps] ← make range(min range, max range, step size);

7 while ¬quit do
8 for i← 0 to steps do // All iterations can be done in parallel
9 errors[i] ← estimate xqifft error(exponents[i]);

10 end

11 min idx ← 0;
12 for i← 1 to steps do
13 if exponents[i] < exponents[min idx] then
14 min idx ← i;

15 end

16 if min idx = 0 then
17 // Lowest value is at the start, so optimum is lower than current range

18 min range ← min range − (step size ∗ (steps − 2));
19 max range ← max range − (step size ∗ (steps − 2));

20 else if min idx = steps − 1 then
21 // Lowest value is at the end, so optimum is higher than current range

22 min range ← min range + (step size ∗ (steps − 2));
23 max range ← max range + (step size ∗ (steps − 2));

24 else
25 // Optimum is between min idx− 1 and min idx+ 1
26 min range ← exponents[min idx − 1];
27 max range ← exponents[min idx + 1];
28 step size ← (max range − min range) / steps;

29 end
30 exponents[steps] ← make range(min range, max range, step size);

31 end

32 return exponents[min idx];

Algorithm 5: Iterative algorithm approximating optimal choice of ϵ to be used by XQIFFT.
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5.6 Experimentation and estimation
feedback tools

As mentioned in the intro of this section, good ex-
perimentation and estimation feedback tools are nec-
essary in order to build a well performing real-time
pitch estimation system.

Experiments in AMT rely on datasets containing
sound files accompanied with annotation files describ-
ing the notes present in the sound files. This means
that in order to experiment on a pitch estimation
system, we need to be able to feed the sound files to
the pitch estimation system and compare its results
to the annotations. The former is possible through
the audio in sample getter. To allow for the latter,
Digistring can write its estimations results to a JSON
formatted file.

To compare the Digistring results to annotations,
we created a Python tool called generate report.
Given a Digistring output file and the corresponding
dataset annotation, it can calculate many different
performance measures. Furthermore, it can gener-
ate plots which visualize the annotations and pitch
estimation results in a MIDI piano roll like fashion;
see Figure 14 for an example. Unfortunately, every
dataset uses its own annotation standard. Because
of this, we parse the annotation file into an inter-
mediate representation. This allows us to use the
tool for different datasets by solely implementing a
parser for the annotation standard. Furthermore,
the Digistring output is also parsed into this interme-
diate representation, which means this tool can also
be used with different estimation systems by writing
a parser for the estimation system’s output. The
different performance measures are then calculated
from this intermediate representation.

In order to visualize the pitch estimation process,
we allow Estimators to define an EstimatorGraphics
object, which holds information regarding the last
processed frame. This information can be rendered
using visualizers. For instance, we can render the
spectrum as a spectrogram or waterfall plot, or plot
the raw input waveform; see Figure 12 for examples.
The spectrogram visualizer can also render signal en-
velopes and found peaks, which allows us to precisely
fine-tune parameters regarding these.

As we focus on real-time pitch estimation, we need
to be able to measure the run-time performance of
different parts of the system. This is possible through
our performance measuring class, which allows us to
set labelled measurement points in the code between
which elapsed time is measured. The measured times
are written to a file which can be interpreted by our
performance plot tool, which can visually show the

Figure 12: Screenshots of different graphing modes
of Digistring. The top image show the spectrogram
plotter. Here, the spectrum is displayed in green, the
Gaussian envelope in red and the selected peaks in
blue. The middle image shows the waterfall plotter.
These plots move downward through time and show
the spectrum on the horizontal axis. Brighter colors
equate to higher amplitudes. On the bottom is the
signal plotter, which displays the raw time domain
signal.
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distribution of run-times for each time point; see
Figure 13 for an example of such a plot. Using this
information, we can see which processes introduces
the most latency to our pitch estimation system.
To better understand the estimation process dur-

ing transients, we implemented a slowdown mode.
This stretches the note events reported by the esti-
mator, effectively slowing down the estimation pro-
cess, which in turn can slow Digistring down. This
allows us to better find filters which can suppress
note estimations during transients.
As mentioned in Section 5.4, synthesizers are an

important tool in verifying the musical correctness of
estimated note events. To better verify the synthe-
sized result matched the input signal, we allow for
the input signal and synthesized signal to be played
back simultaneously split over the two stereo chan-
nels. Furthermore, it is also possible for Digistring
to output MIDI events, which allows Digistring to
be used with existing MIDI synthesizers.

6 Experiments

In order to assess the performance of our pitch esti-
mation system, we perform a few experiments. First,
we measure the error of the different QIFFT meth-
ods so we can choose the best method for our pitch
estimation system. Then we will try to assess a lower
limit on latency using Fourier based pitch estimation
methods on a guitar to test if Fourier based methods
can ever be feasible. Subsequently, we will run some
speed tests on our pitch estimation algorithm to see if
our real-time goal is met. Then, we have an in depth
discussion on using Digistring as a guitar synthesizer.
Lastly, in order to obtain some quantitative measure
on the over all pitch estimation performance, we run
the Fraunhofer dataset [39, 40] through Digistring.
The different parameters which control the pitch

estimation process were empirically optimized. We
used the following parameters for all experiments,
unless otherwise is stated. The frame size is 8192
samples with a sampling rate of 192000 Hz. This
coincides with a frame time of 42.67 ms and a Fourier
bin size of 23.44 Hz. We zero-pad the buffer 15 times,
resulting in an actual frame size of 131072 samples,
giving us a interpolated bin size of 1.46 Hz. The
overlap factor is set to 0.85. The minimum signal
power is set to 15 and the envelope threshold is set
to 0.25. Gaussian peak-picking uses a sigma of 1.25
and a kernel width factor of 0.0005. The signal to
noise factor is set to 0.05. The range filter matches
the range of a guitar, which is between E2 and E6.

6.1 QIFFT errors

To help choosing the best QIFFT strategy, we mea-
sured the performance of the different strategies us-
ing the method outlined in Section 5.5. The results
are listed in Table 3. The bin size during these tests
was approximately 1.465 Hz. The nearest bin method
coincides with no interpolation. As a consequence,
the worst error is equal to half the bin size and the
average error is equal to half the worst error.

We can see that LQIFFT significantly reduces the
error compared to nearest bin and MQIFFT. Further-
more, all LQIFFT methods perform the same, invari-
ant to logarithm base or linear scaling factor. Lastly,
we can see that XQIFFT only situationally outper-
forms LQIFFT. In general, no value of ϵ strictly out-
performs LQIFFT. Because of this, we opted not
to use XQIFFT. Note that the error reduction of
XQIFFT compared to LQIFFT is significant if no
zero-padding is used.

Method mean squared error mean error max error
Nearest bin 0.178952 0.366332 0.731592
MQIFFT 0.0493383 0.198229 0.318431

LQIFFT with ln 0.0200228 0.12687 0.242515
LQIFFT with log2 0.0200228 0.12687 0.242515
LQIFFT with log10 0.0200228 0.12687 0.242515

dB-QIFFT (20 ∗ log10) 0.0200228 0.12687 0.242515
XQIFFT (ϵ = −0.301939) 0.0173085 0.114302 0.41559
XQIFFT (ϵ = −0.764585) 0.0233141 0.107375 0.603697
XQIFFT (ϵ = 0.0554724) 0.0210592 0.129826 0.212814

Table 3: Overview of interpolation errors in hertz using different interpolation methods. For the XQIFFT
methods, we tested three values for ϵ. The first minimizes mean squared error, the second minimizes mean
error and the last minimizes max error.
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6.2 Fourier frame size limit

The limiting factor for low latency Fourier based
pitch estimation is the size of the transformed frame.
The size of the frame determines the lowest two notes
we can discern. Therefore, given we need to be able
to discern the E2 and the F2, we can find the limit
on minimum frame size our pitch estimation system
needs.

We start with discerning pure sine waves to get an
estimate on the theoretical lower limit of our pitch
estimation method. Here, we found that we can
reliably discern E2 and F2 with a frame size of 1024
samples with 15 times zero-padding for a total frame
size of 16384. This equates to a frame length of 5.33
ms.
To get a more practical lower limit, we did the

same test on recordings of E2 and F2 played on a
guitar. Here, we found we need 5760 samples for con-
sistent results, equating to a frame length of 30 ms.
Note that even though we can reliably discern E2 and
F2 at this frame size, the measured frequencies are
dissonant. This means we cannot use the obtained
frequency information for note synthesis, only the
note information, implying we can only synthesize
tuned notes from the results.

6.3 Pitch estimation speed

As we are performing pitch estimation in real-time,
the speed of the process is very important. We mea-
sured the execution time of our algorithm running
on an AMD 3700X CPU. Figure 13 shows the dis-
tribution of execution times of the different parts of
the pitch estimation process. Here, we can see the
processing time of a frame is insignificant compared
to the length of the frame.
On average, it takes the HighRes estimator 1.1

ms to process a frame of 42.7 ms. This means our
estimator runs 38.8 times real-time. In other words,
our pitch estimation algorithm can process samples
38.8 faster than it acquires them. The total latency
of our pitch estimation algorithm is 43.8 ms.

6.4 Performance discussion

Unfortunately, it is almost impossible to capture the
performance of our pitch estimation system quantita-
tively. Some errors might completely ruin the results,
while others might not matter at all. Furthermore,
certain guitar techniques do not work well in gui-
tar driven synthesis. Because of this, we will try
to discuss the performance of Digistring as a guitar
synthesizer.
First should be noted that using a guitar synthe-

sizer should be viewed as playing a different instru-
ment similar to a guitar. It will be very familiar to
a guitarist, but directly playing songs as one would

Figure 13: Plots of distribution of run times for every HighRes estimator component.
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normally play them will cause bad results. Most
importantly, one should try to play as clean as pos-
sible. This means strumming the notes carefully to
prevent string to overdrive and keep transients at a
minimum. Furthermore, all unused strings should
be thoroughly muted. Palm muting slightly reduces
the power of transient, however, it also impacts the
sustain of played notes.

The main problem for our pitch estimator is tran-
sients. This means techniques such as shredding and
double picking do not work well. Moreover, pull-
offs and hammer-ons work well, as they barely cause
transients. Our pitch estimator is very sensitive to
small amplitude signals, which makes tapping much
easier. Moreover, it allows to play the guitar in a
piano like fashion, where both hands tap notes on
the fretboard, much easier.
Our estimator support bending. However, this

does require the synthesizer to be able to generate
tones between notes, which is often not the case for
piano synthesizers.

Given the above information, we can conclude gui-
tar solos generally work very well for our pitch esti-
mation algorithm. They are very melodic and often
carefully played. In contrast, metal performs very
bad in our pitch estimator. Metal often conveys fast
rhythms through guitar, which end up as a big mess
of transients to our estimator. Furthermore, metal
is often played on the lowest notes of a guitar, which
are the most difficult for our estimator.

Unfortunately, we were not able to remain within
our real-time constraint of 20 milliseconds. The crit-
ical latency is however highly subjective. Out of five
users, one user did not notice the latency until we
brought it up, while two users deemed it too high for
real-time usage. The other two did notice the latency,
but had no problems with it. We found that after
playing for a while, you get used to the latency and
found it not to be too problematic. The impact of
the latency is also largely dependent on synthesizer
used to generate the audio. When using a synthe-
sizer with a slow attack, the swell effectively masks
the latency.
We recorded some examples of Digistring dur-

ing live usage. Videos of this can be found on
github.com/lucmans/digistring-demo. Here, we
also provide the raw guitar input, which can be run
through Digistring to generate the content from the
videos yourself.

6.5 Pitch estimation accuracy

In order to obtain a quantitative measure on
Digistring’s performance, we run a subset of the

Fraunhofer dataset [40] through Digistring. The
Fraunhofer dataset contains both monophonic and
polyphonic recordings. As our pitch estimation al-
gorithm is monophonic, we will only use the mono-
phonic recordings in the dataset. The dataset is
split into four different subsets. Three of the subsets
contain monophonic recordings, with a total of 350
monophonic recordings. The dataset is recorded at
a sample rate of 44100 Hz, so we have to change the
frame size and Gaussian kernel width factor to 1882
and 0.002 respectively.

The dataset is challenging for our HighRes pitch
estimator. As mentioned in Section 6.4, playing us-
ing our estimator is slightly different from playing
guitar normally. In the dataset, notes often overdrive
slightly and are not always fretted cleanly. This is
not a problem for normal guitar play, however, it
causes problems for our estimator. As a consequence,
the measurements reflect Digistring’s performance
on normal guitar play instead of Digistring’s perfor-
mance as a guitar synthesizer.

The first subset consists of 312 single note record-
ings. Each recording contains one note. There is
a recording of the open string along with all fretted
notes to the 12th fret for every string. There are four
versions. Three use the same Ibanez guitar with dif-
ferent pick-up configurations (neck/bridge) and one
uses a Fender guitar. For each version, we measured
if the note was correctly identified, if at least 90%
of the annotated event was found and if we found
one uninterrupted note event. The results are sum-
marized in Table 4. Here, we can see all notes were
correctly identified. Unfortunately, many notes are
not identified as one continuous note event due to
small distortions in the recordings.

Interestingly, we can see significantly better results
from the neck pick-up compared to the bridge pick-
up on the Ibanez guitar. We could not replicate
these results with any of our guitars, including an
Ibanez guitar. We found no notable difference in

version correct t>0.9 correct no interrupt
Fender 100 % 96 % 81 %

Ibanez N 100 % 96 % 76 %
Ibanez B 100 % 87 % 51 %

Ibanez N+B 100 % 92 % 67 %

Table 4: Results of the first subset of the Fraunhofer
dataset. ’Correct’ shows if the correct note was esti-
mated at all, ’t>0.9 correct’ shows if at least 90% of
the estimated frames were the correct note and ’no
interrupt’ shows if recording was estimated as one
note event.
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pitch estimation accuracy between different pick-ups.
The difference we found in the dataset is likely from
the inconsistent playing quality between recordings.
The second subset consists of six licks played on

three different guitars. Every lick is played with a
plectrum and finger style, resulting in a total of 36
recordings. The results are summarized in Table 5.
Here, we can see we did not miss any notes, however,
due to the earlier mentioned playing style, we often
do not find the full note. We can see a significant dif-
ference between finger style playing and playing with
a pick. When we tried to replicate these results, we
only found a small difference between the two play-
ing styles. The large difference is likely because licks
written to be played with a pick are often difficult to
play finger style. We found that playing finger style
may lead to smaller transients, but more inconsistent
overtone behavior due to the dampening from soft
finger skin.

version correct t>0.8 correct
Fender pick 100 % 83 %

Fender finger 100 % 58 %
Gibson pick 100 % 75 %

Gibson finger 100 % 58 %
Aristides pick 100 % 79 %

Aristides finger 100 % 63 %

Table 5: Results of the second subset of the Fraun-
hofer dataset.

The last subset consists of five small excerpts of
famous classical pieces, of which only two are mono-
phonic. The estimation overview is shown in Fig-
ure 14. Here, we can see all notes were correctly
identified. In promenade, we can see the end of the
first note is missing, however, this is a mistake in
the annotations. Even though it is a monophonic
recording, we can see the second note overlapping
the first note in the annotations. Other than that,
the only errors are transient errors. The transient
errors are of small amplitude, so are barely audible
when using them for note synthesis.

7 Conclusions

In this thesis, we constructed a Fourier transform
based real-time pitch estimation algorithm. We
found the limiting factor of such systems is the funda-
mental trade-off between frame length and frequency
resolution. In order to have enough frequency resolu-
tion to discern the two lowest notes on a guitar, the
E2 and F2, we would need a frame length of 200 mil-
liseconds for an frequency resolution of 4.9 Hz. This

exceeds our real-time constraint of 20 milliseconds by
a significant amount. Through interpolation, we can
reduce the frame length. We found we can reduce it
to 43 milliseconds using zero-padding and LQIFFT,
which equates to a frequency resolution of 23.44 Hz.
When we only focus on note estimation in contrast
to exact frequency estimation, we can further reduce
the frame length to 30 milliseconds. Unfortunately,
this is still over our real-time constraint. We could
adhere to our real-time constraint if choose a higher
lowest note.

To reduce the frame length, we looked at
XQIFFT [13], as the paper shows an 100 to 1000
times reduction in interpolation error. However, we
found our that this large error reduction is only pos-
sible when no zero-padding is used. With our level
of zero-padding, XQIFFT only situationally outper-
forms LQIFFT.

Through our experiments, we found our pitch esti-
mator can reliably estimate the correct pitch if a note
persists for long enough. However, during the tran-
sient of a note, we still produce random estimations.
We could better filter these random estimations, how-
ever, we found that a prolonged silence at the onset
played worse than having the wrong transient estima-
tions. Furthermore, the estimations from transients
are often of low amplitude, causing synthesized audio
to only softly play the transient errors. Even though
our estimator exceeds our real-time constraint, it is
still fast enough to play with. It should be noted that
the critical latency is highly subjective and as such,
some people who tried Digistring did not notice the
latency, while others found it a deal-breaker. When
using synthesizers with a slow attack, the latency
and transient errors are no problem at all, as by the
time the synthesized audio is in full volume, the note
estimation has already stabilized.

8 Future work

There is still much to improve on the HighRes estima-
tor. However, the current estimation strategy likely
cannot ever function within our real-time constraint
for the full range of a guitar due to fundamental
limits of the Fourier transform.

Our pitch estimation algorithm discards the phase
information provided by the Fourier transform. How-
ever, we can use the phase estimation to refine the
frequency estimation [41]. If we know the phase of
a specific frequency and the hop size between two
frames, we can extrapolate what the phase should
be in the next frame. The error of this estimate com-
pared to the measured phase of the next frame can
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Figure 14: Results of the third subset of the Fraunhofer dataset. The top and bottom image show the pitch
estimation results for Pathetique and Promenade respectively.
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be used to refine the frequency estimation.
While analyzing the raw guitar signal, we found

that the waveform consists of ”packets”, see Fig-
ure 15 for an example. These packets form, among
other things, because of the fundamental frequency
which suppresses the waveform close to its zero-
crossing. Autocorrelation pitch estimation methods
work well because these packets look alike. However,
the first packet which occurs during the transient
differs. As a consequence, autocorrelation might
slightly misjudge the distance between the first two
packets and estimate the wrong note.

For future research, we would look into accurately
calculating the distance between the first two pack-
ets. The time between these packets is equal to the
inverse of the frequency. When analyzing the signal
from an E2 in an oscilloscope, we found the second
packet finished 15 milliseconds after onset. This gives
us 5 milliseconds of headroom for pitch estimation
to remain within our real-time constraint. Packet
based methods are likely less stable than Fourier
based methods, as small errors in packet distance
measurements will quickly cause an entirely different
note to be estimated. We would suggest combining
both methods by using packet based methods for
fast estimations and Fourier based methods for slow
stable estimations.

A Measuring the latency of the
AXON AX 100 mkII

To compare our work to commercial guitar to MIDI
solutions, we performed some experiments on the
Axon AX 100 mkII. Many thanks to Elgar van der
Zande for letting us use his lab equipment and help-
ing with the experiments.
For our first experiment, we tried to trigger pitch

estimation by sending a pure sine wave to the Axon
using a signal generator. Surprisingly, this led to
an error on the Axon. Changing the type of wave-
form or frequency had no effect. Only after generat-
ing at least two overtones does the Axon produce a
pitch estimation. This shows us that the existence
of overtones is very important to the Axon’s pitch
estimation system.

Next, we set out to determine the pitch estimation
latency of the Axon. To do so, we connected both the
guitar input to and MIDI output from the Axon to an
oscilloscope. We also connected the audio output of
the Axon to measure the synthesizer latency. Then,
if we set the oscilloscope to trigger on any MIDI
signal change, we can take the difference between

Figure 15: Example of measurement on an oscillo-
scope. Here, the blue line is the analog guitar input,
the purple line is the MIDI output and the yellow
line is the synthesized audio output. In this image,
we played an E2. The blue triangle on top shows us
where the oscilloscope triggered on the MIDI signal.
Then, using the distance between this and the start
of the blue waveform, we can determine the pitch
estimation latency.

String-fret normal 12th 6th
E0 15.8 34.1 - 38.8 30.5 - 38.9
E1 14.8 30.9 - 37.2 29.3
E12 12.9 - 13.6 - -
G0 12.5 15.1 14.6
G1 13.3 14.6 13.8
G12 12.4 - -
e0 11.0 11.1 12.0
e1 11.9 - 12.5 11.6 - 12.4 11.0 - 12.5
e12 12.2 - -

Table 6: Latency between receiving a guitar signal
and outputting a MIDI signal in milliseconds. E
refers to the low pitched E string and e refers to the
high pitched E string.

that time point and the start of the guitar signal.
An example of the images the oscilloscope produces
can be seen in Figure 15.

For both E strings and the G string, we measured
the latency while playing the open string, the first
fret and the twelfth fret. Every note was played us-
ing a plectrum at the normal picking position. For
the open string and first fret measurements, we also
picked each note at the twelfth fret and sixth fret.
Every measurement was performed three times. The
measurements are summerized in Table 6. Here, we
can see the Axon has significantly higher latencies on
low pitched notes. This is exacerbated when strum-
ming the note further up the neck. Moreover, during
our experimentation, we noticed that the Axon either
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had a quick estimation between 11 and 15 millisec-
onds, or a slow estimation between 25-40 millisec-
onds. This may indicate there are two estimation
algorithms at work. When the quick one is not con-
fident enough, the result of the slower algorithm is
awaited.

Lastly, we checked the pitch estimation latency
when feeding the Axon pure sine signals from a signal
generator. Here, we feed the Axon with a signal
consisting of a sine wave along with three overtones
on the input for the low pitched E string. See Table 7
for an overview of the results. The latencies for 65.4
Hz and 440 Hz were surprisingly high, where the
two frequencies close to E0 (E2 in scientific notation)
performed similar to the guitar signal. This may
indicate that the Axon only outputs note estimations
that are generally in range of a string, or it has to
be very sure of the estimation result.

f0 latency (ms)
65.4 48.4
82 15.68
82.4 15.8
440 74.8

Table 7: Latency of pitch estimation when using a
generated sine signal with additional 3 overtones.
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