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Abstract

Huntington’s Disease (HD) is an inherited neurodegenerative disease caused by an expansion
of the CAG repeat in the Huntingtin (HTT) gene. Even though it is caused by a single
mutation, the underlying mechanism of HD is very complex. Many pathways have been
suggested to contribute to the pathogenesis of HD, but a consensus has yet to be established.
Protein-Protein Interaction Network (PPIN) tools allow for visualization and analysis of these
pathways and provide a great way to consolidate existing information on the HD pathway. By
using functional enrichment analysis on these networks the role of HTT can be reaffirmed,
which will further the understanding of the affected cellular processes and the role of HTT in
different pathways. In this research, knowledge from different databases have been compared
in order to find consensus and discrepancies between them and functionally enriched terms
within these parts were connected to existing scientific research to give a better image of the
current knowledge surrounding the HD pathway.
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1 Introduction

1.1 Huntington’s Disease

Huntington’s Disease (HD) is an inherited neuro-degenerative disorder. It is caused by a trin-
ucleotide (CAG) -also known as PolyQ- repeat expansion in exon 1 of the Huntingtin (HTT )
gene. The healthy gene contains 17-20 repeats, while in people with HD the sequence is repeated
> 35 times. The age of onset averages around 40 years old and patients have an average life
expectancy of 20 years after onset. However, cases have been found with the age of onset rang-
ing from infancy to senescence. [vDvdVRB86] The variance is partially due to the length of
the repeat, which has an inverse association with the age of onset. [WBC+20] The symptoms
of the disorder are characterized primarily by involuntary movements, psychiatric problems and
cognitive decline. [Roo10, A.10] There is no cure for HD yet and its treatment remains symptomatic.

Even though the HD is caused by a single mutation, the development of the disorder could
involve a variety of genes and involve many pathways. Studies have suggested that healthy
state HTT plays a role in multiple processes including chemical signaling, transcription, au-
tophagy and protection from apoptosis. However, the exact function of the protein is still unknown.
[HW03, SL11, MLEH15, VBS20] Similarly, the underlying mechanism that leads to HD is not
well understood either. Many studies have suggested different pathways that contribute to HD.
[LL06, MNR18, Ros04] Yet no consensus has been made on the pathological pathway. In order
to gain a better understanding of HD, the interactions between the affected proteins need to be
studied. These protein-protein interactions (PPIs) play a central role in cellular functions and
biological processes. By analysing PPIs, a lot of insight could be gained of the healthy state HTT
functionality and the complex pathological mechanism.

1.2 Protein-Protein Interaction Networks

Protein-Protein Interaction Networks (PPINs) are mathematical representations of the interactions
between proteins. In these networks proteins are represented as nodes and the interactions between
the proteins as edges. PPINs have a range of applications and play an important role in the under-
standing of biological systems. These application include the development of precision therapeutics
and medicine. Drugs for example have a wide range of effects on different entities within a biological
system. The use of PPINs allows for the analysis of the underlying molecular relationships and
the network topology within such a system, revealing important entities. [SAB+17] shows the
application of networks in analysing the action of inhibitory compounds and identifying candidate
inhibitors in drug discovery. Another application is using PPIN in the identification of physical
structures in biological systems such as protein complexes and signaling pathways. In [DMBM17]
such direct contacts between protein complex sub-units were identified using networks.

1.3 Related Work

In [Jan20], a network-based method was used in order to gain a better understanding of polyQ
diseases in brain tissue and the workings of regular polyQ proteins. This was done by comparing
the differences and commonalities between inter-actors in disease and normal variants. Due to the
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lack of information on interactions in the brain in human databases, the data was limited to mouse
models. In a similar fashion [Kos21] used functional enrichment analysis to gain information on the
functions of polyQ proteins in the human brain. In contrast to the [Jan20], it used human expression
data. In this research, a similar approach is used to compare the differences and similarities of HD
knowledge in different databases.

1.4 Research

In recent years a lot of information on the HD pathway has accumulated, but it also created a
dissemination of pathway information over different databases such as KEGG, Reactome and Wiki
pathways. [KG00, COW+11, PKvI+08] The aim of this thesis is to find consensus and identify dif-
ferences among these pathway databases and the protein interaction database, STRING. [SGL+19]
PPINs will be made to visualize the overlapping components and allow for analysis of the processes
within the HD pathway. These goals can be summarized in the following research statement (RS)
and research question (RQ):

RS: This research focuses primarily on consolidating the existing information surrounding Hunt-
ington’s Disease in a protein-protein interaction network to create a consensus of relevant data
from different sources such as KEGG, Reactome, Wiki pathways and their annotations.

RQ: Does consolidating knowledge on interactions with the huntingtin protein provide new insights
into the HD mechanism? And if so, what are its implications?

1.5 Thesis overview

This chapter contains background information surrounding the topics within this bachelor thesis;
Section 2 includes the definitions; Section 3 provides the methodology used; Section 4 describes
the results; Section 5 contains the conclusions. This bachelor thesis is written for the bachelor
Bioinformatics at LIACS and was supervised by Katy Wolstencroft and Lu Cao.

2 Definitions

The PPINs generated in this research are results of merging, filtering and clustering former networks.
In order to distinguish these networks from each other, the following naming conventions will be
used:

• Merged networks will start their name with the abbreviations of databases in the network
separated by a plus sign. So a network generated by merging the PPINs of STRING (STR),
KEGG and Wikipathways (WP) will be called STR+KEGG+WP.

• Networks were filtered on a STRING cut-off score. This score can have the value of 0.4 and
0.7 and will be indicated by the score next to the STRING abbreviation. So continuing on
the previous example it would result in STR0.4+KEGG+WP or STR0.7+KEGG+WP.

• Networks were also filtered on a STRING nervous system tissue confidence score range. This
range can be between 0 and 5, [0, 5] and between 3 and 5, [3, 5]. This value will be added
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after the database names. Previous example network would be called STR0.4+KEGG+WP[0,
5] or STR0.4+KEGG+WP[3, 5].

• Clusters from networks will have the same name as the network and have ”Cl” added in in
front and their number in between parentheses. The eighth cluster of the example network
would be named Cl(8)STR0.4+KEGG+WP[0, 5] or Cl(8)STR0.4+KEGG+WP[3, 5]

3 Methods

3.1 Data gathering

In order to find consensus in the HD pathway, the current knowledge on the contributing pathways
need to be mapped out. For this the following three biological pathway databases were used to
obtain HD related pathways:

• KEGG: Also known as the Kyoto Encyclopedia of Genes and Genomes, KEGG is a database
collection that focuses on genomes, biological pathways, diseases, drugs, and chemical sub-
stances. It contains the KEGG Pathway database, which contains manually drawn pathway
maps that represent the experimental knowledge on cellular processes such as metabolism
and membrane transport. [KG00]

• Reactome: Reactome is a manually curated, peer-reviewed pathway database, specifically of
human pathways and processes. Their Pathways Browser contains pathways aligned with
molecular interaction data from several interaction databases including the Reactome Func-
tional Interaction Network, IntAct, BioGRID, ChEMBL and MINT. [COW+11, dTSR+21,
SBR+06, MGB+18, CaCP+07]

• WikiPathways: In contrast to the curated pathway databases of KEGG and Reactome,
WikiPathways is a community resource for contributing and maintaining biological pathways.
This means that the responsibility of peer reviewing, editorial curation and maintenance lies
with the user community. Contributions, however, are monitored by a group of administrators.
[PKvI+08]

The pathways from these databases were formed by integrating data curated by several primary
databases, meaning that the data is experimental and exclusively from peer-reviewed scientific
publications. This ensures the quality of the resulting pathways. The pathways of these databases
will be compared to the information in STRING. [SGL+19]

• STRING: STRING is an interaction database. In contrast to the aforementioned pathway
databases, STRING contains, in addition to experimental data, experimentally inferred data
and computational predictions of molecular interactions from various PPI databases such as
MINT, BioGRID, KEGG, Reactome, IntAct and NCI-Nature Pathway Interaction Database.
[CaCP+07, SBR+06, dTSR+21, KAB+07]

The data from STRING will be used as a knowledge space of the information known about the HD
pathway and the data from the pathway databases will be able to form consensus or discrepancies
with this knowledge space. For the pathway databases, a query search was performed for the
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following terms: ”Huntinton’s Disease”, ”HD”, ”Huntington”, ””Huntingtin”” and ”HTT” in order
to find HD related pathways. For the query searches, an organism filter was used by filling in the
organism prefix ”hsa”, referring to Homo sapiens, for KEGG and selecting the species ”Homo
sapiens” for Reactome and WikiPathways. The query result were then manually classified as relevant
or irrelevant. Some nodes in the KEGG pathway were representing a complex of proteins. These
proteins were manually divided into there own node as shown in Figure 1.

(a) Before division (b) After division

Figure 1: KEGG protein complex division into multiple nodes

3.2 Network creation

Creating networks from the interactions found in biology, allow us to abstract the relationship
between genes, proteins, drugs and diseases and discover important associations between them. To-
gether with high-throughput techniques, PPINs can reveal important proteins in complex biological
systems. Which will further our understanding of the mechanism in such system and its components.

The discovered HD related pathways were converted into such PPINs. As mentioned before,
the networks exist of nodes that represent the proteins that were found in the corresponding
database of the network. The interactions between these proteins are represented by the edges
between the nodes. Furthermore, the PINNs are directed, unweighted and can be annotated by
a relation such as activation and inhibition. The network conversion was done using Cytoscape.
[SMO+03] Cytoscape is a platform for visualizing molecular interaction networks and biological
pathways. These networks can be further integrated with annotations, gene expression profiles and
other data. Cytoscape provides a variety of features that allow for smooth data integration, analysis
and visualization. Additional features called Apps can be installed to support and expand the func-
tionality of Cytoscape. This research uses the version 3.9.1. The Cytoscape Apps, CyKEGGParser
(version 1.2.9) and WikiPathways (version 3.3.10), were used to convert the pathways chosen from
KEGG and WikiPathways into PPIN. [NSA14, KLEP14] For KEGG, the pathway was downloaded
as a KEGG Markup Language (KGML) file and loaded into Cytoscape. For WikiPathways, the
pathway could be found within the WikiPathways App by querying ”Huntington’s Disease” and
filtering the species to ”Homo sapiens”. At last the App, StringApp (version 1.7.1), was used to
generate the HD related PPIN of the STRING database. This was done by querying ”Huntington’s
Disease” in the STRING disease search bar in Cytoscape. For this, the Network type parameter
was set to full STRING network, the Maximum numbers of proteins parameter was set to 2000 and
the Load Enrichment Data parameter was turned on. At last, two confidence cut-off scores were
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selected, creating a lenient network with the cut-off at 0.4 and a strict network with the cut-off
at 0.7. This cut-off score ranges from 0 to 1 and represents the confidence of an interaction or
”how likely STRING judges an interaction to be true, given the available evidence”. [SGL+19] As
example, a score of 0.5 would mean that approximately every second interaction might be erroneous.

3.3 Network merging

The proteins of the networks contain identifiers from their respective database. In order to merge
the networks and find consensus, the identifiers have to be mapped to each other. For this reason,
all identifiers were mapped to Uniprot identifiers. For the KEGG identifier mapping, a Python
(version 3.9.0) script was used including the packages Bio.KEGG.REST from Biopython (version
1.76) and Pandas (version 1.4.3). [CAC+09, pdt22, WM10] The code and results can be found at:
https://git.liacs.nl/s2636387/protein-interaction-networks-in-huntington-s-disease. The script (see
listing 3.3) uses the KEGG API to generate the list of proteins in the HD pathway and converts
these to Uniprot identifiers. Due to the low amount of WikiPathways proteins, the ID mapper
on the Uniprot site was used to convert these identifiers. [Con20] Lastly, the STRING proteins
already contained Uniprot identifiers in the ”stringdb::canonical name” column, so conversion was
not necessary. The original identifiers and their respective Uniprot identifiers were saved in a table.
These tables were then imported to Cytoscape and joined with the following parameters:

• Import Data as: Node Table Columns

• Key Column for Network: shared name

• Case Sensitive Key Values: True

• Key Column for Table: KEGG/WikiPathway identifiers

In addition to the Uniprot identifiers, a Database attribute was added to the node tables in order to
keep track of which databases contain which proteins. The merging of networks was done by using
the Cytoscape merge tool, selecting the networks, opting for ”Union” and selecting the Uniprot
identifiers as the matching attribute to join on. Additional networks were made by only including
proteins up to the second neighbor of HTT. Lastly, the networks were filtered on the tissue::nervous
system column with values in the ranges [0, 5] and [3, 5]. Note that only STRING proteins were
filtered, as the proteins from pathway databases already have a high likelihood of being located in
the nervous system. Figure 2 shows the workflow of this process. Note that the Reactome database
did not contain any HD related pathway, so no network was be made.

1 from Bio.KEGG import REST

2 import pandas as pd

3

4

5 #getting the KEGG IDs of all proteins in the HD pathway

6 def relevant_protein(pathway):

7 request = REST.kegg_get(pathway)

8 full = request.read().split("GENE")[1]. split("\nCOMPOUND")[0]. split(’\n’)

9 kegg_id = []

10 for line in full:

11 kegg_id.append(line.strip().split(" ")[0])
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12 return kegg_id

13

14 #converting the KEGG IDs to Uniprot IDs

15 def convert(queries):

16 data = {’kegg’ : [],

17 ’uniprot ’ : []}

18

19 for query in queries:

20 request = REST.kegg_conv("uniprot", f’hsa:{ query}’).read()

21 id = request.split("\t")

22

23 kegg = id[0]

24 up = id[1]. replace(’up:’, ’’).split(’\n’)[0]

25

26 data[’kegg’]. append(kegg)

27 data[’uniprot ’]. append(up)

28 return data

29

30 kegg_ids = relevant_protein(’hsa05016 ’)

31

32 uniprot_ids = convert(kegg_ids)

33 df = pd.DataFrame(data=uniprot_ids)

34 df.to_excel(’kegg_data_hsa.xlsx’)

Listing 1: Identifier mapping of KEGG protein identifiers to Uniprot identifiers

3.4 Network analysis

As all network, PPINs have topological properties that can be analyzed. These properties allow
for the aforementioned identification of important proteins in the network and inferences about
the network as a whole. For example, nodes with a high degree, also known as hubs, indicate an
important role in the network. Furthermore, a network with a higher density and number of average
neighbors indicate a more connected network, usually meaning more related to each other. Like this,
these network properties provide valuable information about the networks and the protein in them.

By using the Analyze feature of Cytoscape, the topological properties of the networks can be
quantified. This information provides a better understanding of the networks and their behavior.
The feature gives the following information:

• Number of nodes in the network.

• Number of edges in the network.

• Average number of neighbors a node has.

• Network diameter: the shortest distance between the two most distant nodes in a network.

• Network radius: The minimum graph eccentricity of all the nodes in a graph. The graph
eccentricity of a single node is the maximum distance of the node to another node. The
smallest graph eccentricity is the network radius.
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Figure 2: The workflow of how the networks were merged and what filters were used. Green indicates
non-final networks, yellow represents actions and red indicates final networks.
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• Characteristic path length: The Average shortest path between two nodes.

• Clustering coefficient: The Average of all clustering coefficient of each node. The clustering
coefficient of a single node, n, refers to the ratio between the number of edges between the
neighbors of n and the the maximum possible number of edges between these neighbors.

• Network density: The proportion of possible interactions between nodes that are actually
present.

• Network heterogeneity: Network heterogeneity quantifies the network’s tendency to contain
hub nodes. Hub nodes are nodes with a large degree.

• Network centralisation: A measure of the extent to which a network’s connection is concen-
trated on a single node or group of nodes.

• Connected components: A connected component is a set of nodes that are connected. With
other words, there is a path between each pair of nodes in the set.

In addition to these features, the proportion of database consensus and discrepancy were measured.

3.5 Clustering

Clusters refer to highly connected sets of nodes in the network. By clustering the networks in this
research, interconnected proteins can be identified. These proteins can indicate protein complexes
and functional modules within the network, which can be functionally enriched and analysed to
reveal involvement in biological processes and functionalities. The cluster of interest are clusters
containing exclusively pathway database proteins. As these represent discrepancies between the
databases. The Cytoscape App, MCODE (version 2.0.2)[BH03], was used for the clustering with
the default parameter settings as shown in Table 1 on the eight networks resulting from the network
merging.

Parameter Value

Find Clusters In Whole Network
Include Loops False
Degree cut-off 2
Haircut True
Fluff False
Node Score cut-off 0.2
K-Core 2
Max. Depth 100

Table 1: MCODE parameter settings
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3.6 Functional enrichment

In functional enrichment, the proteins within the PPIN are annotated with information about
functions and biological processes that they are involved in. This then allows for functional enrich-
ment analysis, where over-represented classes of proteins are identified. The enriched terms can
be plotted in a tree map. Tree maps are used to visualize a large amount hierarchical data using
nested rectangles.

A functional enrichment analysis was performed in order to gain insights into the functions of the
clusters and other networks of interests such as the consensus between databases. In Cytoscape, this
was done by isolating the proteins of interest by clustering or filtering. Then setting the subnetwork
as a STRING network and using the Retrieve functional enrichment feature of the STRING App
with the default background genes, the whole genome. The result will be a table of enrichment
categories from various resources. The categories of interest are GO Biological Process and GO
Molecular Function. GeneOntology (GO) is a database containing information on the functions
of genes and represents them with ontology terms for specific processes, functions or components.
[ABB+00, Con21] These kind of databases are valuable resources for the functional characterization
of the subnetworks. The over-expressed terms were identified by performing a hyper-geometric test
with a p-value of 0.5. This value is the probability of randomly drawing the certain amount of
enriched terms that was found in the network of a certain size. Each of the enrichment terms is
accompanied by a False Discovery Rate (FDR), which is a p-value adjusted for multiple tests. This
value indicates the significance of the term in the network. A built in redundancy filter of STRING
was used to filter out terms. This filter is based on the Jaccard Index, which is calculated by taking
the intersection divided by the union of -in this case- two text strings. The threshold was set to the
default value of 0.5. The resulting terms were visualized in tree maps using Revigo. [SB11] Table 2
shows the default parameter settings of the process that was used. Related terms in the tree maps
were coloured. These colours represent overarching process or function ’themes’. These themes were
then connected to existing scientific research to validate the network and confirm the contribution
of these themes in the HD pathway.

Parameter Value

Size of resulting list Medium (0.7)
Values associated with GO terms represent P-value
Remove obsolete GO terms Yes
Species Whole UniProt database
Similarity measure SimRel

Table 2: Revigo parameter settings
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4 Results

4.1 Network creation

The pathways from the KEGG and WikiPathways were converted to PPINs, these networks are
shown in Figure 9 and Figure 10. Similarly, the HD related interactions with a cut-off score of 0.4 and
0.7 from STRING were generated and are shown in Figure 11 and Figure 12. Merging and filtering
these networks as described in the method section results in the networks STR0.4+KEGG+WP[0,
5], STR0.4+KEGG+WP[3, 5], STR0.7+KEGG+WP[0, 5] and STR0.7+KEGG+WP[3, 5]. These
networks are shown in Figures 13, 14, 15 and 16, respectively. Each protein is coloured to indicate in
which database network they could be found. Table 3 shows the frequency of each of the databases
and their combinations within the networks. Each combination of database values is coloured
corresponding to the node colours in the networks.
In the first network (STR0.4+KEGG+WP[0, 5]), it is shown that of the 256 proteins found in the
KEGG network, 103 overlap with the STRING network, 2 proteins overlap with the WikiPathways
network and 4 proteins overlap with both, leaving 149 proteins only found in the KEGG network.
Of the 16 proteins found in the WikiPathways network, 6 proteins overlap with STRING, again 2
proteins overlap with KEGG and 3 proteins overlap with both.
It also shows that filtering the networks on a more stringent nervous system tissue score, [3, 5],
reduces the amount of STRING-only proteins by 207 proteins and the amount of overlap between
STRING and KEGG by 7 proteins. Note that their is no difference in the consensus and discrepan-
cies between the networks filtered on a STRING cut-off score of 0.4 and 0.7, because this score
only judges the confidence of the interaction and not the proteins.

In Table 4, the database frequencies can be found of the second neighbor networks of the previous
networks. It shows that for the network STR0.4+KEGG+WP[0, 5], 20 STRING-only proteins, 51
KEGG-only proteins and 1 WikiPathways-only protein were not within the second neighborhood
of the network. All the proteins that could be found in multiple databases remained in the network.
Taking the second neighbor of STR0.4+KEGG+WP[3, 5], the same KEGG- and WikiPathways-only
proteins were removed. However, only 10 STRING-only proteins were removed. This means that of
the 207 removed proteins, due to the stringent tissue score filter, 10 were also not within the second
neighbour of the network. Continuing to the second neighbor network of STR0.7+KEGG+WP[0,
5], it is shown that 483 STRING-only proteins were removed, due to the stringent interaction
confidence cut-off score. Compared to the second neighbor networks of the more lenient cut-off
score, an additional 5 KEGG-only proteins were removed from the network. Lastly, looking at the
second neighbor network of STR0.7+KEGG+WP[3, 5], 416 STRING-only proteins and 3 more
KEGG-only proteins were removed.

4.2 Network analysis

Table 5 shows the results of the network analyses of the original merged networks. The effect of a
more stringent STRING cut-off and tissue filter is shown in Table 7 and 8. It can be seen that the
networks with the more stringent STRING confidence cut-off score have fewer edges compared to
the networks with the more lenient cut-off score. Similarly, a decrease is seen for the average amount
of neighbors, clustering coefficient, network density and network centralisation. Furthermore, an
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Table 3: Network database values of the merged networks of STRING (STR), KEGG and Wikipath-
ways (WP), filtered on nervous system tissue scores [0, 5] and [3, 5]

STR0.4+KEGG+WP [0, 5] STR0.4+KEGG+WP [3, 5] STR0.7+KEGG+WP [0, 5] STR0.7+KEGG+WP [3, 5]

String 1755 1548 1755 1548
KEGG 149 149 149 149
WP 4 4 4 4
String;KEGG 103 96 103 96
String;WP 6 6 6 6
KEGG;WP 2 2 2 2
String;KEGG;WP 3 3 3 3

Table 4: Network database values of second neighbor networks of the merged networks of STRING
(STR), KEGG and Wikipathways (WP), filtered on nervous system tissue scores [0, 5] and [3, 5]

STR0.4+KEGG+WP [0, 5] STR0.4+KEGG+WP [3, 5] STR0.7+KEGG+WP [0, 5] STR0.7+KEGG+WP [3, 5]

String 1735 1537 1272 1132
KEGG 98 98 93 90
WP 3 3 3 3
String;KEGG 103 96 103 96
String;WP 6 6 6 6
KEGG;WP 2 2 2 2
String;KEGG;WP 3 3 3 3

increase is seen for the network diameter, network radius, characteristic path length, network
heterogeneity and amount of connected components.
Just like an increase in stringency of the cut-off score, a more stringent nervous system tissue
score results in fewer amount of edges, average amount of neighbors and network heterogeneity. In
contrary to the cut-off score, a more stringent tissue score results in an decrease in the amounts of
nodes, characteristic path length and connected components and a marginal increase in clustering
coefficient, network density and network centralisation. The changes resulting from a more stringent
cut-off threshold indicate a less dense and connected network. This is due to the interactions that
are filtered out. The changes resulting from a more stringent tissue filter indicate a marginally
denser network. The remaining proteins have a higher confidence score of being in the nervous
system tissue, making it more likely to have interactions and be interconnected.

Table 6 shows the results of the network analyses of the second neighbor networks. These properties
will be compared to the original networks. The changes result from this can be seen in Table 9. For
all networks a decrease is seen in the amount of nodes, amount of edges, network diameter, network
radius, characteristic path length and network heterogeneity and an increase in average amount of
neighbors, network density and network centralisation. Note that the amount of connected compo-
nents is always 1, because neighbors are always connected. For specifically the second neighbor
networks of networks with a STRING cut-off score of 0.4, the clustering coefficient is decreased.
While for the networks with a score of 0.7, it is increased. The results indicate that taking the
second neighbor networks has similar results on all the merged networks. The networks are all more
dense and connected. Networks with a STRING cut-off threshold of 0.7 seem to be impacted more.
This could be due to the already low connectivity these networks had before. Interestingly, the
networks with a lenient cut-off threshold seem to have a decrease in clustering coefficient. Which
could indicate that highly connected components outside of the second neighbor were filtered out.
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Table 5: Topological properties of the merged networks of STRING (STR), KEGG and Wikipathways
(WP), filtered on nervous system tissue scores [0, 5] and [3, 5].

STR0.4+KEGG+WP [0, 5] STR0.4+KEGG+WP [3, 5] STR0.7+KEGG+WP [0, 5] STR0.7+KEGG+WP [3, 5]

#nodes 2022 1808 2022 1808
#edges 80567 69710 26549 22971
Avg. #neighbors 79.596 76.893 26.782 25.841
Network diameter 5 5 7 7
Network radius 3 3 4 4
Characteristic path length 2.342 2.327 3.020 3.017
Clustering coefficient 0.419 0.425 0.409 0.411
Network density 0.039 0.043 0.014 0.015
Network heterogeneity 0.960 0.943 1.069 1.048
Network centralisation 0.327 0.332 0.141 0.140
Connected components 5 2 55 44

Table 6: Topological properties of the second neighbor networks of the merged networks of STRING
(STR), KEGG and Wikipathways (WP), filtered on nervous system tissue scores [0, 5] and [3, 5].

STR0.4+KEGG+WP [0, 5] STR0.4+KEGG+WP [3, 5] STR0.7+KEGG+WP [0, 5] STR0.7+KEGG+WP [3, 5]

#nodes 1951 1743 1483 1330
#edges 79993 69185 22844 19797
Avg. #neighbors 81.783 79.159 30.552 29.510
Network diameter 4 4 4 4
Network radius 2 2 2 2
Characteristic path length 2.294 2.275 2.739 2.730
Clustering coefficient 0.407 0.412 0.418 0.418
Network density 0.042 0.045 0.021 0.022
Network heterogeneity 0.936 0.918 0.969 0.947
Network centralisation 0.337 0.344 0.185 0.183
Connected components 1 1 1 1

Table 7: Network property changes due to the implementation of a stringent STRING cut-off filter
of 0.7.

Properties STR0.7+KEGG+WP [0, 5] STR0.7+KEGG+WP [3, 5]

#nodes 0 (+0.0%) 0(+0.0%)
#edges -54018(-67.0%) -46739 (-67.0%)
Avg. #neighbors -52.814(-66.4%) -51.052(-66.4%)
Network diameter 2(+40.0%) 2(+40.0%)
Network radius 1(+33.3%) 1(+33.3%)
Characteristic path length 0.678(+28.9%) 0.69(+29.7%)
Clustering coefficient -0.01(-2.4%) -0.014(-3.3%)
Network density -0.025(-64.1%) -0.028(-65.1%)
Network heterogeneity 0.109(+11.4%) 0.105(+11.1%)
Network centralisation -0.186(-56.9%) -0.192(-57.8%)
Connected components 50(+1000.0%) 42(+2100%)

4.3 Clustering

The clustering of the original networks resulted in 8 clusters of interests. Due to the similarities in
consensus between the merged networks, many clusters of interest were found in more than one of
the merged networks. For example, Cluster 10 from STRING0.4+KEGG+WikiPathways[0, 5] is
identical to cluster 8 in the second neighbor network of STRING0.4+KEGG+WikiPathways[3, 5].
All the clusters that were formed by MCODE contain only KEGG proteins. The clusters can be
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Table 8: Network property changes due to the implementation of a stringent STRING tissue filter
of [3, 5].

Properties STR0.4+KEGG+WP [3, 5] STR0.7+KEGG+WP [3, 5]

#nodes -214(-10.6%) -214(-10.6%)
#edges -10857(-13.5%) -3578(-13.5%)
Avg. #neighbors -2.703(-3.4%) -0.941(-3.5%)
Network diameter 0(+0.0%) 0(+0.0%)
Network radius 0(+0.0%) 0(+0.0%)
Characteristic path length -0.015(-0.6%) -0.003(-0.1%)
Clustering coefficient 0.006(+1.4%) 0.002(+0.5%)
Network density 0.004(+10.3%) 0.001(+7.1%)
Network heterogeneity -0.017(-1.8%) -0.021(-2.0%)
Network centralisation 0.005(+1.5%) -0.001(-0.7%)
Connected components -3(-60.0%) -11(-20.0%)

Table 9: Network property changes due to the implementation of second neighbor networks.

Properties STR0.4+KEGG+WP [0, 5] STR0.4+KEGG+WP [3, 5] STR0.7+KEGG+WP [0, 5] STR0.7+KEGG+WP [3, 5]

#nodes -71(-3.5%) -65(-3.6%) -539(-26.7%) -478(-26.4%)
#edges -574(-0.7%) -525(-0.8%) -3705(-14.0%) -3174(-13.8%)
Avg. #neighbors 2.187(+2.7%) 2.266(+2.9%) 3.77(+14.1%) 3.669(+14.2%)
Network diameter -1(-20.0%) -1(-20.0%) -3(-42.9%) -3(-42.9%)
Network radius -1(-33.3%) -1(-33.3%) -2(-50.0%) -2(-50.0%)
Characteristic path length -0.048(-2.0%) -0.052(-2.2%) -0.281(-9.3%) -0.287(-9.5%)
Clustering coefficient -0.012(-2.9%) -0.013(-3.1%) 0.009(+2.2%) 0.007(+1.7%)
Network density 0.003(+7.7%) 0.002(+4.7%) 0.007(+50.0%) 0.007(+46.7%)
Network heterogeneity -0.024(-2.5%) -0.025(-2.7%) -0.1(-9.4%) -0.101(-9.6%)
Network centralisation 0.01(+3.1%) 0.012(+3.6%) 0.044(+31.2%) 0.043(+30.7%)
Connected components -4(-80.0%) -1(-50.0%) -54(-98.2%) -43(-97.7%)

found in the appendix, starting from Figure 21 until Figure 33.

4.4 Functional enrichment of consensus network

Figure 3 and 4 show the top five enriched biological process and molecular function terms of the
consensus network respectively. The proteins related to these terms are indicated by a color in a
ring around the nodes. The in total 152 Go Biological Process terms and 28 Go Molecular Function
terms were visualized in a treemap. Figure 5 and 6 show the tree maps of all the enriched biological
process and molecular function terms of the consensus network respectively. In the tree maps the
related terms are connected by colour, which represent an overarching theme. Over-represented
themes and their connection to existing scientific research in the field of HD will be discussed in
the following subsections.
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Figure 3: Consensus network enriched with Go Biological Process terms.

Figure 4: Consensus network enriched with Go Molecular Function terms.
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Figure 5: Tree map of the enriched Go Biological Process terms in the consensus network.
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Figure 6: Tree map of the enriched Go Molecular Function terms in the consensus network.
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4.4.1 Cellular response

A highly expressed biological process theme is the response to organic and inorganic stimulus. This
includes cellular stress, ischemia, staurospine, nicotine, starvation and alkaloids. An important
functionality of the endoplasmic reticulum (ER) is its response to stress caused by misfolded
proteins. In these cases the ER removes or refolds these proteins. This response is called endoplasmic
reticulum associated degradation (ERAD). Mutant HTT depletes the proteins VCP, Npl4 and Ufd1
causing the inhibition of ERAD. The inhibition of ERAD leads to the accumulation of unfolded
proteins in the ER, and ER stress, which were both observed in HD models in animal models
and postmortem samples of HD patients. [CFA+09, CLC+09] These proteins were not found in
the consensus network. However, VCP and NP14 were both found in the STRING network. A
specific term that is highly expressed are mitogen-activated protein kinase (MAPK) cascades.
These are central signaling pathways responsible for regulating cellular processes such as stress
response, proliferation and apoptosis.[PZPS11] In [AIP+06], it is suggested that mHTT alters
the MAPK signaling pathways in striatal cells by modulation at upstream points such as the
extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinases (JNK) pathway. In the
past the ERK pathway has been proposed as a potential target for therapeutic intervention for
HD. In response to the HD pathogenesis, ERK is activated and directs a protective transcriptional
response. However, it has also been established that mutant HTT interferes with the signaling events
of the ERK pathway. Furthermore, MHTT downregulates ERK-dependent glutamate transporters
causing cells to be vulnerable to excitotoxicity. This seems to be a well-established process in the
HD pathway as it is the specific pathway that was extracted from the Wikipathways database.
The information found in the scientific researh of HD aligns with the higher enriched terms in this
theme as well as the GO function terms ”kinase binding” and ”protein kinase activity”. There have
also been studies suggesting the involvement of less enriched processes such as response to nicotine
and starvation. [TKE+05, RSS+19]

4.4.2 Regulation of cell communication

Protein phosphorylation is a crucial process in the regulation of cell signaling. Abnormalities
in the regulation of this process is known to lead to various diseases. [DSL16] Phosphorylation
has been speculated to be involved in the HD pathogenesis by impairing the ULK1-mediated
phosphorylation of ATG14, which promotes autophagy. [WLL16] This specific interaction aligns
with the enrichment term. According to [Mor09], mutant HTT inhibits fast axonal transport by
activating JNK3/MAPK10 and phosphorylating Kinesin-1-heavy chain. Both of these proteins are in
the consensus network. Further research emphasizes the importance of the phosphorylation of HTT
in regulating structure, toxicity and cellular properties of HTT. [DRF+18] These scientific articles
describe the involvement of HTT in phosphorylation processes, as inhibitor of phosphorylation, but
also as the target of phosphorylation. Recent study has discovered and validated that TANK-binding
kinase 1 (TBK1) phosphorylates HTT. [HCP+20] This study shows TBK1 expression increases
the phosphorylation of mutant HTT and reduces its aggregation and cytotoxicity. TBK1 was not
found in the consensus network between KEGG and STRING, but was in the STRING network.
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4.4.3 Behavior, movement and memory

HD is generally characterizes by behavior, movement and memory impairments. [A.10] Postmortem
studies have shown the significant atrophy in HD-affect human brains. Specifically the striatum
(caudate-putamen), which is responsible for the coordination of multiple aspects of cognition
including motor and action planning, rewards and the conjunction of both movement and reward.
[dlMVR88, BMS13] Other affected regions include the motor cortex, which is involved in control
and execution of voluntary movements and the cingulate cortex, which is important for emotional
regulation. [TOT+10] Further research on the HD-affected pathways inside the brain indicate the
impairment of long-term potentiation (LTP) in HD mouse models. This process is responsible for
strengthening connections between neurons with frequent activation and is part of the underlying
mechanism of learning and memory. [DVC+11] These studies confirm that HD is related to the
processes surrounding behavior, movement and memory as indicated by the functional enrichment
terms.

4.4.4 Oxidative phosphorylation

Oxidative phosphorylation (OXPHOS) or electron transport-linked phosphorylation is a pathway
related to the synthesis of ATP by an electrochemical transmembrane gradient. This is an essential
process for the energy production of the mitochondria and survival of cells, yet its regulation in
the brain is still poorly understood. [GM17] Within the field of HD research it has been shown
that the cognitive decline as consequence of HD is associated with the preferential loss of striatal
medium spiny neurons (MSNs). Even though the specific mechanism that leads to the increased
susceptibility of these neurons is not fully understood, there is strong evidence that the loss of
medium spiny neurons is related to mitochondrial dysfunction mediated by mutant HTT (mHTT).
[BWPK08] Further studies have revealed that the mHTT-induced mitochondrial changes include
reduction of Ca2+ buffering capacity, loss of membrane potential, and decreased expression of
oxidative phosphorylation (OXPHOS) enzymes. [DGDB10] The results of the functional enrichment
reaffirm the relation between the mitochondrial dysfunction and mHTT.

4.5 Functional enrichment of discrepancy clusters

Figure 21 until Figure 33 show the top five enriched biological process and molecular function terms
in the formed clusters. The in total 17 Go Biological Process terms and 9 Go Molecular Function
terms were visualized in a treemap. Figure 7 and 8 show the tree maps of all the enriched biological
process and molecular function terms of the clusters respectively. Similarly to the consensus network,
a few enriched terms will be connected to existing scientific research. Interestingly, there seem to be
many terms related to the previously enriched terms in the consensus network such as ”endoplasmic
reticulum unfolded protein response” and ”oxidative phosphorylation”.

4.5.1 7-methylguanosine mRNA capping

The 7-methylguanosin mRNA capping is an essential post transcriptional regulation process and a
few papers have mentioned the involvement of this process in the affects of HD. There is a recent
paper of 2021 discussing the underlying mechanism of nucleotide repeat expansion disorders such
as HD. One of these discussed pathways is translation, which includes 7-methylguanosin mRNA
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Figure 7: Tree map of the enriched Go Biological Process terms in the cluster networks.
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Figure 8: Tree map of the enriched Go Molecular function terms in the cluster networks.
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capping. However, all evidence surrounding this process is more focused towards the larger pathway
that 7-methylguanosine mRNA capping is part of.

4.5.2 Nuclear migration along microtubules

The term Nuclear migration along microtubules refers to the transport of the nucleus along
microtubules within the cell. An experimental data mining research of 2020 suggests the that
a significant part of HTT-involved cellular processes is mediated by micro tubules and other
cytoskeletal cell structures. In another recent research of 2022, it was found in cell and mouse models
that NUMA1 is downregulated in HD. This protein is important in the organization of microtubule
and promotes axonal growth. Inhibiting the process causes microtubule and axonal growth defect
and consequently disturbs the cytoskeleton. Evidence on the contribution of this pathway to the
HD pathology has yet to accumulate, which explains the lack of consensus surrounding this term
within the network.

5 Conclusions

From the results it is clear that there is a lot of evidence for the contribution of certain processes in
the underlying mechanism of HD such as oxidative phosphorylation, cellular response and regulation
of cell communication. Some of these processes seem to be also enriched in non-consensus parts of
the networks, which might indicate an expansions on these biological processes that have lower
amounts of evidence or just parts that are not as well connected to HD. Newly suggested processes
seem to be also enriched in the discrepancy networks, which validates the accuracy of the network
as these processes do not have enough evidence to form consensus around. Lastly, to answer the
research question, ”Does consolidating knowledge on interactions with the huntingtin protein
provide new insights into the HD mechanism? And if so, what are its implications?”, yes. The
consensus that has been made gives insight of the most well researched interactions and processes
in the HD pathway and a set of possible interactions that could be targeted for future research.

6 Further Research

Of the three original pathway databases KEGG, Reactome and WikiPathways, as of now, only two
contained a HD-related pathways and one of them was a singular ERK pathway. Possible future
research could be a similar project, but with more pathway databases to get a more accurate and
elaborate consensus of the current knowledge surrounding the HD pathway. This future research
could be possibly done in collaboration with HD experts. Because the interpretation of these results
and connections to current scientific research would benefit greatly if discussed more thoroughly.
Furthermore, this thesis brought consensus and discrepancies of not only processes, but also specific
proteins. These specific proteins could be researched in greater detail by enrichment with data
from high-throughput methods such as yeast two-hybrid (Y2H) assays and Co-immunoprecipitation
(CO-IP) in order to validate their involvement in the HD pathway.
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[BMS13] R. Báez-Mendoza and W Schultz. The role of the striatum in social behavior.
Frontiers in neuroscience, 7(233), 2013.

[BWPK08] Ella Bossy-Wetzel, Alejandra Petrilli, and Andrew B. Knott. Mutant huntingtin
and mitochondrial dysfunction. Trends in Neurosciences, 31(12):609–616, 2008.

[CAC+09] Peter J.A. Cock, Tiago Antao, Jeffrey T. Chang, Brad A. Chapman, Cymon J. Cox,
Andrew Dalke, Iddo Friedberg, Thomas Hamelryck, Frank Kauff, Bartek Wilczynski,
et al. Biopython: freely available python tools for computational molecular biology
and bioinformatics. Bioinformatics, 25(11):1422–1423, 2009.

[CaCP+07] Andrew Chatr-aryamontri, Arnaud Ceol, Luisa M. Palazzi, Giuliano Nardelli,
Maria V. Schneider, Luisa Castagnoli, and Gianni Cesareni. Mint: the molecu-
lar interaction database. Nucleic acids research, 35(Database issue):D572–D574,
2007.

[CFA+09] Alisia Carnemolla, Elisa Fossale, Elena Agostoni, Silvia Michelazzi, Raffaella Cal-
ligaris, Luca De Maso, Giannino Del Sal, Marcy E. MacDonald, and Francesca
Persichetti. Rrs1 is involved in endoplasmic reticulum stress response in huntington
disease. MOLECULAR BASIS OF CELL AND DEVELOPMENTAL BIOLOGY,
284(27):18167–18173, 2009.

22



[CLC+09] K.J. Cho, B.I. Lee, S.Y. Cheon, H.W. Kim, H.J. Kim, and G.W. Kim. Inhibition
of apoptosis signal-regulating kinase 1 reduces endoplasmic reticulum stress and
nuclear huntingtin fragments in a mouse model of huntington disease. Neuroscience,
163(4):1128–1134, 2009.

[Con20] The UniProt Consortium. UniProt: the universal protein knowledgebase in 2021.
Nucleic Acids Research, 49(D1):D480–D489, 2020.

[Con21] The Gene Ontology Consortium. The Gene Ontology resource: enriching a GOld
mine. Nucleic Acids Research, 49(Database issue):D325–D334, 2021.

[COW+11] David. Croft, Gavin O’Kelly, Guanming Wu, Robin Haw, Marc Gillespie, Lisa
Matthews, Phani Caudy, Michael Garapati, Gopal Gopinath, Bijay Jassal, Steven
Jupe, Irina Kalatskaya, Shahana Mahajan, Bruce May, Nelson Ndegwa, Esther
Schmidt, Veronica Shamovsky, Christina Yung, Ewan Birney, Henning Hermjakob,
Peter D’Eustachio, and Licoln Stein. Reactome: a database of reactions, pathways
and biological processes. Nucleic acids research, 39(Database issue):D691–D697,
2011.

[DGDB10] Maria Damiano, Laurie Galvan, Nicole Déglon, and Emmanuel Brouillet. Mito-
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Figure 9: PPIN of the HD pathway from KEGG.

Figure 10: PPIN of the ERK pathway in HD from WikiPathways.
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Figure 11: PPIN of HD related interactions with confidence cut-off of 0.4 from STRING.

Figure 12: PPIN of HD related interactions with confidence cut-off of 0.7 from STRING.
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Figure 13: Network of the merged network from KEGG, STRING and WikiPathways, with a
STRING cut-off score of 0.4 and a STRING nervous system tissue confidence score of [0, 5].

Figure 14: Network of the merged network from KEGG, STRING and WikiPathways, with a
STRING cut-off score of 0.4 and a STRING nervous system tissue confidence score of [3, 5].
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Figure 15: Network of the merged network from KEGG, STRING and WikiPathways, with a
STRING cut-off score of 0.7 and a STRING nervous system tissue confidence score of [0, 5].

Figure 16: Network of the merged network from KEGG, STRING and WikiPathways, with a
STRING cut-off score of 0.4 and a STRING nervous system tissue confidence score of [3, 5].
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Figure 17: Second neighbor network of the merged network from KEGG, STRING and WikiPathways,
with a STRING cut-off score of 0.4 and a STRING nervous system tissue confidence score of [0, 5].

Figure 18: Second neighbor network of the merged network from KEGG, STRING and WikiPathways,
with a STRING cut-off score of 0.4 and a STRING nervous system tissue confidence score of [3, 5].
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Figure 19: Second neighbor network of the merged network from KEGG, STRING and WikiPathways,
with a STRING cut-off score of 0.7 and a STRING nervous system tissue confidence score of [0, 5].

Figure 20: Second neighbor network of the merged network from KEGG, STRING and WikiPathways,
with a STRING cut-off score of 0.7 and a STRING nervous system tissue confidence score of [3, 5].
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Figure 21: Functional enrichment of Cl(6)STRING0.4+KEGG+WikiPathways[0.5] with GO Bio-
logical Process terms.

Figure 22: Functional enrichment of Cl(6)STRING0.4+KEGG+WikiPathways[0.5] with GO Molec-
ular Function terms.
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Figure 23: Functional enrichment of Cl(7)STRING0.4+KEGG+WikiPathways[0.5] with GO Bio-
logical Process terms.

Figure 24: Functional enrichment of Cl(7)STRING0.4+KEGG+WikiPathways[0.5] with GO Molec-
ular Function terms.
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Figure 25: Functional enrichment of Cl(8)STRING0.4+KEGG+WikiPathways[0.5] with GO Bio-
logical Process terms.

Figure 26: Functional enrichment of Cl(8)STRING0.4+KEGG+WikiPathways[0.5] with GO Molec-
ular Function terms.
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Figure 27: Functional enrichment of Cl(10)STRING0.4+KEGG+WikiPathways[0.5] with GO
Biological Process terms.

Figure 28: Functional enrichment of Cl(11)STRING0.4+KEGG+WikiPathways[0.5] with GO
Biological Process terms.
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Figure 29: Functional enrichment of Cl(11)STRING0.4+KEGG+WikiPathways[0.5] with GO
Molecular Function terms.

Figure 30: Functional enrichment of Cl(13)STRING0.4+KEGG+WikiPathways[0.5] with GO
Biological Process terms.
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Figure 31: Functional enrichment of Cl(13)STRING0.4+KEGG+WikiPathways[0.5] with GO
Molecular Function terms.

Figure 32: Functional enrichment of Cl(15)STRING0.4+KEGG+WikiPathways[0.5] with GO
Biological Process terms.
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Figure 33: Functional enrichment of Cl(15)STRING0.4+KEGG+WikiPathways[0.5] with GO
Molecular Function terms.
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