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Abstract

Decade-long advances in simulation-based surrogate-assisted opti-
mization and unprecedented growth of computational power have
enabled us to optimize complex engineering problems once in-
tractable to solve. This thesis has a special focus on investigating
the benefit of a concurrent utilization of multiple simulation-
based surrogate models to solve complex discrete optimization
problems. To fulfill this, the so-called Self-Adaptive Multi-surrogate
Assisted Efficient Global Optimization algorithm (SAMA-DiEGO),
which features a two-stage online model management strategy,
is proposed and further benchmarked on thirty-three binary-
encoded combinatorial problems and fifteen ordinal problems
against several robust non-surrogate or single-surrogate assisted
optimization algorithms. Our findings in a fixed budget analy-
sis indicate that SAMA-DiEGO can rapidly converge to better
solutions on a majority of the test problems which shows the
feasibility and advantage of using multiple surrogate models in
optimizing discrete problems. However, we also identify that the
proposed SAMA-DiEGO shows deficiency in handling problems
with weak global structure and plentiful local optima in com-
parison with one of the single-surrogate assisted optimization
algorithm (SMAC).
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1
Introduction

Technology has been advanced unprecedentedly in the last few decades, the
focus of engineering has been gradually shifting from a new invention that
can work properly to one that will efficiently and effectively function for a
long while. These expectations and challenges give space to the development
and application of mathematical optimization, which comprises a series of
techniques and can be found nearly everywhere in modern-day engineering
fields e.g., aircraft/vehicle design [19, 37] and chemical engineering [57]. To
formulate and scientifically achieve better design, engineers and researchers
have set up a variety of complex models based on their expertise and observa-
tions. Nowadays, instead of manually finding the best solutions, a computer
with its enormous computational power can tirelessly and smartly go through
the search space of these models under certain guidelines called optimization
algorithms to therefore locate the optimal design at acceptable costs. To
facilitate readers, in the remainder of this chapter, a quick walk-through of
some key concepts of mathematical optimization that relate to our study
will be given.

The primary target of mathematical optimization can be defined as lo-
cating desirable (optimal) solution(s) from a group of candidates solutions in
respect to their performance on objective function(s). Assume we are solving
a single objective maximization problem f : S → R, a formal statement of
the optimization task can be described as,

X = {~x | arg max
~x∈S

f(~x), f(~x) ∈ R}, (1.0.1)

where S is the search space that contains all feasible solutions and X are
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Chapter 1. Introduction

the optimal solution(s). Broadly speaking, if the objective function is known
and (sub-)differentiable, an efficient group of solvers are derivative-based
methods [73], e.g. gradient descent optimization [77]. However, these solvers
become incompetent in the case of optimizing non-differentiable functions.
Fortunately, there exists a group of query-based algorithms, namely iterative
optimization heuristics (IOH) [26]. These algorithms are capable of optimiz-
ing functions regardless of accessibility of derivatives as long as the outputs
of functions are accessible within reasonable computation time. Existing
algorithms including the famous genetic algorithms [65], the evolutionary
algorithms [3], the covariance matrix adaptation evolution strategies [45] and
particle swarm optimization [71] are all symbolic representatives of IOHs.

Common iterative optimization procedures are normally sufficient to per-
fectly solve numerous optimization tasks at the cost of considerable amount
of fitness evaluations (function calls to the objectives). However, in some
real-world applications, the objective functions are costly to be evaluated.
Examples of these problems vary from different background, e.g. chemi-
cal design and synthesis [57], water resources [74], aerodynamic design [37],
aerospace [19], etc. As a consequence, it would be unacceptable for IOHs to
directly evaluate thousands of feasible solutions using expensive objective
functions since it will naturally require massive execution time and computa-
tional resources. Hence, an alternative strategy has been proposed, instead
of using the objective functions, one can approximate their landscapes using
various mathematical models known as surrogate models. The use of sur-
rogate can help to save calls to original objectives by shifting majority of
function evaluations to surrogates while periodically adjusting the surrogates
using the real output(s) of objective functions. A definition of a competent
surrogate model f̂ to the function f : S → R of Equation 1.0.1 is as follows,

F̂ = {f(~x) | ~x ∈ Ŝ, Ŝ ⊆ S},
f̂Ŝ,F̂ (~x) : S → R,

∃S∗ ⊆ S : |S∗| > 1,
∀x̂ ∈ S∗ : f̂Ŝ,F̂ (~x) ' f(~x),

where Ŝ is the set of available observable input from the solution space
S and their corresponding real objective values of Ŝ are recorded in F̂ .
The surrogate model f̂Ŝ,F̂ learns (e.g. curve fitting) the data (Ŝ and F̂ )
and therefore, produces simulated objective values of f on some solutions
(S∗) from S. Consequently, if the surrogate model can accurately simulate
the original functions, i.e., given the same inputs, the surrogate model can
generate similar or even the same outputs to the original functions using
less computational resources, it is possible to efficiently locate the global
optimum of original functions through exclusively doing optimization using
the surrogate as a proxy objective function.
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Chapter 1. Introduction

Algorithm 1: A high level summary of the Efficient Global Opti-
mization (EGO). The pipeline is adapted from [84]
1 Procedure EGO:
2 Compute a surrogate f̂ on the initial data set X , y
3 while termination criterion not met do
4 Instantiate an infill criterion I using f̂
5 Find global optimum of the infill criterion I:

~x∗ ← arg max
~x∈S

I(~x)

6 Evaluate ~x∗: y∗ ← f(~x∗) and append ~x∗, y∗ to X , y.
7 Re-estimate the surrogate f̂∗ based on X , y
8 end
9 end

One of the well-studied surrogate-assisted algorithm is the Efficient Global
Optimization (EGO) [56], which is also commonly known as Bayesian Opti-
mization (BO). In Algorithm 1, a general framework of the Efficient Global
Optimization (EGO) is given. The EGO and merely all its variants feature
an iterative process that is consist of two major steps: building and fitting
a surrogate model (line 2 and line 7 in Alg 1), normally a Gaussian pro-
cess regression model a.k.a Kriging model (see Section 2.2), with available
data samples (inputs and outputs) obtained on current task; finding new
additional data point based on the surrogate model through an acquisition
process on a certain infill criterion (line 4 to line 6 in Alg 1). A comprehensive
and self-explainable tutorial on the EGO algorithms was made by Frazier in
2018 [33].

Before the EGO algorithm was proposed, history of applying surrogate
models (meta-models) for optimization can be traced back to 1980s [43] and
even longer ago as the prototype of the surrogate model in EGO (the Krig-
ing model) can be dated back to 1950s [58]. Decades of development have
resulted in a wide variety of surrogate assisted/based algorithms each with
distinct characteristics, (dis-)advantages and suitable application scenarios.
Bhosekar and Ierapetritou [10] made an introductory review in 2018, which
summarized frequently used surrogate models; famous derivative-free opti-
mization algorithms (solvers) that are suitable to combine with surrogates; as
well as accompanied sampling strategies and validation metrics for surrogate
models. Similar constructive reviews have been made time to time for differ-
ent application scenarios in [1, 2, 32, 74, 90].

Most of these reviews and works on surrogate assisted/based optimization
are primarily focused on handling (expensive) optimization problems defined
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Research Questions Chapter 1. Introduction

on continuous search spaces. This type of search space is exclusively com-
prised of numerical variables each has an infinite number of values/choices
between any two values/choices. However, there exists modern real-world
optimization problems, e.g., vehicle routing and scheduling [79], supply chain
network design [29] and global routing in electronic design [78], that are
entirely built upon discrete search space, where each variable has a exact
number of values/choices.

In contrast to the flourished development of EGO as well as online surro-
gate management for real-valued optimization, Jin [53] points out the scarcity
of studies on surrogate (model) based discrete/combinatorial optimization in
2011. Later in 2017, a survey by Bartz-Beielstein and Zaefferer [6] identifies
the key challenge as finding suitable surrogate models for discrete problems.
This challenge becomes critical if EGO algorithms are applied, as these
solvers normally rely on single surrogate model that is solely determined
beforehand. Therefore, it is naturally to consider the possibility of concur-
rently using multiple surrogate models that exactly support discrete cases,
to tackle complex discrete problems. Hence, this thesis takes steps to study
the feasibility and benefit (necessity) of utilizing multiple surrogate models
in an EGO-styled algorithm to solve purely discrete problems.

1.1 Research Questions
Given with the background and the motivation, three research questions are
firstly raised and further investigated in this thesis:

1. In comparison to non-surrogate optimization algorithm, can the use
of surrogate model help achieve better performance in solving discrete
problem?

An important motivation of using surrogate model is to save calls to
the objectives. It may take days, weeks or even months to directly
evaluate/simulate solutions on an expensive optimization prob-
lem [19, 37, 57, 74]. Although given the success of EGO, it is still
important to assure the effectiveness of using surrogate models in
discrete optimization.

2. Given with a fixed evaluation budget, can multiple surrogate model
based EGO achieve better performance if compared with robust single
surrogate model based EGO?

To the best of our knowledge, there is a lack of studies on utilizing
multiple surrogate models for discrete problems. Therefore, con-
sidering the fact that using multiple surrogates will consume more
computational resources, it is reasonable to consider whether it is
beneficial to use multiple surrogate models over a single surrogate.
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Outline Chapter 1. Introduction

3. When optimizing discrete problems, can we trust the prediction value
of surrogate models in EGO if multiple surrogates are used?

The use of acquisition functions is almost a default setting in EGO-
styled algorithms (line 4 in Algorithm 1). However, Rehbach et
al. [75] argued that exclusively use prediction values of a promising
surrogate can outperform using acquisition functions in handling
lower dimensional continuous problems. Meanwhile, as far as we
know, the necessity of using acquisition functions for optimizing
discrete problems has not been investigated. Thus, in this thesis,
a special attention is given on this topic.

1.2 Outline
The rest of the thesis is organized as follows: in Chapter 2, some notable
related works on adapting surrogate models to discrete search spaces and
on online management strategies for using multiple surrogates will be intro-
duced; in Chapter 3, a newly proposed multi-surrogate assisted EGO algo-
rithm for discrete optimization called SAMA-DiEGO1 is introduced where
the algorithm is decomposed to several building blocks to assist readers un-
derstanding our work; this newly proposed algorithm is later experimentally
benchmarked in Chapter 4 against existing robust algorithms on two prob-
lem sets to answer the research questions raised in Section 1.1; lastly, the
results are further concluded and extended in Chapter 5.

1The Python implementation of the proposed SAMA-DiEGO algorithm can be found
in https://github.com/BaronH07/SAMA-DiEGO
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2
Related Works

2.1 A Survey of Forerunners
Before directly going into the three research questions raised in Section 1.1,
it is beneficial and worthwhile to investigate first what are the existing
methods of adapting surrogate modelling to discrete problems and integrating
multiple such models in surrogate assisted/based optimization? To answer
the question, in this section, an overview of forerunners is given.

Online management of multiple surrogate models denotes the process of
maintaining and determining the most suitable proxy (surrogate model) to
an objective function while doing optimization. In contrast to offline model
management, the online management is capable of utilizing incrementally ob-
tained new data samples [54]. Gorissen et al. [40] proposed an Evolutionary
Model Selection (EMS) algorithm to concurrently determine the best surro-
gate model type and its hyperparameter through minimizing cross-validation
error or Akaike Information Criterion using a modified genetic algorithm.
Couckuyt et al. [18] further extended the work of [40] by combining the
expected improvement function with the EMS algorithm in searching for
promising points (to be evaluated on original objective function). Bagheri et
al. [4] selected the best-performed type of radial basis function interpolation
on the basis of their median absolute errors obtained on newly acquired data
samples (unseen to surrogate models). The model selection phase in [81] di-
rectly applies cross-validation technique on all candidate models to identify
the one with minimum mean squared errors. Jia et al. [51] combined offline
model selection with online model selection. In the offline stage, assuming
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availability of some pre-selected representative optimization problems and a
pool of candidate models, a selector is trained, which maps pre-defined four
characteristics of pre-selected problems to the best surrogate model types.
Later, in online selection, the trained selector is used to pre-screen the candi-
date models regarding the four characteristics of the new problem to reduce
the number of candidate models. Lastly, the online model selection adapts a
similar strategy to [40] to find the best surrogate for the new problem.

Instead of only using the best surrogate out of all candidates, an alter-
native choice is to ensemble (aggregate) multiple surrogate models through
computing a weighted sum of predictions produced by all candidate mod-
els [6, 35, 61, 67, 93]. Further, it is feasible to adaptively merge a group of
surrogate models with regard to fidelity level, i.e., reliability or accuracy of
models in approximating the original problem. An notable example is the
Co-Kriging [31, 94]. Co-Kriging builds a new Kriging-styled model through
adaptively combining approximations of a coarse (low-fidelity) and a fine
(high-fidelity) surrogate model, while exploiting correlations between the
two models. Le Gratiet and Cannamela [42] extended the Co-Kriging by
combining leave-one-out cross-validation errors with the original error mea-
surement of Co-Kriging. By all means, the previously described methods
aim to select/create a surrogate model out of all candidate models. An alter-
native strategy is proposed in [86], namely the Multiple Surrogate Efficient
Global Optimization (MSEGO) algorithm, which maintains all candidate
models and samples new infill points by independently maximizing the EI
criterion on each candidate model. A similar idea is re-visited in [88] and
further developed in [7]. In comparison to exclusively using EI in MSEGO,
Beaucair et al. [7] suggests employing different infill criteria for different
type of surrogate models and therefore concurrently sampling new points
from these independent infill criteria. Another advancement in multi-fidelity
EGO is generalizing existed or developing novel infill criteria to suit for mul-
tiple surrogate models. As an pioneer example, Huang et al. [49] augmented
the original Expected Improvement (EI) [56] by mutually considering three
aspects: the correlation between, the errors and the cost of the low-and high-
fidelity models. More concrete reviews regarding recent development of EI
for multi-fidelity optimization can be found in [95].

With respect to adapting surrogate models to discrete problems, the
survey of Bartz-Beielstein and Zaefferer [6] indicates that existing methods
for discrete surrogate modelling can be split up in six strategies:

1. The naive approach: directly applying methods used for continuous
spaces if the search space can be represented/encoded using a vector.

2. Customized models: models mostly designed by experts.

3. Inherently discrete models: models that naturally support discrete
structures.
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4. Mapping: discrete variables or structures are mapped to a more easily
treatable representations.

5. Feature extraction: extract numeric features from the objective (e.g.
depths of trees). The obtained numerical features can be modeled and
processed with standard optimization techniques.

6. Kernel-based modeling: where available, discrete kernels/measures of
(dis)-similarity may be used to replace continuous kernels.

The need of adapting EGO for discrete problems is recently and con-
stantly emphasized in solving expensive mixed-integer optimization problems.
A notable example is hyper-parameter tuning and automatic model selection
for machine learning tasks, where, in that field of study, the EGO-styled
solvers are more commonly referred as Sequential Model Based Optimiza-
tion (SMBO) algorithms [50]. Studying the surrogate models used in SMBO
algorithms can be a solid entry point to understand the state-of-the-art
methodology of applying surrogate models on expensive discrete problems.
Existing well-established representatives of SMBO are Gaussian Process
optimizer (GP optimizer) [8], adaptive Tree-structured Parzen Estimator
(TPE) [8], Sequential Model-based Algorithm Configuration (SMAC) [50, 62],
Spearmint [80], Bayesian Optimization and Hyperband (BOHB) [30] and
Mixed-Integer Parallel Efficient Global Optimization (MIP-EGO) [85]. Their
application scenario is: suppose given a set of mixed-integer (co-existence of
discrete and continuous variables) configurations as λ and the corresponding
performance of the expensive machine learning model as y, surrogate mod-
els in SMBO are commonly required to model the conditional probability
p(y|λ). With respect to the back-end surrogate models of SMBO: SMAC
and MIP-EGO use random forest regression; Spearmint and GP optimizer
utilize Gaussian process regression; TPE, instead of modeling the p(y|λ), it
applies a tree-structure Parzen estimator to concurrently model p(y|λ ≥ a)
and p(y|λ < a), where a is a moving threshold; and lastly, BOHB resembles
multiple TPE models as its back-end surrogate. Other eye-catching examples
besides SMBO algorithms are: Li et al. [59] uses a RBF networks to analyse
ultrasound images; Support Vector Regression (SVR) and gradient boost-
ing regression tree [34, 72] are applied in [28] to model machine learning
tasks. To come to the point, all the mentioned surrogate models are natu-
rally supported or modified to support discrete variables (e.g. binary, ordinal
and categorical) or structures (tree, graph, etc) which primarily fall into the
first and the sixth category of the six strategies defined in [6]. A detailed
walk-through of four notable surrogate models that suit discrete cases are
presented in the next section.
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2.2 Types of Surrogate Models Studied in the The-
sis

Four types of surrogate models that naturally supported or can be patched
to support discrete variables/structures are used in our thesis, namely Ra-
dial Basis Function interpolation (RBF), Support Vector Machine (SVM)
regression, Kriging models (a.k.a Gaussian process regression) and Random
Forest regression (RF) as a representative for tree-based models.

RBF Interpolation

Radial basis function interpolation is firstly proposed by Hardy in [47]. The
idea is originated on modeling topography with high accuracy. Researchers
later extended the usage of RBF to global optimization tasks [22, 44, 68].
The core idea behind RBF interpolation is to assign a distance-dependant
transformation (function) ϕ(‖ · ‖) to all data points (vectors) ~x w.r.t prede-
fined centers points (vectors) ~c and then linearly combined these functions
to simulate the original objective(s). A formal definition of this interpolation
process for Equation 1.0.1 can be defined as follows:

f̂(~x) =
n∑
i=1

wiϕ (‖~x− ~ci‖) . (2.2.1)

where {~c}n are the observable and trainable data points from S, {w}n are
the weights need to be derived and f̂ is the approximation function of
f . Micchelli introduced in a polynomial tail for f̂ , to relax the limitations
imposed on radial basis functions, so that it can guarantee an unique solution
for weights [64]. Afterwards, the interpolation system is shown as follows:

~x ∈ Sd, ~c ∈ Sd

p(~x) = µ0 +−→µ1~x+−→µ2~x
2 · · ·+−→µk~xk

f̂(~x) =
n∑
i=1

wiϕ (‖~x− ~ci‖) .+ p(~x),

where the problem dimensionality is d, ~p(x) is a k-th order polynomial func-
tions of ~x, µ and w are a series of weights that need to be computed. These
weights (w and µ) can be obtained by solving the following linear system (in
practice using e.g. SVD inversion):[

Φ P
PT 0(kd+1)×(kd+1)

] [
~w
~µ′

]
=
[

~f

0(kd+1)

]
, (2.2.2)

where Φ ∈ Rn×n is a matrix of radial basis functions with Φij = ϕ (‖~ci − ~cj‖),
P ∈ Rn×(kd+1) is a matrix with

(
1, ~x(i), . . . , ~x

k
(i)

)
in its ith row and 0(kd+1)

9
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and 0(kd+1)×(kd+1) are two zero vector/matrix. Illustration and implemen-
tations of RBF interpolation in this thesis are largely based on the work
of [5] and [22]. Additionally, Bagheri et al [5] introduced in an uncertainty
quantification for RBF interpolation on a data point ~xi ∈ Sd as follows,

Σrbf = ϕ (‖~xi − ~xi‖)− ~ΦTi Φ
−1~Φi, (2.2.3)

where ϕ (‖~xi − ~xi‖) is a RBF-dependant constant value, ~Φi is the RBF matrix
for point ~xi. A break-through of their innovation is, it enables us to compute
a probabilistic-based infill criterion (e.g. expected improvements) on the RBF
interpolation model.

Kriging Interpolation

Kriging interpolation, a.k.a Gaussian process regression, is named after D.G.
Krige in recognition of proposing the prototype of the method [58]. Origi-
nated in geostatistics, Kriging interpolation has now become widely used in
global optimization. The original EGO algorithm [56] is in nature based on
Kriging interpolation, examples of other applications are [20, 23].

Kriging interpolation features two key components. The first one is a
linear combination of known functions, which are exclusively defined on
individual data points. The another one is the appending stochastic process.
A definition of universal Kriging [76] over function f(~x) can be given as
follows:

f̂(~x) =
k∑
i=1

wiξi(~x) + P (~x), ~x ∈ S (2.2.4)

where ξ is a basic function of ~x (e.g. constants, linear and polynomial),
w’s are the weights and P (~x) is a predefined random process over x. More
importantly, P is with zero mean and its spatial covariance function is defined
as,

cov
[
P
(
~x(i)

)
, P
(
~x(j)

)]
= σ2C

(
~x(i), ~x(j)

)
,

where C is a correlation function (normally defined over distances between
data samples) and σ is the variance of P . In terms of solving the equa-
tion 2.2.4, Bouhlel et al reviewed several methods for estimating the param-
eters of Kriging interpolation [12].

To better incorporate discrete variables (ordinal and categorical variables)
with Kriging interpolation, Garrido-Merchán and Hernández-Lobato have
recently proposed a mechanism to systematically do continuous relaxation
for each discrete variable, hence it is reported to improve the performance
of Kriging in discrete cases [36]. As the covariance function C is intrinsically
defined on continuous space, their method transforms the variables (rounding
ordinal types and one-hot-encoding categorical types) before they are fed
to covariance function C. Consequently, it guarantees a constant correlation

10
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between any two evaluation points that are different in continuous space
but the same in discrete space, e.g. if considering a one-dimensional case,
C(1.4, 0.6) will be transformed into C(1, 1). In this thesis, the applied discrete-
supported universal Kriging models are largely based on the works of [13],
which can be considered as an extended implementation of [36].

Support Vector Machines

Support vector machines (SVMs) is a group of well-known statistical learning
algorithms firstly proposed by Cortes and Vapnik in 1995 [17]. It has been
widely used for classification and regression analysis and it naturally support
discrete variables. The core idea is, given data that are not linearly sepa-
rable, the SVMs will firstly map original data to higher-dimensions and then
determine a set of hyperplanes which can maximize the linear separability
of data in the new space. A formal procedure of ε−SVM in approximating
a function f(~x) is more or less equivalent to solve the following problem:

min
w,b,p+,p−

1
2w

Tw + C
n∑
i=1

(p+
i + p−i ), (2.2.5)

where w and b are the parameters of linear function, C is the coefficient
for penalties and p+, p− are two positive punishments that measure how
far a data sample is above or below its nearest hyperplane ε, respectively.
Moreover, formula 2.2.5 is subjected to two constraints,

f(~xi)− wTφ(~xi)− b ≤ ε+ p+
i ,

wTφ(~xi) + b− f(~xi) ≤ ε+ p−i ,

where φ(~x) is a kernel function that maps data to higher dimensions. Our
implementations of SVMs are exclusively based on the well-known scikit-
learn package [69].

Random Forest

Random forest (RF) is a ensemble learning algorithm for solving classification
and regression tasks [14]. It features a bagging type of ensemble of decision
trees by aggregating results of each tree to make final prediction, thereby
RF can overcome the high-variance (over-fitting) phenomenon commonly
seen in using a single decision tree. Moreover, during the training (fitting)
session, each decision tree is only exposed to a random subset of training
samples and the best split in each of its node is determined either from all
input features or from a subset of features [15]. Two outstanding aspects
of random forest regression are: it is designed to be capable of handling
discrete variables; it has a structure that is suitable to parallelize [85]. In this
thesis, we mostly followed the implementations of Random Forest regression

11
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provided by scikit-learn [69]. Moreover, in an effort to fit random forest with
probabilistic-based infill criteria (see Section 3.4), we applied the uncertainty
quantification mechanism proposed in [50] and implemented by [85].
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3
The Proposed Algorithm

In this chapter, a new Self-Adaptive Multi-surrogate Assisted Discrete
Efficient Global Optimization (SAMA-DiEGO) algorithm is proposed,
utilizing the power of multiple surrogate models and online model
selection technique to efficiently optimize expensive objective functions

under limited budgets.

3.1 Overview
The proposed self-adaptive multi-surrogate assisted discrete efficient global
optimization (SAMA-DiEGO) algorithm features concurrent management
of various kinds of surrogates to approximate and explore the landscape
of an objective function from different perspectives. A high-level pseudo-
code is presented in Algorithm 2. The algorithm takes all given surrogates
into consideration and firstly generate initial samples following the strategy
described in Section 3.2 and determine a pool of promising surrogates by
screening out incompatible ones based on the initial samples (Section 3.3.1).
The main loop starts with selecting the best surrogate to optimize in the
current iteration (Section 3.3.2) and then instantiates a pre-defined infill
criteria according to the best surrogate. Afterwards, the next solution to
be evaluated is chosen by the back-end optimizer based on the infill criteria
(Section 3.4). Lastly, all the surrogates within the model pool are updated.
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Algorithm 2: SAMA-DiEGO. Input: Objective functions f(x), de-
cision parameters’ lower and upper bounds [lb,ub]d ⊂ Rd, number
of initial samples Ninit, maximum evaluation budget Nmax, model
configurations M (ϕ), number of available parallelisms P , selection
criteria C, infill criteria I. Output: Evaluated best solution.
1 Function SAMA-DiEGO(f , [lb,ub], Ninit, Nmax, M , C, P , I):
2 X← {x1, · · · ,xN } . Generate initial design, X ∈ Rd×N
3 Y← f(X) . Obtain objective scores, Y ∈ RN

. Validation on feasibility of surrogates
4 S̃S,M∗ ← ModelVerification (M , X, Y, P , C)

. Get the best model config. after verification
5 m̂← GetFirstOf(M∗)
6 n← Ninit

7 while n ≤ Nmax do
8 S̃S ← []
9 Ŷ← Standardize(Y) . See Section 3.3.1

10 for ϕ ∈M∗ do . For each model configuration
11 S ← CreateAndFit(ϕ,X, Ŷ) . Fit models
12 S̃S ← [S̃S S] . Add the model into sequence
13 end
14 ȳ← Mean(Y) . Get the mean of fitness values
15 σ ← Std(Y) . Get the standard deviation
16 ybest ← UpdateBest (Y) . Update the best-so-far
17 ŷ∗best ← (ybest − ȳ) / σ . Standardization

. Get the best model by configuration
18 Ŝ ← GetModelByConfig(S̃S, m̂)
19 IC← I(Ŝ, ŷ∗best) . Instantiate infill criteria

. Find best new solution w.r.t IC
20 xn ← MultiStartOptimize(IC, Ŝ, P )
21 yn ← f(xn) . Evaluate the new solution
22 ŷ∗n ← (yn − ȳ) / σ . Standardize the new sample

. Rank and select the best model
Ŝ ←ModelRank(S̃S,xn, ŷ∗n, P, C)

23 m̂←GetConfigOfModel(Ŝ)
24 X← [X xn] . Add new solution, X ∈ Rd×(n+1)

25 Y← [Y yn] . Add the new fitness value, Y ∈ Rn+1

26 n← n+ 1
27 end
28 xbest, ybest ← FindBest (X, Y) . The best w.r.t. Y
29 return (xbest, ybest)
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3.2 Design of Experiments

A surrogate-assisted algorithm normally requires data samples (with objec-
tive values) to initialize and train its surrogate. In [48], three initialization
methods (design of experiments methods) for combinatorial optimization
are compared. It suggested that D-optimal [21] is the strongest on low-
dimensional problems but its performance are largely problem-dependent
and relies on its internal model. Whereas Latin hypercube sampling (LHS)
is relatively easy-to-configure and independent from problems. Consequently,
our SAMA-DiEGO utilizes LHS to generate initial samples.

LHS was firstly proposed by McKay et al. in 1979 [63]. Assume sam-
pling M items for a discrete problem with N variables. LHS firstly divides
each variable into M non-overlapping equal-sized intervals and within each
interval, a value is determined under a specified strategy, hence there are
M values for each variable. Afterwards, an ordinal one-dimensional array
of these values for the ith variable Xi as ~vi

(1×N). M data samples can
then be constructed by sequentially concatenating all the ~vi

(1×N) arrays.
Subsequently, the output of LHS is a S(M×N) matrix of which each row
explicitly represents a data sample.

The LHS in SAMA-DiEGO follows the implementation of [13], where a
specifically designed enhanced stochastic evolutionary algorithm [52] is used
as the strategy to select value in each interval. An example of performing
LHS on a search space with 2 variables (X1 ∈ Z [0,6], X2 ∈ Z [0,6]) to generate
7 samples are given in Figure 3.2.1. Additionally, an example of performing
LHS on binary encoded search space is provided in Table 3.2.1.

Figure 3.2.1: An example of doing
LHS on a discrete search space with
N = 2, M = 7. The blue dots are the
sampled data points.

x1 x2 x3 x4 x5 x6 x7
1 0 1 0 0 1 0 0
2 1 1 1 1 0 0 0
3 0 1 0 1 0 1 1
4 0 0 1 0 1 0 1
5 1 1 0 1 1 0 1
6 1 0 1 1 1 1 0
7 1 0 0 0 0 1 0

Table 3.2.1: An example output of
doing LHS on a binary encoded search
space with N = 7, M = 7 based on the
implementation of [13]

With respect to the choice of number of initial samples, [48] suggested that
if solving a binary encoding problem, there is no obvious gain in allowing the
initial size to be more than 30% of total budgets. Moreover, Bossek et al. [11]
similarly concluded that if optimizing the continuous BBOB benchmark,
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the performance of EGO worsens with increasing of initial size. In fact,
they benchmarked the classical EGO [56] on continuous BBOB with 10
different initial sizes (every 10% from 10% to 100% of the total budget)
and experimentally concluded that 10% is the best setting. Here, in SAMA-
DiEGO, following their findings, the default initial sampling size is set to
10% of total budget however, it is possible to further decrease the sampling
size.

3.3 Online Surrogate Management
The core of SAMA-DiEGO is to maintain a group of promising models and
choose the best one to optimize. In the following sections the two-stage model
management strategy of SAMA-DiEGO will be presented.

3.3.1 Initial Screening

Considering the case where we are optimizing an expensive black-box func-
tion using surrogates, an important step here will be deciding which surrogate
to use. To think from the perspective of efficient optimization, this surrogate
shall be capable of accurately approximating the original objective function.
The concept behind this approximating is regression analysis and hence the
famous no free lunch theorem [91] applies to all surrogate models. Therefore,
it is a challenge for researchers to always choose the right model unless the
landscape and mathematical property of the objective are known. Sometimes,
if the characteristics of the objective function are known upfront, suggestions
can be given based on experience, but this expertise is not always available.
Thus, an initial model selection stage is embedded in the SAMA-DiEGO.

The SAMA-DiEGO is initialized with a large pool of surrogate models
and a batch of initial data samples (with objective values), it then verifies
and selects top-performed models following the procedure described in Algo-
rithm 3. The procedure starts with standardizing the object values (Y ) of
all initial samples (line 9 in Alg. 2) as follows:

Ŷ = Y − ȳ
σ

,

where Ŷ represents the standardized objective values, ȳ and σ are the mean
and the standard deviation of Y , respectively. This standardization is neces-
sary for distance-based surrogates (e.g. Kriging and RBF interpolation). The
data samples are further divided into two sets, namely training set and test
set. Subsequently, all surrogates are fitted with the samples in training set
(same data for all surrogates). Incompetent models are immediately dropped
out – here, an incompetent model is the one that incurs arithmetic errors (e.g.
division by zero and overflow) or under-fits the training samples according
to mean squared error or other metrics e.g. R-squared value. The remaining
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competent models are further evaluated using the test samples (again, same
data for all surrogates) and are ranked based on a set of criteria E. The
evaluation and ranking can focus on exact performance (e.g. mean squared
errors) on one hand and on execution time on the other hand. Consequently,
the top-T performed surrogates in respect to the initial data samples (X
and Y ) can be obtained, here, T is a hyperparameter determined beforehand.
Notably, surrogates are handled in parallel to save the execution time in
SAMA-DiEGO. A practical recommendation from our experiments is to set
the size of final surrogate pool (T ) equal to the number of available CPU
threads (namely, P in Algorithm 2). In this way, the average time needed to
handle surrogates in SAMA-DiEGO is theoretically bounded by the model
with worst average time complexity.

3.3.2 Model Maintenance in Main Loop

Managing model in the main loop is consist of two steps, training and ran-
king. As described in the previous section, outcomes (S̃S and M∗) of model
verification, are arranged with respect to scores of models and the best
model configuration m̂ in verification is the first element of M∗ (line 5 in
Algorithm 2).

The main loop (line 7 to line 27 in Algorithm 2) starts with training all
surrogates on all available standardized data samples. Afterwards, the next
point to be evaluated is found by searching on the landscape of currently
best surrogate. Notably, the best surrogate is always the model with the
best configuration m̂. Moreover, the algorithm updates the choice of best
configuration m̂ in respect to models’ performances on the newly obtained
sample ([xn, yn]) in each iteration. Broadly speaking, the SAMA-DiEGO
largely adapts the online model selection technique that is introduced in [4],
but leaves out the sliding window mechanism since the authors of [4] experi-
mentally discovered that smaller window size produces better results. The
sliding window mechanism smooths the performance of surrogates across
few iterations and consequently leads to consistency in determining the best
surrogate. Our intention of using multiple surrogates in SAMA-DiEGO is to
allow the optimizer explore different approximations of search space provided
by distinct models without using additional calls to the objective function.
Thus, the consistency in model selection is not appreciated in this case.

Training All surrogate models are trained on exactly all the data samples
obtained before current iteration (line 8 to 13 in Algorithm 2).

Ranking Similar to the procedure described in Alg. 3, the model selection
technique in the main loop is in nature a ranking procedure which is
briefly given in Alg. 4. The data sample used in ranking is the new
sample obtained in current iteration.
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Algorithm 3: Model Verification. Input: Model configurations M
(ϕ), solutions X, Fitness values Y , maximum number of candidate
models T , evaluation criteria E Output: Promising models S̃S and
their corresponding configurations M∗.
1 Function ModelVerification(M , X, Y, T , E):
2 Ŷ← Standardize(Y) . Standardize objective space
3 SS ← {}
4 L← {}

. Verify models
5 for ϕ ∈M do . For each model configuration
6 try:
7 S∗ ← Create(ϕ) . Create models

. Fit and evaluate models, where l is the score
of model under criteria E

8 S, l← FitAndEvaluate (S∗, X, Ŷ, E)
9 catch Errors:

10 continue
11 end
12 SS ← [SS S] . Add the survived model into pool
13 L← [L l] . Add models’ corresponding scores
14 end

. From best to worst, rank the survived models
15 Ind← Rank(L)
16 S̃S ← {}
17 M∗ ← {}
18 for i ∈ Ind do
19 S̃ ← Get(SS, i) . Get the good-performed model
20 m← Get(M, i) . Get the model configuration
21 M∗ ← [M∗ m]
22 S̃S ← [S̃S S̃]
23 if Length(S̃S) = T then
24 break
25 end
26 end
27 return (S̃S, M∗)
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Algorithm 4: Model Rank. Input: Candidate models SS, input
solutions X, objective values Y , evaluation criteria E Output: The
most promising model S̃.
1 Function ModelRank(SS, X, Y, E):
2 L← {}
3 for S ∈ SS do . For each model configuration
4 try:

. Evaluate each candidate model
5 l← Evaluate (S, X,Y, E)
6 catch Error:
7 continue
8 end
9 L← [L l] . Add models’ corresponding scores

10 end
. Decide the best model w.r.t models’ scores

S̃ ← DecideBest(SS,L)
11 return S̃

The training and ranking procedures are designed to be carried out in parallel
in SAMA-DIEGO. However, since the surrogates are exclusively making
predicting on one sample in each iteration, the ranking procedure can be
done sequentially. By all means, the decision to do parallelism or not is
subjected to the trade-off between space and time complexity of surrogates.

3.4 Optimization on Surrogates
Locating promising solutions using a surrogate model as the objective func-
tion is a key contributor to the success of surrogate-assisted optimization
and it is rather critical in SAMA-DiEGO since an additional requirement for
allowing rapid switching of surrogate models in the model selection stage is
to perform a one-shot reliable optimization on the surrogate. This process is
consist of two steps, setting up an acquisition function and optimizing the
acquisition function using adequate algorithms.

Acquisition Function The idea of using acquisition functions (a.k.a infill
criteria) in EGO-styled algorithm (line 4 in Alg. 1) is ascribed to
maximize the chance of selecting a feasible data point that can latter
yield considerable improvements in comparison to current best-so-far
point. These functions balance the exploration and exploitation of
algorithms. Here, exploration means searching samples at positions
where the surrogate predicts high uncertainty and exploitation means
sampling at locations where the surrogate predicts better objective val-
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ues. Some notable examples of these acquisition functions are expected
improvement (EI) [56], probability of improvement (PI) [55, 96] and
moment-generating function of improvement (MGFI) [87].
One of the research questions of this thesis (see Section 1.1) is to
experimentally identify whether it is still necessary to use probabilistic-
based infill criteria in discrete optimization if multiple surrogate models
are used. This argument will be discussed in Chapter 4 where expected
improvement (EI) and predicted values of surrogates (PV) are concur-
rently tested.

Back-end Optimizer Any existing optimizer that can effectively and effi-
ciently optimize (non-linear) discrete functions is feasible to be a back-
end optimizer. A function defined on discrete space is non-differentiable,
thus it is infeasible to optimize it with gradient-based methods. Al-
though there exists various traditional numerical optimizers that do
not take derivatives, our SAMA-DiEGO specifically consults on evo-
lutionary computation algorithms for their proven records in solving
discrete problems and consequently selects the following optimizers:

Mixed-Integer Evolutionary Strategy ((µ, λ) MI-ES) In SAMA-
DiEGO, the MI-ES is specifically chosen as one of the optimizers.
Its implementation is exclusively based on the descriptions by Li
et al [60]. The hyper-parameters and the stopping criteria are
largely set according to those in MIP-EGO [85]. Default values
of hyper-parameters are listed in Table 6.2.2 in the Appendix 6.2.
Additionally, the maximum number of function evaluations al-
lowed for each MI-ES run is relatively problem-dependent (see
the experimental setup sections in Chapter 4).

Evolutionary Algorithms The (1 +λ) evolutionary algorithm with
self-adjusting mutation rate [25], shortly (1 +λ)EAr/2,2r (the r/2
and 2r are the two mutation rates controlled by a self-adjusting
parameter r), is implemented for optimizing acquisition function in
handling pseudo-boolean (binary-encoding) problems. The hyper-
parameters are determined in reference to the settings described
in [27].

In Section 3.3, parallelism is assumed in managing multiple surro-
gate models. Similarly, SAMA-DiEGO can be equipped with a parallel
multi-start optimization technique (MultiStartOptimize in line 20 of Al-
gorithm 2). The idea is straightforward: concurrently running multiple
back-end optimizers from different starting points. These optimizers
find various local optimal solutions of surrogate model and the ac-
quisition function. After the back-end optimizers have converged or
stopped, the solution with the highest infill criteria score is selected.
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This becomes certainly profitable if the surrogate model or the acquisi-
tion function features numerous local optimum. The starting points in
SAMA-DiEGO are previous optimal solutions and random samples. It
might be beneficial to introduce in other heuristically generated sam-
ples as starting points but this topic is not within the consideration
of our experiments and further investigation is highly recommended
in the future. As a matter of fact, existing studies on paralleling the
acquisition process of EGO primarily focused on generalizing old or
developing novel infill criteria. Famous examples are Ginsbourger et
al. [38, 39] invents a multi-point Expected Improvement function (q-
EI), which uses either a so-called Constant Liar or a Kriging Believer
strategy to concurrently selects multiple infill points during the ac-
quisition process and evaluates the points in parallel on the original
problem. Wang et al. [89] further develops a novel stochastic gradient
estimator based on infinitesimal perturbation analysis to speed up the
process of maximizing q-EI concurrently on up to 128 infill points.
Similar strategies are applied in [50, 85]. These methods have a prereq-
uisite that it is feasible to compute uncertainty on the predictions of
surrogate models. However, to the best of our knowledge, there is an
absence of studies on uncertainty quantification mechanism for support
vector regression. Thus, in compliance with using all the implemented
surrogates, we consider our method described in this section as more
appropriate one for the uniformity of algorithm.

3.5 Implemented Surrogate Models

As described in Section 2.2, four categories of surrogate models (RBF,Kriging,
SVM and RF) are considered in SAMA-DiEGO. The surrogate pool contains
31 models in total, i.e., nine RBF interpolation models, fifteen (5×3) Kriging
models, six SVM regression models and one RF model:

RBF A total of nine Euclidean-distance-based radial basis functions (ϕ(‖·‖)
in Section 2.2) are considered in this thesis as an extended study
of [22, 23]. Suppose using dij = ‖~xi − ~xj‖2 to shortly describe the
Euclidean distance between two data samples in the search space S, i.e.,
~xi, ~xj ∈ S. The definitions of nine radial basis functions can be therefore
written in Table 3.5.1. Moreover, only linear tail p(~x) =

∑
zt∈~x µt ·zt+1

is considered in the experiments.

Kriging Five correlation functions together with three types of basic func-
tions are adopted in SAMA-DiEGO. A summary of these functions are
given in Table 3.5.2. More details regarding the implementations are
introduced in [13].
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Table 3.5.1: Specifications of the nine radial basis functions in SAMA-DiEGO (see
Section 2.2). Specifically, log(dij) will programmatically return 1 if dij = 0.

Name Definition (ϕ)

Linear dij

Cubic dij · dij · dij

Thin plate spline dij · dij · log(dij)

Polyharmonic spline 4 dij · dij · dij · dij · log(dij)

Polyharmonic spline 5 dij · dij · dij · dij · dij

Multiquadric
√

1 + (dij · dij)

Gaussian function exp(−dij · dij)

Invmultiquadric 1/
√

1 + dij · dij

Invquadric 1/(1 + dij · dij)

Table 3.5.2: Three basic functions and five correlation functions used for Kriging
interpolation. Additionally, the mathematical definitions of correlation functions are
given in Appendix 6.1.1

Correlation Functions C
(
~x(i), ~x(j)

)
Ornstein–Uhlenbeck Process (OUP)
Squared Gaussian Correlation (SGC)
Matérn Correlation 3/2 (Matern32)
Matérn Correlation 5/2 (Matern52)
Gower Distance (Gower)

Basic Functions ξi(~x) Specification
Constant 1
Linear xi
Quadratic xi · xi

SVM and RF As it is introduced in Section 2.2, the implemented SVM
and RF in SAMA-DiEGO are mostly based on the scikit-learn [69]
package. The six kernels defined on two example data samples xi, xj
for ε−SVM regression are shown in Table 3.5.3, where 〈 , 〉 is the inner
product of two samples, γ and r are two hyper-parameters and d is the
degree of polynomial kernel. Three degrees, 2, 3 and 5 are considered
for the polynomial kernels of SVM regression in SAMA-DiEGO. The
γ and r along with other hyperparameters are set using their default
values in scikit-learn.
With respect to random forest, the default implementation and hyper-
parameters provided by scikit-learn are used. Note that starting from
0.22, scikit-learn ensembles 100 decision trees in one random forest
regression instead of 10 in previous versions and our implementation
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Table 3.5.3: The four types of SVM kernels in SAMA-DiEGO (see Section 2.2).

Kernel Name (API) Definition
linear 〈~xi, ~xj〉
poly (γ〈~xi, ~xj〉+ r)d
rbf exp(−γ‖~xi − ~xj‖2)
sigmoid tanh(γ〈~xi, ~xj〉+ r)

is based on the 0.24.2 version.
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4
Experiments and Results

In this chapter, three evaluations of our SAMA-DiEGO on two types of
problem sets with different search spaces are presented. General setups
of the three experiments are introduced in Section 4.1. Meanwhile
Sections 4.2, 4.3 and 4.4 consists of two parts, experimental setup and

results. In experimental setup (Sections 4.2.1, 4.3.1 and 4.4.2), overview of
the chosen test problems together with the problem-dependent settings of
benchmark algorithms are discussed, whereas SAMA-DiEGO is compared
with several existing optimization methods in the results section.

4.1 General Setup
Experiments are carried out on three problem sets:

Single Pseudo-boolean Optimization (PBO) problems Five binary-
encoded combinatorial problems introduced in [27];

Composite Pseudo-boolean Optimization (PBO) problems Nine co-
mposite binary-encoded combinatorial problems. Each problem is a
linear combination of two PBO single problem proposed in [27];

Discretized Black-box Optimization Benchmark (BBOB) problems
Fifteen discretized BBOB problems [46] defined on ordinal variables.

Each benchmark algorithm is experimented with 11 independent runs per
test function as advised in [27]. All the designed experiments are conducted
on Latinum, Octiron and Uridium servers in the LIACS Data Science Lab.
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4.2 A Study on Single PBO Problems

4.2.1 Experimental Setup

Test Problems To identify the superiority of utilizing a surrogate model
when applying categorical evolutionary strategy [60] to solve combi-
natorial problems, Horesh et al. [48] chose five famous combinatorial
maximization problems:

LABS (F18): low auto-correlation binary sequences problem
Ising1D ring (F19) Ising problem defined on one-dimensional ring
Ising2D torus (F20) Ising problem defined on two-dimensional torus
MIVS (F22): maximum independent vertex set problem
NQP (F23): N-queens problem

These problems are further nicely implemented, tested and integrated
into the PBO benchmark [27] for evaluating and comparing combinato-
rial optimization algorithms. Consequently, the five famous problems
are chosen as the test problems for our first experiment. Mathematical
formulations of these five tasks in binary-encoding are summarized in
Appendix 6.1.2 based on the description of [27]. The global optima of
the five functions are known regardless of dimensionality. Moreover,
the dimensionalities of problems are determined in compliance with
the settings of [48], which are {25, 64, 100}.

Benchmarked Algorithms Eleven algorithms that consist of four types of
SAMA-DiEGO and three types of other algorithms are experimented
(see Table 4.2.1) on PBO problems. The (1 + λ) EAs are mutation
only evolutionary algorithms each with a distinct strategy to control its
mutation rate [16, 25, 92]. The SA (1+(λ, λ)) GA is a (1+(λ, λ)) genetic
algorithm with self-adjusting parameters [24]. Except for the traditional
evolutionary algorithms, the Mixed-Integer Parallel Efficient Global
Optimization (MIP-EGO) [85] which uses a random forest regressor as
surrogate and mixed-integer evolutionary strategy (MI-ES) as solver
is also taken into consideration.
The hyper-parameters of evolutionary (genetic) algorithms are set ac-
cording to their C++ implementations provided by [27]. Experiments
on MIP-EGO are carried on its official open-source implementation1.
The maximum number of fitness evaluations (calls to the real objective
function) is fixed to 500 for all benchmarked algorithms across three
dimensionalities.

1https://github.com/wangronin/MIP-EGO
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Table 4.2.1: A table of algorithms implemented for benchmarking on PBO prob-
lems. The hyperparameters of all benchmark algorithms except SAMA-DiEGO are
taken from their papers and public-available implementations, respectively.

Algorithm Specification

(1 + λ) EA

Type Strategy to decide mutation strength
static Use one static mutation rate
r/2, 2r Use two self-adaptive mutation rates [25]
norm Sample from a normal distribution [92]
var The self-adaptive version of norm [92]
logN Use a log-Normal self-adaptive mutation rate (starting with 0.2) [16]
Population size λ is set to 10 for all variants of (1 + λ) EA
A family of non-surrogate assisted/based solvers.

SAMA-DiEGO

Type Acquisition Function Back-end Optimizer
A Prediction Value MI-ES
B Expected Improvement MI-ES
C Prediction Value (1 + 10)EAr/2,2r
D Expected Improvement (1 + 10)EAr/2,2r

SA (1+(λ, λ)) GA
A self-adjusting genetic algorithm [24]
Population size λ is initialized to 25 and self-updated after each iteration.
A non-surrogate assisted/based solver.

MIP-EGO [85]

Mixed-Integer Parallel Efficient Global Optimization
Use random forest regression as surrogate model.
Use moment-generating function of improvement.
Use MI-ES as back-end optimizer

In addition to the benchmarking performance of algorithms mentioned
in Table 4.2.1, results obtained by two more algorithms reported in [48]
are included in our discussion. As described in [48], both algorithms
were benchmarked with tuned hyper-parameters and were allowed to
use up to 2100 calls to the real objective function:

CatES : Evolutionary Strategy withMIES-based categorical self-adaptive
mutation operator [60].

SVM-CatES : Support vector machines regression assisted CatES [48].

Configurations of SAMA-DiEGO Upon running, in our experiments,
SAMA-DiEGO starts with the entire surrogate model pool mentioned
in Section 3.5, among all these available surrogates, top seven mod-
els will survive the model verification stage (see Section 3.3.1), this
number is a hyper-parameter (T in Algorithm 3) and here, seven is
selected in consideration of our available computational resources for
parallelism. Moreover, two criteria (namely E in Algorithm 3) are
applied simultaneously in the verification stage:

Validation Error : The initial randomly generated data samples are
randomly divided into a training part with 70% of total samples
and a validation part with the other 30% samples, this ratio is

26



A Study on Single PBO Problems Chapter 4. Experiments and Results

flexible and it can be changed if needed. All surrogates are fitted
with training samples and tested with the validation samples to
acquire model’s mean squared errors which are later used for
ranking model.

Time : The maximum running time for each model to fit the training
data is set to 30 seconds to limit the overall execution time of the
algorithm. This means our algorithm will disqualify a surrogate
if it takes more than 30 seconds to converge, regardless of their
performance. An alternative strategy, in contrast to our choice, is
to halt the fitting process of a surrogate model as long as it uses
up the time limit.

The initial sampling size of all SAMA-DiEGOs by default is set to
the dimensionalities of problem plus 1. In an effort to tidily manage
computing resources, the number of paralleled multi-start back-end
solvers (see Section 3.4) is designed to the number of qualified models
after model verification, which is 7 in our experiments. This number is
determined on the basis of our available computation resources. The
maximum allowed number of function calls to the surrogate for the
back-end solver is a hyper-parameter and it is unintentionally set to
500 times of the dimensionality in this experiment.

4.2.2 Analysis of Results

The results of the experiments are shown in Table 4.2.2. For each test case,
instead of showing all results obtained by five (1 + 10) EA algorithms (see
Table 4.2.1), the result of the best-performed (1 + 10) EA according to the
Wilcoxon rank sum significance test is exclusively shown in the result table.
SAMA-DiEGO yields best performance on fourteen of the fifteen test cases
except for the 64-dimensional MIVS problems where the (1+10) EA obtained
better result. Moreover, as it is indicated in Budgets Mean columns of the
result table, all types of SAMA-DiEGO can find the global optimum of Ising
problems across three dimensionalities and are also capable of solving NQP
and MIVS on 25 dimensions within 500 fitness evaluations. Unexpectedly,
the single surrogate assisted algorithms MIP-EGO performed worse than
the (1+10) evolutionary algorithms in fourteen of the fifteen cases. Since
SAMA-DiEGO (C and D), SVM-CatES and MIP-EGO all use MI-ES as
back-end solvers, it can be inferred that the gaps in performance of the three
algorithms shall be ascribed to the performance of their individual surrogate
models.

Furthermore, it can be observed that SAMA-DiEGO-B with EI for acquis-
tion function and MI-ES for back-end optimizer achieve better performance
on 64 and 100 dimensions in comparison to other three types. Therefore,

27



A Study on Composite PBO ProblemsChapter 4. Experiments and Results

Table 4.2.2: The experimental results obtained on PBO defined on 25, 64 and
100 dimensions. The results are highlighted in blue if they are significantly better
according to Wilcoxon rank sum test (Mann-Whitney U test) with a confidence
level of 0.95. Additionally, the Budgets Mean columns show the average number of
fitness evaluations over 11 runs used by algorithms to locate the global optimum
(if found otherwise 500). Such results for ES and SVM-CatES are not available in
case they are not provided in [48].

Dimension = 25 Dimension = 64 Dimension = 100
Fitness Value Budgets Fitness Value Budgets Fitness Value BudgetsFunction Algorithm

Group Mean Std Best Mean* Mean Std Best Mean* Mean Std Best Mean*
Ising1D ES 43.36 N/A 50.0 N/A 96.48 N/A 108.0 N/A 142.32 N/A 152.0 N/A

SVM-CatES 46.8 N/A 50.0 N/A 107.12 N/A 112.0 N/A 154.88 N/A 168.0 N/A
MIP-EGO 43.0 1.78 46 500 90.18 2.62 96 500 130.91 1.78 132.00 500
(1 + 10) EA 43.5 3.09 50 485 105.45 3.09 112 500 162.18 7.88 172.00 500
SA (1+(25,25)) GA 43.5 1.92 46 500 103.27 2.86 108 500 153.45 5.47 164.00 500
SAMA-DiEGO-A 50.0 0.0 50.0 259 128 0 128 99 200.00 0.00 200.00 125
SAMA-DiEGO-B 50.0 0.0 50.0 291 128 0 128 66 200.00 0.00 200.00 106
SAMA-DiEGO-C 50.0 0.0 50.0 74 128 0 128 101 200.00 0.00 200.00 115
SAMA-DiEGO-D 50.0 0.0 50.0 27 128 0 128 66 200.00 0.00 200.00 105

Ising2D ES 84.08 N/A 100.0 N/A 181 N/A 196.0 N/A 266.88 N/A 304.0 N/A
SVM-CatES 99.84 N/A 100.0 N/A 203.28 N/A 232.0 N/A 288.88 N/A 308.0 N/A
MIP-EGO 78.54 2.14 88.0 500 166.55 3.53 172 500 245.82 5.75 252.00 500
(1 + 10) EA 90.45 9.38 100.0 407 198.55 9.99 212 500 306.91 9.96 328.00 500
SA (1+(25,25)) GA 88.72 8.14 100.0 485 192.73 7.78 204 500 284.73 5.86 292.00 500
SAMA-DiEGO-A 100.0 0.0 100.0 150 256 0 256 85 400.00 0.00 400.00 123
SAMA-DiEGO-B 100.0 0.0 100.0 177 256 0 256 68 400.00 0.00 400.00 110
SAMA-DiEGO-C 100.0 0.0 100.0 58 256 0 256 85 400.00 0.00 400.00 130
SAMA-DiEGO-D 100.0 0.0 100.0 27 256 0 256 66 400.00 0.00 400.00 105

NQP ES 4.16 N/A 5.0 N/A -36.96 N/A -3.00 N/A -264.3 N/A 24.0 N/A
SVM-CatES 4.56 N/A 5.0 N/A 2.64 N/A 6.00 N/A -15.2 N/A 26.0 N/A
MIP-EGO -0.73 2.67 3.0 500 -247.55 29.94 -193.00 500 -753.3 53.8 -641.0 500
(1 + 10) EA 4.36 0.64 5.0 392 3.55 5.25 8.00 500 -46.6 32.8 7.0 500
SA (1+(25,25)) GA 3.81 0.93 5.0 451 -59.55 22.92 -25.00 500 -288.6 73.7 -186.0 500
SAMA-DiEGO-A 5.0 0.0 5.0 195 3.36 0.48 4.00 500 6.0 1.0 7.0 500
SAMA-DiEGO-B 5.0 0.0 5.0 260 6.00 0.43 7.00 500 6.3 0.6 7.0 500
SAMA-DiEGO-C 5.0 0.0 5.0 260 4.18 0.57 5.00 500 6.3 1.2 8.0 500
SAMA-DiEGO-D 5.0 0.0 5.0 255 4.55 0.50 5.00 500 -4.4 8.4 4.0 500

LABS ES 3.93 N/A 6.01 N/A 2.58 N/A 3.58 N/A 2.11 N/A 2.73 N/A
SVM-CatES 4.31 N/A 6.51 N/A 2.76 N/A 4.03 N/A 2.24 N/A 2.94 N/A
MIP-EGO 3.26 0.45 4.34 500 2.17 0.2 2.69 500 1.77 0.08 1.91 500
(1 + 10) EA 4.16 0.75 4.88 500 3.31 0.32 3.97 500 3.10 0.27 3.55 500
SA (1+(25,25)) GA 4.01 0.94 6.51 500 2.53 0.21 2.83 500 2.19 0.17 2.48 500
SAMA-DiEGO-A 4.80 0.78 6.51 500 2.71 0.21 3.03 500 2.77 0.31 3.32 500
SAMA-DiEGO-B 4.10 0.62 5.58 500 3.69 0.21 4.23 500 3.17 0.34 3.74 500
SAMA-DiEGO-C 4.08 0.59 5.21 500 3.29 0.38 3.94 500 2.48 0.26 2.88 500
SAMA-DiEGO-D 4.57 0.54 5.21 500 3.72 0.34 4.53 500 2.48 0.37 3.06 500

MIVS ES 10.84 N/A 12.0 N/A -1.0 N/A 24.0 N/A -308.6 N/A -99.0 N/A
SVM-CatES 11.66 N/A 12.0 N/A 17.44 N/A 23.0 N/A -63.18 N/A -3.0 N/A
MIP-EGO 8.82 0.83 10.0 500 -370.36 127.11 -116.00 500 -1657.18 263.19 -1069.00 500
(1 + 10) EA 11.45 0.89 12.0 271 26.00 1.54 29.00 500 -21.73 77.64 36.00 500
SA (1+(25,25)) GA 10.63 1.30 12.0 431 -17.18 49.56 21.00 500 -353.36 251.72 23.00 500
SAMA-DiEGO-A 12.0 0.0 12.0 276 11.45 0.99 13.00 500 23.45 6.43 36.00 500
SAMA-DiEGO-B 12.0 0.0 12.0 299 22.73 2.18 26.00 500 28.73 4.05 34.00 500
SAMA-DiEGO-C 12.0 0.0 12.0 282 11.73 1.60 14.00 500 19.73 3.49 24.00 500
SAMA-DiEGO-D 12.0 0.0 12.0 348 10.91 0.90 13.00 500 -182.18 140.53 16.00 500

it is reasonable to consider that SAMA-DiEGO-B is more suitable to solve
higher dimensional problems in comparison with its three sibling algorithms.

4.3 A Study on Composite PBO Problems

4.3.1 Experimental Setup

Test Problems An initiative of organizing this experiment is to extend the
previous study on five single problem to more PBO single problems
at an acceptable computation cost. Similar to the five single problems
introduced in previous section, the PBO problem set [27] also hold
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other 18 functions which, as illustrated in the paper, are primarily
organised by transforming two single problems:

OneMax : count the number of ones in the function.
LeadingOnes : count the number of initial ones in the functions.

Our proposed evaluation method is, despite of experimenting on every
single PBO problems, the benchmark algorithms are evaluated on nine
composite PBO problems (g(~x) in Eq. 4.3.1).
These problems are created by linearly combining two single PBO
problems as follows:

g(~x) = 0.5 · f1(~x) + 0.5 · f2(~x) ~x ∈ [0, 1]n, (4.3.1)

where n is the dimensionality of the problem, f1, f2 are two different
single PBO problems. A specification of the nine pair of single problems
used to create composite problems are given in Table 4.3.1. The first
five cases (Case 1 to Case 5) are determined by us based on conclusions
of [27] and our previous study on single PBO problems (Table 4.2.2):

Case 1 : F10 is the hardest OneMax problems and F17 is the second-
hardest LeadingOnes problem as concluded in [27].

Case 2 : The composite function is a combination of two single PBO
problems (F18 LABS and F20 Ising2D on Torus) tested in Sec-
tion 4.2.

Case 3 : Combining a previously tested PBO problem (MIVS) with
a new Ising2D problem defined on triangular lattice graph.

Case 4 : Concatenated Trap (F24) and NK landscapes (F25) are two
problems added into the official repository2 of the PBO problem
set [27].

Case 5 : A combination of F19 Ising1D on Ring and F23 N-queen
problems.

On the contrary, the choices of single problems in the rest four cases
(Case 6 to Case 9) are uniformly randomly sampled from F1 to F25.
All nine composite problems are instantiated on 25 and 36 dimensions.
Moreover, the instance mechanism proposed in [27], which camouflages
all input bit strings by methodical permutations, is applied to introduce
in more difficulties. Doerr et al. [27] mentioned that the instance id
which controls the permutation can be any arbitrary value. Therefore,
this value is unintentionally set to 7 in this study.

2https://iohprofiler.github.io/IOHproblem/
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Table 4.3.1: The nine pairs of single PBO problems used to create composite PBO
problems (Eq. 4.3.1).

Function 1 Function 2
Case 1 OneMax with fitness perturbation (F10) LeadingOnes with fitness perturbation (F17)
Case 2 LABS (F18) Ising2D on Torus (F20)
Case 3 Ising2D on Triangular Lattice (F21) MIVS (F22)
Case 4 Concatenated Trap (F24) NK Landscapes (F25)
Case 5 Ising1D on Ring (F19) N-queen Problems (F23)

Case 6 Ising2D on Torus (F20) LeadingOnes with Neutrality (F13)
Input bit string is downsampled.

Case 7 MIVS (F22) OneMax with Epistasis (F7)
Input bit string is locally perturbated

Case 8 LeadingOnes with Dummy Variables (F12) NK Landscapes (F25)
Case 9 OneMax with Dummy Variables (F5) LeadingOnes with fitness perturbation (F16)

Configurations of Benchmarked Algorithms The eleven algorithms (Ta-
ble 4.2.1) tested on PBO single problems are also benchmarked on com-
posite PBO problems. Moreover, another efficient non-surrogate solver
called Univariate Marginal Distribution Algorithm [66], namely UMDA,
is employed as well. Implementations of UMDA and its hyperparam-
eters are also determined in accordance to [27]. The maximum number
of fitness evaluations (calls to real objective function) is specified to 200
for 25 dimensions and 300 for 36 dimensions, which are approximately
eight times of the dimensionality. Only SAMA-DiEGO-C which uses
prediction value as infill criteria and (1+10) EA with two self-adjusting
mutation rates (r/2, 2r in Table 4.2.1) as back-end solver was bench-
marked due to the availability of computation resources. The maximum
number of calls to the surrogate for the back-end solver is still 500 times
the dimensionality, which remains the same as that in previous single
PBO test cases.

4.3.2 Analysis of Results

It can be seen from the results in Table 4.3.2, SAMA-DiEGO clearly outper-
forms other benchmark algorithms in all cases on 25 dimensions and eight of
the nine cases on 36 dimensions at the significance level of 0.05 of a Mann-
Whitney U test. The (1 + 10) EA family achieved a comparable result on 36
dimensions in Cases 4, 7 and 8 if compared to SAMA-DiEGO.

Moreover, the global optimum of each test problem on 25 dimensions
is found using a brute-force search over all 225 solutions. The number of
runs that a benchmark algorithm found the global optimum per test prob-
lem is recorded in the Hit column of the table. It can be observed that
SAMA-DiEGO-C can locate the optimum in Cases 3, 5 and 9 in all the
eleven independent runs, and in at least nine out of eleven runs in Cases
2 and 6. Additionally, SAMA-DiEGO is the only algorithm that can reach
the global optimum in Cases 1 and 7. It can be concluded that among all
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the benchmarked algorithms in this study, SAMA-DiEGO-C shows higher
capability of finding promising results in limited budgets.

The performance of MIP-EGO can be improved if hyper-parameter opti-
mization is applied beforehand as it is suggested by its authors [85]. However,
we argue that the influence of hyper-parameters on performance should not
be critical for surrogate assisted algorithm as the essential purpose of using
surrogate is to save calls to original problems.

4.4 A Study on Discretized BBOB
Having discussed how our algorithms performed on the pseudo-boolean
maximization problems, the last experiment addresses benchmarking on
integer-valued minimization problems. The benchmark is constructed by
discretizing the well-known Black-Box Optimization Benchmark noiseless
(BBOB-noiseless) [46] as the original BBOB-noiseless focuses on continuous
minimization problems. The original BBOB-noiseless problem set contains
24 specifically designed noise-free-problems which can be classified into five
categories with respect to their properties e.g. degree of conditioning and
structural characteristics [46]. Each of these problem challenges a search
algorithm from unique perspectives and is capable of suggesting the effective-
ness of an algorithm in handling similar problems. More details regarding
definition and property of these problems can be found in [46]. The utilized
discretization method in our study is proposed in and implemented by [70].
More concrete explanations can be found in [83].

Similar to the categorical space defined in previous two PBO experiments,
the ordinal search space for BBOB shall hold a sizeable amount of solutions,
on which it is generally infeasible to conduct brute-force search. Bossek et
al. [11] considered 10 as the highest dimension to benchmark a Bayesian
optimization algorithm on the original BBOB-noiseless function set. In ref-
erence to their settings along with our expectation of challenging benchmark
algorithms with an enormous search space, a solution in our experiment
contains 15 variables and each variable has 101 values (0 to 100). Therefore,
the search space comprises approximately 1030 distinct solutions in total.

4.4.1 A Preliminary Study on Discretized BBOB Problems

An independent preliminary study is firstly carried out to identify the capa-
bility of all the implemented surrogate models (see Section 3.5) in fitting the
created discretized BBOB problems. The first five problems (P1 to P5) are
not taken into considerations for the reason that they are separable functions,
which means the search process on these problems can be simply reduced
to multiple one-dimensional search procedures [46]. Thus, our interest is on
the other 19 non-separable functions (P6 to P24) that are more complex
and more difficult to solve. For each function between F9 to F24, 500 data
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Table 4.3.2: Performance of algorithms benchmarked on nine PBO composite max-
imization problems defined on 25 and 36 dimensions. The result(s) are highlighted
in blue if they are significantly better according to Wilcoxon rank sum test (Mann-
Whitney U test) with α = 0.05. On 25 dimensions, the number of runs that each
algorithm found global optimum per test case is recorded in the Hit column.

Dimension = 25 Dimension = 36
Fitness Value Fitness ValueCase Algorithm

Group Mean Std Best Hit Mean Std Best
Case 1 (1 + 10) EA -742.34 2.64 -737.35 0 -738.46 1.84 -734.59

SA (1+(25,25)) GA -742.55 1.93 -737.35 0 -738.28 1.33 -736.56
UMDA -741.01 2.12 -737.35 0 -737.21 2.60 -731.82
MIP-EGO -740.40 1.94 -737.75 0 -737.82 1.40 -735.38
SAMA-DiEGO-C -737.78 3.19 -734.59 2 -728.52 3.07 -725.90

Case 2 (1 + 10) EA -738.04 0.96 -736.13 0 -731.34 1.27 -729.01
SA (1+(25,25)) GA -738.50 1.04 -737.65 0 -731.98 1.23 -729.80
UMDA -739.85 0.72 -738.45 0 -734.20 0.85 -732.84
MIP-EGO -739.21 0.66 -737.66 0 -733.98 0.87 -732.05
SAMA-DiEGO-C -734.84 0.89 -734.56 10 -728.22 2.09 -725.88

Case 3 (1 + 10) EA -726.15 1.70 -724.72 6 -712.87 1.41 -711.69
SA (1+(25,25)) GA -727.98 1.81 -724.72 1 -720.05 6.21 -713.66
UMDA -728.34 1.46 -724.72 1 -715.53 1.39 -713.66
MIP-EGO -731.72 1.46 -728.66 0 -733.80 9.35 -721.16
SAMA-DiEGO-C -724.72 0.00 -724.72 11 -711.87 0.57 -711.69

Case 4 (1 + 10) EA -752.94 0.09 -752.77 0 -751.92 0.12 -751.74
SA (1+(25,25)) GA -752.99 0.06 -752.91 0 -752.20 0.12 -751.96
UMDA -753.06 0.07 -752.98 0 -752.32 0.10 -752.12
MIP-EGO -753.12 0.04 -753.08 0 -752.42 0.09 -752.28
SAMA-DiEGO-C -752.89 0.04 -752.78 0 -751.92 0.05 -751.81

Case 5 (1 + 10) EA -744.64 0.31 -744.46 8 -740.69 0.90 -740.11
SA (1+(25,25)) GA -745.82 1.64 -744.46 3 -746.29 4.33 -740.51
UMDA -745.32 0.67 -744.46 1 -740.83 0.33 -740.51
MIP-EGO -748.69 1.64 -744.85 0 -758.99 2.70 -754.33
SAMA-DiEGO-C -744.46 0.00 -744.46 11 -740.11 0.00 -740.11

Case 6 (1 + 10) EA -734.87 1.95 -731.43 1 -728.20 3.47 -722.74
SA (1+(25,25)) GA -735.88 2.53 -731.43 1 -729.42 2.38 -725.11
UMDA -737.75 1.85 -733.01 0 -732.58 1.46 -730.24
MIP-EGO -737.31 1.39 -734.59 0 -731.75 1.09 -729.85
SAMA-DiEGO-C -732.43 2.14 -731.43 9 -723.14 3.32 -721.16

Case 7 (1 + 10) EA -743.77 0.74 -742.48 0 -739.22 0.92 -737.75
SA (1+(25,25)) GA -744.21 0.83 -742.88 0 -742.77 5.91 -738.53
UMDA -745.46 0.93 -743.67 0 -744.06 4.44 -741.30
MIP-EGO -744.82 0.85 -743.27 0 -756.48 8.46 -742.48
SAMA-DiEGO-C -743.42 0.74 -742.09 1 -739.68 1.26 -737.35

Case 8 (1 + 10) EA -748.88 0.62 -747.82 0 -747.12 2.82 -741.86
SA (1+(25,25)) GA -750.05 0.70 -748.58 0 -748.21 1.58 -744.24
UMDA -750.86 0.65 -749.79 0 -749.88 0.98 -747.80
MIP-EGO -748.83 0.94 -746.24 0 -749.06 0.50 -747.79
SAMA-DiEGO-C -747.15 1.35 -745.84 4 -746.12 2.46 -741.85

Case 9 (1 + 10) EA -738.86 3.00 -735.77 4 -733.73 4.07 -727.48
SA (1+(25,25)) GA -740.11 2.14 -737.75 0 -736.60 1.33 -735.38
UMDA -740.94 1.64 -738.53 0 -736.60 1.42 -734.59
MIP-EGO -742.02 0.82 -740.51 0 -739.00 0.99 -737.35
SAMA-DiEGO-C -735.77 0.00 -735.77 11 -727.48 0.00 -727.48
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Figure 4.4.1: The heat map of R2 scores of 31 surrogate models obtained on 19
discretized BBOB functions using 500 data samples. Notably, all scores that are
less than -1 are raised to -1 for nicer visualization.

samples (input solutions and their output, i.e., values of objective function
for these solutions) are generated by performing Latin hyper cube sampling
(see Section 3.2). The data samples are later utilized to test the performance
(using R2 score) of surrogate models through a 5-fold cross-validation. The
whole procedure is then repeated twice with different data samples to obtain
more reliable outcomes. R2 score is chosen since it is independent from the
scale of problems.

Through the proportion of explained variance, R2 score can suggest good-
ness of fit of a surrogate model and, as a result, a measure of how well the
model is likely to predict unseen landscape of a problem. Generally speaking,
the closer the score is to one, the better the surrogate model performs. A heat
map is shown in Fig. 4.4.1 describing the results (mean R2 score over three
repetitions of 5-fold cross-validation) obtained by each surrogate model on
19 discretized BBOB functions. The purple cells are cases where surrogate
models obtained a mean R2 score larger than 0. The raw scores are given
in Appendix Tab. 6.2.1. It is possible to roughly categorize the discretized
BBOB problems into three groups based on the wellness of fitting of the
implemented surrogates:

Good (G) Most of the surrogates obtained R2 scores greater than 0.5 on
problems 6, 7, 8, 10, 11, 13, 15 and 20, which suggests that these
models can extrapolate unseen landscapes of problems from available
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data samples.

Moderate (M) Most of the surrogates obtained R2 scores that are greater
than 0 but less than 0.5 on problems 12, 14, 17, 18 and 24, whereas
the other models only got negative scores. It means that surrogate are
capable of explaining some landscapes of the problems.

Bad (B) It seems to be very hard for surrogate models to interpolate prob-
lems 9, 16, 19, 21, 22, 23 as nearly all models acquired negative R2

scores. Considering the modality of problems, except for the problem
9 which is uni-modal, the other 5 are all multi-modal problems.

4.4.2 Experimental Setup

Test Problems Given the results of preliminary study, all the six bad prob-
lems are chosen since it is important to study the performance of a
surrogate assisted algorithm (SAMA-DiEGO) if its back-end surro-
gate(s) struggle with interpolating problems. Moreover, nine out of
thirteen simple and moderate problems are randomly sampled into the
test problems. The full list of fifteen test problems are given below, the
capital letter G, M, B is the wellness of fitting as described in previous
section.

Problem 6 (G) : Attractive Sector Function
Problem 7 (G) : Step Ellipsoidal Function
Problem 8 (G) : Rosenbrock Function
Problem 9 (B) : Rosenbrock Function, rotated
Problem 11 (G) : Discus Function
Problem 13 (G) : Sharp Ridge Function
Problem 15 (G) : Rastrigin Function
Problem 16 (B) : Weierstrass Function
Problem 18 (M) : Schaffers F7 Function, moderately ill-conditioned
Problem 19 (B) : Composite Griewank-Rosenbrock Function F8F2
Problem 20 (G) : Schwefel Function
Problem 21 (B) : Gallagher’s Gaussian 101-me Peaks Function
Problem 22 (B) : Gallagher’s Gaussian 21-hi Peaks Function
Problem 23 (B) : Katsuura Function
Problem 24 (M) : Lunacek bi-Rastrigin Function

More descriptions on the definitions and properties of these functions
can be found in [46].
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Benchmarked Algorithms Three famous surrogate assisted algorithms
that can exactly accommodate to discrete variables, namely Sequen-
tial Model Algorithm Configuration (SMAC) [50, 62], adaptive Tree-
structured Parzen Estimator approach (TPE) [8] and MIP-EGO [85]
are selected. Moreover, two non-surrogate assisted optimization algo-
rithms are also experimented with, namely MI-ES [60] and P3-GOMEA [28].
MI-ES is the back-end solver of SAMA-DiEGO and MIP-EGO, there-
fore it can help to identify whether it is beneficial to use surrogate
model to solve ordinal problems. P3-GOMEA is a state-of-the-art ver-
sion of the Gene-Pool Optimal Mixing Algorithm (GOMEA) [82] that
can efficiently handle discrete optimization problems. As for SAMA-
DiEGO, only the A, B types are considered (see Table 4.2.1) since
the alternative back-end optimizer (1 + 10) EAr/2,2r does not directly
fit for ordinal variables. Comparing the result of A type and B type
of SAMA-DiEGO can also provide guidance to the selection of infill
criteria (i.e. Prediction Value versus Expected Improvement).
All algorithms are allowed to use 500 fitness evaluations (calls to real
objective function), which is more than 30 times of the dimensionality
of problems. With this relatively abundant budget, it is feasible to
analyse the convergence speed. Additionally, the initial sampling sizes
for SAMA-DiEGO and MIP-EGO are both set to 10% of the total
budgets in reference to the suggestions of [11].
With respect to realization of algorithms, the benchmarking is exe-
cuted upon the widely used and stable implementations of SMAC3

(v1.1.1) [62], TPE4 (v0.2.5) [9], MIP-EGO5 (v2.0.0) and P3-GOMEA6.

4.4.3 Analysis of Results

Discussions on the experimental results are divided into two parts with regard
to the wellness of surrogate models in fitting problems (Section 4.4.1).

Good and Moderate problems The results showed in Table 4.4.1 are di-
verse with respect to the best-performed algorithm for different test
functions. SAMA-DiEGO-A with prediction value as infill criteria and
MI-ES as back-end solvers outperformed in four out of eight test cases
(problems 6, 7, 8, 11 and 20), but slightly lost to adaptive TPE on P18
and SMAC on P13 and P15. What’s more, SAMA-DiEGO-B leads the
performance with respect to minimum average and median objective
values on problem 24 to a small degree. Lastly, adaptive TPE per-

3https://automl.github.io/SMAC3/master
4https://github.com/hyperopt/hyperopt
5https://github.com/wangronin/MIP-EGO
6https://github.com/ArkadiyD/SAGOMEA
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forms the best on the moderately ill-conditioned Schaffers F7 problem
(P18 in Table 4.4.2). In addition to the tabular result, the convergence
plots of the benchmarked algorithms are displayed in Figs. 4.4.2, 4.4.4
and 4.4.5. From the figures, it can be observed that SAMA-DiEGO-A
shows advantage in solving four unimodal problems (P6, P7, P8, P11),
followed by SMAC which overtakes SAMA-DiEGO-A in latter phase
on P13. Comparing the plots of SAMA-DiEGO-A and SMAC, the
former converges faster, whereas the latter shows strong capability of
escaping from local optima (e.g. P6, P13 and P24). It is also notice-
able that adaptive TPE and MIP-EGO always converge rapidly in the
beginning phase (up to 50 function calls) on all problems among all
the benchmarked algorithms. Another finding is that both MIP-EGO
and SAMA-DiEGO-B are suffering from slow convergence speed in
comparison to the other algorithms.

Bad problems The results are presented in Table 4.4.2. SAMA-DiEGO-A
obtains the minimum (best-performed) mean and median performance
on problems 9 and 19. SAMA-DiEGO-B slightly beats other algorithms
on Katsuura Function (P23) and marginally lost to SMAC on the two
Gallagher’s Gaussian problems (P21 and P22). Besides problems 21
and 22, SMAC also secures a lead on Weierstrass problem (P16) and is
closely followed by SAMA-DiEGO-A. In contrast to the comparatively
poor performance observed on G and M problems, MI-ES Trajectory
of convergence on the problems of benchmarked algorithms are given
in Figs. 4.4.3, 4.4.6 and 4.4.7. Similar to the plots obtained on good and
moderate problems, Adaptive TPE and MIP-EGO still converges faster
in the beginning in all cases but are surpassed by others in later phase.
SMAC dominates the performance on the two Gallagher’s Gaussian
problems (P21 and P22) which is in agreement with the tabular results.
Moreover, it can be observed from Fig. 4.4.6 that SAMA-DiEGO-A
is also a competent solver for multi-modal problems with adequate
global structure as defined by [46] (P16 and P19). The trajectories of
SAMA-DiEGO-A and SAMA-DiEGO-B acquired on problems 21, 22
and 23 indicate that the former is suffering from multi-modal prob-
lems with numerous global optima, whereas the latter with expected
improvements as infill criteria is a more suitable option here.

Generally speaking, if discussing the usage of SAMA-DiEGO in respect of
structural property of ordinal problems as defined in [46]: SAMA-DiEGO-A
is a competent solvers for uni-modal problems and multi-modal problems
with adequate global structure, whereas SAMA-DiEGO-B appears to be
more capable of handling multi-modal problems with weak global structure.
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Table 4.4.1: Benchmark results on the discretized G and M (P24) BBOB problems
(Section 4.4.1). The best performance for each test problem in terms of median and
mean values are highlighted in blue.

Dimension = 15
Fitness ValueFunction Algorithm Algorithm

Specification Best Median Mean Std
MI-ES N/A 172869.15 407604.29 428103.05 209158.25
MIP-EGO Random Forest 21227.12 61558.02 53880.90 13787.24
SAMA-DiEGO-A PV-ES 76.35 93.44 94.86 17.81
SAMA-DiEGO-B EI-ES 233.04 11822.81 14705.90 10733.29
P3-GOMEA N/A 148.02 3884.69 12891.50 18872.99
SMAC4 HPO 72.05 99.15 99.16 16.20

P6 (G) Attractive Sector

Adaptive TPE N/A 387.80 6884.71 7191.29 5945.59
MI-ES N/A 361.10 682.51 765.20 314.34
MIP-EGO Random Forest 223.94 269.91 276.73 32.11
SAMA-DiEGO-A PV-ES 104.07 114.74 117.48 11.39
SAMA-DiEGO-B EI-ES 146.07 180.11 188.11 31.78
P3-GOMEA N/A 156.84 209.53 206.48 28.50
SMAC4 HPO 111.35 126.16 128.40 11.47

P7 (G) Step Ellipsoidal

Adaptive TPE N/A 139.31 164.78 177.11 25.68
MI-ES N/A 43955.62 104023.45 111845.50 46027.14
MIP-EGO Random Forest 14296.34 17477.50 17779.66 2520.72
SAMA-DiEGO-A PV-ES 283.74 606.00 609.30 191.79
SAMA-DiEGO-B EI-ES 1073.39 5357.91 4928.82 2720.72
P3-GOMEA N/A 42008.57 59620.57 69886.26 25249.70
SMAC4 HPO 565.94 2225.38 4038.31 4345.35

P8 (G) Rosenbrock Original

Adaptive TPE N/A 1302.25 4796.49 5614.59 2990.26
MI-ES N/A 206.25 279.45 207713.44 452104.85
MIP-EGO Random Forest 166.11 233.11 337.58 276.67
SAMA-DiEGO-A PV-ES 152.51 179.92 185.90 19.26
SAMA-DiEGO-B EI-ES 168.88 215.24 217.75 30.85
P3-GOMEA N/A 160.71 205.91 207.61 27.70
SMAC4 HPO 135.17 187.86 199.90 41.14

P11 (G) Discus

Adaptive TPE N/A 125.13 217.01 229.29 78.24
MI-ES N/A 1805.62 2177.03 2186.14 225.16
MIP-EGO Random Forest 943.29 1009.77 1042.65 87.45
SAMA-DiEGO-A PV-ES 268.56 514.22 492.19 122.41
SAMA-DiEGO-B EI-ES 625.11 827.61 863.90 146.71
P3-GOMEA SVR 656.29 856.28 855.72 145.99
SMAC4 HPO 258.09 417.76 412.22 88.60

P13 (G) Sharp Ridge

Adaptive TPE N/A 668.11 758.38 762.45 84.39
MI-ES N/A 1337.55 1544.87 1572.05 223.00
MIP-EGO Random Forest 1231.29 1341.62 1327.01 51.03
SAMA-DiEGO-A PV-ES 1123.21 1172.55 1167.24 23.65
SAMA-DiEGO-B EI-ES 1172.35 1207.25 1217.00 34.37
P3-GOMEA N/A 1177.40 1217.94 1226.36 36.73
SMAC4 HPO 1098.96 1170.15 1163.20 30.73

P15 (G) Rastrigin

Adaptive TPE N/A 1173.00 1198.76 1201.05 20.33
MI-ES N/A 25393.04 72963.97 76338.17 33981.88
MIP-EGO Random Forest 1580.41 5264.21 5734.52 2624.57
SAMA-DiEGO-A PV-ES -544.35 -543.55 -543.59 0.40
SAMA-DiEGO-B EI-ES -535.31 -366.33 -193.45 416.77
P3-GOMEA N/A -542.92 -201.39 564.72 1157.05
SMAC4 HPO -543.55 298.68 1000.94 1143.17

P20 (G) Schwefel

Adaptive TPE N/A -514.11 -128.67 66.48 474.78
MI-ES N/A 358.86 437.38 456.27 71.83
MIP-EGO Random Forest 282.88 320.01 319.88 15.99
SAMA-DiEGO-A PV-ES 245.91 303.27 297.76 31.59
SAMA-DiEGO-B EI-ES 229.96 276.68 276.03 21.78
P3-GOMEA N/A 276.85 295.09 294.50 11.66
SMAC4 HPO 246.68 279.30 288.88 33.66

P24 (M) Lunacek bi-Rastrigin

Adaptive TPE N/A 253.99 280.45 276.14 10.94
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(a) P6 (G) (b) P7 (G) (c) P8 (G)

(d) P11 (G) (e) P13 (G) (f) P15 (G)

(g) P20 (G) (h) P24 (M) (i) Legend

Figure 4.4.2: Convergence plots of benchmarked algorithms on discretized G & M
BBOB problems (see Section 4.4.1 and 4.4.2). The relatively poorly performed MI-
ES is removed from the figures for nicer visualization. For each plot, the horizontal
axis is the number of function calls to real objective function (fitness evaluation)
to the objective problem, whereas the vertical axis records the iterative fitness
values. The solid lines are the statistical means of best-so-far fitness across 11
independent runs in regard to number of function calls and the hues around the
lines of means are the corresponding 95% confidence interval.
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Table 4.4.2: Benchmark results on the discretized M (P18) and B BBOB problems
(Section 4.4.1). The best performance for each test problem in terms of median and
mean values are highlighted in blue.

Dimension = 15
Fitness ValueFunction Algorithm Algorithm

Specification Best Median Mean Std
MI-ES N/A 44756.84 73232.62 79370.41 31158.36
MIP-EGO Random Forest 5123.26 14679.66 13981.47 5139.36
SAMA-DiEGO-A PV-ES 214.83 256.11 316.88 159.97
SAMA-DiEGO-B EI-ES 214.83 426.35 581.77 328.22
P3-GOMEA SVR 579.97 1547.67 2241.56 1597.13
SMAC4 HPO 500.69 2478.33 2293.00 1502.34

P9 (B) Rosenbrock Rotated

Adaptive TPE N/A 1401.03 2181.28 2284.56 753.30
MI-ES N/A 84.24 100.79 96.79 7.81
MIP-EGO Random Forest 89.66 96.05 96.33 3.50
SAMA-DiEGO-A PV-ES 85.10 93.22 93.25 5.70
SAMA-DiEGO-B EI-ES 90.34 96.64 96.23 3.63
P3-GOMEA N/A 91.99 96.09 96.96 3.46
SMAC4 HPO 85.14 92.29 91.49 3.10

P16 (B) Weierstrass

Adaptive TPE N/A 87.63 98.08 96.99 3.23
MI-ES N/A 15.54 29.97 31.97 11.10
MIP-EGO Random Forest 0.80 17.16 17.39 7.09
SAMA-DiEGO-A PV-ES -3.17 1.19 1.04 2.93
SAMA-DiEGO-B EI-ES -4.82 0.44 1.02 4.57
P3-GOMEA N/A 0.65 6.62 5.86 3.06
SMAC4 HPO -9.13 0.31 0.48 6.99

P18 (M) Schaffers F7
(moderately ill-conditioned)

Adaptive TPE N/A -9.57 0.11 -0.56 3.12
MI-ES N/A -82.41 -70.90 -70.03 11.00
MIP-EGO Random Forest -92.40 -90.98 -90.82 1.12
SAMA-DiEGO-A PV-ES -102.30 -96.38 -96.91 2.11
SAMA-DiEGO-B EI-ES -96.90 -94.76 -95.00 0.87
P3-GOMEA N/A -96.13 -94.03 -94.05 1.20
SMAC4 HPO -97.05 -94.95 -94.90 1.03

P19 (B) Composite
Griewank-Rosenbrock

Adaptive TPE N/A -96.42 -95.68 -95.44 0.79
MI-ES N/A 97.56 112.49 111.21 6.81
MIP-EGO Random Forest 75.47 91.13 91.16 9.26
SAMA-DiEGO-A PV-ES 49.80 71.38 74.09 12.93
SAMA-DiEGO-B EI-ES 46.81 51.16 56.28 7.76
P3-GOMEA N/A 51.45 72.57 73.36 15.09
SMAC4 HPO 42.45 51.12 49.88 4.96

P21 (B) Gallagher’s
Gaussian 101-me Peaks

Adaptive TPE N/A 53.32 60.82 62.80 8.61
MI-ES N/A -925.42 -917.58 -918.79 3.07
MIP-EGO Random Forest -959.34 -937.17 -942.87 10.24
SAMA-DiEGO-A PV-ES -963.68 -939.61 -943.27 13.19
SAMA-DiEGO-B EI-ES -978.12 -971.07 -966.68 11.30
P3-GOMEA N/A -980.78 -943.83 -952.91 14.21
SMAC4 HPO -997.29 -979.23 -982.75 10.64

P22 (B) Gallagher’s
Gaussian 21-hi Peaks

Adaptive TPE N/A -977.57 -948.56 -952.38 12.52
MI-ES N/A 9.92 11.13 11.21 0.69
MIP-EGO Random Forest 8.99 10.65 10.34 0.75
SAMA-DiEGO-A PV-ES 9.85 10.81 10.86 0.68
SAMA-DiEGO-B EI-ES 9.64 10.16 10.30 0.60
P3-GOMEA N/A 9.03 10.30 10.27 0.53
SMAC4 HPO 9.20 10.55 10.65 0.58

P23 (B) Katsuura

Adaptive TPE N/A 9.50 10.63 10.52 0.76
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(a) P9 (B) (b) P16 (B) (c) P18 (M)

(d) P19 (G) (e) P21 (B) (f) P22 (B)

(g) P23 (B) (h) Legend

Figure 4.4.3: Convergence plots of benchmarked algorithms on discretized M
(P18) and B BBOB problems (see Section 4.4.1 and 4.4.2). The relatively poorly
performed MI-ES is removed from the figures for nicer visualization. For each plot,
the horizontal axis is the number of function calls to real objective function
(fitness evaluation) to the objective problem, whereas the vertical axis records the
iterative fitness values. The solid lines are themeans of best-so-far fitness across
11 independent runs in regard to number of function calls and the hues around the
lines of means are the corresponding 95% confidence interval.
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(a) P6 (G) (b) P7 (G)

(c) P8 (G) (d) P11 (G)

(e) Legend

Figure 4.4.4: Convergence plots of benchmarked algorithms on discretized BBOB
problems 6,7,8 and 11 (see Section 4.4.2). The relatively poorly performed MI-ES is
removed from the figures for nicer visualization. For each plot, the horizontal axis
is the number of function calls (fitness evaluation) to the problem, whereas the
vertical axis records the iterative fitness values. The solid lines are the means
of best-so-far fitness across 11 independent runs in regard to number of function
calls.
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(a) P13 (G) (b) P15 (G)

(c) P20 (G) (d) P24 (M)

(e) Legend

Figure 4.4.5: Convergence plots of benchmarked algorithms on discretized BBOB
problems 13, 15, 20 and 24 (see Section 4.4.2). The relatively poorly performed MI-
ES is removed from the figures for nicer visualization. For each plot, the horizontal
axis is the number of function calls to real objective function (fitness evaluation)
to the problem, whereas the vertical axis records the iterative fitness values. The
solid lines are themeans of best-so-far fitness across 11 independent runs in regard
to number of function calls.
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(a) P9 (B) (b) P16 (B)

(c) P18 (M) (d) P19 (B)

(e) Legend

Figure 4.4.6: Convergence plots of benchmarked algorithms on discretized BBOB
problems 9, 16, 18 and 19 (see Section 4.4.2). The relatively poorly performed MI-ES
is removed from the figures for nicer visualization. For each plot, the horizontal
axis is the number of function calls (fitness evaluation) to the problem, whereas
the vertical axis records the iterative fitness values. The solid lines are the
means of best-so-far fitness across 11 independent runs in regard to number of
function calls.
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(a) P21 (B) (b) P22 (B)

(c) P23 (B) (d) Legend

Figure 4.4.7: Convergence plots of benchmarked algorithms on discretized BBOB
problems 21, 22 and 23 (see Section 4.4.2). The relatively poorly performed MI-ES is
removed from the figures for nicer visualization. For each plot, the horizontal axis
is the number of function calls to real objective function (fitness evaluation)
to the problem, whereas the vertical axis records the iterative fitness values.
The solid lines are the means of best-so-far fitness across 11 independent runs in
regard to number of function calls.

44



5
Conclusions

5.1 Summary & Discussion

In this thesis, we firstly study the basic concept of surrogate assisted/based
optimization and review existing works on strategies for manipulating mul-
tiple surrogate models as well as applying surrogate model on discrete prob-
lems. Secondly, a new EGO algorithm that utilizes multiple surrogate models,
namely Self-Adaptive Multiple-surrogate Assisted Efficient Global Optimiza-
tion (SAMA-DiEGO) algorithm is proposed. The SAMA-DiEGO strictly
follows the iterative optimization process of common EGO algorithms 1. In
addition to existing EGO algorithms that can adapt to discrete problems,
it features an online model selection mechanism which, in each iteration,
chooses the most suitable surrogate from 31 candidates to serve as the proxy
to objective function. Lastly, in experimental study, we benchmark SAMA-
DiEGO against several robust non-surrogate solvers and single-surrogate
assisted solvers on thirty-three binary-encoded combinatorial problems and
fifteen ordinal-encoded problems. Meanwhile, we also study the performance
of SAMA-DiEGO using probabilistic-based infill criteria (e.g. expected im-
provement) against that of exclusively using prediction value of the promising
surrogate.

With respect to experimental results, SAMA-DiEGO outperforms non-
surrogate solvers (evolutionary algorithms) and a single-surrogate assisted
solver MIP-EGO in 28 out of 33 binary-encoded cases and achieves equivalent
performance in the other five cases. This shows that given a fixed budget
(number of calls to the real objective function), in comparison to not use and
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only use one surrogate, well-guided usage of multiple surrogate models in
EGO yields better solutions to the binary-encoded problem. Further observa-
tions obtained on handling another complex test suite, the discretized BBOB
problems, show that SAMA-DiEGO performs better than non-and single-
surrogate-assisted optimization algorithms on uni-modal problems, but gets
slightly beaten by SMAC on 4 of 9 multi-modal problems. This suggests that
the proposed model selection mechanism in SAMA-DiEGO is capable of
utilizing multiple surrogates to rapidly optimize problems with clear global
structures (i.e. with less local optima). Moreover, we also found that, in com-
parison with directly using prediction values, using expected improvement
during acquisition process is beneficial if the target problem is multi-modal
(i.e. with more local optima).

Lastly, in reference to the observed experimental results, we can try
to answer the three research questions, namely Q1, Q2 and Q3, raised in
section 1.1:

Q1 In comparison to non-surrogate optimization algorithm, can the use of
surrogate model help achieve better performance in solving discrete
problem?

Answer Yes. If compared with traditional non-surrogate assisted optimiza-
tion algorithms under same budget, EGO-styled algorithms can locate
better solution for discrete (combinatorial and ordinal) problems.

Q2 Given with a fixed budget, can EGO algorithms equipped with multiple
surrogate model achieve better performance on discrete problems if
compared with robust single surrogate model based EGO?

Answer Yes, to a large extent. Utilizing multiple surrogate models yield bet-
ter performance on solving unimodal discrete problems. This advantage
becomes obvious if some of the candidate surrogates approximate the
target problem with acceptable fidelity levels (e.g. positive r2 scores).
However, if all candidate surrogates tend to interpolate the target with
low fidelity, it is not exactly beneficial to prefer multi-surrogates to
single-surrogate EGO.

Q3 When optimizing discrete problems, can we trust the prediction value
of surrogate models in EGO if multiple surrogates are used?

Answer Yes, to a certain extent. Provided with a fixed budget, directly using
prediction value of multi-surrogate is a wise choice in terms of finding
better solutions when optimizing problems with clear global structure.
However, although multiple surrogates can differently approximate a
target problem from various perspectives, probabilistic-based infill cri-
teria is still needed to allow the algorithms exploring problems with
multiple local structures.
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5.2 Future Work
The online model management strategy applied in SAMA-DiEGO is based
on the idea of selecting the best out of a group. In view of the experimen-
tal results showed in Chapter 4, this selection-based strategy is indeed a
promising way for concurrently managing and utilizing a dozens of surro-
gate models to optimize discrete problems. However, we can critically say
that it has a waste of information since, in each iteration, only the selected
model is used whereas the other trained models are set aside. A solution, as
briefly mentioned in section 2.1, is doing ensemble of models (e.g. compute
a weighted sum of predictions of surrogates [6, 35, 61, 67, 93]). Although
simultaneously computing an ensemble of dozens of surrogate models is not
wise as it requires tremendous computational resources, it would still be po-
tentially feasible to ensemble promising models after the selection procedure.
Besides managing surrogate models, efficiently paralleling the acquisition
process is another important but not thoroughly discussed component of
SAMA-DiEGO. The reason why SAMA-DiEGO is not equipped with exist-
ing robust methods (e.g. q-EI [38, 39, 89]) but uses a compromised strategy
is that these methods exclusively focus on probabilistic-based infill criteria.
However, before our study, there is a lack of investigations on the necessity of
using probabilistic-based infill criteria for discrete problems, especially using
with multi-surrogate assisted/based algorithms. Now, as we have evidently
find that probabilistic-based infill criteria is still critically needed in handling
some multi-modal problems, it is worthwhile to bring the multi-point infill
criteria into discussion for better performance of SAMA-DiEGO. A further
promising potential study would be an online strategy to determine the
timing of using probabilistic-based infill criteria.

Lastly, given the fact that all of the implemented surrogate model in
SAMA-DiEGO are essentially support both continuous and discrete variables,
we can anticipate that the algorithm will also work for expensive mixed-
integer problems. Given the fact that existing robust and state-of-the-art
EGO/BO solvers for mixed-integer problems (e.g. hyperparameter tuning)
are built on single surrogate, it would be a rewarding attempt to further
investigate the benefit of using multi-surrogate assisted/based EGO on mixed-
integer cases.
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6
Appendix A

In this chapter, additional formulas, figures and pseduo-codes of this
thesis will be presented.

6.1 Additional Formulas

6.1.1 Correlation Functions of Kriging

To neatly and conventionally write the definition, it is assumed that xi and
xj is the ith and jth vectorized data sample, respectively. Moreover, θs are
the parameters need to be estimated. More details can be found in [13].

Ornstein–Uhlenbeck process

C
(
x(i), x(j)

)
=

nx∏
l=1

exp
(
−θl

∣∣∣x(i)
l − x

(j)
l

∣∣∣) , ∀θl ∈ R+

Squared Gaussian Correlation

C
(
x(i), x(j)

)
=

nx∏
l=1

exp
(
−θl

(
x

(i)
l − x

(j)
l

)2
)
, ∀θl ∈ R+

Gower Distance Gower distance is a strategy specifically proposed to han-
dle categorical variables, its definitions (rules) are explicitly explained
in [41].
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Matérn Correlation (3/2)

C
(
x(i), x(j)

)
=

nx∏
l=1

(
1 +
√

3θl
∣∣∣x(i)
l − x

(j)
l

∣∣∣) exp
(
−
√

3θl
∣∣∣x(i)
l − x

(j)
l

∣∣∣) ,
∀θl ∈ R+

Matérn Correlation (5/2)

C
(
x(i), x(j)

)
=

nx∏
l=1

(
1 +
√

5θl
∣∣∣x(i)
l − x

(j)
l

∣∣∣+ 5
3θ

2
l

(
x

(i)
l − x

(j)
l

)2
)

× exp
(
−
√

5θl
∣∣∣x(i)
l − x

(j)
l

∣∣∣) , ∀θl ∈ R+

6.1.2 Five Hard PBO Problems

LABS FLABS (~x) = n2

2
∑n−1

k=1

(∑n−k

i=1 x′i·x
′
i+k

)2 where x′i = 2xi − 1, where xi

is the ith element of a n-sized binary sequence.

Ising1D To formulate the Ising problems, [27] defined an undirected graph
G = (V,E), where V = [n]. Furthermore, an affine transformation
{−1,+1}n → {0, 1}n is applied on search space to change the n spins
to binary decision variable. Hence, the final objective function is for-
mulated as

Flsing (~x) =
∑

{u,v}∈E
[xuxv − (1− xu) (1− xv)]

Given with the objective function, the Ising1D problem is defined over
a one-dimensional lattice graph GIsing1D:

eij = 1⇔ j = i+ 1 ∀i ∈ {1, . . . , n− 1}
∨ j = n, i = 1

Ising2D The Ising2D (the torus) problem shares the same objective function
with Ising1D but is defined on a two-dimensional lattice graph GIsing2D:

e(i,j)(k,`) = 1⇔ [k = (i+ 1) mod N ∧ ` = j ∀i, j ∈ {0, . . . , N − 1}]
∨ [k = (i− 1) mod N ∧ ` = j ∀i, j ∈ {0, . . . , N − 1}]
∨ [` = (j + 1) mod N ∧ k = i ∀j, i ∈ {0, . . . , N − 1}]
∨ [` = (j − 1) mod N ∧ k = i ∀j, i ∈ {0, . . . , N − 1}]

MIVS The maximum independent vertex set problem is defined on a graph
G = ([n], E). The objective is to find the largest independent vertex
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set (no adjacent vertices in the set) V ′ = {i ∈ [n] | xi = 1} in the
G. [27] formulates this maximization problem as:

FMIVS (x) =
∑
i

xi − n ·
∑
i,j

xixjei,j ,

where ei,j = 1 if {i, j} ∈ E and ei,j = 0 otherwise. The binary-encoded
version of ei,j is specifically defined as:

eij = 1⇔ j = i+ 1 ∀i ∈ {1, . . . , n− 1} − {n/2}
∨ j = i+ n/2 + 1 ∀i ∈ {1, . . . , n/2− 1}
∨ j = i+ n/2− 1 ∀i ∈ {2, . . . , n/2}

NQP The N-queens problem asks to put N queens on a N × N chessboard
under the constraint that no queens can attack others. The binary-
encoded unconstrained version of this problem is formulated as below:

FNOP(~x) =
N∑
i=1

N∑
j=1

xij −N · Fpenalty,

where xij = 1 if a queen is placed in the {i, j} cell and xij = 0 otherwise.
The penalty for infeasible solution Fpenalty is defined as,

Fpenalty =
N∑
i=1

max

0,−1 +
N∑
j=1

xij


+

N∑
j=1

max
{

0,−1 +
N∑
i=1

xij

}

+
N−2∑

k=−N+2
max

0,−1 +
∑
j∈i−k

xij


+

2N−1∑
`=3

max

0,−1 +
∑
j+i−`

i,j∈(1,2,...,N ]

xij


6.1.3 Composite PBO Problems

The three basis functions:

OneMax :
f : {0, 1}n → [0..n], x 7→

n∑
i=1

xi
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LeadingOnes :

f : {0, 1}n → [0..n], x 7→ max {i ∈ [0..n] | ∀j ≤ i : xj = 1} =
n∑
i=1

i∏
j=1

xi

A Linear Function with Harmonic Weights :

f : {0, 1}n → R, x 7→
∑
i

ixi
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6.2 Additional Tables & Figures

Table 6.2.1: R2 scores obtained by 31 surrogate models on discretized BBOB
problems. Each score is the average of 15 scores gathered from three repetitions of a
5-fold cross-validation as described in section 4.4.1. The full names of abbreviations
in Specification column can be found in section 3.5.

Model Family ID Specification P6 P7 P8 P9 P10 P11 P12 P13 P14

Kriging

1 Constant + SGC 0.866 0.902 0.765 -0.071 0.899 0.922 0.294 0.919 0.532
2 Linear + SGC 0.840 0.902 0.799 -0.092 0.897 0.925 0.218 0.912 0.520
3 Constant + Matern52 0.867 0.900 0.790 -0.104 0.896 0.929 0.169 0.915 0.478
4 Constant + Matern32 0.866 0.887 0.829 -0.100 0.894 0.942 0.165 0.907 0.495
5 Linear + Matern52 0.815 0.897 0.814 -0.042 0.888 0.932 0.161 0.904 0.403
6 Linear + OUP 0.812 0.699 0.894 -0.048 0.733 0.941 0.249 0.829 0.421
7 Quadratic + OUP 0.777 0.868 0.736 -1.560 0.880 0.900 -0.417 0.894 0.007
8 Constant + OUP 0.826 0.714 0.897 -0.069 0.743 0.942 0.308 0.831 0.420
9 Linear + Gower 0.801 0.669 0.892 -0.427 0.705 0.937 0.147 0.822 0.247
10 Linear + Matern32 0.818 0.885 0.817 -0.062 0.891 0.939 0.139 0.891 0.403
11 Constant + Gower 0.815 0.681 0.895 -0.357 0.712 0.939 0.196 0.826 0.256
12 Quadratic + Gower 0.752 0.860 0.720 -1.903 0.860 0.882 -1.041 0.867 -0.284
13 Quadratic + Matern52 0.632 0.789 0.349 -3.092 0.804 0.801 -1.207 0.817 -0.708
14 Quadratic + Matern32 0.647 0.799 0.473 -2.213 0.838 0.839 -0.958 0.860 -0.361
15 Quadratic + SGC 0.611 0.782 0.317 -3.114 0.797 0.822 -1.644 0.805 -0.759

RBF Interpolation

1 Thin Plate Spline 0.881 0.863 0.714 -0.050 0.846 0.904 0.389 0.908 0.594
2 Multiquadric 0.863 0.767 0.699 0.037 0.731 0.857 0.406 0.864 0.544
3 Linear 0.863 0.767 0.699 0.037 0.731 0.857 0.406 0.864 0.544
4 Cubic 0.866 0.881 0.624 -0.472 0.895 0.921 0.249 0.867 0.511
5 Polyharmonic spline 4 0.815 0.893 0.565 -0.916 0.895 0.894 -0.206 0.904 0.246
6 Invmultiquadric 0.808 0.567 0.669 0.023 0.491 0.758 0.289 0.778 0.358
7 Invquadric 0.807 0.567 0.669 0.023 0.491 0.758 0.288 0.778 0.358
8 Gaussian function 0.807 0.567 0.669 0.023 0.491 0.758 0.288 0.778 0.358
9 Polyharmonic spline 5 -0.391 -51.558 -8.708 -14.586 -5.401 -1367661.901 -187.263 -6.520 -7.458

SVM Regression

1 poly 2 0.811 0.765 0.671 -0.084 0.666 0.720 0.407 0.804 0.495
2 linear 0.797 0.556 0.666 0.019 0.510 0.745 0.327 0.774 0.396
3 poly 2 0.739 0.696 0.653 -0.488 0.503 0.526 0.050 0.706 0.177
4 rbf 0.726 0.642 0.630 0.069 0.574 0.640 0.321 0.755 0.436
5 poly 5 0.392 0.298 0.499 -0.797 -0.539 -0.305 -0.116 0.234 -0.611
6 sigmoid -0.116 -0.665 -1.020 -0.215 -0.877 -0.933 -0.421 -0.247 -0.446

Random Forest Regression 100 decision trees 0.611 0.441 0.764 -0.035 0.354 0.672 0.106 0.549 0.298

Model Family ID Specification P15 P16 P17 P18 P19 P20 P21 P22 P23 P24

Kriging

1 Constant + SGC 0.846 -0.170 0.684 0.672 -0.148 0.900 -0.047 -0.141 -0.168 0.290
2 Linear + SGC 0.852 -0.169 0.683 0.691 -0.136 0.912 -0.026 -0.105 -0.215 0.141
3 Constant + Matern52 0.846 -0.120 0.653 0.664 -0.092 0.913 -0.128 -0.225 -0.110 0.080
4 Constant + Matern32 0.844 -0.099 0.622 0.682 -0.069 0.928 -0.097 -0.205 -0.118 0.161
5 Linear + Matern52 0.845 -0.179 0.585 0.643 -0.042 0.891 -0.125 -0.021 -0.209 0.045
6 Linear + OUP 0.844 -0.167 0.639 0.679 -0.103 0.937 0.038 0.022 -0.180 0.036
7 Quadratic + OUP 0.758 -2.440 0.126 0.393 -1.821 0.845 -1.494 -1.527 -2.619 -0.079
8 Constant + OUP 0.836 -0.089 0.632 0.684 -0.074 0.939 0.003 -0.035 -0.117 0.106
9 Linear + Gower 0.822 -0.723 0.527 0.636 -0.414 0.938 -0.377 -0.393 -0.728 -0.143
10 Linear + Matern32 0.847 -0.169 0.614 0.677 -0.090 0.928 -0.063 0.015 -0.199 0.010
11 Constant + Gower 0.823 -0.669 0.543 0.648 -0.376 0.939 -0.334 -0.379 -0.666 -0.070
12 Quadratic + Gower 0.721 -3.351 0.005 0.252 -2.514 0.858 -1.919 -1.985 -3.215 -0.347
13 Quadratic + Matern52 0.647 -4.310 -0.289 0.062 -3.474 0.747 -3.007 -2.895 -5.388 -1.269
14 Quadratic + Matern32 0.604 -3.276 -0.220 0.203 -2.698 0.780 -2.131 -2.396 -4.103 -0.782
15 Quadratic + SGC 0.611 -4.069 -0.258 0.136 -3.263 0.756 -3.243 -3.209 -4.585 -0.748

RBF Interpolation

1 Thin Plate Spline 0.844 -0.324 0.619 0.695 -0.168 0.845 0.012 0.043 -0.393 0.392
2 Multiquadric 0.799 -0.141 0.587 0.646 -0.047 0.794 0.100 0.144 -0.189 0.314
3 Linear 0.799 -0.141 0.587 0.646 -0.046 0.794 0.100 0.144 -0.189 0.314
4 Cubic 0.833 -0.683 0.544 0.685 -0.731 0.833 -0.249 -0.367 -0.810 -0.022
5 Polyharmonic spline 4 0.801 -1.668 0.363 0.529 -1.367 0.867 -0.838 -0.988 -1.823 0.005
6 Invmultiquadric 0.702 -0.076 0.441 0.485 -0.035 0.711 0.054 0.120 -0.108 0.089
7 Invquadric 0.702 -0.076 0.441 0.485 -0.035 0.711 0.053 0.120 -0.108 0.089
8 Gaussian function 0.702 -0.076 0.441 0.485 -0.035 0.711 0.053 0.120 -0.108 0.089
9 Polyharmonic spline 5 -1.898 -146231.756 -19.007 -3.038 -169.010 -5.618 -357.175 -1057.016 -26.085 -116.984

SVM Regression

1 poly 2 0.766 -0.242 0.452 0.527 -0.099 0.726 0.069 0.151 -0.317 0.345
2 linear 0.707 -0.074 0.472 0.501 -0.016 0.699 0.056 0.166 -0.137 0.054
3 poly 2 0.666 -0.752 0.094 0.211 -0.554 0.606 -0.289 -0.372 -0.823 0.318
4 rbf 0.652 -0.077 0.416 0.496 0.016 0.683 0.139 0.157 -0.097 0.260
5 poly 5 0.222 -0.859 -1.182 -0.989 -1.551 -0.051 -1.016 -1.207 -1.236 0.118
6 sigmoid -0.159 -0.154 -1.272 -1.198 -0.242 -0.642 -0.303 -0.523 -0.091 -0.075

Random Forest Regression 100 decision trees 0.482 -0.133 0.268 0.336 -0.035 0.724 -0.021 -0.056 -0.092 0.055
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