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Abstract

Klaverjas is a trick-taking card game played in two teams of two players. The goal of the game
is to earn as many points as possible. In this thesis we create an agent that, using a random
forest, predicts which card is the best card in a situation. We do this by first predicting
whether a card is playable followed by predicting the card a human player would play in
a situation. We analyse two versions of the game Klaverjas: The Amsterdam version and
the Rotterdam version. The agent is able to predict the card a human player would play in
81.4% and 80.7% of the game states for the Amsterdam and Rotterdam version respectively.
Furthermore, the agent is able to outperform two other agents with different strategies. The
agent that plays random cards from the playable cards is beaten in around 59% of the games.
A rule-based agent is beaten in around 54% of the games. Additionally, the agent is able to
score an average of 101 points per game, while the rule-based agent only manages to score 88
points on average. We expected that our agent was able to win more games against the simple
strategies than it did. However, on average the random forest agent scores significantly more
points than the rule-based agent each round. We expect that there is room for improvement
for this agent to beat the other agents in even more games, but the agent is sufficient at
maximising his score in each round of Klaverjas.
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1 Introduction

Nowadays artificial intelligence is a topic of interest. The number of applications for artificial
intelligence is increasing and it is used for increasing difficult problems. A few examples of these
applications are the use of artificial intelligence in self-driving cars and allowing for personalised
advertisements. Artificial intelligence can also be used in games. With the use of reinforcement
learning an agent can learn to play a game in the best way possible. This method was applied to the
game of Chess and Shogi in 2017 [SHS+17]. Before this application, there were agents that could
also play chess better than humans. These agents were mostly rule-based. In [SHS+17] however, the
agent created these rules by itself. It was surprising that this agent was able to beat the rule-based
agents. In this thesis, we will be looking at the game of Klaverjas. We investigate whether we are
able to create an agent that is able to identify which card is best playable in a situation. Just like
the game of chess, we need to play the best move as much as possible to be able to outperform
humans. In contrast to chess, Klaverjas is a game of imperfect information, while in the game of
chess, all possible different game states are visible at any given moment. In Klaverjas the cards
of the three other players are not known by the current player and therefore we have a game of
imperfect information. To create an agent that is able to predict the best card most of the time, we
use a supervised learning method. We apply this to Klaverjas to determine how well it can predict
the ‘goodness’ of a card and in this way determine which card should be played. The goodness of a
card represents the likelihood that a human player will play this card. Because a human player
always tries to play the best card, we are looking for the best card in a given game state. We define
the following research question:

How to create an agent that, using random forests, predicts which card a human
would play?

To create this agent we will follow two steps. First, we are going to apply a random forest to predict
whether or not a card can be played by the rules of Klaverjas in a certain game state. If we want to
apply a random forest to a game state, we need to create a representation of the game state that
is readable by the random forest. Furthermore, we need to determine which attributes of a game
state determine whether a card can be played or not. We expect that we can reach an accuracy
of 100% on this step as a random forest should be able to distinguish the relatively easy rules of
Klaverjas. After applying a random forest on predicting whether a card can be played, we create an
agent that predicts the card a human player would play in a given game state. As we expect that
a human player always chooses to play the best card in a situation, we will now refer to this as
choosing the best card instead of the card a human player would play. In order to predict the best
card, we use some information from the previous step and create new attributes of a game state
that aim to determine the goodness of a card. After the first step, we have a better understanding
of the database and some attributes from that step can contribute to the process of predicting
the goodness of the card. We now create additional attributes that determine the goodness of a
card even further. Due to the imperfect information of the game of Klaverjas, it is not always clear
what the best card is in each situation. This is also because different players could use different
strategies. In some situations a human player may think that another card is better than another
human player with a different strategy. After creating this agent, we test how many game states it
predicts the card that a human player would play. Furthermore, we test the agent against two other
agents with relatively simple strategies. We test the percentage of games the random forest agent
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wins against the other two agents and give a distribution of the points obtained by the agents in
each round.

1.1 Game of Klaverjas

In this thesis we will analyse the trick-taking card game of Klaverjas. The game of Klaverjas will
now be explained in more detail.

1.1.1 Cards

Klaverjas is a trick-taking game played in teams of two people. The goal is to score more points
than the other team. For this game, the top eight cards of a French deck are used. Each card has a
face-value (7,8,9,10,J,Q,K,A), a suit (clubs, hearts, diamonds and spades) and a rank (1-8). Each
card also has a value that is awarded when you win the trick this card has been played. The rank
and value of a card depend on whether or not the suit of the card is a so-called trump suit. The
cards of a trump suit follow a different rank and value distribution. A card from a trump suit
always has a higher rank than a card from a normal suit. In this way, any trump card always wins
from any regular suited card. The points and rank distribution are given in Table 1.

Rank Regular Trump
8 A 11 J 20
7 10 10 9 14
6 K 4 A 11
5 Q 3 10 10
4 J 2 K 4
3 9 0 Q 3
2 8 0 8 0
1 7 0 7 0

Table 1: Rank and value for each card

1.1.2 Round

A game of Klaverjas consists of several rounds. In theory, this could be unlimited, but a common
number of rounds is 16. In this thesis, we neglect the notion of rounds, because this has a confounding
effect on the statistical results. At the beginning of each round of Klaverjas, all players receive eight
random cards from the deck and a random trump suit is chosen. A round consists of eight tricks.
In a trick, all players play one card. The player that played the card with the highest rank wins the
trick and plays the first card of the next trick. The total value of all the cards in a trick is added to
the score of the team that had the winning card. In Klaverjas we distinguish two main versions of
the game: The Amsterdam - and the Rotterdam version. The rules that decide which cards can be
played are almost the same but are different in one rule. The rules for the Rotterdam version are
given below. If you can not follow a rule, the next rule needs to be applied

1. If there has not yet been played a card, all cards may be played.
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2. The card must be of the same suit as the first played card.

3. If another trump card is already played, a higher trump card must be played.

4. A trump card must be played.

5. Each card can be played.

For the Amsterdam version the following rules apply:

1. If there has not yet been played a card, all cards may be played.

2. The card must be of the same suit as the first played card.

3. If the teammate is currently winning the trick, each card can be played.

4. If another trump card is already played, a higher trump card must be played.

5. A trump card must be played.

6. Each card can be played.

In this thesis both versions are used. A round is over when eight tricks are played, meaning all
players have played their cards.

Figure 1: A typical game of Klaverjas.

1.1.3 Meld

There is an additional way to receive points. Meld points are given for certain combinations of
cards in a trick. The winner of the trick receives these points. The following combinations are worth
meld points:
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• 10 meld points — winning the last trick

• 20 meld points — three consecutive cards of the same suit

• 50 meld points — four consecutive cards of the same suit

• 100 meld points — four cards of the same face value

• 200 meld points — four cards of value Jack

• additional 20 meld points — King and Queen of trump suit

• 100 meld points — all tricks are won by trump suit playing team

It is not always wise to play a card that allows for meld points. For example, if you are sure that
the other team will win this trick. Playing cards that create meld points are not mandatory.

1.1.4 Bidding process

At the start of each round, a random trump suit is chosen. Now the bidding process takes place.
The first player can choose whether or not he wants to play this trump suit. Playing a trump suit
means you decided that this trump suit is good enough for you to win this round. If you play a
trump suit and fail to score more than half of the total points scored by both teams in a round,
you lose all points to the opposing team. If the first player decides they will not play this trump
suit, the next player may decide if he will play it or not. If all players decide to not play the chosen
trump suit, a new trump suit is chosen and the process begins again.

2 Related Work

Klaverjas is mostly played in the Netherlands and therefore there are not many studies done on
this specific game. This thesis expands on previous research [vRTV19]. In this research, a method
is presented in which a combination of machine learning and an exact approach is able to predict
whether or not a combination of hands is winning. This is done using perfect information and
therefore all hands were visible for the algorithm. We now try to predict this using imperfect
information by only knowing the hand of the player.
Artificial intelligence has been used before in AlphaZero [SHS+17]. In this research, a reinforcement
algorithm is used to master the game of Chess and Go. By simulating games against itself it was
able to play these games increasingly better. This agent eventually beat the world champion of
Chess and Go and the very high-level algorithm ‘Stockfish’. Chess and Go are games of perfect
information and therefore it would be interesting to see how well it performs on games with
imperfect information.
A common way to solve trick-taking card games is with the use of the mini-max algorithm. This
has been done for several card games such as Bridge [FB98]. Klaverjas is a game of imperfect
information: a player only knows his own cards and not the cards of the other players. This causes
that the game state space is very large. To still be able to determine the best card to play, Perfect
Information Monte Carlo (PIMC) can be used [Gin01]. This technique uses a game tree that has a
probabilistic node as starting node. This node branches to all possible game states. This technique
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is a convenient use when the possible game state space is large.
In [Cha18] a method is presented to create an environment in which a reinforcement algorithm can
be used on the imperfect information game ‘Big2’. This method builds further upon [SHS+17] as it
now creates an environment where not two but four players are active. The trained agent is able to
beat amateur players in a relatively short training time.

3 Data

For this thesis, a database provided by P. Koning [Kon] is used. This database contains 2,465,352
game states. A game state is a representation of the game with the currently available information.
This is different than a representation of the game itself. A game state represents the information
known by the current player, such as its current hand and whether other players still have a card
of a suit. A game representation is a more general way to represent the game. One can choose to
represent the whole game with all hands known from each player or only use information known to
all players, such as the trump suit and already played cards. In this research, we only want to use
game states as we try to predict which card a human player would play in a situation. The data is
created by analysing games on www.klaver.live. Klaver.live is a website where everyone can play an
online game of Klaverjas. The database is therefore created by analysing good and relatively bad
players. All the data attributes consist of strings. The database contains the following attributes:

• Cards — The cards the current player has.

• Center — The cards already played by other players this trick.

• CardPlayedx — The cards already played by player x in previous tricks.

• HasColorx — Represents whether player x has a suit. This is 0 if a player was not able to
follow a suit. The order of suits: clubs, hearts, diamonds, spades.

• Troef — The trump suit in this round.

• Variant — The version of the game that is played. This could be Rotterdam or Amsterdam.
If it was not possible to determine the version of the game from the played cards or people
did not follow either of the rules this is set to unset.

• PlayCard — The card that is actually played by the player. This is our target for predicting
which card to play see Section 4.

• PlayableCardBits — A string that corresponds to cards, which shows the cards that are
allowed to be played. This is our target for predicting whether a card can be played see
Section 4.

Both versions of Klaverjas can be played on the website. It is not obliged to enter the version of
the game you play. This causes that we could not always determine the version of the game that
was played. The dataset therefore contains games that have neither of the versions. These games
are deleted. The database contains 797,260 different game states for the Rotterdam version and
1,255,644 for the Amsterdam version. We use the same dataset for both steps taken in this thesis.
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In this research, we want to evaluate each card on its own. This allows us to determine whether or
not we are allowed to play this card and if that is the case, if we want to play this card. To be able
to do this, we need to split the database from hands to individual cards. The dataset also contains
cards that have already been played. These cards are marked with a ‘.’ and we can delete these
cards from the database. Therefore, after we split the data into single cards we have 3,587,804
cards in the Rotterdam version and 5,652,348 cards in the Amsterdam version.

After analysing this database which is used for creating our agent that predicts which card
we need to play, we need to create a set of game representations to test the quality of this agent.
We will test the quality of the agent by performing simulations against other agents with different
strategies. To compare these agents fairly, we need to test the same games in the simulations. In
Klaverjas the chance of winning a round is highly correlated to the quality of cards that are dealt to
all players. By using the same games we mitigate this factor as all agents will have the same starting
configuration and we can compare the agents more fairly on performance. We create this database
by randomly assigning cards to players. In a normal game of Klaverjas, the bidding process starts
at the start of each round. As the scope of this thesis is not to create an agent that optimises the
bidding process, we make a basic algorithm that determines if a player bids or not. We create a
database with random games where a game is only allowed if the first player to play a card has at
least 25 points of the trump suit.
In Klaverjas the dealt cards have a big impact on the odds of winning a round or not. Even the best
strategy loses when he has very bad cards and plays against very good cards. Therefore we only
create games where the first player has good cards. We create 5,000 games of Klaverjas where the
cards, trump and starting player is given. In Klaverjas, the first player has more strategic options
as he can choose the first card that will be played. Therefore being the first player to move has
a strategic benefit. To mitigate this factor, we create a database in which the first player to play
switches between the teams. For both teams, we create 2,500 games in which that team has the
starting player. We therefore end up with 5,000 different games.

4 Methods

In this section, the methods used to create the agent that plays Klaverjas using a random forest
are explained. The methods can be divided into two different parts, the first step is looking at the
methods used to create an agent that successfully predicts which card can be played. The second
step is explaining the methods to create the agent that predicts the best card in hand in a game
state. Lastly, we will look at some measurements to get a deeper understanding of the performance
of our agent.

4.1 Predict which card can be played

To predict if a card can be played, we need to transform the dataset into states that can be processed
by a random forest. In Section 1 we saw that whether or not a card may be played depends on
different rules. By using these rules, we can determine which attributes of the cards determine if a
card can be played or not. The following attributes are needed:
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• The suit of the first played card — To determine which suit we need to follow.

• The other played suits — To determine whether a trump card is played.

• The rank of all cards — To determine whether we have a higher trump card if needed.

• Which player is currently winning the trick — To determine whether a trump card
needs to be played or not. This is only applies to the Amsterdam version.

To create these attributes out of the dataset, we first perform some preprocessing steps to the
data. We split the cards into a list which allows us to evaluate them more easily. Furthermore, we
split the already played cards in this trick into separate cards and we extract the number from
the trump. We then replace the value of each card with a rank based on the suit of the card, this
makes it easier to compare cards to each other. After the aforementioned step, we split the center
cards into suit and rank.
After the preprocessing steps, we can create the needed attributes. Because we want to evaluate the
cards one by one, we eventually need to split the cards. By doing this, we only have the information
of the current card and we do not know anything about the other cards that were in the current
hand, which causes problems. For example, a trump card can only be played if the player does not
have the leading suit, but based on the aforementioned data we do not know if we have such a
card. Therefore we need to create features that represent this kind of information.
The features that we create are the following:

• Has suit — Is 1 if player has the leading suit in hand, 0 otherwise.

• Has trump — Is 1 if player has a trump card, 0 otherwise.

• Has higher trump — Is 1 if player has a trump card that is higher than already played
trump cards, 0 otherwise.

• Is higher — Is 1 if the current trump card is higher than the already played trump cards, 0
otherwise.

For the Amsterdam version we create two extra features.

• Is winning — Is 1 if teammate is winning the current trick, 0 otherwise.

• other suits — Is 1 if number of suits in hand > 1, 0 otherwise.

After we created the features, we change the appearance of the player suit and the suits of the
center cards. For the player suit, we change the suit according to the leading suit of the trick into
three different features. If it is the same, it gets changed to p s, if it is equal to the trump suit it
changes to p t, if this is not the case it is changed to p none. If a card has already been played, the
leading suit is changed to 1 t. If this leading suit is equal to the trump suit and if this is not the
case it is changed to 1 nt. The second and third cards have the same technique that is applied to
the player cards.
The rank of all cards is also taken into account as sometimes it is necessary to play a higher trump
card. This gives four extra features. After creating these features we now have eleven features
representing the suits of the cards, four representing the rank of the cards and six and four extra
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features based on the current situation for the Amsterdam and Rotterdam version respectively. This
leads to twenty-one features for the Amsterdam version and nineteen features for the Rotterdam
version.
Once all features are created, we can train the random forest on this data. We split the data into a
train and test set. After training the random forest on the train set, we evaluate the test set and
compare the prediction for every card with the actual target for that card. In this way, we get a
percentage of how many cards are predicted right. We expect to get 100% accuracy in predicting
which card can be played as the rules for playing cards are relatively easy. The random forest should
be able to distinguish patterns that determine whether a card can be played or not according to
the applicable rules.

4.2 Predicting the best card

This task is not as straightforward as the previous step. Some general rules are needed to determine
if a card is good in different situations of the game. The ‘goodness’ of the card depends on the
context, one of the examples being the rank of the card, but it could also depend on different
combinations of the center cards. For example, if three cards are already played and the player
has two cards that are able to win this trick, the player sometimes needs to choose to play the
second-best card in order to win another trick with the best card.
Just like the method described in Section 4.1 we need to evaluate each card individually to predict
the goodness of the card. The best card will then be chosen and evaluated. A more extensive
explanation of this process will be given later on in this thesis. If we split the database into cards
instead of hands, we lose information about the other cards. So, as seen before in Section 4.1 we
need to create features that transfer this information. We will therefore create features in three
different groups: features created by evaluating the whole hand, features created by evaluating a
single card and features created by evaluating both.

Before creating these features, we must first create class instances of all the cards in the database.
In this way, we could more easily use these cards for the functions we use. After that, we start
creating the features. We use the same features as used in Section 4.1.
We first create features by evaluating the whole hand.

• tX — Represents the current turn with x being the number of cards in the center increased
by one.

• PlayerX has trump — Is 1 if player x has a trump card based on current information, 0
otherwise.

• No playable cards — Represents the number of legal moves for the current player.

• Teammate played — Is 1 if player 2 has already played a card, 0 otherwise.

• Teammate winning — Is 1 if player 2 is currently winning the trick, 0 otherwise.

• Can create street — Is 1 if the current player has a card that can create a street, 0
otherwise.
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• Has higher — Is 1 if current player has a card that is higher than all cards already played,
0 otherwise.

The features that are created by evaluating a single card:

• Is highest suit — Is 1 if this card is the highest card left of this suit, 0 otherwise.

• Is second highest suit — Is 1 if this card is the second highest card left of this suit, 0
otherwise.

• Is lowest value — Is 1 if this card has the lowest value of all cards in hand, 0 otherwise

• Is highest value — Is 1 if this card has the highest value of all cards in hand, 0 otherwise.

• Creates street — Is 1 if this card creates a street, 0 otherwise.

The last created features depend on the suit of the first played card. If the current player is the
first player to play a card, these features are created after splitting the database into cards. The
suit of each card will then be the suit determining the value of the features.

• PlayerX has suit — Is 1 if player x has the leading suit or the suit of the currently evaluated
card, 0 otherwise.

• Has highest suit — Is 1 if the currently player has the highest card left of the leading suit
or the suit of the current evaluated card, 0 otherwise.

• Has second highest suit — Is 1 if the current player has the second highest card left of
the leading suit or the suit of the currently evaluated card, 0 otherwise.

• Still in game — Is 1 if the highest card left of the leading suit or suit of the currently
evaluated card is not in the center or in hand of the current player, 0 otherwise.

We now have created 42 features to put into our random forest. Unlike in Section 4.1, we now
use soft-prediction. We predict the likelihood of a card being the best card and choose the card
with the highest probability. This card is compared to the actual card played and this allows us to
determine if our prediction is correct. As we created many features that influence the goodness of
the card and the amount of data we used to train the random forest, we expect a high accuracy in
predicting which card is played. However, this data also contains cards played by bad players.
To test the quality of our prediction, we check what the performance is for a rule-based agent.
This rule-based agent follows some simple rules to determine which card is best to play in a given
situation. Our random forest agent should be able to beat this rule-based agent in this task as it
takes more features into account and is trained on a big data set. The rule-based bot is given in
Figure 2
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1: if first turn or second turn then
2: if Has highest card of cards still in game of suit then
3: Play highest card
4: else
5: Play card with lowest value
6: end if
7: else if third turn then
8: if Can’t follow asked suit then
9: Play lowest card
10: else if Teammate played highest card left of suit then
11: Play highest card
12: else
13: Play lowest card
14: end if
15: else
16: if Teammate is currently winning trick then
17: Play highest card
18: else if Has card that wins trick then
19: Play this card
20: else
21: Play lowest card
22: end if
23: end if

Figure 2: Pseudo code of the rule-based agent

4.3 Simulations

We now have a random forest agent that based on its predictions can play a game of Klaverjas. We
know how good it is at predicting cards in the dataset, but we do not know how good the agent
is at actually playing the game. We therefore need to compare this agent with other agents with
different strategies in actually playing the game. We create two agents with simple tactics and
simulate games against them.

• Random agent — This agent chooses a random card from all the legal cards. This could
barely be called a real strategy as it just plays random cards. Therefore the random forest
agent should be able to beat this agent.

• Rule-based agent — This agent plays cards based on some simple rules. The rules are
not that advanced, so the random forest agent should be able to defeat this strategy. The
pseudo-code of this rule-based agent is given in Figure 2.

We simulate 5,000 games in which the teams are one of the agents. In this way, we can evaluate
whether the random forest agent actually outperforms the basic agents. A game consists of playing
one round of Klaverjas to avoid confounding factors. The team with the most points after this
round is the winner. We use a set with pre-determined games of Klaverjas. We first let one agent
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be Player 1 and Player 3. After simulating the 5,000 games from the dataset, we let this agent
be Player 0 and Player 2 for the same 5,000 games. In this way, we mitigate the factor that the
database could be biased. The database could contain cards that always favor the first player, but
by switching the first player we can mitigate this risk. After all simulations are done, we evaluate
the number of won games by each agent. We also see the number of won games in which the agent
was the starting player or not.
In total we simulate 5,000 games six times, in which each agent plays against another agent. We do
this for both versions of the game, hence six times 5,000.
We expect that the random forest agent is able to beat the random agent, which has no logic-based
strategy. The rule-based agent will likely be stronger, but due to the amount of data the random
forest agent is trained on and the more attributes the random forest agent takes into account, it
should still be able to beat the rule-based agent.
The last step is evaluating the points scored each round by the random forest agent and the
rule-based agent. As Klaverjas is typically played in 16 rounds and the points carry over from round
to round, it may be that even if an agent wins more rounds, it could end up losing. If an agent only
barely wins his rounds and loses all the points if he loses a round, the agent could still lose. We
therefore want to evaluate the number of points scored in each round. We choose to only evaluate
the games played by the rule-based agents against the random forest agents as these are expected
to have the best strategies.

5 Algorithms

In this section the used programming language and the random forests will be explained with more
detail.

5.1 Programming libraries

For this thesis, we need to apply some preprocessing steps and apply a random forest. The
programming language used for this thesis is Python version 3.10.5. For the data processing,
we use the Pandas library version 1.3.5. This library has many built-in functions that allow
for more easy data processing. For the random forest, we use the Scikit-learn library version
1.0.2 [PVG+11] [BLB+13]. SKLearn is a commonly used library for machine learning. We use
the RandomForestClassifier with the default parameters. Furthermore, we use the train test split
function from this library to split the dataset into a train and test set. We use 75% of the dataset
to train the random forest and 25% to test the random forest. In the end, Joblib version 1.1.0 is
used to store the random forest, this allows us to use it for the simulations.

5.2 random forest

In this thesis, we aim to build a classifier that determines whether a card is playable and which
card should be played. This is a binary classification task. The dataset contains examples of cards
that are playable and cards that are played. We therefore make this a supervised learning task.
One of the most robust algorithms to use for supervised classification problems is a random forest.
Random forests consists of multiple decision trees [Bre01]. These decision trees are created using
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different samples of the dataset. The output of a random forest is the majority vote of all the
decision trees. The decision trees are all created on random samples of the data. In this way, they
all have some bias. By combining these decision trees, we are able to cancel out most of this bias
by using the other decision trees. By doing this, we are able to get a more robust classification
algorithm.
We use a random forest because attributes of a game state are easily transformed in either categorical
data or binary data. A random forest is particularly good at handling these kinds of data and is
able to process big amounts of data.

6 Results

We will now show the results of the performance of the two different agents that we created. We
will now take a look at how often the agent correctly predicts whether a card may be played or not.
After that, we will show how sufficient the other random forest agent is in predicting the best card
out of a player’s hand. We then show the results of the simulations against agents with different
strategies: The random agent and the rule-based agent. At last, we will look at how many points
the random forest and rule-based agents score on average in a round of Klaverjas.

6.1 Results predict which card can be played

For this step, the random forests for both versions are trained on 75% of the dataset and 25% of
the dataset is used for testing. As the confusion matrices show, and as expected, the random forest

Amsterdam Rotterdam
Predicted playable Predicted not playable Total Predicted playable Predicted not playable Total

Playable 856,351 0 856,351 536,044 0 536,044
Not playable 0 556,736 556,736 0 360,907 360,907

Total 856,351 556,736 1,413,087 536,044 360,907 896951

Table 2: Confusion matrix for the Amsterdam and Rotterdam version in predicting whether a card
can be played or not.

is able to classify 100% of the cards right for both versions. This means we created a random forest
agent that can predict which card is allowed to be played. We will now look at which features most
contributed to the fact that is able to predict whether a card is playable or not. A graph showing
the feature importances is given in Figure 3. By looking at the feature importances we can see
that whether having the leading suit or not is a very important feature. It has an importance of
35.2% and 35.7% for the Amsterdam and Rotterdam version respectively. This makes sense because
whether you have the suit has influence on which suit you can play. Furthermore, the player suit
is very important. This has combined importance of 31.4% and 34.3% for the Amsterdam and
Rotterdam version respectively. These features, just like the Has suit feature, determine whether
the suit can be played or not. Features that are not important are the features representing the
third card. This could be easily explained, as the third card is not played that often. This means
it will not be taken into account in many game states. For the Amsterdam version, we see that
whether the teammate is winning and whether we have other suits in hand are also a little bit
important. This could be explained by saying that these features represent the exceptions of the
rules. These features are decisive when such an exception occurs.
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Figure 3: Feature importance for predicting whether a card is playable.

6.2 Results predict which card is best

We will first look at the performance of our rule-based agent at predicting the best card in a
gamestate. The results for this agent is given in Table 3. In Figure 4 the percentages are visualised.

Amsterdam Rotterdam
Number of
playable
cards

Predicted good Predicted wrong % predicted correctly Total Predicted good Predicted wrong % predicted correctly Total

1 455,412 931 99.80% 456,343 294,267 73 99.98% 293,340
2 202,440 120,176 62.75% 322,616 125,648 80617 60.92% 206,265
3 81,715 75,045 52.13% 156,760 49,841 49,722 50.06% 99,563
4 40,533 43,407 48.29% 83,940 23,877 28,432 45.65% 52,309
5 30,293 33,835 47.24% 64,128 17,551 22,333 44.01% 39,884
6 27,202 29,385 48.07% 56,587 15,365 21,164 42.06% 36,529
7 27,540 37,710 42.21% 65,250 14,108 24,317 36.72% 38,425
8 14,443 35,577 28.87% 50,020 8,926 21,019 29.81% 29,945

Total 879,578 376,066 70.05% 1,255,644 549,583 247,677 68.93% 797,260

Table 3: Results for predicting the best card in hand for both versions for different number of legal
moves for the rule-based agent.

As we can see the rule-based agent is able to predict the card that a human would play in 70.05%
and 68.93% of the times for the Amsterdam and Rotterdam version respectively.
As we can see in Figure 4 we can see that the percentage of predicting the card a human would play
drops as the number of playable cards increases. The results of this agent gives us a lower-bound
which our random forest should be able to beat.
To get the results for our random forest agent, we first need to predict the probability that this
card is the card a human player would play in a situation. Then for every hand, we choose the
card with the highest probability. After that, we compare this card to the actual card played for
that hand and we are able to determine whether it has been predicted correctly. We distinguish
between the total playable cards in the hand, as it becomes more difficult to predict which card is
played when more cards are available. The results for both versions are given in Table 4. Table 4
shows that for the Amsterdam version a total of 1,021,833 from the 1,255,644 hands are predicted
correctly. This corresponds to an 81.4% accuracy score. For the Rotterdam version 643,403 of the
797,260 hands are predicted correctly. This corresponds to an 80.7% accuracy score. In Figure 5
the percentages for the number of playable cards are shown. In this figure, we see that when the
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Figure 4: Percentage correctly predicted for the number of playable cards.

number of playable cards becomes higher, the prediction score becomes lower. This makes sense as
it becomes more difficult to predict which card is best when there are more options to choose from.

Amsterdam Rotterdam
Number of
playable
cards

Predicted good Predicted wrong % predicted correctly Total Predicted good Predicted wrong % predicted correctly Total

1 455,412 931 99.80% 456,343 294,267 73 99.98% 294,340
2 273,198 49,418 84.68% 322,616 175,277 30,988 84.98% 206,265
3 119,115 37,645 75.99% 156,760 75,031 24,532 75.36% 99,563
4 54,716 29,224 65.18% 83,940 32,665 19,644 50.75% 39,884
5 35,687 28,441 55.65% 64,128 20,240 19,644 44.74% 36,529
6 27,910 28,677 49.32% 56,587 16,343 20,186 44.74% 36,529
7 28,050 37,200 42.99% 65,250 15,823 22,602 41.18% 38,425
8 27,745 22,275 55.47% 50,020 13,757 16,188 45.94% 29,945

Total 1,021,833 233,811 81.38% 1,255,644 643,403 153,857 80.70% 797,260

Table 4: Confusion matrix for predicting the best card in hand for both versions for different
number of legal moves for the random forest agent.

It outperforms choosing random cards as for example 40% of the hands with seven available cards
are predicted correctly, while randomly choosing a card would lead to an accuracy of 14%.
As we can see, our random forest agent is able to beat our rule-based agent. 81.4% and 80.7%
accuracy for the Amsterdam and Rotterdam version respectively is significantly higher than the
70.05% and 68.93% from the rule-based agent. We created an agent that is better at predicting the
best card in a given situation than a simple rule-based agent.
However, our agent still has difficulty predicting the card a human player would play in certain
situation. Especially in the cases in which many cards are evaluated the accuracy score is considered
quite bad. Having eight playable cards normally means that you are the first player of a round to
play a card. This is a very important game state and can determine whether you win or lose that
round. We still are only able to predict 55.47% and 45.94% of the cards right with eight playable
cards for respectively the Amsterdam and Rotterdam version. A good agent for Klaverjas should
be able to make the right decisions in difficult situations. This is not what our agent is doing
consistently.
Figure 6 shows the feature importances for both versions. Here we see that for both versions,
Rotterdam and Amsterdam, the number of playable cards is a very important feature. That could
be explained by the fact that there are many hands in the dataset with just one playable card.
If the number of playable cards is equal to one, this card should always be played. Furthermore,
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Figure 5: Percentage correctly predicted for the number of playable cards.

whether a card has the lowest or highest value is important. When you are playing the third or
fourth card in a trick this could be important, because then it is known whether your teammate is
winning or not. This could determine whether you want to play a card with a high or low value.
Furthermore, the rank of a card is important. This makes sense because for the card itself it is a
good measure of the value of the card and for the cards in the center it gives a good overview of
the cards that need to be beaten. Just like with the prediction in Section 6.1 the suit of the second
and third card are not that important. We do not see big differences between the two versions.
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Figure 6: Feature importances for both versions.

6.3 Simulations

We divide this section into three subsections in which first the rule-based agent plays against the
random agent, and after that the random agent plays against the random forest agent. Lastly, the
random forest agent plays against the rule-based agent.

6.3.1 Random agent vs rule-based agent

The total games won from the simulations for the random agent versus the rule-based agent are
shown in Table 5. As we can see in Table 5 the rule-based agent wins 56.43% of the games from
the Amsterdam version and 58.15% of the games from the Rotterdam version. Despite being small,
there is a difference in performance between the versions. It is surprising that the rule-based agent
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Amsterdam
Random agent Rule-based agent

Won while starting Won while not starting % won Won while starting Won while not starting % won
First 5,000 games 1,054 1,039 41.86% 1,461 1,446 58.14%

Second 5,000 games 1,102 1,162 45.28% 1,338 1,398 54.72%
Total 43.12% 44.02% 43.57% 55.98% 56.88% 56.43%

Rotterdam
Random agent Rule-based agent

Won while starting Won while not starting % won Won while starting Won while not starting % won
First 5,000 games 954 1,055 40.18% 1,445 1,546 59.82%

Second 5,000 games 1,093 1,083 43.52% 1,417 1,407 56.48%
Total % won 40.94% 42.76% 41.85% 57.24% 59.06% 58.15%

Table 5: Games won by the random agent and the rule-based agent for both versions.

wins fewer games in the Amsterdam version than in the Rotterdam version. In the Amsterdam
version, there are situations in which there are more legal moves. In general, if there are more legal
moves, the random agent is less likely to pick the best card making the agent’s strategy worse,
resulting in a lower win rate for the random agent. However, our results show the opposite. This
can be explained by the fact that the rule-based agent does not account for special trump cases. It

Figure 7: Graph of total games won for each version

could be that because of this, the rule-based agent becomes ‘more bad’ than the random agent
does, resulting in a lower win rate for the rule-based agent. Another thing that stands out analysing
the win rates is that the second run of the database produces significantly different performance
results. The win-rate for the Amsterdam version differs from 58.1% to 54.7% and for the Rotterdam
version, it differs from 59.8% to 56.5%. This means that the database contains biased hands. The
database contains hands that favored the rule-based agent more in the first run than in it did the
second run. In Figure 7 a graph is shown for the games won for each version by each agent and
whether it was starting or not. This is a visual graph of Table 5.
This figure shows that there is only a minimal difference between starting and not starting the
round. The rule-based agent wins in total 56.6% of the hands where it is the starting player and
57.95% where it is not the starting player. This is surprising as the first player has a confirmed
good hand. It has at least two good cards of the trump suit. It makes sense that this does not
matter for the random agent, but the rule-based agent should be expected to make more use of
this factor. Furthermore, we see that the rule-based agent is able to beat the random agent.
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6.3.2 Random agent vs random forest agents

We will now look at the results of the simulations of the random agent against the random forest
agent. The rule-based agent gave us a lower-bound win-rate of 56.4% and 58.2% so we should be
able to win more than that. The total number of games won by each agent is shown in Table 6.

Amsterdam
Random agent Random forest agent

Won while starting Won while not starting % won Won while starting Won while not starting % won
First 5000 games 1,010 1,030 40,80% 1,470 1,490 59,20%

Second 5000 games 1,092 1,020 42,24% 1,480 1,408 57,76%
Total 42,04% 41,00% 41,52% 59,00% 57,96% 58,48%

Rotterdam
Random agent Random forest agent

Won while starting Won while not starting % won Won while starting Won while not starting % won
First 5000 games 951 1,062 40,26% 1,438 1,549 59,74%

Second 5000 games 1,016 1,060 41,52% 1,440 1,484 58,48%
Total 39,34% 42,44% 40,89% 57,56% 60,66% 59,11%

Table 6: Games won by the random agent and the random forest agent for both versions.

The random forest agent is able to win 58.5% of the games for the Amsterdam version, for the
Rotterdam version this is 59.1%.
Just like with the simulations in Section 6.3.1, we see that the second run of the 2,500 games is
worse for the random forest agent. The accuracy for both versions differs from 59.2% to 57.7% and
from 59.7% to 58.5%. In Figure 8 the number of games is shown for each version and whether it
was starting or not.
Just like we have seen before, there is not a huge performance difference between starting or not. In
Figure 5 is shown that the random forest has difficulty predicting the best card when many cards
are playable. Whilst being a following player with fewer available cards to play, he becomes better
at predicting which card is best.

Figure 8: Graph of total games won for each version

Therefore it could be that the fact that starting the game with a good hand and therefore having a
strategic benefit is overruled by the fact that the random forest agent is not able to predict the best
card with many cards to play. A good agent should still be able to win more times when it starts
as losing when starting is very bad. All points are given to the opponent and therefore losing while
playing the trump suit should be minimized and that is not what our agent is doing. It is clear that
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the random forest agent outperforms the random agent. However, the difference in performance
between the rule-based agent and the random forest agent against the random agent differs less
than expected. There is a difference so we do expect that the random forest agent is able to beat
the rule-based agent.

6.3.3 Rule-based agent versus random forest agent

We will now look at the results for our most advanced strategies: Rule-based and random forest.
In Table 7 are the number of games won by each agent shown. As we can see the random forest

Amsterdam
Rule-based agent Random forest agent

Won while starting Won while not starting % won Won while starting Won while not starting % won
First 5000 games 1,071 1,063 42.68% 1,437 1,429 57.32%

Second 5000 games 1,260 1,195 49.10% 1,305 1,240 50.90%
Total 46.67% 45.16% 45.89% 54.18% 51.38% 54.11%

Rotterdam
Rule-based agent Random forest agent

Won while starting Won while not starting % won Won while starting Won while not starting % won
First 5000 games 1,046 1,090 42.72% 1,410 1,454 57.28%

Second 5000 games 1,277 1,201 49.56% 1,299 1,223 50.44%
Total 46.46% 45.82% 46.14% 54.18% 53.54% 53.86%

Table 7: Games won by the rule-based agent and the random forest agent for both versions.

agent outperforms the rule-based agent by winning 54.1% of the games for the Amsterdam version
and by winning 53.9% of the games for the Rotterdam version. Again we see huge differences in
the first run of 5,000 games and the second run. In Figure 9 the total games won for each version
and whether it was the starting player or not are shown. Once again, we see that whether starting

Figure 9: Graph of total games won for each version

the game or not has not that much influence on winning the game or not. For the Amsterdam
version, the random forest agent wins 54.8% of the games while starting and 53.4% when it does
not start. For the Rotterdam version, this is 54.2% and 53.5%. By analyzing the figures we see that
the random forest agent outperforms the rule-based agent. However, the difference is small. The
rule-based agent is very simple and the random forest agent is trained on a big dataset and takes
more attributes into account. The random forest agent should beat the rule-based agent more than
it has done now. It is expected that after improving the rule-based algorithm it would even be able
to beat the random forest agent.
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6.3.4 Overall

We will now take a look at a comparison between all the agents. In Table 8 a table is shown with
the performances of each agent against the other agents.

Random Rule-based Random forest
Random — 42,71% 41,20%

Rule-based 57,29% — 46,01%
Random forest 58,80% 53,99% —

Table 8: Performance of each agent against the other agents.

In the table, the percentages represent the win-rate of the agent on the left against the agent at the
top. In this table, we see that the random forest agents outperforms both other agents. However,
the win-rates are too small. As expected the random agent has the worst strategy.

6.3.5 Points

Figure 10 shows how often the rule-based and random forest agent obtain a number of points in
the 10,000 simulated games against each other. The outliers 0, 162, 182 and 202 are not shown
completely as the other data points would not be visible anymore. In both versions, the trend line

Figure 10: Total points obtained by the rule-based and random forest agent

for both strategies is a bit different. We see that the trend line of the random forest agent is more
skewed to the right, but only slightly. Table 9 shows the average and standard deviations for both
strategies for both versions. Here we see that for both versions the random forest agent gets more

Amsterdam Rotterdam
Rule-based Random forest Rule-based Random forest

Average 87,91 100,1 87,46 101,95
Standard deviation 75,17 77,89 60,25 63,50

Table 9: Average points obtained and standard deviation by each agent in a round of Klaverjas.

points on average. 100.1 for the Amsterdam version and 101.95 for the Rotterdam version against
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87.91 and 87.46 for the rule-based agent. Furthermore, we see that for the Amsterdam version the
density of points is more spread out due to the higher standard deviation. We see that the random
forest agent not only wins more games but also scores more points on average than the rule-based
agent. This is a significant difference in performance between the rule-based agent and the random
forest agent.

7 Limitations

We will now discuss some limitations of this research.
At first, the database is shared by the maintainer of the website www.klaver.live. This is a free-to-
play Klaverjas website where everyone is always able to play a game of Klaverjas. This means that
a top-level player could be among the data entries, but also mediocre players of Klaverjas. It is
hard to distinguish these played hands from the other hands that might be played by the top-level
player. This means our random forest is trained on hands where the best card is chosen, but also
on hands where this is not the case. This makes our random forest less reliable. In the future, a
subset of this dataset could be chosen. By filtering out cards that are obviously not the best card a
new dataset could be created. Determining whether a card is obviously not the best card could
be done with some basic rules, such as playing a mid-value card of a suit from a hand with many
cards of that suit. In some cases, this is a bad card.

An important strategic part of Klaverjas is the bidding process. This could give strategic ad-
vantages as the trump suit is an important factor in the game. In this research, we hardly took
this into account, only by allowing games where the starting player had enough points of the given
trump suit. As this still could mean that in the real world a player still would not have played the
trump suit, the outcome of the games becomes less reliable.

Klaverjas always has a luck component. It does matter whether you get very good or very bad
cards. Even with the best strategy you still can not win with very bad cards against very good
cards. This is shown in Table 5 where the random agent still wins around 41% of the games. The
random agent has generally been considered a very bad strategy. Because of this luck element, it is
difficult to predict the actual performance of our agent.
There are some cases in which multiple cards could be considered the best card. For example, if you
are the first player to play a card and you have two aces from a regular suit, both cards could be
considered the best card. Our agent does not take this into account as is always chooses the same
card as the best card. This decreases the accuracy of the random forest. However, for the game
simulations, this should not matter, because in that case, both cards have equal winning chances.

8 Conclusion

In this thesis, we created an agent that is able to predict which card a human player would play in
a game of Klaverjas using random forests. We created this agent by first creating an agent that is
able to predict whether a card is playable or not. A card is playable when the rules of Klaverjas
allow the card to be played. We trained a random forest with supervised learning to reach this task.
This agent reached a 100% accuracy score. We then used this approach to create another agent
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that could predict which card is the best card to play in a given situation. We created 42 features
to make sure this could happen. For the Amsterdam version of this game, we were able to predict
81.4% of the hands correctly and for the Rotterdam version this was 80.7%. This agent is able to
beat a simple rule-based agent for this task as that agent only reached 70.05% and 68.93% accuracy
for the Amsterdam and Rotterdam version respectively. However, the agent has a lot of trouble
determining which card to play if there are many cards playable. Hence, it is mediocre at making
good decisions in complicated situations. We then used this random forest agent to simulate games
against two different agents: an agent with a random strategy and an agent with a rule-based
strategy. The random forest agent was able to beat the strategies with respectively 58.8% and 54.0%.
Furthermore, we saw that on average the random forest obtains 100.1 and 101.95 points against
87,9 and 84,5 points for the rule-based agent for the Amsterdam and Rotterdam version respectively.

The win-rate of the random forest agent against the very simple rule-based agent is lower than
expected. By improving the rule-based agent it is expected that it can beat the random forest
agent. A good Klaverjas algorithm should be able to win more games against a simple rule-based
algorithm and therefore the used method is not the way to go. This is surprising as random forest
should be performing very well on these kinds of tasks.

Improvements to this agent could be made in filtering out bad entries in the database. As the
database consists of games by players with all skill-levels, the database can consist game states
where players have made a very bad decision. By filtering out these entries the random forest is
trained on better data. Furthermore, other methods could be used like neural networks. Neural net-
works may be better at solving this task as they may be better at dealing with imperfect information.

We showed how to create an agent that predicts whether a card is playable or not and how
well it performs on this task. We showed that a game of imperfect information could become
solvable by using a random forest. The random forest is able to beat the rule-based agent on
winning more games and scoring more points each game, but we expected to see a larger difference
in performance between the two agents.

9 Further research

As discussed in Section 7, this research obliges players to play with a trump suit if they had enough
points of this suit. The process of bidding whether you want to play a trump suit could be further
analysed to make an even better agent with an even better strategy.

Furthermore, AlphaZero [SHS+17] could be applied to create an agent that learns the game
of Klaverjas by itself. In this research, we created a representation of the game that could help with
this process. As Alphazero can learn the game by only knowing the rules of the game, this is not
particularly necessary, but it could help the learning process. This representation can be created
without using the used random forest. The representation contains more information than a simple
representation of the game does. In this way, AlphaZero should learn the game much easier.

Another option to improve this research could be by using neural networks instead of a ran-
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dom forest. Neural networks could also be used by solving these kinds of problems, but configuring
a neural network takes a lot of time. In [KLHG21] a method is showed which creates a neural
network for tabular data. This should perform very well on our data as we also use tabular data.
By applying this method, we should see better performances for the agent.

At last, this approach could be used in similar card games like Bridge. A strategy could be
developed for these games in which the best card is chosen and this can be used to create an agent
which people can play against.
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10 Appendix

Link to GitHub repository: https://github.com/lennardhordijk/Klaverjas
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