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Abstract

File systems are an important part of modern day computing. Traditionally, they reside

in kernel space, which raises the barrier to entry for developing new file systems. Linux’

FUSE offers an interface to easily develop a file system in user space. However, FUSE

is detrimental to file system performance due to the overhead it adds. This thesis

introduces LDP FUSE, a C library that allows developers to leverage LD_PRELOAD for

creating user space file systems more easily. Filebench benchmarks show that it degrades

performance only slightly (−8%) on workloads where FUSE performs terribly (−91%).

Significant challenges remain in order to make this approach viable, such as adding

support for memory-mapped IO.

Code available at https://github.com/sholtrop/ldpfuse.
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1 Introduction

File systems are ubiquitous in modern day computing. They first appeared in the 1960s as

a response to the growing need for per-program data storage. At the time, computers were

designed to run a single program. This program could therefore presume exclusive access to

the computer’s disk, and store data on it in any way it saw fit [6]. However, with the advent

of multi-program computers, this approach became inadequate. Multiple programs running

on a single computer could interfere with one another, e.g. by overwriting each other’s data.

A more structured approach to storing data was needed [9]. This led to the advent of the first

file systems.

A file system organizes the otherwise unorganized sequence of data a disk contains. There

are multiple ways to approach this. The most popular of which makes a distinction between

two entities: Files, which contain raw data, and directories (or folders), which contain files

or (recursively) other directories. This paradigm still forms the foundation of most modern-

day file systems, such as those found on Linux [8] and Windows. These operating systems

were designed to be multi-user, in addition to being multi-program. When they first rose to

popularity in the 90s, they therefore brought with them the need for file permissions. Because

users of such systems should be able to have private data, there should be files that cannot

be read by other users.

File systems manage all of this by storing metadata per entity: Is it a file or a directory?

Who may read it, and who may write it? In addition, this metadata often includes which

blocks contain the file’s contents. In this case, the file system treats the storage space of a disk

as a sequence of blocks. It then (de)allocates said blocks for a file as needed. This useful for

e.g., when a file outgrows the space that the file system provisioned for it initially. It simply

allocates a new block to the file, rather than copying the entire file to a new location with

more space. Thus, file systems use metadata for all kinds of benefits.

For the features, ease and flexibility that file systems offer, they necessarily incur a

performance cost. Storing, retrieving, parsing and checking metadata is not free. This is

exacerbated by the fact that non-volatile storage, such as disks, are one of the slowest parts of

a computer system. Many times slower than a processor, in fact. Good file system performance

is therefore vitally important to the overall system performance. Another important aspect of

file system performance is where file system operations happen: Inside the operating system

(kernel space), running in a privileged CPU mode, or outside the kernel, running as a ’regular’

program (user space). User space file systems were the norm for the microkernels that were

common in the mid 1980s [14]. However, popular modern operating systems like Windows

and Linux implement their file systems in kernel space.

The file system residing in kernel space adds overhead due to the required context switches

when switching between user and kernel mode. Additionally, it makes developing a custom file
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system harder because of the need to write a kernel module rather than a normal program.

Ways to develop file systems in user space do exist. Linux’ Filesystem in Userspace (FUSE) is

the most popular, but has some performance issues. Namely, it adds too much performance

overhead to frequent, small operations. More detail on this in Section 4.

In this thesis, I therefore propose a novel approach for developing file systems in user space

on Linux-based operating systems. I have named this approach LD PRELOAD Filesystem in

user space (LDP FUSE). It makes the following contributions to the field:

• Offer future researchers of user space file systems an ergonomic abstraction to implement

them.

• Provide insight into the feasibility of this kind of file system.

• Outline challenges that must be overcome in order to make improvements to this

approach.

The thesis is structured as follows. Section 2 will introduce the necessary technical background,

after which I will pose my research questions.

Then, in Section 3, I will introduce my own solution of LDP FUSE, and explain its design,

inner workings and shortcomings. This is followed by a comparison with related work and

similar solutions in Section 4. Section 5 contains a set of performance experiments, where

file systems implemented in respectively LDP FUSE and regular FUSE are compared with

each other. The results of these experiments are discussed in Section 6. Finally, I will draw an

overall conclusion in Section 7.
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2 Background

This section provides a brief, high-level technical overview of the required background knowl-

edge. It covers the implementation of file systems, how Linux’ FUSE operates, and the

LD_PRELOAD linker directive.

2.1 File systems

First, a File systems provide processes an interface for reading/writing data in a structured

way, usually from/to an underlying storage device.

A file system consists of at least two layers:

• Logical file system – The application-level interface that provides simple functionalities

such as reading from, writing to, creating and deleting files. The OS usually exposes

these operations as syscalls.

• Physical file system – The bookkeeping data structures as well as the data itself, that

are usually stored on a mass storage device.

[14]

Many operating systems, among which Linux-based ones, have a layer between these two

called the Virtual Filesystem (VFS). The VFS is a kernel space software layer that can unify

multiple underlying physical file systems into a single logical file system interface. In the case

of Linux, it also consists of multiple caches (directory cache, inode cache, page cache) to boost

performance [4].

Traditionally, file systems are implemented in kernel space. The kernel will have a driver

that can interpret and operate on the file system’s bookkeeping data structures to store and

retrieve files. A major downside to this is that those who want to develop a file system will

need to write a kernel module. One solution to this issue is Linux’ FUSE, which is discussed

in the next section.

2.2 FUSE

2.2.1 What is FUSE

Filesystem in user space, abbreviated as FUSE, is a Linux interface for writing file systems

based on a user space program [3]. It consists of two parts:

• A kernel module (fuse.ko) that translates file system syscalls to requests that are sent

to the user space program.
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• A library (libfuse) for developing the user space program against. This program

answers the kernel module’s requests. The program may implement the file system

however it wishes: E.g. on-disk, in-memory, or via a cloud-based remote service.

FUSE has become very popular for implementing user space file systems, and over 100 such

file systems have been developed with it [15]. Two of the main reasons for the popularity of

user space file systems (in general) include:

1. User space code is easier to port and maintain than kernel code.

2. User space code has a lower bar to entry; you can use a wider array of programming

languages rather than just system ones like C.

[17]

Why is FUSE the most popular tool to accomplish this? I posit that it is because of its built-in

kernel support and excellent high level interface. The following code snippet illustrates this:

// Function declarations, implementations

// and #include's are omitted for brevity

struct fuse_operations fuse_ops = {

.readdir = custom_readdir,

.mkdir = custom_mkdir,

.rmdir = custom_rmdir,

.getattr = custom_getattr,

.open = custom_open,

.create = custom_create,

.unlink = custom_unlink,

.read = custom_read,

.write = custom_write,

.truncate = custom_truncate,

};

int main(int argc, char** argv) {

// At some point...

fuse_main(argc, argv, &fuse_ops, NULL);

}

As one can observe, a FUSE file system implementation can be as easy as passing a struct of

function pointers. Each pointed-to function corresponds to a basic file system operation. You
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implement these, and then the FUSE library libfuse will take care of of all the lower level

details of communicating with the kernel module. In conclusion, I believe this is what makes

FUSE the most popular choice for user space file systems on Linux.

2.2.2 Performance concerns

FUSE is known to degrade file system performance by adding overhead. To better understand

this, I have visualized the path a typical read operation takes, based on Vangoor et al.’s

analysis of FUSE’s inner workings [16]. This is seen in Figure 1.

Figure 1: How FUSE handles a read call.

1. User space utility binary cat is ran to read myfile.txt.

2. This binary invokes the syscall read via its glibc wrapper function.

3. The virtual file system resolves what underlying file system the call should go to. It

forwards it to the FUSE kernel driver.

4. The FUSE kernel driver translates the syscall to a read request and passes it to the

user space program.

5. The user space program retrieves the file’s contents however it wishes, and places them

in a buffer provided by the kernel module. The read request has now been answered.

6. The kernel driver marks the read request as complete.

7. The user space program is woken up, glibc’s read function returns.
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8. cat receives its file data and can continue execution.

Note that the read request will cross the user/kernel space barrier four times. As is well

known, there is a minor overhead cost for switching from user to kernel space. In addition,

reads and writes require copying memory between user and kernel space. While FUSE uses

the kernel’s splice1 function to elide this copying, it only does so for writes of ≥1 page

and reads of ≥2 pages [16]. Moreover, splice can not always avoid copying data. FUSE’s

performance degradation is a well-known and researched issue. In Section 4, I will go over

this in more depth and compare several other solutions.

2.3 LD PRELOAD

2.3.1 What is LD PRELOAD

The LD_PRELOAD environment variable specifies shared libraries (.so files) that the linker

(ld) will load before a program is run. Because it is loaded first, it can be used to overwrite

existing symbols in a program with a custom implementation. You can therefore use it to

change the implementation of C standard library (glibc) functions.

2.3.2 An LD PRELOAD based file system

The standard library contains wrapper functions for most syscalls, e.g. read, write, open. By

hooking into these and overwriting them with LD_PRELOAD, we can implement any functionality

we wish. Figure 2 shows an example of the path a read function call would take under such a

file system.

Note how compared to Figure 1, there are far fewer steps. In addition, the user-kernel space

barrier is never crossed. This will result in no user-kernel mode switches, fewer context

switches, and less memory copying [18]. All of the aforementioned are reasons why such a file

system could outperform FUSE. By overwriting each file system-related function in this way,

we can write an entirely custom file system. Some possibilities include:

• Stackable file systems, implemented on top of a regular one, that transparently add

features such as encryption or automatic backup.

• Remote file systems, where programs are actually performing operations on data stored

on a cloud service.

• High performance computing file systems.

1https://man7.org/linux/man-pages/man2/splice.2.html
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Figure 2: How an LD PRELOAD based file system handles a read call.

However, doing this manually is cumbersome and involves a lot of boilerplate code. For

example:

• The small differences in semantics between similar syscall wrappers (e.g. stat vs lstat).

• Passing along an IO function call to the original syscall wrapper in case it is not in

your file system.

• To determine that a file is ”not in your file system”, one will need to manually implement

some notion of which directory the LD_PRELOADed file system is ’mounted’ under.

LDP FUSE is a library that seeks to abstract these problems away, so developers can focus

on the actual implementation of the file system itself.

My main research questions for this thesis are:

1. Can an LD_PRELOAD-based file system, like LDP FUSE, be a viable alternative to FUSE?

2. How is the performance of LDP FUSE compared to FUSE?
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3 The LDP FUSE Library

The code for LDP FUSE is available at: https://github.com/sholtrop/ldpfuse

3.1 Features & Design

LDP FUSE is a single, header-only C library. This is similar to the extremely popular Boost

library, and is done for ergonomic reasons. However, it does require explicitly linking libdl,

e.g. by specifying -ldl.

To save users of the library from duplicating code for very similar system calls (e.g. stat,

fstat, lstat, and fstatat), LDP FUSE will translate and redirect many such system calls

to its most generic version. The user therefore only has to implement that single generic

function.

For example:

open(const char* pathname, int flags, mode_t mode)

is equal to

openat(AT_FDCWD, pathname, flags, mode)

where AT_FDCWD is a constant indicating the pathname is relative to the current working

directory, thereby having the same semantics as open.

LDP FUSE will overwrite the original glibc symbols for nearly all file system related functions.

An overview of which LDP FUSE function matches which syscall is given in Table 1.
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Syscalls LDP FUSE function Notes

access

access
faccessat

euidaccess

eaccess

mkdir mkdir

close

close
close range

Flags argument is ignored.

Will call close once on each file descriptor in the range.

opendir opendir

creat

openopen

openat

truncate truncate

chmod chmod

chown chown

symlink symlink

rename rename

link link

rmdir rmdir

unlink unlink

mknod
mknod

mknodat

readlink readlink

write
write

pwrite

lstat

stat
fstat

stat

fstatat

read
read

pread

getxattr

getxattrlgetxattr
WILL follow symbolic links, contrary to the default

lgetxattr which interrogates the link itself.

fgetxattr

Table 1: List of Linux syscalls that LDP FUSE overwrites, and any changed semantics.

However users may still want to access the original functions, e.g. when developing a stacked

file system on top of an underlying one. This is why every LDP FUSE function receives a

function pointer to the original one as its last argument.

LDP FUSE knows which directory it is ’mounted’ under through an environment variable

specifying a path. It intercepts every I/O syscall, checks whether the provided path name or

file descriptor is in this ’mounted’ path, and if not, simply passes it to the respective original

function. This crucial because under Linux a file may also refer to e.g. a block device or a
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stream, rather than a ’regular’ file. Problems will arise if a user tries to read a stream under

LDP FUSE, as it will translate read calls into pread, the latter of which does not work on

streams. This is avoided by not mounting any such files under LDP FUSE.

To keep track of which file descriptors are and are not in the file system, LDP FUSE has

its own open file descriptor table (OFDT) per process, in which it tracks results of open calls.

It also uses this OFDT to track open file offsets. This is necessary for a number of reasons:

• Calls like read are redirected to pread. The latter does not increase the open file’s offset

in any underlying file system, whereas the former does. LDP FUSE reimplements these

semantics itself.

• Reading /proc/pid/self/fd on every call to figure out if the file descriptor is in the

file system is slow.

• In the case of no underlying file system, this saves the library user the effort of having

to implement this themselves.

As mentioned, each process has its own OFDT. This has some obvious disadvantages, among

which no builtin interprocess read/write locking. This is discussed in detail in Section 3.3.

LDP FUSE has a conditional compilation flag LDP_FUSE_THREAD_SAFE. Normally, a

multithreaded application concurrently accessing the global OFDT will lead to race conditions.

With this conditional compilation flag enabled, the OFDT is made thread safe by adding a

pthreads reader-writers lock to every entry in the OFDT, used to synchronize access. A user

of the LDP FUSE library will therefore have to know whether the program(s) using it are

multithreaded, and should specify this flag if they are.

3.2 Examples

3.2.1 StackFs

An implementation of Vangoor et. al’s StackFs [16] is very simple in LDP FUSE. The following

snippet illustrates how one would write a passthrough function for the read operation:

ssize_t stackfs_read(int fd, void *buf, size_t count, off_t offset,

orig_pread_t pread_fn) {

return pread_fn(fd, buf, count, offset);

}

In other words, call the function given by the last argument, passing in all the other arguments

as-is.
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3.2.2 Transparent cryptographic file system

You can make more interesting stacked file systems by writing custom logic before and after

calling the original function. The next snippet is an example of a transparently encrypted file

system:

#define KEY 0b11110000

ssize_t encrypted_read(int fd, void *buf, size_t count, off_t offset,

orig_pread_t read_fn) {

ssize_t read_bytes = read_fn(fd, buf, count, offset);

for (size_t i = 0; i < read_bytes; i++) {

((unsigned char *)buf)[i] ^= KEY;

}

return read_bytes;

}

ssize_t encrypted_write(int fd, const void *buf, size_t count, off_t offset,

orig_pwrite_t write_fn) {

for (size_t i = 0; i < count; i++) {

((unsigned char *)buf)[i] ^= KEY;

}

return write_fn(fd, buf, count, offset);

}

Every byte is XOR’ed with a key on write, and XOR’ed again on read. This is, needless

to say, not cryptographically secure, but purely for demonstration purposes. It shows that

user-defined logic is easily included in an LDP FUSE file system. Moreover, it is possible to

not use the original read and write functions at all, and instead opt for e.g. in-memory or

network-based storage.

3.3 Shortcomings

This approach comes with several inherent drawbacks. I have enumerated them below.

• Memory-mapped I/O (e.g. mmap) can not be used with LDP FUSE. The mmap function

simply returns a pointer that the program may then read/write freely to perform file
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system operations. It is not possible to intercept this and translate them to LDP FUSE

calls. FUSE does not have this problem due to its kernel space module. These memory-

mapped file system operations are intercepted by the VFS and are simply passed along

to the kernel module, as if they were regular reads and writes.

• Linux does not allow LD_PRELOAD in secure-execution mode, e.g. for setuid binaries.

This is because of the security implications of LD_PRELOAD: It would be unsafe to allow

modification to a program running with elevated privileges. As a result, LDP FUSE

will not work at all for setuid binaries.

• Certain syscalls, such as openat22, do not have a glibc wrapper. As such, LDP FUSE

cannot intercept it. The same applies to any programs that use syscall3 to invoke a

filesystem-related syscall, or use inlined syscalls.

• Statically linked executables do not use a dynamically linked glibc. This means LD_PRELOAD

does not work. As a consequence, LDP FUSE will not work either.

Additionally, the current design of LDP FUSE presumes the existence of an underlying

file system to manage shared/exclusive locks of files. Although nothing prevents a user from

implementing this on their own, it is not ergonomic. Adding this to LDP FUSE would

be a good first point of improvement. A possible implementation could be a single, user

space OFDT in shared memory. This OFDT would be shared among all processes running

with LDP FUSE, thereby being able to manage concurrent access through read/write locks.

Although, this would replicate a large part of the kernel’s own OFDT, and no doubt add

performance overhead.

To summarize: LDP FUSE is not a drop-in replacement. If one wants to use an LDP FUSE

file system, they will need detailed knowledge of how programs will access it. Finding a solution

to (some of) the shortcomings listed above will be crucial for making LD_PRELOAD-based file

systems feasible. This answer research question 2, posed in Section 2.3.2: Can an LD_PRELOAD-

based file system, like LDP FUSE, be a viable alternative to FUSE? To which the answer is

no. In its current state, there are too many scenarios in which it cannot replace FUSE.

2https://man7.org/linux/man-pages/man2/openat2.2.html
3https://man7.org/linux/man-pages/man2/syscall.2.html
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4 Related work

To better understand how LDP FUSE fits into the field, I will go over several related works.

This section starts with papers that have analyzed FUSE’s performance in more depth,

and have identified workloads under which FUSE performs the worst. Followed by this is a

comparison between several existing solutions, which I will compare to LDP FUSE.

In their 2010 paper, Rajgarhia and Gehani performed several experiments on FUSE

[13]. They note that its performance is comparable to a regular, in-kernel file system under

workloads that feature large and sustained I/O, such as copying a large file. However, workloads

that feature many small operations noticeably suffer from the overhead that FUSE adds,

which caused a severe performance degradation.

Vangoor et al. in 2017 came to a similar conclusion [17]. They performed experiments

with a stackable filesystem (Stackfs) implemented on top of FUSE. Stackfs merely passes

along FUSE requests to an underlying file system, thereby isolating FUSE’s added overhead.

Most workloads suffered less than a 5% penalty in execution speed. However, an 83% penalty

was incurred when randomly reading 4KB chunks from a large file with 32 threads, on an SSD.

The same workload on an HDD suffered less relative performance loss because the storage

device itself is slower, therefore hiding some of FUSE’s overhead.

From this we can conclude that FUSE’s performance degradation is a well-known fact.

What solutions to this problem exist currently? For certain workloads, mainly those in

the cloud, one possible solution would be unikernels. Unikernels are applications where a

specialized subset of operating system functionalities (e.g. networking) have been compiled

together with the application logic, and live in the application’s address space [5]. Shared

resources, such as the network and file system, would be implemented as a shared server in

user space [11]. This would improve performance by removing the need for a mode switch

between user and kernel space. However, unikernels are not always feasible. They are suited

to systems with a single user, as multiple users dramatically increase overhead due to the

need for (file system) authentication logic [12]. A more generally adoptable solution is the

Direct-FUSE framework [18]. Direct-FUSE seeks to improve performance by moving a part of

FUSE’s functionality into user space. It builds on top of the libsysio [10] framework. Libsysio

provides a way to overwrite glibc syscall wrappers, similar to LDP FUSE. Another similarity

is that libsysio implements a complete user space VFS, which LDP FUSE currently only does

partially with its per-process OFDT. Direct-FUSE itself offers a way to port FUSE systems

to libsysio. In addition, it supports running multiple file system backends at the same time.

It can then be either dynamically linked to an application, or LD_PRELOADed. It differs in

being a lower level framework, rather than a higher level library. One must write a driver

that interfaces with Direct-FUSE in order to use an existing FUSE file system. Depending on

the complexity of the file system, this could be cumbersome.
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Other efforts include an extension to FUSE, rather than a complete replacement. One such

solution is ExtFUSE [7]. ExtFUSE leverages the eBPF framework [1], an in-kernel interpreter

that provides a safe execution sandbox for user-defined code that requires lower level kernel

access. Using this, ExtFUSE brings the possibility for users to add extensions: In-kernel

handlers for file system requests. ExtFUSE then allows these to handle file system requests,

also referred to as the fast path. When more complex logic is needed, ExtFUSE will forward

the file system request to the user space FUSE daemon, as normal. This is the slow path.

This split allows for gradual adaptation of an existing FUSE codebase to ExtFUSE. Authors

note that rewriting FUSE code to ExtFUSE is not difficult, but not trivial either: Several

hundreds lines of code changed to adapt an existing FUSE file system. LDP FUSE, on the

other hand, has no ”slow path” that requires entering kernel space. Additionally, adapting an

existing FUSE codebase (provided it is written using the high level API) is easier, though

gradual adaptation is not possible. Other than this, ExtFUSE also supports immediately

passing through simple requests (read/write) to an underlying file system. This is useful for

stackable file systems that add only a thin layer of functionality on top of an existing one.

Interestingly, this last part is now a regular part of FUSE itself. Read/write passthrough

support has been added to FUSE in Linux kernel v5.11-rc5 [2]. From then on, FUSE will

support read/write requests going directly to the underlying file system rather than to the

user space daemon. On an open/create operation, FUSE will decide whether the file can be

accessed in passthrough mode. This is only possible for reads and writes. A version of FUSE

with passthrough mode has not been included in the experiments in this thesis, but is an

interesting avenue for future research.

We can conclude using LD_PRELOAD for developing file systems is not a completely new

idea. However, as discussed in Section 3, the novelty of LDP FUSE is that it is a library

to allow others to write file systems on top of LD_PRELOAD more easily. An assessment of

LDP FUSE’s performance is available in the next section.

14



5 Experiments

In this section, I will explain the experiment setup that I used to assess LDP FUSE’s

performance. To measure performance, I used Filebench4 (version 1.5-alpha3). Filebench

allows one to simulate a file system workload by specifying a set of I/O operations, e.g.

open, delete, readwholefile. It then reports on the overall bandwidth that was measured.

This means we can compare the overall throughput of LDP FUSE against native and FUSE

respectively. In addition, it will give insight into which workloads degrade performance the

most. In all cases, a stackable (passthrough) file system is used. This is to measure purely the

added overhead of the file system itself.

I used FUSE version 3.11, running under Linux kernel version 5.13.0-52-generic. The

FUSE file system used is the example passthrough file system found in the libfuse GitHub

repository5. As the authors have noted, the performance of this FUSE file system is ”terrible”.

It is possible to develop a more performant passthrough file system using FUSE’s lower level

API, as Vangoor has done [16]. However, I think the higher level FUSE API is a more fair

comparison. It is what most developers would reach for first when developing a file system,

and it is closer to how one would use LDP FUSE.

The LDP FUSE file system I used was the simple passthrough system, implemented as

described in Section 3.2.1.

The workloads that Filebench simulated were as follows:

• file-sq-re-4KB-1th-1f – Single thread that opens and reads a single 60GB file sequentially

in 4KB chunks.

• file-sq-re-4KB-32th-32f – 32 threads that open and read 32 2GB files sequentially in

4KB chunks.

• file-cr-wr-4KB-1th-4Mf – Single thread that creates 4 million 4KB files, then overwrites

each file fully

• file-cr-wr-4KB-32th-4Mf – 32 threads that create 4 million 4KB files, then overwrite

each file fully

• web-server-100th – 100 threads that simulate a web server workload: Repeatedly open,

fully read, close 1.250.000 16KB files.

• file-server-50th – 50 threads that simulate a file server workload: Repeatedly create,

write, read, close, delete and stat 200.000 128KB files.

4https://github.com/filebench/filebench
5https://github.com/libfuse/libfuse
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The experiment results are the average bandwidth of all the operations, obtained after running

the workload five times. The server that ran the experiments had the following hardware:

AMD Ryzen 7 3700X CPU, 32GB of DDR4 2133MHz RAM, Samsung 980 PRO M.2 SSD.

In the case of LDP FUSE, a thread-safe version of the library is used when the workload

features >1 threads. The thread-safe version adds additional overhead because it uses a

readers-writers lock for every entry in the OFDT, as mentioned in Section 3.
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6 Results

This section contains the results of the experiments described in Section 5. In addition, I will

elaborate on the findings and give my reasoning

Table 2 shows the results of the experiments described in the previous section. Each

cell lists the average bandwidth of all the performed file system operations. For LDP FUSE

and FUSE, it also notes the relative performance loss when compared to native. On every

File system

Native LDP FUSE FUSE

W
o
rk

lo
a
d

file-sq-re-4KB-1th-1f 659 MB/s
562 MB/s

(-15%)

119 MB/s

(-82%)

file-sq-re-4KB-32th-32f 4937 MB/s
3363 MB/s

(-32%)

722 MB/s

(-86%)

file-cr-wr-4KB-1th-4Mf 76 MB/s
70 MB/s

(-8%)

6MB/s

(-91%)

file-cr-wr-4KB-32th-4Mf 99 MB/s
91 MB/s

(-9%)

21 MB/s

(-79%)

web-server-100th 1360 MB/s
1194 MB/s

(-12%)

108 MB/s

(-92%)

file-server-50th 2713 MB/s
2079 MB/s

(-23%)

437 MB/s

(-84%)

Table 2: Results of running six different workloads under three different file systems.

For details on workloads, see Section 5

workload, the näıve passthrough file system in LDP FUSE outperforms the same file system in

FUSE significantly. LDP FUSE performs worst on workloads with a high number of threads.

This is due to the overhead added by the necessary locking per open file descriptor.

Interestingly, FUSE’s performance is far worse than the worst case of 83% degradation

discussed in Section 4. This is likely due to the SSD used in the current experiment being

faster, which makes the overhead even more noticeable. Coming back to research question 2

(Introduced in Section 2.3.2) – How is the performance of LDP FUSE compared to FUSE? –

these results indicate that LDP FUSE outperforms FUSE by a wide margin.

Although LDP FUSE’s performance is still noticeably worse than native on some work-

loads, for example file-sq-re-4KB-32th-32f (Sequential read of 32 files by 32 threads in 4KB

chunks). The overhead added by the pthread read-lock and the updating of the file offset in

LDP FUSE’s OFT is especially pronounced here. This is due to it being a very fast benchmark

on native. Comparing this to file-sq-re-4KB-1th-1f (Sequential read of 1 file by 1 thread in

17



4KB chunks) – which runs without any mutex locking – we see that the overhead is far less

noticeable. In short, LDP FUSE outperforms regular FUSE on every workload, but is still

has noticeable performance loss as compared to native.
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7 Conclusion

In this thesis, I have explained the importance of file systems and why it is attractive to

run them in user space instead of in the kernel. Namely, because it benefits performance by

avoiding user-kernel mode switching, and it is easier to develop user space programs. Then I

showed that while Linux’ FUSE is a good tool to develop such file systems, it suffers from

bad performance especially on workloads with small, frequent IO.

The LDP FUSE library, introduced in this thesis, leverages the LD_PRELOAD linker directive

to develop user space file systems instead. By overriding glibc syscall wrappers for IO operations,

we can insert our own logic through which we implement a file system. Benchmarks performed

by Filebench show promising results: LDP FUSE incurs a −32% performance penalty in the

worst case (versus FUSE’s −92% worst case), and only −8% in the best case.

However, there are significant shortcomings and challenges that need to be overcome

to make this method viable. Most importantly, LDP FUSE cannot intercept file system

operations performed via memory mapped IO. Other than this, not all IO syscalls can be

intercepted either, as some do not have a glibc wrapper. Lastly, binaries that use secure-

execution mode (e.g. setuid) do not work with LDP FUSE. Other than these shortcomings,

LDP FUSE currently lacks an interprocess read-write locking mechanism for files. All of these

points are an interesting avenue for further research.
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