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Abstract

Virtual machines are supposed to enforce a rigid security boundary
between guest and host. Transient execution attacks have however been
shown to enable virtual machines to compromise their hypervisor. This
thesis explores a new defense, hypervisor isolation, for hypervisors against
microarchitectural attacks from malicious guests. Hypervisor isolation
guarantees that a hypervisor runs on different physical cores than the
virtual machines it manages. This eliminates the sharing of any core-local
micro-architectural resources and hence all attacks that rely on them.



1 Introduction

The disclosure of Spectre [38] and Meltdown [50] in 2018 kicked off the era of
transient execution attacks. These attacks abuse the design of modern proces-
sors to leak secret data across arbitrary security domains. Impactful examples
are user applications reading kernel data and virtual machines (VMs) reading
hypervisor data. Transient execution attacks form a severe security thread, as
they can compromise even the most privileged security domains.

Mitigating transient execution attacks is complicated, because the root cause
lies in the hardware design of modern processors: software from different secu-
rity domains share microarchitectural resources. Fundamentally solving this
problem in silicon would require a complete redesign of modern processors, dis-
carding decades of processor research and engineering efforts, probably resulting
in severe performance degradation. Furthermore, vulnerable hardware is already
deployed in billions of devices around the world and these devices must also be
protected.

These concerns have led to mitigations which do not tackle the fundamental
problem of sharing microarchitectural state with untrusted parties. Instead,
minimally invasive mitigations were deployed throughout the whole computer
ecosystem: in-silicon fixes [6], microcode updates [32], kernel patches [35] and
application updates [64]. They can be described as spot mitigations, defending
against specific attacks. This renders them ineffective against (slightly) different
attacks, such as yet unknown ones. Many new transient execution attacks have
been discovered in the past four years [10, 40, 36, 74, 28, 56, 31, 70, 67, 65, 66,
12, 62, 68, 21, 11, 72, 69], which time after time showed that the existing spot
mitigations did not provide comprehensive protection. The response has been
incrementally applying more spot mitigations.

The current state-of-the-art defense against transient execution attacks is a
plethora of spot mitigations. This has an inherent complexity which is unfavor-
able for maintenance. Moreover, all of these spot mitigations induce a major
combined performance overhead [47, 45, 46]. Persistent effort will have to be
put into developing new spot mitigations for the new attacks yet to be discov-
ered. And such additional mitigations will hinder maintenance and performance
even more. Lastly, and most importantly, the current spot mitigations are not
guaranteed to defend against attacks yet unknown to the scientific or industrial
community—but perhaps are known to people with bad intentions.

Crucial security boundaries that have been compromised by transient exe-
cution attacks are the hypervisor versus VM boundary and the VM versus VM
boundary. Virtualization is nowadays one of the most, if not the most, used
technology for safely running untrusted code. Cloud environments use virtual-
ization as their main security enforcement and unikernels even make deploying
user applications inside VMs an efficient isolation primitive [42]. The security
boundary isolating a VM from the rest of the system should be a rigid one,
but multiple transient execution attacks have penetrated this boundary in the
past [70, 67, 62, 68, 69]. The aforementioned shortcomings of the state-of-the-art
defense consisting of spot mitigations threaten the maintainability and perfor-
mance of hypervisors, as well as in all likelihood leaving VMs and hypervisors
vulnerable to yet unknown attacks.

This thesis explores a future proof defense for hypervisors against core-local
transient execution attacks: hypervisor isolation. Hypervisor isolation is the
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opposite of a spot mitigation: it protects hypervisors and VMs against a whole
class of attacks, even yet unknown attacks. It does so by eliminating the key
source of any core-local transient execution attack: sharing core-local microar-
chitectural state with untrusted parties. Contrary to contemporary hypervisor
designs, hypervisor isolation enforces that VMs run on separate physical cores
from their hypervisor, as well as from each other. This mitigates all, even yet
undiscovered, core-local transient execution attacks between hypervisors and
VMs, since they do not share any core-local microarchitectural state anymore.

We implemented a prototype of hypervisor isolation for KVM [37], the hy-
pervisor built into the Linux kernel. Our prototype shows the practicality of
hypervisor isolation on real world systems. We evaluate its effectiveness and
performance.
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2 Background

This section discusses background material that is relevant for understanding
the remainder of this thesis.

2.1 Pipelining and Out-of-order Execution

All major modern instruction set architectures (ISAs) are based on the Von
Neumann execution model. A program consists of an ordered sequence of in-
structions, which are one by one executed by the processor in the specified
order. Microarchitectures implementing such ISAs are however not bound by
these limitations: they may do anything they want, as long as they satisfy the
ISA. This freedom enables powerful performance optimizations that utilize in-
struction level parallelism at the microarchitectural level, such as pipelining and
out-of-order execution and speculative execution. These techniques abandon se-
quential instruction processing and instead approximate a data-flow execution
model at the microarchitectural level, executing instructions as soon as their
source operands become available. All performant modern processors today em-
ploy these optimizations, thereby executing multiple instructions at the same
time as well as out of program order. Re-order buffers at the end of the pipeline
are used to retire instructions in program order, thereby committing their ar-
chitectural changes in order. Hence from the point of view of the programmer,
it looks like the instructions are executed one by one and in program order, as
specified by the ISA.

Control flow instructions pose a challenge for pipelined processors. Instruc-
tion are fetched at the first pipeline stage, and decoded at a later stage. There-
fore, before the next instruction gets decoded, the processor must already decide
which instruction to fetch next. But the previously fetched and yet undecoded
instruction might divert control flow and hence the processor does not know
the correct next instruction. Even after decoding of the previous instruction,
the next instruction may still be unknown: conditional branches are resolved
at a much later stage in the pipeline. These problems are amplified in out-of-
order processors, which try to execute future instructions ahead of time: what
future instruction path do you choose if you (possibly) encountered control flow
instructions earlier? Modern processors use branch predictors to make choices
for them in these uncertain situations. Based on a branch prediction, the pro-
cessor continues to execute instructions speculatively and maximally utilizes its
pipeline. Sophisticated branch predictors are accurate enough to make this a
very powerful optimization technique. In case of mispredictions, the pipeline is
flushed and execution restarts at the correct instruction after the mispredicted
branch.

Even instructions on the correct program path may get flushed from the
pipeline sometimes, due to exceptions or interrupts. For example a page fault
in a user program causes a pipeline flush and a jump to the kernel, which will
handle the page fault. In case of a valid page fault, the kernel will map the
missing page in and resume the user program, which will start executing the
same instruction path as before.

All in all modern processor design gives rise to transiently executed instruc-
tions: instructions which at the microarchitectural level execute for some time,
but which never retire and hence do not change the architectural state. Such
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transient instructions may or may not be the correct instructions to be executed
according to the ISA.

2.2 Observing Microarchitectural Traces

Although transient instructions leave no architectural traces, observable through
the ISA, they do leave microarchitectural traces. Processor designers have as-
sumed for a long time that no (valuable) microarchitectural state can be ob-
served architecturally. Hence, processors do not flush their complete microar-
chitectural state upon a pipeline flush. Such microarchitectural flushing would
be very expensive. Moreover, many optimization techniques depend on per-
sistent microarchitectural state after speculative execution, such as runahead
execution [58].

Whereas processors do not provide a direct interface to inspect microar-
chitectural state, a lot of information about the microarchitectural state can
actually be extracted via side channel analysis. An extensively studied ex-
ample is given by cache timing side channels: based on memory access la-
tency one can determine whether or not certain memory is cached, and even in
which level of cache it resides. Many different methods have been explored to
create covert channels based on memory caching, such as Flush+Reload [79],
Flush+Flush [25], Flush+Prefetch [26], Evict+Reload [60], Evict+Time [59],
Prime+Probe [60], Reload+Refresh [9], and Collide+Probe [52].

We elaborate on Flush+Reload [79], which is used by both Spectre and
Meltdown, as well as many subsequent transient execution attacks. A sender
encodes data into the cache, which a receiver retrieves via timing. The sender
and the receiver share a read-only page of memory, e.g. due to copy-on-write
optimizations or page deduplication. First, the receiver performs the Flush step:
she flushes the first two cache lines from the shared memory, e.g. using the x86
instruction CLFLUSH. Next, the sender sends a bit by reading an address from
one of the two cache lines: the first cache line signals a 0, the second cache lines
signals a 1. Lastly, the receiver does the Reload step: she reads both of the two
cache lines and times the respective latencies. Only the cache line accessed by
the sender will be in cache, hence its access latency will be significantly lower.
This enables the receiver to determine which cache line the sender accessed, and
therefore the bit that was sent.

Next to memory caches, many other microarchitectural resources have also
been used to construct timing side or covert channels: translation look-aside
buffers [24], [12]; execution ports [73], [5], [8]; line fill buffers [67]; AVX units
[68]; branch target buffers [1], [3], [2], [17], [49]; directional branch predictors
[18]; cache way predictors [52]; AES accelerators [30]; memory buses [75]; DRAM
row buffers [61]; and random number generators [16]. Non-timing side channels
have been explored as well, which are for instance based on power analysis [51]
or transactional memory [15].

2.3 Transient Execution Attacks

Transient execution attacks leverage transient processor execution and the ob-
servability of microarchitectural state to leak confidential data. At a high level,
a transient execution attack consists of three phases:

1. Reset the microarchitectural state to a known baseline.
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2. Transiently encode secret data in microarchitectural state.

3. Recover the secret data architecturally from the microarchitectural traces.

To familiarize the reader with transient execution attacks, we will take a look
at these three phases in some known attacks: Spectre, Meltdown and RIDL.

2.3.1 Spectre

Spectre variant 1 [38] uses speculation on conditional branches to trigger tran-
sient execution and uses memory caches to encode secret data. For the covert
channel we focus on the Flush+Reload technique in this example. We will at-
tack the code snippet in Listing 1. Our goal will be to perform an out of bounds
read on the keys array, say keys[limit].

1 if (0 <= i && i < limit) {

2 uint8_t key = keys[i];

3 item_t item = store[key];

4 }

Listing 1: Spectre variant 1 gadget

The reset phase has to get both the conditional branch predictor and the
cache into a baseline state. The branch predictor is trained to always take the
branch, by repeatedly calling the code snippet with different valid values of i.
This has the additional side effect that the contents of keys will reside in the
cache. We make sure that the store array is flushed from the cache (the Flush
step in Flush+Reload), and additionally we flush limit from the cache.

Next, the transient encoding phase is done by simply calling the code snippet
with i having value limit. Architecturally, the if-statement will detect our
invalid i and will hence not retrieve keys[limit]. Microarchitecturally how-
ever, the following will happen. To resolve the conditional branch, the processor
needs to load limit from memory. This takes a long time, as is not cached, so in
the meantime the processor starts speculative execution. We trained the branch
predictor to choose the branch taken path. There, keys[i] (i.e. keys[limit])
is likely cached, either since it is in the same cache line as keys[limit-1] (which
we cached during the reset phase) or due to the memory prefetcher. Hence the
load to key is resolved very quickly. Then the processor issues the next load
to item. This is where the encoding happens: as a side effect store[key] is
cached. At some point the value of limit will be retrieved from memory and
the processor will realize that it mispredicted a branch. The pipeline is flushed,
but our microarchitectural trace of store[key] in the cache remains.

Lastly we perform the recover phase. Let us assume that item t is at least
the size of a cache line. Then our reset phase together with our transient
encoding phase made sure that only a single entry of store[0], store[1], ...,
store[255] is cached, namely store[keys[limit]]. By measuring all of their
access times (the Reload step of Flush+Reload), we can leak the secret byte
keys[limit].

2.3.2 Meltdown

Meltdown [50] also uses memory caches for secret data encoding, but contrary
to Spectre it triggers transient execution via exceptions. We consider a user
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process whose page tables contain the kernel mappings as well, protected via
page table entry access bits (as was the case pre-Meltdown). Listing 2 shows
how the user can leak kernel data via Meltdown, in particular the secret byte
at kernel address secret addr.

1 char *secret_addr = some_kernel_address;

2 char *buf = mmap_physically_contiguous (256*64);

3 flush(buf);

4 let_kernel_access(secret_addr);

5 buf [(* secret_addr) * 64];

6 char secret = reload(buf);

Listing 2: Meltdown attack

Assuming a cache line size of 64 bytes, we allocate a buffer consisting of 256
physically consecutive cache lines. Our reset phase firstly performs the Flush
step from Flush+Reload on this buffer, to make sure none of its contents are
cached. Secondly it tricks the kernel into accessing the secret, i.e. by issuing a
system call that uses the secret, such that the secret gets cached.

Next, Line 5 causes a page fault, as we try to access the secret. But on
the microarchitectural level, Line 5 transiently encodes the secret value in the
cache. What happens is that the processor quickly retrieves the cached secret
and forwards that value to the instructions in the pipeline which depend on
it. The multiply by 64 can be performed and next the load from buf is issued
to the memory system. Since these operations are so quick, they may happen
before the load from secret addr retires and raises a page fault.

We end up with the secret byte being encoded in the cache, recoverable via
a Reload step from Flush+Reload. The only thing the user should ensure is
that it actually reaches the reload step, i.e. that it recovers from the page fault.
There are multiple mechanisms for doing so, such as Linux’ userfaultfd or
Intel’s TSX.

2.3.3 RIDL

Rogue In-flight Data Load (RIDL) [67] transiently leaks data from the so-called
line fill buffer (LFB). Modern Intel processors contain one LFB per core, which
holds data that is being loaded from or stored to memory by any of the (hy-
per)threads on that core. During transient execution the processor occasionally
uses data in the LFB as a quick prediction for data that is needed but not readily
available. This enables an attacker to obtain, within a transient execution win-
dow, any (secret) data within the LFB, possibly belonging to sibling threads.
By transiently encoding this data in microarchitectural state, for example in
a data cache, the data can be leaked architecturally, e.g. using Flush+Reload.
Hence RIDL can effectively leak arbitrary data that is being read from or written
to memory by any sibling thread. RIDL is an example of a Microarchitectural
Data Sampling (MDS) attack. MDS attacks are a subclass of transient execution
attacks which sample data from microarchitectural buffers to leak information
from sibling threads.

2.3.4 Locality of Transient Execution Attacks

We have seen three examples of transient execution attacks. They all traverse
the three phases of transient execution attacks: reset, transient encode and
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recover.
At the heart of transient execution attacks lies transiently encoding secret

data into microarchitectural state. This requires triggering transient execution.
As we have seen, branch mispredictions and exceptions provide entry points
into transient execution. Other entry points, like microcode assists and self
modifying code, have been systematically examined by Ragab et al. [63]. If
transient execution is to be triggered by the victim itself, such as with Spectre,
then the attacker may need control over the victim’s execution.

Once inside a transient execution window, one needs to acquire secret data.
If the attacker performs transient execution, e.g. Meltdown or RIDL, then
he/she must share microarchitectural resources with its victim, in which secret
data resides.

Lastly, this secret data must be transmitted across a microarchitectural
covert channel. If secrets are transiently encoded by the victim, then the at-
tacker needs to share access to the covert channel with its victim.

In essence, transient execution attacks are enabled by the sharing of re-
sources. Spectre needs to share access to the covert channel, e.g. the L1d cache,
between attacker and victim. A Meltdown attacker depends on sharing its page
tables with its victim. And RIDL relies on sharing the LFB with a victim. Hy-
pervisor isolation prevents transient execution attacks by considerably reducing
the amount of shared resources between distrusting parties, e.g. host and guest,
namely all core-local resources.

We call a transient execution attack core-local if it can only be performed
by an attacker that resides on the same core as the victim. RIDL clearly is a
core-local attack, as the LFB is core-local. The original version of Spectre that
uses the core-local L1d cache as its covert channel is core-local. But using a last
level cache (LLC) shared among cores as your covert channel, Spectre can also
be turned into a cross-core attack. In practice, Meltdown only seems to work
if the secret data is loaded into the L1d cache by the victim during the reset
phase, making Meltdown a core-local attack. But we cannot say with certainty
that Meltdown is impossible with the secret data residing in the LLC, which
would enable it to operate cross-core. Xiong et al. [77] examine the core-locality
of (components of) known transient execution attacks. All 5 branch predictors
they analyzed were core-local, which is relevant for the reset phase. Of the 14
covert channels they analyzed, 10 were core-local. And 19 out of 20 transient
execution attacks they analyzed used a core-local covert channel. This indicates
that a substantial part of transient execution attacks is core-local, and hence
motivates our defense hypervisor isolation.

2.4 Traditional Microarchitectural Attacks

Transient execution attacks form a subclass of a more general type of attacks:
microarchitectural attacks. Microarchitectural attacks are attacks that retrieve
secret information from microarchitectural state to compromise victims. Al-
though this thesis focuses on defending against transient execution attacks, our
defense actually mitigates core-local microarchitectural attacks in general.

Traditional microarchitectural attacks, which do not abuse transient exe-
cution, have been known for a long time: already in 1996 seminal work by
Kocher [39] showed how to leak secret cryptographic keys using a microarchi-
tectural attack. Kocher used the timing characteristics of the memory hierarchy
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and CPU instructions to retrieve information about secret cryptographic keys.
Let us sketch an example of such a traditional microarchitectural attack.

Suppose a cryptographic library is using a secret key for its encryption. Based
on the first bit of the key, the library will use a different subroutine, which both
take the same amount of time. An attacker could call the encryption function,
which will execute only one of the two subroutines. After the encryption, one
of the two subroutines is in the instruction cache, while the other is not. Next
the attacker calls both of the two subroutines, and times their execution time.
One call will finish considerably faster and the attacker can conclude that this
subroutine must have been in the cache, and hence must have been called by
the cryptographic library. In turn, this knowledge leaks the value of the first
bit of the secret key.

2.5 Virtualization

In this section we will give a brief introduction to modern virtualization tech-
nology. This is the technology that lies at the heart of modern hypervisors and
is therefore crucial for understanding hypervisor isolation.

2.5.1 Hardware Virtualization Extensions

Most modern computers provide hardware support for virtualization: the ability
to run VMs on a physical machine. Usually, a VM runs its own fully fledged
operating system (OS), also called the guest OS. The guest OS believes that it
is running with the highest privilege level on a bare metal computer, directly
on top of the hardware. Hence, it also thinks it has full access to all available
resources, such as the CPU, memory, and hard disks. But in fact, the hypervisor
controls all the actual hardware and only gives the guest access when it decides
so. This is possible by means of hardware virtualization extensions, such as
Intel’s Virtual Machine Extensions (VMX) and AMD’s Secure Virtual Machine
(SVM).

These extensions introduce a new processor mode, called guest mode. Guest
mode is entered via a dedicated VM-start instruction, such as Intel’s VMENTER or
AMD’s VMRUN. In guest mode, certain instructions or events will be intercepted,
which causes an exit from guest mode, called a VM-exit, that hands control
over to the hypervisor. Typical examples of intercepted instructions are writes
to control registers and accessing I/O ports. Exceptions and interrupts are
commonly intercepted events.

Hypervisors maintain control over VMs by manipulating the machine state
before a VM-start. Moreover, architectures like x86 provide explicit VM Con-
trol Objects (VMCO) that the hypervisor can use to control a VM. These are
memory resident data structures whose contents influence the behavior of a VM.
Among other things, a VMCO can be used to inject virtual interrupts into the
guest, to configure which events cause a VM-exit and to inspect what caused a
VM-exit after it happened.

2.5.2 The VM Life Cycle

In its life time, a VM repeatedly keeps VM-starting and VM-exiting. Before
VM-starting the VM, the hypervisor must perform some VM-start preparation:
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properly setting up the machine state for the VM. This includes setting up the
VMCO properly, loading the guest’s CPU state into the CPU registers, as well
as updating the hypervisor’s own bookkeeping. After VM-start preparation, the
hypervisor executes the VM-start instruction. This causes a world switch from
host to guest, switching the last essential CPU state like the stack pointer and
the instruction pointer. From that moment onward, the guest runs directly on
the hardware.

Upon a VM-exit the hardware performs a world switch back from guest to
host, giving control back to the hypervisor. The hypervisor will then handle the
VM-exit, i.e. inspect the cause of the VM-exit and take the appropriate action.
For example a read from a control register could have caused the VM-exit, and
the hypervisor may handle this by overwriting the guest’s CPU register in which
the result should arrive. Or the VM-exit may be due to an I/O interrupt, and
the hypervisor may inject a corresponding virtual interrupt in the guest, or
handle the interrupt itself. After the VM-exit has been handled, the VM can
be resumed, as described above.

2.5.3 KVM

The hypervisor to which we applied hypervisor isolation is KVM: Kernel-based
Virtual Machine [37]. KVM is a subsystem of the Linux kernel, enabling the
kernel to function as a hypervisor. Within the infrastructure of Linux, a VM is a
regular process. Different virtual CPUs of the VM correspond to threads of the
VM-process. KVM exposes its API to userland via the ioctl system call on the
KVM file /dev/kvm. This enables a user to, for example, create VMs and their
virtual CPUs (vCPUs), run them, and receive information about the resulting
VM-exits. Some VM-exits can be handled by KVM directly, such as writing
to an MSR. Other VM-exits must be handled by the user process that created
the VM, a typical example being the handling of peripheral device interaction.
Note that aside from KVM, the user process driving KVM is also part of the
hypervisor. QEMU is a typical example of such a user process.
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3 Threat Model

We assume a modern computer is running a hypervisor without any tradi-
tional software vulnarabilities. The hypervisor facilitates potentially multiple
untrusted clients, who are allowed to run VMs directly on top of the hardware.
We assume the attacker to be one of these clients. The attacker has full control
over its VMs, including what OS and applications are being run. In particular,
as these VMs run directly on the hardware, the attacker is capable of executing
microarchitectural attacks, incuding transient execution attacks. Using such
attacks, the attacker tries to steal secret data belonging to either the hypervisor
or one of the other clients.

We restrict the attacker to perform core-local attacks only: we do not de-
fend against cross-core attacks. Although currently the majority of the known
transient execution attacks is core-local [77], this is a limitation of hypervisor
isolation.
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4 Design

4.1 Design Goal

We have a single trusted and privileged security domain, the hypervisor, and
multiple untrusted and unprivileged security domains, one for each client. The
ideal goal of hypervisor isolation is to run each security domain on an isolated
set of cores. More precisely, each security domain may only run on a designated
set of cores, and no other security domain may run on this set of cores. This
guarantees that no two security domains ever share any core-local resources
and hence eliminates any core-local microarchitectural attacks across security
domains.

This is in stark contrast with the design of contemporary hypervisors. Al-
though separating VMs of different clients on separate cores is not new, modern
hypervisors always run on the same cores as their VMs, as is depicted in Fig-
ure 1. This leaves the privileged hypervisor vulnerable and hence the entire
system.

VM 1 of client A

hypervisor

VM 2 of client A

hypervisor

VM 1 of client B

hypervisor

core 0 core 1 core 2

Figure 1: A contemporary hypervisor. The hypervisor runs on the same cores
as its VMs.

With ideal hypervisor isolation, the picture looks as in Figure 2. The avail-
able cores are divided into host cores and guest cores. Host cores only run the
hypervisor, while guest cores only run VMs. Additionally, every guest core only
runs VMs from a single client. By design, this mitigates all core-local transient
execution attacks across security domains.

hypervisor VM 1 of client B

guest core Bhost core

VM 1 of client A

guest core A

VM 2 of client A

Figure 2: Ideal hypervisor isolation. Each security domain is isolated on a
separate core.

Current hardware does however not support this ideal design. Virtualization
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technology assumes the hypervisor to run on the same core as its VMs. Starting
up a VM can only be done from the same core and a VM-exit returns control to
the hypervisor on the same core. And in order to maintain control over guest
cores, the hypervisor must at least perform some scheduling there, which on
modern processors can also only be done from the same core.

These hardware limitations force us to adjust our goal in practice. We still
fully isolate VMs on guest cores. The hypervisor does however not solely run
on host cores, but must also execute small hypervisor stubs of code on guest
cores. The main responsibilities of these stubs are running VMs, communicating
with host cores, and core-local scheduling. As the hypervisor stubs remain
vulnerable to core-local microarchitectural attacks, we want to keep them as
small as possible. Our hypervisor isolation prototype shows that it is practically
feasible to let only a minor fraction of the hypervisor reside on guest cores, cf.
Section 6.5. In the next sections we elaborate on our final design, which is
depicted in Figure 3.

hypervisor
VM 1 of client B

hypervisor stub

interrupt controller

guest core Bhost core

VM 1 of client A

hypervisor stub

guest core A

VM 2 of client A

Figure 3: Final design of hypervisor isolation. Clients are fully isolated from
each other on guest cores. The hypervisor runs isolated on host cores, except
for its minimal hypervisor stubs on guest cores. The solid arrows represent
VM-start and VM-exit messages. The dotted arrows represent interrupts.

4.2 Core Distribution

At hypervisor start up time we statically partition the available cores: part of
the cores are marked host cores and a separate part is marked guest cores. Fur-
thermore, the guest cores are statically distributed among the available clients.

We choose for a static core distribution for the sake of simplicity. We argue
that a static distribution is sufficient in many cases, especially for the host
versus guest core distribution. Modern virtualization technology is optimized for
running the minimal amount of time in the host and the maximal amount of time
in the guest. For hypervisor isolation this results in very few host cores being
required compared to the amount of guest cores. On machines with a small or
modest number of cores, a single host core will be sufficient for most workloads,
as we shall see in Section 6.3. How to distribute clients among guest cores
depends highly on the use case. A cloud computing scenario where customers
rent fixed amounts of computing infrastructure from a cloud vendor would fare
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well with our static policy. But other use cases will need dynamic policies.
Hypervisor isolation could be extended with such dynamic core distribution
capabilities, using proper microarchitectural state flushing upon switching a
core to a different security domain.

4.3 Physical Isolation

We enforce physical isolation of security domains to their respective cores on
a process granular basis. We make the hypervisor’s scheduler security domain
aware: each process is scheduled only on the cores of the security domain to
which that process belongs. In particular, almost all of the hypervisor’s pro-
cesses are scheduled on host cores only.

Upon each VM creation by a client, the hypervisor spawns a so-called runner
process associated with that VM. The main responsibility of this runner process
is running its VM. Although this runner process executes hypervisor code, like
starting up its VM and regaining control upon VM-exits, it is marked for the
scheduler as belonging to the client’s guest security domain. This ensures the
physical isolation of the corresponding VMs on the correct guest cores. Note
that the runner processes themselves also run on guest cores and hence are
part of the hypervisor stubs in Figure 3. All in all, each VM is managed by
two hypervisor processes: a main process running on host cores, and a minimal
runner process running on guest cores.

4.4 Communication between Host and Guest Cores

VMs need support from their hypervisor to keep running: their VM-exits must
be handled, after which they need to be VM-started again. The runner processes
on guest cores are in charge of performing VM-starts and catching VM-exits,
but the handling of the VM-exits is done by the hypervisor on host cores. This
requires communication between host and guest cores.

Hypervisor isolation employs per VM communication channels. Each runner
process maintains a communication channel with the main hypervisor process
on host cores in charge of the same VM. This communication channel facilitates
two types of messages: VM-start messages and VM-exit messages. VM-start
messages are sent from host to guest cores and signal the runner process to start
up the VM. VM-exit messages are sent from guest to host cores and signal the
hypervisor that the VM has VM-exited. The solid arrows in Figure 3 depict the
VM-start and VM-exit messages.

Both host and guest cores need access to partly the same data, such as the
VMCO and hypervisor maintained VM meta data. All of this data is shared
via shared memory between the hypervisor on host cores and runner processes
on guest cores.

4.5 The VM Life Cycle

Under hypervisor isolation, the VM life cycle looks as follows. Suppose the
hypervisor, running on a host core, wants to start running a VM. As the first
step, it performs as much VM-start preparation as possible from the host core.
This minimizes the amount of work done in hypervisor stubs, hence it minimizes
our residual attack surface. Next, the hypervisor sends a VM-start message to
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the VM’s runner process. Upon reception, the runner performs the last core-
local part of the VM-start preparation, like loading the guest’s CPU state. Then
it performs the actual VM-start instruction to run the guest. At some point, the
VM will VM-exit and control flow will be returned to the runner. The runner
saves the guest’s CPU state and restores its own state. Subsequently, it sends a
VM-exit message to a host core. Once the hypervisor on the host core receives
the message, it handles the VM-exit. Once the VM-exit has been handled, we
can restart the VM as above.

4.6 Interrupt Rerouting

On guest cores we would like to only run runner processes. But interrupts on
guest cores will transfer control flow to interrupt handlers, whose code belongs to
the hypervisor. Hypervisor isolation tries to minimize this host code that is run
from interrupt context on guest cores by means of interrupt rerouting. Interrupt
rerouting means programming the system wide interrupt controller to send most
interrupts to host cores only. For example, we reroute all I/O interrupts to host
cores. So when, say, a host side page fault occurs, the induced disk interaction is
properly isolated on host cores. Interrupt rerouting is depicted with the dotted
arrows in Figure 3. Some interrupts must still be delivered to guest cores. An
example is the timer interrupt, which is needed by the hypervisor to maintain
control over guest cores.
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5 Implementation

We built a prototype of hypervisor isolation, called hypiso, on top of KVM.
During implementation we kept our changes non-invasive, keeping KVM almost
entirely in tact. In total we changed/added about a thousand lines of code in
23 different files. As hypervisor isolation changes the fundamentals of KVM’s
design, architecture and vendor specific changes were necessary. As we had
AMD hardware available, we decided to develop specifically for AMD, that is,
the x86 architecture using AMD’s SVM. Note that hypervisor isolation is a
general concept that is not bound to AMD: it can also be implemented for
other vendors or architectures, like Intel or ARM.

5.1 Initialization

During kernel boot up the available cores are split up into host and guest cores.
hypiso exposes a sysfs interface to configure the host versus guest core distri-
bution before any VM has been created. Once the first VM has been created,
dynamically changing this configuration is not supported anymore.

By hooking into the VM-creation ioctl-handling of KVM we spawn runner
processes. This spawning is done by cloneing the user process that creates the
VM, sharing as much as possible with the user process. For example, the cloned
runner process must share its page tables with the user process, as we discuss
in Section 5.5. But contrary to normal clone system call invocations, we make
the runner process into a kernel thread and redirect its control flow to our own
hypiso runner kernel function. One can view runner processes using tools like
ps: their names match “runner-*”.

Process isolation on specific cores is implemented using the CPU affinity
functionality of the Linux scheduler. For interrupt rerouting hypiso uses Linux’
SMP IRQ affinity functionality. In particular, all architecture independent in-
terrupt requests (IRQs) are rerouted to host cores. This takes care of the over-
whelming majority of all interrupts, as this for example includes all I/O IRQs.

5.2 VM Control Flow

We visualize the control flow of running a VM with KVM under hypervisor
isolation in Figure 4. The user process orders KVM to run a VM via an ioctl

system call. KVM first prepares most of the VM-start on a host core. Then a
VM-start message is sent to the VM’s runner at a guest core. The runner accepts
the VM-start message and performs the CPU-local VM-start preparations, after
which it performs the actual VM-start.

From here on, the guest takes control and executes its code in guest context
until the occurrence of a VM-exit event. Such an event will return control to the
runner on the guest core, which saves the guest state, recovers its own state and
then sends a VM-exit message to the host core. On the host core KVM receives
this message and is then in charge of handling the VM-exit. Some VM-exits
are handled by KVM itself, while others must be handled by the user process
owning the VM.

Handling a VM-exit involves checking the VM-exit code in the VMCB, in-
dicating why the guest exited, and taking the appropriate actions. Suppose for
example that the guest exits due to a page fault. Then KVM first checks if this
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concerns a “host-side” page fault, caused by the host swapping that page out.
If this is the case, KVM issues a disk read and blocks the VM until the page
has been swapped in, after which the VM-exit has been handled. If the page
fault was a regular “guest-side” page fault, then KVM injects a page fault into
the guest by setting a flag in the VMCB. Upon next VM-start, the guest will
immediately be virtually interrupted by this injected page fault, which will be
resolved by the guest’s own page fault handler. A typical example of a VM-exit
that cannot be handled by KVM itself is virtual device emulation: this is the
responsibility of the user process, such as QEMU.

user mode kernel mode guest mode 

ioctl(VMRUN)
core-independent

VMRUN preparation

handle VM-exit 

  core-local  
VMRUN preparation

VMRUN

  core-local  
VMRUN recovery

handle VM-exit 

guest code

HOST CORES GUEST CORES

Figure 4: VM control flow in hypiso. The dashed black lines separate CPU
modes. The dotted red line separates code run on host and guest cores. The
green blocks represent the protected part of the hypervisor. The yellow blocks
are still vulnerable.

Figure 4 also visualizes the physical hypervisor isolation boundary. The red
line separates code that runs on host cores versus code that runs on guest cores
under hypervisor isolation. The arrows crossing these red lines correspond to
VM-start and VM-exit messages, which essentially transfer control flow between
cores.
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5.3 Minimizing Hypervisor Stubs

The yellow blocks in Figure 4 resemble the KVM code that is run on guest cores,
therefore breaking ideal isolation between hypervisor and VMs. To minimize
these parts, we performed a thorough locality analysis of KVM’s code path
towards and after a VM-start and determined which parts of the code are CPU-
independent and which parts require being run on the guest’s CPU. Based on
this analysis, we initially decided to only run the code in Listing 3 on guest
cores.

1 vcpu ->srcu_idx = srcu_read_lock (&vcpu ->kvm ->srcu);

2 preempt_disable ();

3 static_call(kvm_x86_prepare_guest_switch)(vcpu);

4 local_irq_disable ();

5 ...

6 VMRUN

7 ...

8 local_irq_enable ();

9 preempt_enable ();

Listing 3: KVM’s critical section around a VM-start

We see that KVM uses a critical section around AMD’s VM-start instruction
VMRUN: preemption and interrupts are being disabled. This allows KVM to
perform the very last VM-start preparation as well as the very first VM-exit
recovery, like switching register state. Clearly, the code from Figure 3 must be
run on the guest’s CPU. We tried to let runner processes only run this critical
section on guest cores, but this failed. KVM performs some time management
before this critical section, which turned out to be CPU-dependent as well.
Moving this time management code to the guest cores resulted in a functioning
prototype.

Based on our core-locality analysis, we argue that the code executed by our
runner processes on guest cores is minimal, within the bounds of non-invasive
KVM changes and available hardware support.

5.4 Cross-core Communication

The VM-start and VM-exit message channels are implemented using shared
memory. In particular, KVM maintains a data structure struct kvm vcpu for
each vCPU and we embedded our per-vCPU communication channel into this
data structure, which is shared across host and guest cores.

Reception of VM-start messages is done by collaborative polling of the runner
processes. Runners execute a loop in which they check for arrival of a VM-start
message and give up the CPU in case of no message, i.e. calling schedule. As
guest cores almost solely execute runner processes and there are usually a small
(typically one) number of runners per guest core, this results in a low latency
polling mechanism without hogging the CPU by a single runner.

VM-exit messages are received via (traditional) polling by the host core.
This gives the lowest latency, but comes at the expense of many CPU cycles
on the host core. To utilize host cores more efficiently, we experimented with
different methods as well and we elaborate on these in Section 5.7.

When using shared memory as a cross-core synchronization primitive, as
we do, one needs to be very careful with memory ordering. To maximize the
memory system utilization, modern processors do not adhere to the strongest
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memory ordering models. Instead, they usually allow one core to perceive an-
other core’s memory operations out of program order. AMD does this as well,
see Chapter 7 of [13] for details. This can raise problems, such as the one de-
picted in Table 1. In order to avoid these memory ordering problems, we made
use of appropriate memory barriers [29].

host core guest core

vmcb->int vector = INT PF; while(!vcpu->vm start);

vcpu->vm start = true; vmrun(vmcb);

Table 1: A memory ordering problem. The host core inserts a virtual page
fault into the guest by writing to its VMCB. The guest core may perceive the
write to the VMCB after the VM-start message, resulting in a VMRUN that reads
an incorrect VMCB.

One last other important detail about our cross-core communication regards
locks. VM-start and VM-exit messages cause a control flow switch between
different CPUs. Since lock-ownership is CPU-bounded in Linux, hypiso ensures
that a sender releases all of its locks before sending a message and that the
corresponding receiver acquires the same locks again.

5.5 User Context Dependencies

KVM assumes that its code is being run in the context of the user process
owning the VM. We break this assumption by running the VM in the context
of a runner process. This forced us to patch some particular pieces of code.
For example, KVM assumes at various locations that the CPU-local current
variable, which always points to the process currently being run on that CPU,
points to the user process which spawned the VM. We patched such code to use
a pointer to the owning user process, instead of current.

Another subtle example is given by the page tables of the owning user pro-
cess. KVM assumes that it has access to the complete virtual address space of
the user process. Therefore, hypiso lets its VM-owning user processes share
their page tables with their corresponding runner processes.

5.6 Implementation Limitations

hypiso is a research prototype, in contrast to a production ready product. Its
goal is to explore the practical feasibility of hypervisor isolation for real world
hypervisors. We think hypiso satisfies this goal. Nonetheless, hypiso lacks
some properties of a completely sound implementation, which we discuss here.

First and foremost, we are certain that hypiso contains at least one bug. Its
effects are very rare and nondeterministic user process crashes within guest VMs.
Neither the hypervisor nor the guest OS has ever crashed and their state always
seemed sound. We have seen userland processes getting killed due to several
reasons: segmentation faults, virtual memory exhaustion, and “non-existent”
files (which did exist). We have also seen (seemingly indefinite) hangs of user
processes. Due to the nondeterministic behavior of these anomalies, we suspect
the root cause to be a concurrency problem. Despite considerable debugging
effort, we have not found the bug.
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Although this bug may sound severe, we emphasize that these crashes are
very rare. Moreover, when crashes do not occur, the system seems to function
correctly in all aspects. During our evaluation of hypiso, we discarded a few
benchmarking runs which crashed. Apart from that, everything ran correctly
and we think there is no reason to believe this bug invalidates our results.

Lastly hypiso lacks some functionality one might expect to be present. hyp-
iso is not capable of properly shutting down virtual machines. Also hypiso only
supports rerouting interrupts upon host kernel boot and via a sysfs interface
before any VM has started. hypiso does not automatically make sure that
interrupts keep being rerouted during the entire lifetime of the system. It may
happen that a new device driver re-balances some interrupts at run time. During
benchmarking we manually made sure this did not happen.

5.7 Core Multiplexing

The sections above described the implementation of our main prototype hypiso.
As hypiso actively polls for a VM-exit message from a specific runner process
while that runner process is executing its VM, the host core is not available while
the guest core executes the VM. Our evaluation of hypiso shows in Section 6.3
that the large majority of the time is spent in the guest. So next we tried to
improve our prototype to efficiently multiplex the host core instead: let it serve
multiple guest cores at the same time. This section describes these alternative
prototypes.

Our first alternative, hypiso-schedule, constantly calls schedule during
its VM-exit message polling loop, i.e. it performs collaborative polling like our
guest cores do as well for VM-start messages. We expect this design to still be
fast when one host core serves a small number of guest cores, as the scheduler
will run through all the VM-owning user processes on the host core that are
collaboratively polling quite quickly, still resulting in a low latency. But for
larger numbers of guest cores per host core, we do not expect this design to
scale well.

A better scalable design, we predicted, is hypiso-sleep. Under hypiso-

sleep, a VM-owning user process on the host core puts itself to sleep once it
sends a VM-start message. Specifically it takes itself off the run queue, ensuring
that the scheduler will not schedule it. The runner process on guest cores
wakes up that user process on the host core once it sent its VM-exit message.
The scheduler will reschedule the owning user process, which will consequently
receive the VM-exit message.

Thirdly, we tried Linux’ wait queue functionality instead of sleeping “by
hand”. Wait queues enable processes in Linux to wait for certain events to take
place, such as, say, a VM-exit message. In particular, we used Linux’ high level
completion interface, which is built on top of wait queues. The corresponding
prototype is called hypiso-complete.

The designs above are simple and very compatible with the entire Linux
kernel, hence we tried them first. We did however fear that they might induce a
substantial overhead to the VM-exit message latency, if the scheduler’s response
time is lacking. We already had ideas on a fourth alternative prototype if
this would turn out to be the case. This fourth, unimplemented prototype
would bypass the Linux scheduler partly. We would deploy one kernel thread
per host core, which would poll for VM-exit messages on a VM-exit queue.
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Runner processes would enqueue their VM-exit messages on this VM-exit queue.
Upon reception of a VM-exit message on the host core, the kernel thread would
perform a context switch directly into the user process owning the VM that VM-
exited, bypassing the Linux scheduler. We expect this to give better VM-exit
message latencies, at the expense of compatibility. Given the implementation
effort required, we focus on surveying the first three prototypes in this thesis.
The fourth prototype can be considered in future work.

20



6 Evaluation

6.1 Setup

As our baseline to which we compare hypiso we choose the vanilla Linux 5.15
kernel from which hypiso was forked off. Both kernels run with the Linux kernel
command line option mitigations=off, so we compare hypervisor isolation
without any existing defenses enabled.

For our evaluation we use a test machine with an AMD Ryzen 5 5600X 6-
Core Processor with 2 SMT threads per core and with 16GB of memory. This
machine runs Ubuntu 20.04.4, modified to use either the hypiso or the baseline
kernel. Using QEMU 4.2.1 and their respective versions of KVM, we run an
Alpine Linux 5.15.12-0-virt test VM with 2GB of memory.

For our nginx web server benchmark we generated a workload from an ex-
ternal client machine: an Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz and
32GB of memory running Ubuntu 20.04.4. The client machine is via Mellanox
ConnectX 100GB NICs connected to our test machine, which passes its NIC
directly through to the test VM using vfio.

We configure hypiso to use one host core and one guest core and we give the
test VM one vCPU. For the baseline we use two configurations, called optimistic
and pessimistic, which run the test VM with respectively one and two vCPUs.
Hence the optimistic baseline can only utilize one physical CPU, while the pes-
simistic baseline can utilize two. The optimistic baseline approximates a high
core setup with very few host cores compared to many guest cores, whereas
the pessimistic baseline assumes we need as many host cores as guest cores.
Section 6.3 investigates which one is more realistic.

We ran all of our benchmarks 11 times and report the medians.

6.2 Performance

6.2.1 lmbench

We tested our implementation using the micro benchmark suite lmbench, which
stresses the internals of an operating system. As lmbench is a single threaded
benchmark, the optimistic and pessimistic baselines perform equally well, so we
only display the pessimistic one. Table 2 shows the results of running lmbench
from within our test VM.

For “Simple open/close” hypiso incurs a significant performance overhead
of 10.31%. But on all other benchmarks, hypiso has roughly equal performance
to the baseline. We conclude that hypervisor isolation does not incur significant
overhead on lmbench.

To get deeper insight into the impact of VM-exit handling offloading to
separate cores, we measured the VM-exit latencies during a full run of lmbench.
Here we define VM-exit latency as the time between a VM-exit and a consecutive
VM-start, so this includes all host code, including the hypervisor stubs executed
on guest cores. The results are depicted in Figure 5.

We see that the VM-exit latency behavior is strikingly similar. The VM-
exits take 3.2k cycles longer under hypervisor isolation, which is an increase of
only 0.5%. Although on a microbenchmark scale, 3.2k cycles is quite a lot, this
effect gets masked because VM-exits are so costly and, therefore, virtualization
technology is designed to minimize the number of VM-exits.
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Benchmark baseline (µs) hypiso (µs) overhead

Simple syscall 0.10 0.10 0.21 %
Simple read 0.14 0.14 0.36 %
Simple write 0.13 0.13 0.16 %
Simple stat 0.48 0.48 0.32 %
Simple fstat 0.19 0.19 0.48 %
Simple open/close 0.77 0.84 9.78 %
Select on 10 fd’s 0.27 0.27 0.22 %
Select on 100 fd’s 0.84 0.84 0.12 %
Select on 250 fd’s 1.73 1.78 3.14 %
Select on 500 fd’s 3.27 3.28 0.18 %
Select on 10 tcp fd’s 0.31 0.31 0.20 %
Select on 100 tcp fd’s 2.36 2.38 0.77 %
Select on 250 tcp fd’s 5.79 5.85 1.06 %
Select on 500 tcp fd’s 11.58 11.62 0.39 %
Signal install 0.14 0.14 0.35 %
Signal handler 0.49 0.49 0.37 %
Protection fault 0.27 0.27 1.62 %
Pipe latency 2.49 2.52 1.37 %
AF UNIX sock stream 3.90 3.93 0.87 %
Process fork+exit 25.40 25.42 0.08 %
Process fork+execve 72.83 72.81 -0.02 %
Process fork+/bin/sh -c 175.71 176.77 0.61 %
Pagefaults 0.10 0.11 1.82 %
Local UDP latency 3.85 3.89 1.19 %
Local TCP latency 4.94 5.04 2.06 %
Local TCP/IP connection 13.32 13.64 2.35 %

Table 2: lmbench performance: baseline versus hypiso.

6.2.2 nginx

We also tested our implementation on a long running real world application:
the nginx web server. In our test VM we run nginx 1.20.2, configured to a
maximum of 1024 concurrent connections and serving a static 64 byte file. Using
the benchmarking tool wrk [20] on the client machine, we generate a workload
for the nginx server in the test VM. Each time we run wrk for 30 seconds with
four wrk client threads and an increasing number of connections. The results
are summarized in Figure 6.

We see that the performance of hypiso is most similar to the optimistic
baseline. This is because they can both utilize a single nginx worker thread
at any point in time. In contrast, the pessimistic baseline can run two nginx
worker threads concurrently. The CPU utilization of all versions saturates at
128 concurrent connections. At that point, hypiso experiences 4.9% and 49.0%
performance degradation compared to the optimistic and pessimictic baselines
respectively. For nginx we conclude that hypervisor isolation induces small
overhead compared to the optimistic baseline, but has half the throughput of
the pessimistic baseline.

As we did for lmbench, we measured the VM-exit latencies while running
nginx. We choose to run with 256 concurrent connections, as this gives full CPU
saturation. As the VM-exit latency behavior per vCPU of both of our baselines
was almost identical, we only report the pessimistic baseline. See Figure 7 for
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Figure 5: VM-exit latencies during a full run of lmbench. The dotted vertical
lines indicate the average VM-exit latencies, which are 665.7k for the baseline
and 668.9k for hypiso.

the corresponding VM-exit latency histogram.
The VM-exit latencies are substantially higher for hypiso: a factor 4.2. This

factor 4.2 stems from two things: hypiso VM-exits 2.2 times less often then the
baseline, while it spends 1.9 times more time in host context. We interpret
these numbers as follows. An 3.2k cycles increase in latency was very minor for
lmbench—whose VM-exits are very expensive—but are major for nginx: more
than doubling its VM-exit latency. For nginx, most of these VM-exits are caused
by interrupts from the NIC. If the time to react to these interrupts doubles, then
the amount of network packets that is ready to be handled increases. Hence a
single VM-exit processes more network packets, but also takes longer. These
effects barely harm the single vCPU throughput of nginx, as we saw above.

6.3 Core Utilization

We investigate the core utilization of hypiso, to see which of our baselines is
more representative for real world deployments. To this end, we measured the
time we spent on host and guest cores respectively during the VM life cycle of
Figure 4. So for the host core we accumulate the time between reception of a
VM-exit message and the transmission of a VM-start message, excluding the
time we spent polling for the VM-exit message. Similarly for the guest core we
measure the time between receiving VM-start messages and sending VM-exit
messages. We did this for both lmbench and nginx (at saturation), with setups
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Figure 6: Performance of nginx on hypiso compared to the baselines

host core guest core
lmbnech 18.3% 81.7%
nginx 7.2% 92.8%

Table 3: Time hypiso spent on host and guest cores.

the same as above. The results are summarized in Table 3.
We see that for lmbench, designed to stress the OS, we still only spent 18.3%

of our time on the host core. For nginx, a more realistic real world application,
even less time is spent on host cores: only 7.2%. This indicates that our current
design can be significantly improved upon. Instead of polling for a VM-exit
message from a runner process on host cores, we could try to concurrently
handle VM-exit messages from multiple guest cores. If this could be efficiently
implemented, then for a real world application like nginx one could serve 14 guest
cores per host core. This would mean the optimistic baseline would be closely
approximated. Our current version of hypiso however still needs support from
two physical CPUs to run a single virtual CPU, so in that case the pessimistic
baseline is appropriate.

We foresee two potential new performance problems that could arise due
to multiplexing of one host core to serve multiple guest cores. First of all,
since VM-exits need to be handled using the page tables of the owning user
process, serving multiple VMs from one host core would require the host core to
perform a large number of context switches: in the worst case upon every VM-
exit message. We simulated this behavior for our saturated nginx benchmark
by flushing the TLB of the host core upon reception of every VM-exit message.
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Figure 7: VM-exit latencies on one vCPU for 30 seconds of nginx handling 256
concurrent connections. The dotted vertical lines indicate the average VM-exit
latencies, which are 2781.5 for the baseline and 11666.8 for hypiso.

This did not degrade performance at all. This simulation is far from perfect of
course, e.g. memory caches might also get trashed.

Secondly, instead of actively polling for a VM-exit message, the host core
would part of the time be busy handling VM-exits of other VMs. This may
increase the average VM-exit latency.

This led us to design the alternative prototypes from Section 5.7, which the
next section evaluates.

6.4 Scalability

Based on our observations from Section 6.3, we implemented the alternative
designs from Section 5.7 with the hope to better utilize a many core machine.
This section discusses the evaluation we performed on those alternative designs.

Instead of the relatively small 6 core testmachine, we moved to an AMD
Ryzen Threadripper 2990WX 32-Core Processor with 2 SMT threads per core
and with 128GB of memory. It ran Ubuntu 20.04.4 on top of one of our prototype
Linux kernels. We ran the same Alpine Linux 5.15.12-0-virt test VM, this time
with 64GB of memory, using QEMU 4.2.1. During our experiments we varied
the number of vCPUs of the test VM. This VM ran nginx 1.20.2 configured to
as many worker threads as the VM has vCPUs, a maximum of 1024 concurrent
connections and serving a static file of 64 bytes.

Due to unforeseen hardware problems, we did not have access to an external
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client machine connected to our test machine to generate the workload. There-
fore, the same machine also ran wrk, on separate cores from the cores that ran
the VM. With 8 worker threads and 1024 concurrent connections, wrk ran for
30 seconds.

We ran the benchmark using the different prototypes, described in Sec-
tion 5.7, multiple times with an increasing number of vCPUs for the test VM.
We configured hypervisor isolation to use one host core and as many guest cores
as the VM had vCPUs. Our baseline is running with hypervisor isolation dis-
abled, i.e. the vanilla Linux kernel. We measured the throughput and latency
of the web server, as well as the CPU utilization of the different cores. We also
instrumented our kernels to track the latency of six specific phases in the VM
life cycle: the “host” latency on the host core, the “start msg” latency between
sending and receiving a VM-start message, the “start stub” latency of preparing
the VM-start on the guest core, the “guest” latency of the guest VM running,
the “exit stub” latency of the guest core recovering from the VM-exit, and the
“exit msg” latency between sending and receiving the VM-exit message. We
hoped to get detailed insight into which parts of this life cycle take a long time
in our different prototypes.

Figure 8 shows the relative time we spent in each of these phases during a
full 30s benchmark. The hypiso-complete prototype had very similar results
to hypiso-sleep, so for visibility we excluded it from the figure. We see that
we spent most of our time in the host. This is problematic for our setup, as
we expected to run only approximately 7% of the time in the host, and could
hence serve multiple guest cores with a single host core. Now that we spent the
majority of the time in the host, this setup is not very meaningful anymore. The
cause of this problem lies in the local generation of the workload. Instead of
using direct device assignment of the NIC to the test VM as in Section 6.2, the
host must now simulate a virtual NIC for the test VM, which is relatively slow.
Moreover, device emulation is done in userland, i.e. by QEMU, hence inducing
context switches between kernel and user mode upon every device interaction.

To run this experiment properly, we should again use a dedicated NIC which
we pass through to the test VM. As we did not have such a NIC available, we
could not finish these experiments.

Although the above circumstances make interpreting these results difficult,
we do see high amounts of time spent in the “exit msg” phase for the hypervisor
isolation prototypes. This indicates that the VM-exit message latency might
indeed be a problem in these designs. These initial results warrant this problem
to be further investigated in future work.

6.5 Effectiveness

hypiso uses hypervisor isolation to remove the most fundamental building block
of any core-local transient execution attack: shared microarchitectural state.
Without shared microarchitectural state between the host and the guest, it is
impossible for the guest to launch any transient execution attack against the
host—both known and future ones. In that sense, hypiso provides a very strong
protection mechanism. But as we saw, due to hardware enforced limitations,
ideal hypervisor isolation is impossible and hypiso aims to reduce the attack
surface as much as possible. In this section, we quantify the remaining at-
tack surface left in hypervisor stubs on guest cores. We do this for our main
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Figure 8: Relative time spent in each of the six phases in the VM life cycle, for
our hypiso-schedule and hypiso-sleep prototypes, as well as the baseline.

prototype, hypiso.
We measure the amount of code on a function granular scale, assuming the

amount of potential transient execution gadgets is approximately proportional
to the amount of vulnerable functions an attacker has access to. Our hypervisor
consists of two parts: QEMU and KVM. We statically determined the number
of functions within QEMU: 9831. Assuming a fictive example attacker can hire
many different virtual devices on a cloud platform and use fuzzing techniques,
we should assume that all of QEMU is potential attack surface.

A similar static analysis for KVM is harder, due to the tight incorporation
of KVM into the Linux kernel. We think taking the whole kernel as potential
attack surface would be a big overestimation. Hence for KVM we used Linux’
function tracing capabilities to dynamically trace which functions are called,
during another run of our nginx benchmark with 256 connections. This resulted
in 2113 unique host kernel functions being called on for the baseline, while
hypiso only executes 297 unique host kernel functions on its guest cores.

Combining these results, we find that the baseline attack surface is 11944
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host functions. Under hypiso, the remaining attack surface is 297 functions,
2.5% of the baseline.

We inspected the 297 host functions that constitute the hypervisor stubs
on our guest cores. The carefully chosen host code that our runner processes
execute on guest cores contribute 48 functions. The scheduler is responsible
for a big part of the hypervisor stub: 167 functions. With 5 functions being
used by both the runner and the scheduler, this leaves 87 functions unaccounted
for. These have a variety of origins: remaining interrupt handlers, the eventfd
subsystem, wait queues, the watchdog, and the RCU subsystem.

As discussed in Section 5.3, we already tried to minimize the amount of host
code in runner processes. And clearly, to remain in control of the guest cores, it
is essential to run the scheduler on guest cores. A careful analysis might reveal
that some of the leftover functions could still be isolated on host cores. But
we expect the majority to be essential for the correct functioning of the Linux
kernel, and hence KVM.

We conclude that hypiso manages to achieve an impressive 97.5% reduction
of attack surface.
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7 Related Work

Already in 2007, Kumar et al. [41, 19] explored the idea of sidecores: cores
dedicated to performing specific hypervisor functionality. Since then lots of
research has been done on improving virtualized I/O performance by using I/O
sidecores [54, 7, 23, 27, 78, 48, 43]. The main idea is to move the part of
the hypervisor responsible for I/O to dedicated cores, in order to minimize the
number of I/O induced VM-exits and hence optimize performance. This is in
contrast with our goal of providing stronger security for the hypervisor. Instead
of separating a specific part of the hypervisor to specific cores, we try to isolate
the full hypervisor on isolated cores.

Landau et al. [44] explored the idea of splitting guest and hypervisor execu-
tion on separate cores in 2011. Their goal is to improve virtualization perfor-
mance, in contrast to our goal of improving security. Moreover, they explain that
such split hypervisor/guest execution is not possible on existing hardware and
they describe a hardware model in which this would become feasible. hypiso

actually is a close approximation of “split execution” on contemporary hard-
ware.

Manuel Wiesinger from VUSec recently did a project on system call isolation,
which is essentially hypervisor isolation with the hypervisor replaced by the OS
kernel and VMs replaced by userland processes. By isolating the kernel on a
separate set of cores, system call isolation defends the kernel against transient
execution attacks. His results indicate that system call isolation is prohibitively
expensive to use in practice. In contrast, hypervisor isolation has comparable
overhead to current state of the art spot mitigations combined, making it a
potentially feasible defense in practice. This performance gap stems from the
ubiquity of system calls in user applications, whereas virtualization technology
is optimized to minimize the amount of VM-exits.

Google worked on coresched patches [22] for the Linux kernel to mitigate
core-local transient execution attacks in the following way. Processes can be
configured to (dis)trust each other and the scheduling patch enforces that dis-
trusting security domains never run on the same core at the same time. The
main motive is to keep simultaneous multi-threading alive in the transient exe-
cution attack era. This idea is similar to our efforts because it not only protects
user-to-user attacks, but also user-to-kernel attacks. But coresched only pre-
vents spacial core sharing, while still allowing temporal core sharing, in contrast
to hypervisor isolation.

Back in 2010, Keller et al. [34, 71] identified core-local side channel attacks
as a security risk for cloud deployments. In order to protect VMs from each
other, they suggest a cloud architecture without a hypervisor in which physical
resources, like cores, memory, and devices, are divided among VMs. Clearly,
this design lacks many flexibility features of virtualization as we know it today.
In contrast, hypiso supports full modern hypervisor functionality.

Moon et al. [57] propose a moving target defense for virtual machines against
co-residency side channel attacks. They try to prevent co-residency by nomadiz-
ing VMs. By only moving VMs around, their design leaves the hypervisor itself
vulnerable. The novelty of this thesis lies in the elimination of co-residency of
the hypervisor with its VMs.

An orthogonal defense method which provides similar security guarantees
as hypervisor isolation is the minimization of the amount of memory that the
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hypervisor keeps mapped in its page tables. Xia et al. [76] demonstrated this
with their secret-free Xen hypervisor and similar efforts are being tried out for
KVM under the name Address Space Isolation (ASI) [4]. As unmapped memory
is not accessible, not even for the microarchitecture during transient execution,
secrets residing in unmapped memory are safe.
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8 Future Work

Implementing our first hypervisor isolation prototype hypiso already took us
a considerable amount of time, due to the complexity of the Linux kernel and
in particular KVM. This left multiple ideas, additional features and alternative
designs unexplored, which we will sketch in this section.

First of all, the implementation limitations discussed in Section 5.6 should
be addressed, in particular the bug(s) causing sporadic userland crashes within
the guest. Furthermore, finishing the experients of Section 6.4 is essential to
understand the scalability of hypervisor isolation. If experiments indicate poor
performance, one could try to implement the fourth alternative design from
Section 5.7. Performing a more elaborate evaluation of our prototypes would in
general be beneficial, for example with more diverse benchmarks.

Most transient execution attacks until now have used the L1 or L2 caches for
their covert channels. Hypervisor isolation mitigates such attacks, as these are
core-local caches. In theory such attacks could however make use of the LLC
instead, which is shared across cores. By using cache partitioning technology,
such as Intel’s CAT [53] or AMD’s PQE [14], one could separate the LLC into
host and guest parts. The host (respectively guest) part may only be used
by host (respectively guest) cores. This would improve hypervisor isolation’s
security guarantees significantly, as it would completely eliminate the memory
cache as covert channel. Future work could implement this, investigate different
host/guest partition size ratios, and evaluate the performance implications.

Hypervisor stubs leave a small residual attack surface on guest cores. This
particularly risks a hypervisor address being leaked to a VM on a guest core,
which would break KVM’s KASLR entirely, also on host cores. To mitigate
this risk, one could deploy host/guest granular KASLR: randomize the host
kernel’s address space independently on host and guest cores. This prevents
breaking KASLR on host cores by leaking a kernel pointer on a guest core. We
expect this to have little, if any, performance impact while having significant
security benefits, as opposed to a more drastic approach like Function Granular
KASLR [55].

As ASI is an orthogonal defense method, it could be applied on top of hyper-
visor isolation. Current ASI implementation efforts face problematic complexity
issues [33]. Also it is difficult to determine what pages KVM should (un)map, i.e.
where sensitive data resides. Hypervisor isolation provides an opportunity for
a very simplistic ASI implementation that does not suffer from these problems.
The idea is demand paging hypervisor memory on guest cores. The hypervisor
starts out with a very minimal page table on guest cores: just enough to handle
its own page faults. We modify the page fault handler to map in any missing
pages on guest cores. Hypervisor demand paging requires drastically less in-
vasive changes to the kernel, and trivially solves the problem of what pages to
(un)map: by design we only map the necessary pages.

Lastly, hypervisor isolation could greatly benefit from better hardware sup-
port, such as described by Landau et al. [44]. In particular, hardware support
for scheduling and starting/stopping VMs from remote cores could greatly re-
duce the residual attack surface of hypervisor isolation, as well as improve its
performance.
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9 Conclusion

This thesis proposed hypervisor isolation as a comprehensive, future proof de-
fense against core-local microarchitectural attacks, in particular transient ex-
ecution attacks. Isolating the hypervisor on separate cores eliminates shared
core-local resources and hence the attacks that rely on them. We described a
design of hypervisor isolation on modern commodity hardware and presented an
implementation hypiso of hypervisor isolation in a real world hypervisor: KVM.
Our performance evaluation shows that hypervisor isolation induces very low
overhead if two physical cores are dedicated per virtual core. We presented
designs that would improve upon this doubling of effective core utilization, but
additional research is required to properly assess their performance in large scale
core configurations. Our effectiveness analysis shows hypervisor isolation is ca-
pable of reducing the core-local transient execution attack surface by 97.5% in
the real world hypervisor KVM. Further research into hypervisor isolation may
result in an efficient and strong defense against transient execution attacks that
could be deployable in production systems.
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[2] Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert. “New branch pre-
diction vulnerabilities in OpenSSL and necessary software countermea-
sures”. In: IMA International Conference on Cryptography and Coding.
Springer. 2007, pp. 185–203.
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