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Abstract

This thesis compares different methods to accurately cluster similar and recurring financial
transactions, which is similar to clustering short text documents, and examines the use of
‘Tensor Cores’ —dedicated matrix multiplication cores— in NVIDIA hardware to increase perfor-
mance. To extract features from financial transactions, N-gram character tokenization is mainly
used. We compare four similarity metrics: Cosine similarity, Kumar-Hassebrook similarity,
Dice similarity and Dice squared similarity. We also compare four different clustering methods:
perceptron-based classification similarity learning, hierarchical agglomerative clustering using
single-linkage and complete-linkage and HDBSCAN. These methods are applied and compared
on a dataset of 2880 financial transactions from a personal bank account covering multiple
years and on a dataset of about 8000 transactions of the Financial Shared Service Centre
of Leiden University, covering one month. In addition to this research, a prototype for a
web-based clustering tool has been built.
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1 Introduction

Financial transactions are often periodic or recurring in nature and thus often part of a group of
similar transactions. Transactions are basically short text documents, do not contain information
about relationships with other transactions and cannot be sorted in a simple way in order to group
them.

Artificial intelligence and machine learning methods are widely used in the financial industry and in
particular in transaction monitoring & fraud detection (see | ]). Clustering may benefit these
detection algorithms, because they often utilize anomaly/outlier detection. However, it may also be
a useful step in a larger data analysis process by eliminating the need to process all transactions
individually, possibly increasing performance and accuracy. Accurate clustering of recurring and
similar financial transactions may also be used to reduce the time needed to manually manage
(personal) finances or improve exploratory data analysis for large datasets. Large organisations
in particular often have a large amount of financial transactions to administer. Since financial
transactions are essentially short text documents, the process of clustering these is similar to
clustering /analyzing computer log files (e.g. for cyber security purposes).

Inference-accelerator hardware, or an ‘Al chip’, is essentially a processing unit that is specialised
in matrix-multiplications. Especially neural networks often use this operation when applying a
trained neural network (a ‘model’) to classify data, this process is called inference. In recent
years, several manufacturers started developing inference-accelerator hardware. In 2018 NVIDIA
started to embed ‘Tensor-Cores’ in its professional and consumer-grade GPU’s [NVI]. Google
developed a ‘Tensor Processing Unit’ for internal usage since 2015 | ]. Intel’s Myriad series
and AMD’s Radeon Instinct series are also dedicated processors aimed towards optimizing matrix
multiplications [[nt] | |. Utilizing dedicated hardware like GPU’s and inference accelerators
when possible and useful, often improves the performance of algorithms by orders of magnitude.
This thesis examines which feature-extraction methods that can be applied to financial transactions
are most important for accurate clustering. We compare the accuracy and performance of different
similarity metrics and clustering algorithms. In this thesis we also propose a clustering method that
could —to some extent— take advantage of inference-accelerator hardware. The following research
questions will be answered:

1. How accurate can we cluster similar and recurring financial transactions using fixed-value
parameters for its algorithms on multiple datasets?

2. How does the chosen similarity metric and clustering algorithm affect our accuracy?

3. What would be the estimated performance effect utilizing inference-accelerator hardware in
our algorithm?



2 Background

According to a survey conducted in 2012 (see | ]), clustering techniques for financial fraud
detection mostly use traditional clustering algorithms: K-means, Hierarchical clustering (single-
linkage and complete-linkage) and density-based clustering methods. K-means clustering using the
Euclidian distance metric is most common. The paper by Larik | | proposes a new clustering
algorithm TEART, built upon the Euclidean Adaptive Resonance Theory. They do not present
a comparable measurement of accuracy. Testing methods for anomalous transaction reporting
tend to be difficult due to the private nature of the data being processed. However, Yang et al.
[ | have successfully applied the DBSCAN algorithm to mark suspicious transactions at
a financial institution. The experiments of Stojanovic. | | show that applying machine
learning methods (neural network classification) successfully detect suspicious transactions with a
true-positive rate of 0.71 and a true negative rate of 0.9995.

Since our experiment is fundamentally a lot like short text clustering and not about detection
fraudulent transactions, it may be better to compare our results to the experiments done by Shrestha
[ |. They achieved an adjusted rand-index accuracy of 0.10 on their Cicling-2002 and LDC
dataset using cosine-similarity and complete-linkage hierarchical agglomerative clustering. Their
best clustering method was spectral clustering using cosine-similarity and achieved an adjusted
rand-index of 0.29 on their LDC dataset, and scored 0.25 on their Cicling-2002 dataset. No research
or experiments could have been found that applies these methods to a dataset similar to ours,
consisting of financial transactions.

When it comes to GPU-accelerated clustering algorithms, several papers already exists. The approach
for fast hierarchical clustering by Shalom et al. | ] utilizes NVIDIA’s graphics processors with
the CUDA library for single- & complete-linkage clustering. The paper on distributed k-means
clustering across multiple nodes equipped with GPU’s by Takizawa and Kobayashi | | shows
significant performance improvements when calculating distances between datapoints in a parallel
and distributed manner.



3 Methods

Our methodology consists of three parts. First we apply several feature-extraction methods to our
input data (see subsection 3.1). Then, for each of the resulting feature-matrices we compute a
similarity matrix (see subsection 3.2). A linear combination (see Eqn 1) of these similarity matrices
form a single similarity matrix R, where A; is a feature-matrix, w; the weight corresponding to the
feature and b € R the bias. The feature-extraction methods that are most important for clustering
similar financial transactions will have the largest weights in this equation, both positive and
negative. A weight close to zero indicate that a certain feature-extraction method can be neglected.
This optimization process is explained more detailed in subsection 3.3.1.

R=b+wA +wAs+ - +w,A, (1)

Different clustering algorithms can now be applied on the resulting similarity matrix R (see
subsection 3.3). The distance matrix is computed from the similarity-matrix as follows:

D=1-R 2)

In order to compare the accuracy of different clustering algorithms, we need to define a measurement
of accuracy. After clustering, we compare the resulting adjacency matrix with a ‘true’ adjacency
matrix created by manually clustering recurring and similar financial transactions. Our measurement
of accuracy is defined in Eqn 3, where T'P are the number of true positives, T'N the number of
true negatives, F'P the number of false positives and F'N the number of false negatives.

TP+ TN (3)
TP+ FP+TN+ FN

In addition to the accuracy, we also compute 3 other metrics: the adjusted Rand index, the
Calinski-Harabasz index and the Silhouette-score | |. The Calinski-Harabasz index and
Silhouette-score do not require labelled data.

The adjusted Rand index (see | ]) corrects the accuracy for the probability of a positive or
negative outcome and results to a value between 0 and 1.

The Silhouette-score for our resulting clusters is the mean of the Silhouette-score for each cluster
where the Silhouette-score for a cluster is defined as:

1 b(x) — a(x)
S=Ne ; max(b(z), a()) )

Accuracy =

Where a(x) is the mean distance between a transaction x and all other transactions in the same
cluster, and b(z) the mean distance between a transaction x and all other transactions in the next
nearest cluster. C; is a cluster and NC' the number of clusters.
The Calinski-Harabasz index | | is given by the formula:

_ 2imid(e,0)/(NC —1)
> ZweCi d*(x,c;)/(n — NC)

Where ¢; is the mean of the distance-values within a cluster 7, ¢ is the mean of the values in the
entire distance matrix, n is the number of transactions, NC' is the number of clusters, d(z,y) is
the difference between z and y, C; is a cluster and n; is the number of transactions in the cluster

(see [s1]).
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date description | accountnr | counterparty_name counterparty IBAN | amount
23-07-2020 | Pa...54 NL...81 | Jumbo Le...IDEN NLD -18,19
22-07-2020 | Ar...12 NL...81 | BOLCOM BV NL...00 -89,95
21-07-2020 | Fa...OM | NL...81 | KPN - Mobiel NL...13 -13,41
20-07-2020 | Pa...G1 NL...81 | Jumbo Le...IDEN NLD -17,71
20-07-2020 | MA...20 NL...81 | BELASTINGDIENST NLS...88 -195
17-07-2020 | Pa...62 NL...81 | PAKHUIS LEIDEN NLD -63

Table 1: A small sample of our dataset.

3.1 Feature extraction

When extracting features from a financial transaction, we essentially represent a transaction as a
vector. If we do this for all of our n transactions, we obtain a n x m feature-matrix 7', where m is
the number of features extracted by the method.

ti1 tiz - tim
toq tao -+ lom
Tn,m = . . . . (6>
tn,l tn,2 e tn,m
3.1.1 N-grams
N-gram character tokenization | | creates a multiset (or ‘bag’) of strings (or ‘tokens’) with

fixed length n from a single input string. Using n = 2 we obtain a bag of 2-character strings called
‘bigrams’, N-grams with n = 3 are called trigrams.

The quick fox —= Th he e g qu uli ic ck k f fo ox

Figure 1: Converting a 13-character sentence to 12 bigrams.

For short input strings, bigram tokenization (n = 2) has some advantageous properties over trigrams
(n = 3); bigrams are less error-prone to typos and information about the original sequence of tokens
largely remains. Bigram multisets also require a lot less memory space for storage and thus less
processing; if our input string contains all letters of the latin alphabet, 26 possible trigrams exists
while only 262 possible bigrams exist.

Due to the nature of our data, we first sanitize our input string by uppercasing and removing
all non-latin characters except spaces. Next, we apply bigram tokenization on the description,
accountnr, counterparty_name, counterparty_IBAN attributes for all financial transactions. This
will result in the feature-matrix 7,,,, (see Eqn 6). Finally, tokens that exists in every bag are
removed because this would negatively affect the similarity measurement in the next stage. When
measuring the commonalities/similarity between two individual financial transactions, ‘global’
commonalities should be ignored (features that every transaction has). This feature-extraction
method is applied on the following attributes (see Table 1): description, counterparty-name.
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3.1.2 Dates

Several additional features can be extracted out of the date attribute of a financial transaction: day
of the month, month, year, week of the year, day of the week, quarter of the year. Doing this for all
transactions, we end up with 6 feature matrices 7, ,, (see Eqn 6) with m = 1.

3.1.3 Amount

We convert the amount of a transaction to a positive number and end up with a single feature
matrix 7, ,, (see Eqn 6) with m = 1. The feature matrix cannot contain negative values, since
some similarity metrics will not work correctly with negative values.

3.2 Similarity metric

A similarity or distance metric is a formula which describes how similar or distant two vectors are.
A similarity matrix A of feature-matrix 7" is a n x n matrix where a;; = f(¢;,¢;) and function f
the chosen similarity-metric.

i1 tig - tim ai1 Qiz 0 Aip
to1 tao -+ lom (g1 Q22 *++ d2n,
tn,l tn,Q e tn,m Ap1 Ap2 ‘' Qpp

The time complexity of computing a similarity or distance matrix is O(%an), where n is the
number of transactions and m the number of features. Thus, when such a matrix is used in the
clustering process, this is the most important computation to speed up.

In order to take advantage of inference-accelerator hardware, we need a similarity metric which is
merely a dot product between it’s two input (feature-)vectors. More specifically, the only operation
between the elements of both vectors should be a multiplication. Several metrics with this property
exist (see [ |), for example: Kumar-Hassebrook’s PCE, Cosine-similarity and Dice-Squared
similarity. In our performance & accuracy comparison, we use these three and in addition the
quantitative Dice coefficient, which cannot take advantage of inference-accelerator hardware. These
similarity metrics can be seen in Table 2.

Where @guter 1s the outer-sum of two vectors, p; € R*, ¢; € RT, r; = t; - £; in vector 7 and u; = Vi

in vector 4. Note that vectors ¢, p'and thus feature-matrix 7" should not contain negative values.

U= (u17u27 >um>
v = (U17U27 7vn)
U +vy U +vy e UL+ Uy
. . Ug + V1 Ug + Vo -+ Uy + Uy
U Douter U = A= . . . . (8)
um+vl Um+U2 um+vn

The outer-sum operation (@outer) ON two vectors can be seen as the outer-product except we perform
an element-wise addition instead of multiplication. @ is the Hadamard division operator and -,,;,



Table 2: The similarity metrics used

Similarity metric over two vectors: Similarity matrix form:

Z Pidi
i=1

SKumar(q_:m = m m ™ AKumar = (TTT) @ (F@outer T — TTT)
Sopi 4D =D pia
=1 m =1 i=1
sz‘%'
SCOSine(J;@ - =1 ACosine - (TTT) % (ﬁ Bouter ﬁ)
PN DI
=1 =1
2 Z Piq;
SDice-Squared (Jyﬁj = =l ADiCe-Squared == (2TTT) %) (7? @outer 7:‘)

i+ q
=1 =1

2 Z min(p;, ¢;)
SDice(Jyﬁj - =1 ADice = (2T ‘min TT) @ ((TT> @outer (TT>>

Zpi + qi
i=1

is the matrix-minimum operation, which works exactly like a matrix multiplication but uses the
min() operator instead of multiplication.

The quantitative Dice coefficient is sometimes wrongly defined as the formula we define as ‘Dice-
Squared’. This is often because Spice(q, ) = Sbice-Squared (7, P) holds for binary vectors ¢, p but not
when p; € RT, ¢; € RT.

It is also important to note that for R* values of ¢, p, in comparison to the Dice similarity metric,
the Dice-Squared and Kumar-Hassebrook similarity exhibit different behaviour. When using those
two metrics, larger values in the feature-vector have a much larger weight in the resulting similarity.
To illustrate this behaviour, take a look at the examples in Table 3. As you can see in the first
three rows, as the third value in the b increases, the resulting similarity for Skumar and Sbice-squared
becomes much smaller compared to Spi.. For this reason, we calculate the similarity between
transactions on a per-feature basis instead of creating a single feature-vector from a financial
transaction. In addition, the Cosine similarity could produce a high similarity even if the values in
both vectors differ significantly, which can be seen in the last two rows.



— - —, -, -

C_i b SKumar(C_ia b) SCosine(C_ia b) SDice—Squared(ay ) SDice(a7 b)
(1,1,1) (1,1,0) | 0.67 0.82 0.80 0.80
(1,1,1) (1,1,2) | 0.80 0.94 0.89 0.86
(1,1,1) (1,1,7) | 0.20 0.73 0.33 0.50
(1,10,5)  (1,4,2) | 0.53 0.99 0.69 0.61
(1,1000,3) (1,9,3) | 0.01 0.94 0.02 0.03

Table 3: Examples of differences between similarity-metrics

3.3 Clustering

After calculating similarity matrices for different feature-extraction methods, a final, single similarity
matrix is computed. This final similarity matrix is a linear combination of these similarity matrices
(see Eqn 1). Several different clustering algorithms can now be applied and compared. We will
compare perceptron/neural-network clustering, single-linkage hierarchical clustering, complete-
linkage hierarchical clustering and HDBSCAN [CM7ZS15]. These algorithms do not require the
knowledge of certain parameters (i.e. the number of clusters) that are hard to guess correctly in
advance, which is essential for our purpose.

When visualizing the resulting similarity matrix using the Barnes-Hut [B1180] algorithm, a distinct
property of the data becomes clear. The inner-cluster similarity often has a (very) small variance,
indicated by the strongly rounded cluster shapes. Sometimes, two of these rounded clusters have
quite some connections between them, meaning a small hierarchy exists sometimes.

e B T T iy

o8’
a ("] L

Figure 2: Final similarity-matrix of financial transactions visualized using the Barnes-Hut algorithm.
DICE is used as similarity metric with a threshold of > 0.7. Dataset 2 is used (personal bank
account).



3.3.1 Perceptron

The resulting similarity matrix can be converted to an adjacency matrix simply by applying a
threshold. In this way, the linear combination (see Eqn 1) is essentially a perceptron with a binary
outcome, classifying whether or not a connection between two financial transactions exists. A larger
neural network can be applied as well. Training a perceptron or neural network to classify similarity
is called ‘classification similarity learning’ | ].

In our comparison, we experiment with a single perceptron. Since the inputs to this network
are similarity matrices resulting from several different feature-extraction methods instead of the
extracted features of a financial transaction, the perceptron is a lot less likely to overfit on the
dataset used for training. In essence, this process of training a similarity classifier determines which
feature-extraction methods are useful for clustering financial transactions. The optimize function
used is the Adam algorithm, the loss function is the binary cross-entropy function.

3.3.2 Hierarchical agglomerative clustering

In hierarchical agglomerative clustering (HAC), the two closest datapoints (which is either a
transaction or an existing cluster of transactions) are combined in a single cluster repeatedly,
building a hierarchical tree. Different variants of hierarchical agglomerative clustering exist, each
with their own definition of ‘closest’. In single linkage HAC, the distance between two datapoints
is the shortest distance between transactions of both datapoints. In complete linkage HAC, the
distance between two datapoints is the largest distance between transactions of both datapoints.

These methods have a ‘distance threshold’” parameter to be set in order to create flat clusters from
the hierarchical approach. The distance threshold specifies when to stop merging datapoints. If the
distance between two datapoints is above the distance threshold, they will not be merged.

3.3.3 HDBSCAN

HDBSCAN | ] builds upon the well-known DBSCAN | | algorithm, but allows for
varying cluster densities. It does so by first building a hierarchical tree -like hierarchical agglomerative
clustering- and then cutting this tree in a 'smart’ manner. When building the hierarchical tree,
HDBSCAN does not use the 'plain’ distance between two datapoints, but uses a mutual-reachability
distance which takes density into account. This way, two pairs of datapoints which are equally
far away may have a different mutual-reachability-distance, with the more densely surrounded
datapoints having a lower mutual-reachability distance. Cutting this tree into flat clusters consists
of two steps. First, tree branches that create a cluster with less transactions than a certain minimum
are not considered a cluster split, but merely the slimming down of an larger cluster. This way, the
hierarchical tree becomes much smaller. At last, the most ‘stable’ clusters in this small tree are
cut, creating the final flat clusters. The stability of a cluster is defined as: Zpeci Ap — Abirth, Where

A= m, Abirth 18 the value when a cluster splits into 2 new clusters.



4 Datasets

For our analysis, we use 3 datasets. Dataset 1 contains artificially generated financial transactions
with predetermined clusters. Dataset 2 contains all financial transactions from my personal bank
account, 2880 in total, which have been clustered manually in order to achieve a ‘ground truth’ of
correct clusters. Dataset 1 and 2 cover multiple years of transactions. Dataset 3 contains around
8000 transactions from Leiden University and covers a single month.

4.1 Dataset 1

For the creation of dataset 1, a generative spreadsheet file has been used (see [vHc]). Clusters
can be specified, which generate transactions at a configurable interval, with a variable amount of
randomness optionally added to this interval. The ‘amount’ of a transaction can also be configured,
including a variable amount of randomness. This dataset has been used mainly for testing during
development.

4.2 Dataset 2

Filter | Type to Search

Filter Noise

o

Filter Clusterld

Filter On Noise. Clusterld Description & Name

Selectall = Clear selection EECIEIEE]

Date Name Description Group Amount ¢ Similarity

19-11-2018 £-400

Fully merge clusters  Split into noise

19-11-2018

€-100

19-11-2018 €-400

16-11-2018 €500

16-11-2018 €-500

15-11-2018 €-500

14112018 €-1100

12112018 €-1100

12-112018 €-2900

09-11-2018 €800

298

08-11-2018 - €-1800

Figure 3: Clustering tool

Dataset 2 contains all 2880 financial transactions of my personal bank account, which spans about
9 years. In order to create a ‘ground truth’ clustering for these transactions, I have developed
a tool called ‘clusterize’ [vHa] (see Figure 3). This tool enables easy manual clustering of data,
using an intuitive user interface. The dataset was first clustered using single-linkage clustering,
using the DICE similarity metric and the bigrams feature extraction method on the description of
a transaction. After this, the clustering result was imported in the clustering tool and manually



checked & improved. Similar and recurring transactions where put together into clusters, for
example: payments at the same supermarket chain / pub / restaurant / gym, salary payments from
the same employer, and payments that belong to a unique event.

Feature extraction method Shape Sparsity % Mean Max Min
Date - Year [2880] 0 2015.87 2018.00 2009.00
Date - Month [2880] 0 571 1100 0.00
Date - Day of month [2880] 0 15.80 31.00 1.00
Date - Week of year [2880] 0 27.61 53.00 1.00
Date - Day of week [2880] 0 2.53 6.00 1.00
Date - Quarter of year [2880] 0 2.58 4.00 1.00
Counterparty_name - Bigrams [2880,1698] 99 21.42 47.00 2.00
Description - Bigrams [2880,2649] 97 75.85 245.00  0.00
Amount [2880] 0 70.93 3000.00 0.01

Table 4: Descriptive statistics of each feature extraction method for dataset 2. Note that mean,
max and min for the Bigrams method describe the string length of the corresponding attribute.

4.3 Dataset 3

Dataset 3 contains around 8000 transactions from Leiden University and covers a single month.
The dataset contains small bills, reimbursements, student fees and large invoices. For this dataset,
no ‘ground-truth’ clustered result exist. A vast amount of transactions have a large part of their
(generic) description in common, with small deviations. We use this dataset to evaluate our methods
applied to dataset 1 & 2.

Feature extraction method Shape Sparsity % Mean Max Min
Date - Year [7905] 0 2017.99  2018.00 2018.00
Date - Month [7905] 0 0.00 0.00 0.00
Date - Day of month [7905] 0 14.13 31.00 2.00
Date - Week of year [7905] 0 2.57 5.00 1.00
Date - Day of week [7905] 0 3.12 5.00 1.00
Date - Quarter of year [7905] 0 1.00 1.00 1.00
Counterparty name - Bigrams [7905,896] 99 12.99 34.00 0.00
Description - Bigrams [7905,1195] 97 40.70 114.00 4.00
Amount [7905] 0 32997.94 61722348.00 0.29

Table 5: Descriptive statistics of each feature extraction method for dataset 3. Note that mean,
max and min for the Bigrams method describe the string length of the corresponding attribute.
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5 Results

The code for our analysis can be found on github [vIic]. The code to create the similarity-matrix
and the perceptron is written in javascript, using the TensorFlow.js library. Python has been used
to apply the other clustering methods and for the evaluation of all the clustering methods, using
the numpy and scikit-learn libraries.

5.1 Feature-extraction methods

In order to determine which feature extraction methods are most relevant for clustering similar &
recurring financial transactions, we use dataset 2. This dataset is most suitable because it contains
real data, is sufficiently large and has an accurate ‘ground truth’. As described in 3.3.1, we train a
perceptron to determine which feature extraction methods are most important for clustering. The
resulting input weights of a trained perceptron indicate the importance of the particular feature
extraction method (see Formula 9). In essence, this is an optimization problem. In batches of size
32, the perceptron is supplied with the pairwise similarities of the financial transactions in the
dataset, and the resulting binary outcome from the ‘ground truth’ (this indicates whether or not
the two financial transactions belong in the same cluster). The similarity-metric we use for this
analysis is the DICE-similarity metric. The results for other similarity metrics are roughly the same,
with the importance of the description attribute being notably higher for the Kumar-Hassebrook
similarity. These results can be seen in Table 6.

Feature extraction method Kumar-Hassebrook Cosine DICE DICE-Squared

Date - Year 6 12 15 6
Date - Month 1 8 0 1
Date - Day of month 1 2 0 0
Date - Week of year 2 8 1 2
Date - Day of week 1 1 0 0
Date - Quarter of year 1 6 1 1
Counterparty_name - Bigrams 45 44 43 51
Description - Bigrams 28 17 20 17
Amount 16 2 19 21

Table 6: Resulting importance (%) using different similarity metrics

importance; = H‘ z?” ‘1 (9)
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Feature extraction method Weight Importance (%)

Date - Year -1.71 15
Date - Month 0.03 0
Date - Day of month -0.02 0
Date - Week of year -0.11 1
Date - Day of week -0.04 0
Date - Quarter of year -0.10 1
Counterparty_name - Bigrams 4.99 43
Description - Bigrams 2.34 20
Amount 2.14 19

Table 7: Importance of each feature extraction method for clustering, using the DICE similarity
metric.

As can be seen in Table 7, the month, day of the month, week of the year, day of the week and
quarter of the year attributes of a financial transaction are irrelevant for determining similar
transactions. The similarity between counterparty name, description, year and amount are most
important. The perceptron results for other similarity metrics are listed in Appendix B.

12



5.2 Similarity metrics
5.2.1 Performance

Recall that the time complexity of computing a n x n similarity or distance matrix is O(%an).
To simplify the performance benchmark, we isolate the part of the algorithm that causes this
large time complexity, the slowest part. Steps that have a time complexity of O(%nz) or less
are ignored. Essentially, this is a comparison between the matrix-multiplication operation used
in Cosine-similarity, Kumar-Hassebrook’s PCE and Dice-Squared similarity versus the matrix-
minimum operation used in the quantitative Dice coefficient. The benchmarks are ran on both
a Nvidia GTX1060 and a RTX2080Ti graphics card to verify consistency, with the RTX2080T1i
being equipped with Tensor Cores. The datatype for the input matrices is int8, and int32 is used
as accumulate/output matrix datatype as this closely resembles our use-case. We used NVIDIA’s
CUDA Templates for Linear Algebra Subroutines (or ‘CUTLASS’) library for our matrix-multiply
implementation. CUTLASS decomposes the computation into an efficient hierarchy of threadblock
tiles and thread tiles in order to reduce memory latency bottlenecks.

Figure 4: Performance Nvidia GTX 1060

- A
100,000 —&— Matrix Minimum
10,0004 v Matr?lenlmu'm('optlmlzed)

—e— Matrix Multiplication

5 1000+
c
o
o 100+
1%,
S 10

’I -

0.1 1032

n=1024 n=2048 n=409 n=8192 n=16384

Matrix size n x n

For the implementation of the matrix-minimum operation, we modified the CUTLASS library
to use the PTX ISA vmin4 SIMD instruction | |, operating on two vectors of 4 8-bit integers
at a time. In GPU’s with compute capability > 3.0 but below 5.0, the vmin4 PTX instruction
compiles to a single VMNMX SASS (device) instruction. For GPU’s with compute capability > 5.0,
the VMNMX SASS instruction has been removed, and vmin4 will compile to a long sequence of SASS
instructions instead (see Appendix A). This long sequence of SASS instructions was not as efficient
as it could be. By using the __vmins4 () SIMD intrinsic instead, we achieved a factor 2 performance
improvement on the GTX1060 and a slight performance improvement on the RTX2080Ti as well,
depending on the matrix size. This is the ‘—Matrix Minimum (optimized)’ line in Figure 4 and 5.
However, the operation can be optimized even further on GPU’s with compute capability > 6.1
by accumulating the 4 8-bit integers using the __dp4a() intrinsic with a hardcoded 0x01010101
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Figure 5: Performance Nvidia RTX 2080Ti
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value as multiplier. This makes the __dp4a() instruction -meant to calculate a dot product- behave
as an adder. This improves performance by an additional factor 2 and is the ‘—Matrix Minimum
(optimized++)’ line in Figure 5. Taking all optimizations into account, the matrix-minimum
operation is consistently 7 times slower than the matrix multiplication operation without the use of
Tensor Cores. When using Tensor Cores for the matrix multiplication operation, the matrix-minimum
operation is 19 times slower for sufficiently large matrices (> 2048).

5.2.2 Accuracy

In order to determine whether the use of different similarity metrics has any effect on the accuracy
of the clustering, we apply every clustering method to each resulting similarity matrix. The final
results can be found in Table 9, 10, 11 and 12. The weights for each feature extraction method of a
financial transaction are kept consistent for all metrics (see Table 8). These weights are different
from the resulting weights in Table 7, because those weights were optimal for perceptron-based
clustering. The weights in a perceptron do not allow for much variance; the slighest adjustments can
result in significantly worse results. The other clustering methods are less restricted by the exact
importance of each feature-extraction method. The histogram of each resulting similarity matrix is
shown in Figure 6. Note that the values for Cosine similarity start with 0.1, this is because the
‘amount’ feature —which accounts for 10%-— always results in a Cosine similarity of 1, because it is a
single value, not a vector of values. We use Dataset 2 because we have a 'ground truth’ available
for this dataset.
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Feature extraction method Importance (%)
Counterparty_name - Bigrams 30
Description - Bigrams 60
Amount 10

Table 8: Importance of each feature extraction method for clustering.
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91

Figure 6: Histogram of values in the similarity matrices, using different similarity metrics
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Although the results below show no big differences in accuracy between the similarity metrics used,
the accuracy of the Cosine-similarity metric is slightly worse than the other similarity metrics.

Accuracy Adjusted Rand Calinski Silhouette Distance Threshold

Perceptron 0.9729 0.548 89.9 0.1613
HAC-single 0.9768 0.585 95.1 0.2039 0.3
HAC-complete 0.9766 0.581 133.6 0.2220 0.5
HDBscan 0.9761 0.570 107.7 0.1723

Table 9: Resulting clustering accuracy using the Kumar-Hassebrook similarity metric

Accuracy Adjusted Rand Calinski Silhouette Distance Threshold

Perceptron 0.9721 0.542 114.6 0.2083
HAC-single 0.9701 0.528 38.3 0.1914 0.2
HAC-complete 0.9742 0.567 168.8 0.2858 0.4
HDBscan 0.9744 0.547 54.5 0.1772

Table 10: Resulting clustering accuracy using the Cosine similarity metric

Accuracy Adjusted Rand Calinski Silhouette Distance Threshold

Perceptron 0.9708 0.529 128.1 0.1470
HAC-single 0.9772 0.594 160.3 0.1979 0.2
HAC-complete 0.9763 0.580 246.6 0.2051 0.4
HDBscan 0.9760 0.569 172.3 0.1577

Table 11: Resulting clustering accuracy using the Dice-Squared similarity metric

Accuracy Adjusted Rand Calinski Silhouette Distance Threshold

Perceptron 0.9726 0.545 155.9 0.1805
HAC-single 0.9765 0.578 191.9 0.2257 0.2
HAC-complete 0.9768 0.587 283.4 0.2414 0.4
HDBscan 0.9759 0.567 218.0 0.1907

Table 12: Resulting clustering accuracy using the Dice similarity metric

5.3 Clustering methods

When looking at the adjusted Rand-index, the results show that in every case the perceptron is
the worst clustering method, but the results between the other clustering methods do not differ
a lot. Because of this, it may be more useful to determine the best clustering method on the
Calinski-index and Silhouette-score. HAC complete-linkage clustering turns out to be the overall
best, but it requires a 'distance-threshold” parameter to be set. When taking a look at the metrics
that do not take into account a ’ground truth’, we see that a significantly higher Silhouette-score
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Figure 7: Histogram of values in similarity matrix of dataset 3 (FSSC data), using the Dice similarity
metric

and Calinski-index corresponds with a higher accuracy. This helps judging the correctness when
clustering a dataset without 'ground truth’ available.

Now in order to apply our clustering methods on dataset 3, our large dataset containing the FSSC
data from Leiden University, we use the Dice similarity metric. Since clustering results do not
vary greatly between different similarity metrics, and the Dice similarity performs well across
every clustering method used, we only use this single metric. The results of the different clustering
methods can be seen in Table 13. While the Calinski-Harabasz index looks okay, we can see a
Silhouette-score close to 0, quite a difference from the results of our dataset 2 (personal bank
account). This indicates that the resulting clusters in dataset 3 are less defined than in dataset 2.
This is likely not due to the similarity metric, given the relatively small differences in Silhouette
score between a given clustering method and different similarity metrics in dataset 2. The main
cause would likely be the large amount of common words in the 'description’ attribute of financial
transactions of dataset 3.

Calinski Silhouette Distance Threshold

HAC-single 13.7 -0.3034 0.2
HAC-complete 69.8 -0.0162 0.4
HDBscan 15.2 -0.0300

Table 13: Resulting clustering accuracy of dataset 3 (FSSC data), using the Dice similarity metric
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Figure 8: Cluster result dataset 3 (FSSC) using complete linkage HAC, where the cluster-id is on
the x-axis and the number of transactions in a cluster on the y-axis.

102
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Figure 9: Cluster result dataset 2 (personal bank account) using complete linkage HAC, where the
cluster-id is on the x-axis and the number of transactions in a cluster on the y-axis.
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6 Discussion

When calculating a similarity matrix, the most performant similarity metric should use matrix
multiplication instead of matrix-minimum and thus may benefit from NVIDIA’s Tensor Cores.
Since performance improvement of algorithms is an ongoing task and the architecture of GPU’s
and inference accelerators may change in the future, this conclusion could be affected. However,
this is unlikely because a dedicated ALU-operation for minimum+-accumulate has existed in the
past, but has been removed from GPU’s.

Hierarchical agglomerative clustering with complete-linkage turns out to be the best clustering
method, but it requires a parameter to be set. The optimal value of this parameter is likely not
difficult to find when no ’ground truth’ clusters are available for a particular dataset, because the
Calinski-Harabasz index and Silhouette score provide a good measurement of clustering quality.
The methods used in this thesis can be used in practice, but not yet without human intervention:
the resulting clusters need some corrections. To easily manage and correct the resulting clustered
data, a web-based prototype has been built, where the clustering algorithm can be used has a
helpful time-saving technology. However, the methods could be used to fully automatically detect
anomalies (outliers) in a dataset, since 100% correct clusters are not required for this: only outliers
need to be correctly identified.

The results show that a significantly higher Calinski-Harabasz index and Silhouette score also
relates to a higher adjusted Rand index, yet slightly. This means that significantly stronger clusters
do not result in a large accuracy improvement and indicates that improvements can be made in
the conversion of a financial transaction to a feature-vector. Commonly found words which are not
unique to individual clusters could be ignored, which may be determined by its semantic class.

7 Conclusions and Further Research

Similar and recurring financial transactions can be clustered using fixed parameters on multiple
datasets, however, some manual corrections are still required afterwards, which does not need to be
difficult given a friendly user interface. We achieved an accuracy of 0.976 and an adjusted rand
index of 0.580 using complete-linkage clustering. The chosen similarity metric does not significantly
affect the clustering accuracy when applied on a per-feature basis to financial transactions. However,
using the Cosine similarity is discouraged due to it always returning 1 when applied on single
value-features. The chosen clustering algorithm affects the resulting accuracy, with complete-linkage
hierarchical agglomerative clustering being the most accurate clustering method. Calculating the
distance matrix is one of the slowest parts of clustering and can be sped up. Since the calculation
of a distance matrix is a significant part of a clustering process, choosing a similarity metric which
consists only of a dot-product (multiply-accumulate) between its two vectors will easily perform 7
times faster than a minimum-accumulate operation on NVIDIA GPU’s with compute capability
> 6.1 using the dp4a instruction, and can be sped up an additional factor 2.9 using NVIDIA’s
Tensor Cores. Further research can be conducted on the development of better feature-extraction
methods for financial transactions.
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A Similarity metrics performance improvement

File vmin4 dp4a kernels.cu, where vmin4 intrinsic() is more optimized than vmin4() on

GPU’s with compute capability > 5.0 and vmin4_intrinsic_dp4a() is most optimized on GPU’s
with compute capability > 6.1.

__global__ void vmin4(
int32_t &d,
unsigned const &A,
unsigned const &B,
int32_t const &c){
#if (defined(__CUDA_ARCH__) &€& (__CUDA_ARCH__ >= 300))
asm volatile("vmind.s32.s32.s32.add %0, %1, %2, %3;"
"=I‘" (d)
Ilrll (A)’ llrll (B), llrll(c));
#end< f

__global__ void vmin4_intrinsic(
int32_t &d,
unsigned const &A,
unsigned const &B,
int32_t const &c){
#if (defined(__CUDA_ARCH__) €& (__CUDA_ARCH__ >= 500))

int8_t t[4];
unsigned &T = reinterpret_cast<unsigned &>(t);
T = __vmins4(A, B);

d += t[0] + t[1] + t[2] + t[3];
#endi f

__global__ void vmin4_intrinsic_dp4a(

int32_t &d,

unsigned const &A,

unsigned const &B,

int32_t const &c){

#if (defined(__CUDA_ARCH__) &€& (__CUDA_ARCH__ >= 610))
int32_t T = __vmins4(A, B);
d = __dp4a(T, 0x01010101, c);

#end< f

Compiled SASS instructions:
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vmin4 ()

MOV
MOV
MOV
MOV
LDG.
MOV
LDG.
MOV

R1,
R2, c[0x0] [0x148]
R3, c[0x0] [0x14c]
R4, c[0x0] [0x150]
E R2, [R2] [}

R5, c[0x0] [0x154]
E R4, [R4] ;

R6, c[0x0] [0x158]
MOV R7, c[0x0] [0x15c]
LDG.E R6, [R6] ;

DEPBAR.LE SB5, Ox1 ;

PRMT RO, R2.reuse, 0x3210, R4.reuse ;

c[0x0] [0x20] ;

PRMT R8, R2, 0x7654, R4 ;
PRMT R9, RO, 0x7650, RZ ;

PRMT R11, R8.reuse, 0x7650, RZ ;
PRMT R3, R8.reuse, 0x7651, RZ ;

BFE R10, R9, 0x800 ;
PRMT R9, RO.reuse,

BFE R11, R11, 0x800 ;

PRMT R8, R8, 0x7653, RZ

BFE R3, R3, 0x800 ;

PRMT RO, RO, 0x7653, RZ

BFE R9, R9, 0x800 ;

IMNMX R11, R10, R11, PT

BFE R4, R4, 0x800 ;
BFE R5, R8, 0x800 ;
BFE R2, R2, 0x800 ;
BFE RO, RO, 0x800 ;
IMNMX R9, R9, R3,
IMNMX R4, R2, R4,

MOV R2, c[0x0] [0x140]
MOV R3, c[0x0] [0x144]

IADD3 R4, R5, R6, R4 ;

STG.E [R2], R4 ;
EXIT ;

BRA 0x1a0 ;

NOP;

NOP;

PT ;
PT ;
IMNMX R5, RO, R5, PT ;
IADD3 R6, R9, R6, R11 ;

0x7651,
PRMT R4, R8, 0x7652, RZ ;
PRMT R2, RO, 0x7652, RZ

)

2

RZ

2

vmind_intrinsic()

MOV R1, c[0x0] [0x20]
MOV R4, c[0x0] [0x148]
MOV R5, c[0x0] [0x14c]
MOV R6, c[0x0] [0x150]
LDG.E R4, [R4] [}]

MOV R7, c[0x0] [0x154]
LDG.E R6, [R6] ;

MOV R2, c[0x0] [0x140]
MOV R3, c[0x0] [0x144]
LDG.E R10, [R2] ;
DEPBAR.LE SB5, 0x1 ;

LOP32I.AND R9, R4, Ox7f7£f7f7f ;
LOP32I.0R RO, R6, 0x80808080 ;

IADD R9, RO, -R9 ;

LOP3.LUT RO, R9, R6, R4.reuse, 0x96 ;
LOP3.LUT R9, R6.reuse, R4, R9, 0x18 ;

LOP.XOR RO, R9, RO ;

PRMT R9, RO, 0xba98, RZ ;
LOP3.LUT R9, R6, R9, R4, 0xb8 ;

BFE R4, R9, 0x808 ;

2

2

2

2

2

2

SHR R5, R9.reuse, 0x18 ;

BFE RO, R9.reuse, 0x800 ;

BFE R9, R9, 0x810 ;

IADD3 R10, R4, R5, R10 ;

IADD3 RO, R9, R10, RO ;

STG.E [R2], RO ;
EXIT ;

BRA 0x120 ;

NOP ;

NOP;



O 00 N O O W N =
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vmind intrinsic_dp4a()
MOV R1, c[0x0][0x20] ;
MOV R2, c[0x0][0x148] ;
MOV R3, c[0x0][0x14c] ;
{ MOV R4, c[0x0][0x150] ;
LDG.E R2, [R2] [}
MOV R5, c[0x0][0x154] ;
LDG.E R4, [R4] ;
MOV R6, c[0x0][0x158] ;
MOV R7, c[0x0] [0x15c] ;
LDG.E R6, [R6] ;
MOV R3, c[0x0][0x144] ;
DEPBAR.LE SB5, 0Ox1 ;

LOP32I.AND RO, R2, Ox7f7f7f7f ;

LOP32I.0R RO, R4, 0x80808080 ;
IADD R9, RO, -R9O ;

LOP3.LUT RO, R9, R4, R2.reuse, 0x96 ;
LOP3.LUT R9, R4.reuse, R2, R9, 0x18 ;

LOP.XOR RO, R9, RO ;
PRMT R9, RO, 0xba98, RZ ;

LOP3.LUT R9, R4, R9, R2, 0xb8 ;

MOV R2, c[0x0] [0x140] ;

IDP.4A.S8.S8 R9, R9, c[0x2][0x0], R6 ;

STG.E [R2], RO ;
EXIT ;

BRA 0x100 ;

NOP ;

NOP ;

NOP ;

NOP ;

NQOP;
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B Perceptron weights feature-extraction methods

Feature extraction method

Date - Year -0.69
Date - Month 0.09
Date - Day of month -0.09
Date - Week of year -0.19
Date - Day of week -0.06
Date - Quarter of year -0.06
Counterparty_name - Bigrams 4.97
Description - Bigrams 3.09
Amount 1.77
Bias -5.18

Kumar-Hassebrook

Cosine
-1.42
-0.93
-0.18
-0.92
-0.14
-0.65
5.07
1.92
-0.23
-0.72

DICE
-1.71
0.03
-0.02
-0.11
-0.04
-0.10
4.99
2.34
2.14
-4.94

DICE-Squared
-0.60
0.11
-0.01
-0.22
-0.04
-0.08
4.91
1.66
2.07
-5.67

Table 14: Resulting perceptron weights using different similarity metrics
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