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Abstract 

Chunking is “the recoding of smaller units of information into larger, familiar chunks” 

(Thalmann et al., 2019). Several chunking studies have been done with chess (De Groot, 1946), 

language (Simon, 1974), and source code (McKeithen et al., 1981). These studies proved that 

experts have more, differently organized knowledge than beginners. McKeithen et al. conducted 

a recall study with code that found that beginners hold a broad variety of smaller chunks 

containing more natural-language elements than experts. However, as this setup and its findings 

are outdated, new knowledge can be gained from a conceptual replication study. In the present 

study, we broaden the theoretical framework, and recreate a short-term recall study inspired by 

McKeithen et al. in a modern setting. Using text analysis techniques, like comparative 

dictionaries and n-grams, we clarify the use of chunking in subjects' recalled Java code. Using 

such techniques we hope to broaden the knowledge on the use of text analysis techniques in the 

field of computer science. These can show differences between the different skill level groups 

within the sample. With this, we try to answer the following questions: How do recall and 

chunking of a Java snippet differ between skill levels (beginner, intermediate, expert), and 

between a normal and a scrambled version? And, How can text analysis techniques be 

implemented on recalled source code of subjects and what can be inferred from the results? An 

online questionnaire is used which includes the recollection of two versions of a Java snippet 

(normal versus scrambled). For recollection, we use an embedded Ace editor to simulate a 

natural coding environment. Analyses are done by doing quantitative analysis on several 

variables that summarize the recall of each subject (e.g. length of answer, amount of correct 

concepts used, and relative overlap between subject answer and solution). Statistical analyses 

proved that version or expertise have a marginally significant effect on recall of a Java snippet. 

More research is necessary to determine the use of text analysis techniques on code that is 

written under a time limit and thus may contain many typos and other errors that might not 

occur otherwise. However, text analysis techniques show potential when techniques can be 

combined in the future to create a more complete analysis pack for source code. 

Keywords: chunking; expertise; cognitive load; replication; text analyses 
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1 Introduction 

1.1 Crossing Borders Between Disciplines 

The field of information processing (IP) stretches across multiple disciplines, 

all with different angles. However, within the discipline of computer science, 

IP is quite young, and therefore, the research on the subject is scarce. While IP 

within the discipline of cognitive psychology has its roots in the 1950s (e.g., De 

Groot, 1946; Miller, 1956; Atkinson & Shiffrin, 1968), the computer science 

version of IP, source code understanding and analysis, have only been granted 

more notice since the 2000s, especially in academic research. This is because 

the creation of the first and second computers in 1946 boosted interest in the 

development of the new technologies and their programming languages (PLs), 

but less so in the understanding and processing of those in the human brain. 

However, around 30 years later, after an impressive range of PLs had 

already been created, scientists started researching the understanding of these 

programs and languages (e.g., Shneiderman & Mayer, 1979; Brooks, 1983; 

Pennington, 1987; Siegmund et al., 2020). Because this field of program 

comprehension was still so young, it had to borrow research techniques from 

other disciplines, namely cognitive psychology and natural language 

processing: two fields that were both starting to gain more ground and interest 

in the scientific world. It seemed logical to implement research practices from 

these fields: PLs are still designed and used by humans, so there is an overlap 

between natural languages and PLs, and so, also how the information is 

processed in the brain (Siegmund et al, 2014; Prat et al., 2020). 

The concepts borrowed from IP from the cognitive science realm are 

chunking (De Groot, 1946; Miller, 1956), its (positive) effect on cognitive load 
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(Sweller, 1988), and the effect of skill level (De Groot, 1946; Chase & Simon, 

1973), which were studied in fields ranging from chess, natural language, to 

physics concepts. Relationships between these concepts and the present study 

are described in further detail below. 

Today, more and more natural language research is done quantitively 

with text analyses, specifically text mining, using natural language processing 

(NLP) techniques. While it could be argued the field of text mining is still in its 

infancy, these types of techniques are readily available to use for the field of 

mining software repositories (MSR), a field that has received particularly more 

attention since the 2010s. Gupta & Gupta (2019) define MSR as “the process of 

analysing and extracting the knowledge and patterns from the software 

artefacts” (p. 243). Traditionally, this type of research is done on open-source 

software repositories like GitHub, where people and companies can share 

software freely for others to use or build on. The present study will try to use 

NLP techniques in an exploratory manner to find out what types of patterns (and 

thus chunks) subjects use during a short-term memory recall of a snippet of Java 

code. 

In the niche field in which this thesis exists, we hope to achieve a better 

grasp of source code understanding, and source code analysis, and how these 

fields can benefit from each other. That is why we aim to answer the following 

research questions: 

RQ1: How does recall of a Java snippet differ between skill levels, 

and between a normal and a scrambled version? 

RQ2: How does chunking of a Java snippet differ between skill 

levels, and between a normal and a scrambled version? 
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RQ3: How can text analyses techniques be implemented on 

recalled source code of subjects and what can be inferred from the 

results? 

 In the remainder of the Introduction and the Related Works 

Section, the research questions will be put into context and explained further. 

1.2 Building on the Existing Knowledge Base 

To be able to add to the already existing base of source code understanding, but 

at the same time maintain freedom of exploration, we use a familiar type of 

experiment, namely a short-term recall study that measures the differences 

between three different skill levels. This is inspired by a paper from McKeithen 

et al. (1981), who studied recall, chunking, and the effect of skill level during a 

five-phase ALGOL W experiment. It was found that expertise (beginner, 

intermediate, or expert) and version (normal snippet, or scrambled snippet) 

positively influence the rate of recall during the five phases. More details on 

this study can be found in the Method Section. In the remainder of this paper, 

McKeithen et al.’s study will also be referred to as the original study. This study 

was one of the firsts to study human source code understanding and processing 

for the sake of programming language education and cognitive psychology.  

We view their paper and their results as a thread that guides us in the 

process of creating a viable result. We feel it is imperative to build on previously 

done research to stay vigilant of changes during these modern times where 

techniques are being renewed and updated multiple times a year. This is why 

we chose the original study, as it seems it provided a solid base for studies that 

followed and thus seemed reliable to base a new study on. The theory 

McKeithen et al. used, the experiment that was performed, and their findings 

are described in further detail in further sections of the paper. 
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1.3 Chunking in the Past and Present 

The particular form of information organization of “chunking” spreads across 

multiple domains but was first coined by Miller (1956) who described it as an 

action where “each chunk collects a number of pieces of information from the 

environment into a single unit” (p. 236, Gobet et al., 2001), like forming letters 

into words and words into sentences. Where Miller’s research started with 

sequences of numbers, it was soon applied in other areas such as chess (De 

Groot, 1946), natural language (Simon, 1974) and even physics concepts 

(Cheng, 1999). 

Still, even today, chunking has scarcely been studied in computer 

science fields, let alone with different PLs, like Java. However, it almost seems 

obvious that chunking would also appear in programming languages as they 

would in natural languages, as modern high-level PLs consist of natural 

language elements (Hermans & Aldewereld, 2017). However, many people find 

learning to program challenging, because, at first glance, PLs do not resemble 

anything familiar, except for maybe math equations. When someone is not 

familiar with programming yet, they have thus no already-existing schema that 

aid with understanding, which creates many opportunities to chunk. 

McKeithen et al., the authors of the original study, for example, found 

that experts remember different chunks of ALGOL W programming concepts 

than beginners, when they used the Reitman-Rueter technique. This technique 

involves making subjects remember certain concepts (in this case 21 ALGOL 

W keywords) and then prompting the subjects with certain concepts to spark the 

recall process. Subjects are asked to recall all 21 concepts in an order they 

prefer. This technique proved that there are different recollection techniques, 
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thus different recall orders, for different skill levels. Beginners, for example, 

recalled based on orthography, e.g., all commands together that have the same 

length, e.g., IF-IS-OF-OR, or all commands together that start with the same 

letter, e.g., SHORT-STEP-STRING; or storytelling (ordering based on some 

type of causality), e.g., TRUE-IS-REAL-THEN-FALSE. Experts recalled 

based on ALGOL W-meaning, e.g., WHILE-IS-DO-FOR-STEP. This effect 

could also be seen in the correctness of the recollection of the snippets during 

the five trials: experts recalled generally more, and more correct than beginners. 

However, McKeithen et al. (1981) do not ascribe this to the fact that experts 

have more knowledge, they just have it better organized in the brain. 

De Groot (1946) uses the example of the “Sicilian opening” in chess. 

Experts recall this opening as one piece of information and go on to the next. 

Beginners recall this opening as all its separate steps that it contains, 

overloading their short-term memory, which causes them to forget the rest that 

they have seen. The expert, however, because she/he saved ‘memory space’ by 

chunking this opening as one step, can remember and thus recall what happened 

beyond this more easily. 

We hope to uncover this using some metrics that McKeithen et al. also 

used, as well as performing text analysis techniques that could show what steps 

(a.k.a. chunks) are remembered during the recall process. These will be 

described in the following sections. 

1.4 Source Code and Source Code Analysis 

Source code analysis is a young field and is generally used for (software) 

developmental processes and understanding of applications. Cardoso, Coutinho 

& Diniz (2017) claim it can be viewed from two perspectives. The first 
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perspective uses source code analysis with a specific goal in mind that 

determines the techniques that are going to be used. This usually happens in the 

field of development, for example, intending to reduce execution time. The 

second perspective, one that we are currently more interested in, has the goal of 

“discovering information about an application through an exploratory 

experimental process that aims at uncovering unforeseen properties” (p. 100). 

Code analyses that determine bugs, quality, or maintenance, for example. This 

is interesting for the present research, as we aim to find out if simple, manual 

text analysis techniques can be used as a type of source code analysis. 

Multiple scientists in the field claim source code analysis will only 

become more important over the coming years (Harman, 2010; Binkley, 2007). 

Being reflective towards how people code, and how computers work will 

forever be of interest if we wish to strive forward. A sure proof of this is the 

existence of around 700 different programming languages. 

 The language ALGOL W is a good example of this phenomenon, where 

iterations of languages are made to improve the communication between 

humans and computers. The branch of Algol languages was created from a 

desire to create a universal programming language that was independent of the 

machine that it was used on. ALGOL W specifically was supposed to be a 

simplification of ALGOL 60, designed by Hoare and Wirth (Sebesta, 2012). 

However, the project to create a compiler-independent language became so big 

and complex, that it finally lost popularity among programmers as well. 

Nevertheless, the paradigm that was built ‘around’ Algol, namely structured 

programming (Dijkstra, 1970), remains and can be found in, for example, the 

Java language. 
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 This paradigm is important for the present research because it builds on 

the premise that coding should be done and written in chronological order, 

bluntly spoken. Dijkstra (1968) made a case about the GO TO statement in the 

Algol languages (among others) that its excessive use was “considered harmful” 

because it goes against people’s natural instinct for chronology and causality. 

Although his statements were met with some resistance (Rubin, 1987), 

structured programming remained an important aspect in the development of 

following PLs, like Java. Because we want to find out which Java concepts are 

recalled after one another, we hope to be able to infer mental organisations that 

show a certain structure based on chronology or causality. 

While McKeithen et al. used the Reitman-Rueter technique to find 

chunking habits, they did not study the chunks within the code that was recalled 

in the first part of their experiment  (here, they only checked for correctness of 

recall). We believe it is precisely this aspect of information recall in source code 

that is so interesting: finding out, in real-time, how chunking happens during 

the recall of a full snippet of code, and not just its separate concepts. To give an 

example, we could expect that experts recall a single function like a for-loop 

more easily (and thus more correctly) than beginners, as they know the ‘form’ 

of it as one piece of information (like the Sicilian opening), rather than its 

individual steps. 

We plan to do two separate analyses that will measure different matters. 

First, we want to make comparative use of a dictionary, which will contain all 

unique concepts that are used in the solution to the recall experiment. A similar 

list of concepts will be created from each subjects’ answer. Comparing these 

dictionaries will tell how many correct concepts are in the subjects’ answer (in 
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the correct relative order), compared to the solution. This will be, among others, 

the measure of recall. More information on how we measure recall as a whole 

will follow in Section 3.5. 

Second, we plan to infer mental organisations from key terms that are 

recalled most often together using modern text analyses techniques. One 

technique that falls under this category is called an n-gram technique. Such a 

technique measures the distance between two sequences and how many times a 

certain sequence is seen in a body of text, a well-known example being “San 

Francisco”. When the model reads “San”, it will automatically recognize this as 

part of the sequence of “San Francisco”, as there are (almost) no instances where 

“San” is used in itself. In other words, the model chunks the two terms, “San” 

and “Francisco”, together as one sequence, “San Francisco”. To create these 

from the subjects’ answers we use two-grams that clump every two concepts 

together, discarding all non-letter characters, like in the Reitman-Rueter 

technique. For example, take the following line of code: 

List keys = dataset.getKeys(); 

This line will have the following list of two-grams: 

 [[List, keys], 

[keys, dataset], 

[dataset, getKeys]] 

Using these lists of subjects’ answers and comparing them to the two-grams 

from the solution snippet, we can get an overview of similarities and thus 

correctness between them. We feel the Reitman-Rueter technique, besides 

taking too much time from the participants, is not representative of how 
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chunking happens during the process of recalling or coding in general, which is 

why we chose this non-invasive way of testing the phenomenon of chunking. 

This study of using source code analyses is largely exploratory, as the 

answers from subjects will likely contain terms that do not literally relate to the 

solution of the snippets. It is then the question if such techniques could be used 

for such subject-focused studies, and what kinds of issues we ran into and what 

can be changed for future research. We hope to clarify small parts of such 

analyses in the present study. 

1.5 The Goal and Expectations 

There is a gap between cognitive psychology and the understanding of source 

code. In the last few years the field of cognitive representation and 

understanding of source code has gained more attention, but not in combination 

with a recall experiment and the use of text analyses like in the present study. 

We feel it is imperative to keep research on cognitive representation and 

understanding of source code up to date with developments in the field, to be 

able to create durable frameworks. Especially renowned studies like McKeithen 

et al. need to be verified in a modern context to not build on false pretences. We 

add to this study by redoing parts of their experiments and using modern 

techniques like text analysis. The importance of the present study is therefore 

twofold: a) results could give insight into chunking and recall of source code by 

(computer science) subjects, and b) we show if text analyses techniques can 

work in a free-recall experiment like the current. Using text analysis techniques 

to find these chunking effects would be a fascinating addition to the fields of 

text mining, cognitive psychology and source code understanding. 
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The paper and findings of McKeithen et al. are not widely known, and 

we are not aware of any conceptual replications as we propose here. There are 

therefore multiple justifications for this replication study. First, the 

modifications to the original study are proposed in a way that fits the current 

modern time frame but will not influence results negatively, and thus could 

provide nuanced results for programming education and development. Second, 

the addition of using text analysis techniques on recalled source code is relevant, 

because currently this has seldom been done and thus provides valuable 

knowledge on the usage and the results of such techniques. 

The goal is to discover if McKeithen et al.’s results for chunking and the 

effect of skill level are a result of the research setting, including the choice of 

programming language ALGOL W and, for example, the fact that code was 

written down, or if these were a result of actual processes in the brain that help 

subjects understand incoming information such as source code. The expectation 

here, since this phenomenon of chunking is not only seen in areas like source 

code but across multiple disciplines, is that chunking will happen in a similar, 

if not the same way as in the original study. We expect to see significant main 

effects for version (normal or scrambled) and skill level (novice, intermediate 

or expert). Furthermore, we add text analyses to the recalled source code of 

subjects. As this is something that has not been done before, we have no specific 

expectations of these results.  

The remainder of the paper is structured as follows. In the Related 

Works section previously done research will be explicated concerning the 

current concepts and experiments. In the Method section, an explanation can be 

found about the current procedure for the experiment, as well as comparisons to 
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the previously done study by McKeithen et al. (1981). In the Results section, 

quantitative results can be found and, in the Discussion and Conclusion section, 

conclusions will be made about the results and what these entail for future 

research. The paper concludes with a list of limitations and risks, a data 

availability statement, an acknowledgement and finally, the references used.  

2  Related Work 

Source code analysis has interesting roots in different disciplines. In the 

paragraphs that follow we will explain different concepts from different 

disciplines and how they come together in the present research, and thus how 

the present research fills a gap between these disciplines. We feel knowledge 

about this interdisciplinary field between computer programming and PLs, 

cognitive psychology and (language) learning could greatly influence the field 

of programming and computer science education. 

2.1 Information Processing 

The whole journey of source code analysis started as (general) IP. Scientists 

theorized about long-term memory, short-term memory, and later the working 

memory, and how these blocks act when people learn new information (e.g., 

Baddely & Hitch, 1974; Rayner, 1998). First, Miller (1956) introduced the so-

called ‘magic number’ of seven elements people can hold in their short-term 

memory with his perception and memory concepts. De Groot (1946) introduced 

the notion of an efficient mental information organization of chess setups to 

hold bigger elements in the short-term memory, which showed the difference 

between experts and beginners. Herein lies the key that experts not only have 

more knowledge to use when exposed to chess setups, they have also organized 
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this knowledge more efficiently; new knowledge is subsequently organized in 

the same way (McKeithen et al., 1981). 

Furthermore, Sweller (1988) introduced cognitive load theory, which 

theorizes that at any given time the working memory has a limited capacity and 

that overloading it will reduce the effectiveness of teaching. It claims that 

experts organize their knowledge in different ways than beginners to be more 

efficient and less load-bearing for the brain. To describe this process Sweller 

introduces three types of cognitive load: intrinsic load, which is the inherent 

complexity of a task; extraneous load, distractions from the task at hand that 

increase load; and finally, germane load, where new information is linked to 

information that is already stored in the long-term memory. 

The ultimate goal of processing and understanding information, 

therefore, is to get information from the working memory, where information is 

processed (like simple calculations), to the long-term memory, where 

information is linked to already known information (like storing information 

about addition next to information about subtraction). And because the subject 

here is reusing what is already there (instead of encountering it anew), the 

cognitive load is pointedly lowered (Sweller, 1988). This effect has been shown 

in different fields like cognitive psychology (Rayner, 1998) and computer 

science (e.g., Fakhoury et al., 2018; Nakagawa et al., 2014; Hermans, 2021), 

where experts were found to experience less load than beginners during 

experiments. It is expected this is due to a different information organisation in 

the brain which aids in accessing necessary information. 

Sweller argues that bundles of information about one subject in the long-

term memory are called schema, and the more an individual practices to apply 
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these, the easier it gets to retrieve this type of information. This is why experts 

have less trouble remembering code than beginners (Hansen et al., 2013), 

because they have pre-existing schema, and these schemas help them reduce 

load in the remembering process. Also, this could be why in McKeithen et al.’s 

experiment, experts perform better than beginners in the normal version recall, 

but perform the same as for beginners in the scrambled version recall, because 

in that latter case, neither group had schema that fit this type of scrambled code. 

Similarly, this is why beginners have generally a hard time recalling because 

most information is new to them and thus, they do not have appropriate schema. 

Then, the intrinsic or extraneous load takes over, leaving no room for any 

learning processes. 

Lee (2012) also did a study with short-term memory, using the item-

method directed forgetting technique. Results showed that it is easier to forget 

when there are fewer cognitive resources, like in beginners, available during 

encoding (the learning phase before recall). This would entail that beginners 

forget more and easier than experts because they do not have sufficient ‘coat 

hangers’ in the brain to hang new information on, meaning they have no 

appropriate schema available to them. 

 Christiansen & Chater (2015) even went so far as to claim there are 

certain phases to chunking and IP, one of which that includes the prediction of 

chunks using “forward models”. First, subjects chunk ‘eagerly’, meaning that 

the first chunks that are processed are quite big. Presumably, this would be the 

snippet as a whole. Second, “computing multiple representational levels of the 

chunks” (p. 99), which is essentially the chunking of chunks, for example, 

chopping the while loop into the while statement, the condition, and the action 
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if the condition is met. Third, the anticipation of chunks, where subjects 

remember the chunks they have seen and keep them in their memory for future 

chunks; this way subjects can predict what may come using “forward models” 

(p. 99), for example, expecting a closing bracket for a function because you 

have seen it also had an opening bracket. For this reason, it is expected experts 

can reduce cognitive load and think further than the code that is seen on the 

screen: while reading, the brain is trying to make connections with the 

knowledge that is already stored, and actively matching this to what is being 

read to predict what ‘is logical’ to come after another. 

 We believe these schemas from Sweller and these forward models are 

similar to each other in some ways. The forward models would not exist if the 

subject did not already have some pre-acquired knowledge, and thus schema, 

stored in the brain. However, these schemas have certain forms and certain 

styles. Our Java-schema for example looks different than our Python-schema. 

It is safe to say that these have an overlap of certain information, as the 

programming languages themselves also have quite some overlaps. This also 

generally means that the more programming languages you know (and thus how 

experienced you are), the better you are at remembering source code in 

memorization experiments (Siegmund et al., 2014) because many code pieces 

are already familiar to the reader. We expect to be able to visualise the schema 

and forward models with the help of the text analyses techniques, to view the 

differences between beginners and experts. With the following section, we hope 

to get closer to the ‘why’ of this phenomenon. 
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2.2 Forward Models in Multiple Disciplines 

As explained above, the various ways of chunking can determine ones’ success 

in understanding texts, source code, or any other medium that has a form of 

repetition and patterns in it. To underline the fact that this phenomenon happens, 

even though we might not understand it completely, we present multiple fields 

wherein these forward models or similar trends are present. We will try to 

approach the reasons for this to happen.  

2.2.1 Storytelling, cohesion relations and understanding 

The phenomenon of ‘expecting what is logical’ is something that crosses over 

multiple disciplines, and something that has been around for a long time. 

According to Gamble, Gowlett & Dunbar (2014) the ability to tell stories was 

probably formed from gossip as a form of grooming1 among early primates (p. 

54). Because these gossip stories contained a certain causality and higher-order 

intentionality (people talking about other people), it is theorized this is where 

we humans get our knack of storytelling from. Gamble, Gowlett & Dunbar 

claim, among others (as will be shown), that this is how we make sense of the 

world. 

Clark (2007) builds upon this theory within the discipline of adult 

learning and how narrative learning could be an effective method. She 

especially asserts that personal narratives create coherence between events, 

which could help a learner to relate to the subject to be learned on a more 

personal level. According to other research that Clark mentions, coherence has 

two elements: continuity and causality (p. 87). These are similar to the concepts 

 
1 Grooming, especially social grooming in this context, is one of the “central mechanisms 
involved in social bonding” in primates, because it releases endorphins in the brain (p. 
54). 
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from Gamble, Gowlett & Dunbar (2014), where continuity is understood as the 

self in relation to others during and after gossip, and where causality is 

understood as relational to time (person A did this in the past and now person B 

is angry in the present). 

Even more so, Sanders, Land & Mulder (2007), from the discipline of 

text comprehension, performed studies with linguistic markers in functional 

contexts (e.g., reading a school book). They theorize that understanding 

discourse means constructing mental representations of the text. The best 

mental representations are coherent and thus contain coherence relations, for 

example, cause-consequence or problem-solution. In turn, these relations are 

“made explicit by linguistic markers” (p.220), connectives such as ‘because’ or 

‘however’. Therefore, they give the advice to use the ‘maximize coherence 

strategy’ (p. 226) while writing texts, which instructs to include signals in the 

text to aid cohesive mental representations. Again, these signals could be related 

to Clark’s continuity and causality, and Gamble, Gowlett & Dunbar’s concepts 

of storytelling, where coherence relations create the meaning behind the story 

or the text. While the study of Sanders, Land & Mulder focused most on text 

understanding, we believe they make a valid point about these linguistic 

markings, one that can be transcribed into the discipline of source code 

understanding as well (for example, in the form of procedural units, as will be 

shown below). 

For the field of source code understanding, it appears wise to use these 

kinds of markings in source code as well to make them more readable and 

understandable. In fact, we believe some concepts already convey these 

relationships inside code, like while- or for-loops. While it may be difficult and 
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impractical to incorporate ‘personal narratives’ (Clark, 2007), or gossip 

(Gamble, Gowlett & Dunbar) into a piece of code, it is very well possible to 

include more coherence relations into code, albeit in the form of comments, a 

visual structure, or even specific types of commands. While there is research 

within this field, it is new and simplistic, which is more than enough reason to 

advance this research field, and thus also all the more reason for the present 

research. In the following section, we will share research that studied (effects 

of) certain concepts that are widely used in common PLs, and how they aid (or 

not) to understanding. 

2.2.2 Signals in source code to aid understanding 

Pennington (1987), for example, wrote an extensive report on how 

programming knowledge influences program understanding and how the mental 

representation of such a program would look. It was found that procedural units 

form the basis of experts’ mental representations of computer programs. These 

procedural units are instructions on how to perform a certain task following 

certain steps and according to Pennington, these units are sequences, iterations, 

and conditionals (p. 7). Interestingly enough, the same results were found for 

similar experiments in the field of text understanding that show that text 

structure is strongly related to text understanding (Pennington, 1987; 

Spyridakis, 1991; Sanders, Land & Mulder, 2007; Siemund et al., 2014, May). 

Thus, these procedural units indicate a certain (sequential) structure within 

computer code, as well as natural language texts. They are detected by the reader 

because they use the same type of markings in both domains (McKeithen et al., 

1981). For example, ‘while’ exist both in PLs and in natural language and the 
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reader knows this means something is going to happen for the duration of a 

certain condition. 

Pennington describes these as phrase structures and the segmentation of 

these reflect the control structure of the program. It is expected that because 

these segmentations are familiar – we argue these could also be called chunks – 

they lower cognitive load and thus help the reader to understand and recall more 

quickly, especially experts. The question remains if this can be observed in the 

results of the text analysis on the subjects’ answers. What concepts will be 

grouped together in these recalled answer sheets and will there be differences 

between skill levels? 

In addition, Ichinco & Kelleher (2017) mention the original study in 

their research on chunking, skill level and source code, more specifically, source 

code elements. They focus on the types of concepts programmers concentrate 

most on. It was found that occasional and everyday programmers primarily 

focus their attention on core structural tokens that indicate the overarching 

control flow. Thus, again the focus lies on markings that indicate chronological 

and sequential information. Meaning detail tokens (tokens that specify details, 

like iteration in for loops) were mostly only remembered by everyday 

programmers and not by the other two groups, occasional and non-

programmers. This means that the everyday programmers own the appropriate 

schema to remember these small details, and others do not. 

Similarly, Fakhoury et al. (2018) researched cognitive load and lexicon 

quality, which they studied in forms of linguistic antipatterns and readability 
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metrics of source code2 using a technique with fNIRS3. These linguistic 

antipatterns are described as “recurring poor practices in the naming, 

documentation, and choice of identifiers in the implementation of program 

entities” (p. 287, Fakhoury et al., 2018). It was found that linguistic antipatterns 

increase participants’ cognitive load, however, the same was not found for the 

used readability metrics. Moreover, no significance was found for the treatment 

containing both the linguistic antipatterns and the readability metrics. This 

means that unclear identifications of entities had a more negative effect on 

cognitive load than for example the number of spaces or the lines of code. 

Interestingly enough, from the aspect of chunking, it was assumed that the 

readability metrics would also yield significant results for a higher cognitive 

load, because of a lack of structure (comparable to the random chess setup from 

De Groot, 1946, for example, or absence of linguistic markers in texts from 

Sanders, Land & Mulder, 2007) would make it more difficult to read and 

understand the source code. However, as stated by Fakhoury et al., for the 

participants who completed the treatment containing both the linguistic 

antipatterns and the readability metrics, an increase in cognitive load was found, 

unlike for the 60% of participants who did not complete the treatment. Still, this 

research and the outcomes show that cognitive load can be heightened by poor 

identifier-name choices and subpar structures in source code. This last part 

could also be related to the negative effect of scrambled source code on recall. 

 
2 Readability metrics that Fakhoury et al. used during the study: cyclomatic complexity, 
number of arguments, lines of code, max depth of nesting, variable of declarations, and 
number of: loops; expressions; statements; comments; comment lines; and spaces (p. 
288).  
3 Functional Near-Infrared Spectroscopy is used for optical imaging in the brain that 
measures haemoglobin-concentration changes as indication for brain activity. 
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One other signal that could aid in understanding and could help with the 

chunking process is a beacon. Fan (2010) explains this in her work with the help 

of several other studies. Brooks (1963), being one of the first to define beacons, 

describes them as “sets of features that typically indicate the occurrence of 

certain structures or operations within the code”. Other research in this field 

proved that experienced programmers in particular benefit from the use and 

presence of beacons; more than beginners. To further this, Von Mayrhauser and 

Vans (1995) claim that beacons can trigger the chunking process to reach a high-

level understanding of a program. This happens because the functional structure 

of the program is recognized with the help of these beacons, and then 

hypotheses about the program structure can be accepted or rejected. This is 

important for the present research because it gives reason to why experts would 

recall more and more correctly than beginners, as experts recognize important 

features that indicate the structure of the program and thus, it helps in 

understanding and subsequently during the recall process. 

2.2.3 Ways to understand and read source code 

Taking this back to cognitive load and source code, more recent research has 

shown that beginners read source code less linearly than natural language text; 

and experts read even less linear than beginners (although non-significantly). 

Busjahn et al. (2015) studied cognitive load in terms of reading order using an 

eye movement measuring technique. They introduce a new term for novice 

reading behaviour in code: “story reading” (p. 256), which indicates that code 

is read from the beginning until the end and from left to right, like a story in 

natural language. This is similar to Christiansen & Chater’s “forward models” 

and Pennington’s procedural concepts because both relate to a certain 
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chronological structure in chunking, reading, and understanding source code. 

Consequently, their finding for beginners entails that they find source code 

harder to read than experts. This can be found in eye fixations, which are 

positively correlated to cognitive effort – and thus cognitive load (Busjahn et 

al.). Even more, beginners have more eye fixations of longer duration than 

experts, meaning that beginners experience more cognitive load. 

In the study of McKeithen et al. (1981), it is argued that chunks are 

hierarchical in essence. Using the Reitman & Rueter technique (1980), subjects 

produced a “hierarchical representation of information from regularities in the 

orders in which items are recalled over many trials” (McKeithen et al., p. 308). 

Some subjects of the first experiment from McKeithen et al. (although not all) 

were asked to learn 21 ALGOL W concepts and then recall each of the concepts 

25 times with or without cues. As for the hierarchy, it was found that skill level 

does not have an effect on ‘nestedness’4 within the ordered chunk trees (p. 319). 

However, there were differences between beginners and experts: experts mostly 

had ALGOL W-specific chunks, like WHILE-DO or FOR-STEP, while 

beginners mostly (and only) had chunks that were associated with real-life 

discourse, such as LONG-SHORT, TRUE-FALSE or END. We believe this is 

where the discipline of natural text understanding crossed over into the 

paradigm of source code understanding. Source code, like natural language, is 

easier to understand and remember when it contains markings of chronology. 

Both skill level groups recognize these chronology markings in the code, but 

 
4 A high number of nodes in ones’ ordered tree structure would indicate a high degree of 
nesting. Although, it was not significant between groups. 
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only experts recognize the non-chronology markings also, just like more 

advanced readers understand texts better than poor readers.  

 

What we have seen in the literature above is that the three concepts together – 

chunking, cognitive load and skill level – studied in the present research are 

underrepresented in the scientific field of programming language 

understanding. For the sake of education and the development of PLs, we must 

take into account these concepts together, as a complete foundation cannot be 

produced without these. Without understanding how programmers read, learn 

and understand programming languages, it is of no use to create new ones. 

Seeing to it computer science is one of the fastest-growing fields in the corporate 

world, research like this can show how to proceed further and without having 

to make unsubstantiated assumptions about how programming languages 

should be designed, taught and understood. 

2.3 Aptitudes for Programming 

Alongside this stream of discoveries, it was thought that an aptitude for logic 

(like mathematics) and problem-solving meant an aptitude for programming, 

because PLs contain so many logical elements, and generally also problems to 

solve (e.g., Gazdar & Pullum, 1985; Sauter, 1986; Siegmund et al., 2020). While 

in essence, this might not be completely false, it turns out the relation between 

learning a new PL and certain aptitudes someone might have is much more 

nuanced (Siegmund et al., 2020). 

For this reason, more research emerged how learning a new PL, might 

very well be much like learning a new (second) language (e.g., Shute, 1991; 

Connolly, 2001; Hermans & Aldewereld, 2017; Portnoff, 2018; Siegmund et 
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al., 2020), because natural languages share many similarities to PLs. This 

sparked an interest in the possibility to use natural language research methods 

(from cognitive psychology) for programming understanding research, like text 

analyses techniques. 

2.4 Source Code Analysis 

As noted before, young computer science fields like source code analysis 

borrow techniques that are well-known in neighbouring fields like text analysis. 

However, as source code understanding still falls under the umbrella of 

computer science studies, such methods were quickly adapted to view source 

code understanding as a computer science problem. Our curiosity is founded on 

this juncture: could techniques used for text analysis also be used for non-

working, bug-filled source code like from a short-term memory recall 

experiment? 

 Gupta & Gupta (2019) wrote a review paper about natural language 

processing techniques for the mining of unstructured data. They describe this as 

Mining Software Repositories as more and more (open-)source code 

repositories are becoming available, and much can be learnt from these code 

repositories. Their focus lies on unstructured data which includes text data, 

image data, and video data. They theorize that insights and patterns can be 

derived from such source code projects, with the help of “automatic 

summarization, automatic sentiment analysis, traceability analysis, mining, and 

preprocessing”, among others (p. 244). 

As stated in the Introduction, we will execute text analysis techniques to 

figure out the nature of recalled source code on a deeper, more varied level than 

could be done qualitatively. We hope to be able to explain what kinds of 
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techniques we employed and what resulted from these. The field of text analysis 

on source code is in its infancy, especially when we are doing research on code 

that is recalled on a time limit and thus faulty. We explore possibilities of using 

such techniques and will infer future uses for these. 

3  Method 

3.1  Introduction 

The present study is inspired by McKeithen et al.’s study (1981) and set in a 

more modern, and immersive setting. However, we believe this will not 

interfere negatively with the results. We believe our research setup is similar to 

the original study, except for the fact that the testing setting is more intuitive 

and immersive than in the original, where subjects had to ‘code’ on paper. It is 

expected this will only enhance the results previously found. However, if in any 

case, results demonstrate to go in the opposite direction, this could also give 

insight into possible changes to multiple factors surrounding the experiment, as 

well as the current environment. Also, we expect that the concepts of chunking, 

cognitive load, and skill level have not changed internally (in the brain) or 

externally (in the coding output) in participants over the past years. 

 In the following sections, we will go over the original study and its 

research setup, and the changes that we made that deemed fit. Then we specify 

proceedings of the experiment and some preliminary procedures before 

analyses could start. 

3.2 The Original McKeithen et al. Study and Changes Made 

McKeithen et al. (1981) were one of the first to study human source code 

understanding and processing for the sake of programming language education 
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and cognitive psychology. With the knowledge of chunking (e.g., De Groot, 

1946; Miller, 1956; Zeschel, 2008; Thalmann et al., 2019; Hermans, 2021), and 

the effect of skill level on recall in mind, McKeithen et al. sought to understand 

the mental organizations of source code using two experiments: a recall 

experiment; and an experiment using the Reitman-Rueter technique (Reitman 

& Rueter, 1980). 

 To confirm the abovementioned effect of skill level on IP and 

recollection on source code, McKeithen et al. completed experiment 1 on their 

sample using ALGOL W source code: “the classic expert-novice difference in 

short-term recall” (p. 309) study comparing recall results between a normal 

coherent computer program and a scrambled version across three skill level 

groups. This experiment contained five phases of each two minutes studying the 

code snippet and three minutes of recalling. The differences between the skill 

level groups and the versions were significant, also throughout the different 

phases. As these results proved only an external effect of (skill level on) short-

term recall, they completed experiment 2 to clarify internal effects: inferring 

subjects’ mental, and possible hierarchical, organisations of 21 programming 

concepts from ALGOL W using ordered tree structures (from Reitman & 

Rueter, 1980). What followed was an analysis of the differences between skill 

levels and these ordered trees. It was found that experts chunk the concepts 

programming language-specific, thus based on ALGOL W, whereas the 

beginners chunk the concepts natural language-specific, thus on English. 

However, this difference was not significant. They did find, though, when they 

compared the types of chunks being recalled, that experts are more cohesive as 

a group than either of the other two groups. They claim these results could have 
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stemmed from the distribution across the skill levels, and from the assumption 

that chunks only occur when the code is being understood, and not per se when 

it is only being read. 

At the time of the original study, chunking had not yet been tested in-

depth in the field of computer science, which had few established measures to 

perform studies. The original study was therefore one of the first to study 

ALGOL W, or any PLs for that matter, in this light. The original study was set 

up as follows (p. 309): 

31 Subjects of three skill levels were shown a 31-line ALGOL W 

computer program in either normal or scrambled version for five 

2-min study trials. Groups of two or three subjects saw the program 

projects onto a screen by an overhead projector. In the 3-min recall 

period that followed each trial, subjects wrote as much of the 

program as they could remember on a blank recall sheet, putting 

each recalled line on the sheet as close to its presented position as 

possible. Subjects could not look at previous attempts of trials and 

were asked to recall everything anew on each trial. 

In the current environment, due to COVID, it seems unwise to bring 

subjects together in a classroom, as well as the fact that projecting code onto a 

screen seems very unintuitive for the modern coding environment. For these 

reasons there are some practical changes in terms of modernity (and therefore 

physical constraints, which will follow) we made to the research setup: 

1. We transferred the experiment to an online questionnaire, so that 

subjects can perform the experiment in the comport of their own familiar 

homes, which is in line with COVID regulations, and which will lower 

any occurring experiment effects. 

2. The snippets to be shown and the editor where the recollection of the 

snippet was done is in a source code text editor from Ace (Ace, n.d.). 

This includes automatic indentation and highlighting. Highlighting, 
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indentation and so-called whitespace (horizontal and vertical white 

spaces in code) are a big part of source code understanding (Bauer et al., 

2019; Fakhoury et al, 2018; Hansen et al., 2013), so we expect the 

inclusion of these aspects inside the recollection phase of the experiment 

could positively impact recall. More on this in Section 2.2.2. 

3. We found there are multiple reasons to use Java instead of ALGOL W 

as our experiment programming language: 

a. As ALGOL W is an old PL with a now-small following, it would 

be unwise and unpractical to perform the study in ALGOL W, 

as it would be challenging to find beginners, let alone experts; 

b. Java is a more modern, widely-used PL, as it is still being taught 

across universities, and also being used across multiple 

developers' jobs in daily working life; 

c. As Java is based on the Algol-language group, it is based on the 

same paradigm, namely structured programming, and thus 

contains similar features. Further, as we believe structured 

programming plays an important role in the processing of PLs 

(in a fashion that is chronological and sequential), a language 

from this paradigm seemed logical. 

d. We could reuse a snippet that was previously used by Fakhoury 

et al. (2015), which provided us with the assurance that the 

snippet would be useful in a research setting made for 

remembering and recollection. 

This online-based research setup, however, brought a big constraint that 

had to be changed accordingly. The original study took at least 35 minutes (five 
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trials of each 5 minutes, appropriate time between these, and introduction and 

conclusion to the study). We found this too long to ask of subjects because we 

cannot assure the efficacy of the subjects of such an experiment without 

supervision. Therefore, we found this was the biggest constraint that followed 

some smaller practical changes to the setup to enhance efficacy in terms of time 

constraints: 

1. We found changing the number of trials performed would be the fastest 

way to shorten a questionnaire session. This is why we changed the 

number of trials from the original five to the current one-trial recall 

experiment. 

2. We considered a one-time trial, however, a 2-min study and 3-min recall 

would be very short so we lengthened the study and recall periods to 160 

seconds, and 240 seconds, respectively, so we kept the 2:3 ratio. 

3. The length of the original ALGOL W snippet was 31 lines. The currently 

used snippet length was slightly increased, but only following strict 

guidelines to enhance possible recall and to make up for the loss of the 

number of trials. Thus, the Java-snippet that was used contains 40 lines, 

but a) it includes an 8-line comment, which supposedly helps for 

chunking and understanding (Fan, 2010; Busjahn et al., 2015), and b) it 

includes some white lines which help in understanding source code 

(Hansen et al., 2013). We trust Fakhoury et al. (2018) did the necessary 

studies to confirm the usefulness of the snippet. 

4. The original study used the Reitman-Rueter technique (1980) to 

determine chunking within different skill level groups. However, we 

find this method too passive, as it is not done in a natural coding 
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experiment (like the recall study), but rather in a learn and prompt 

session of separate concepts. Also, our interest in text analyses 

techniques brought us to another explorative technique to use for the 

present research, namely text mining techniques. As this is done after 

the collection of the data, it will take no (extra) time from the 

participants. 

Using the abovementioned experimental setting changes, we used the original 

study as our base, but the goal was not to replicate per se, but mostly to build 

on the original study, which is why some decisions and changes have been 

made. We believed, just like McKeithen et al. at the time, that these changes 

would provide us with strong information about chunking and understanding of 

source code. Finally, we have tried to keep the essentials from the McKeithen 

et al. study the same. This included, but was not limited to, the time participants 

got for learning the snippet, the time they got for recalling the snippet, the size 

of the snippet, and, in the best way possible, the contents of the snippet. In 

further sections, we will describe the participants of the study, the procedure 

and materials, and finally the preliminary procedures. 

3.3 Participants 

McKeithen et al. focused the experiment on computer science students from a 

specific education program. We planned for a more varied group of subjects 

than this original plan. We hoped to find subjects from all kinds of disciplines, 

with all kinds of skill levels. 

 We copied the classification of McKeithen et al.’s skill levels: 

beginners, intermediates and experts. This is a self-classification scale, which 
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was proven by Siegmund et al. (2014) to be a good indication of programming 

experience. Formerly, the original study classified skill level as follows: 

A) Beginner: Students that just started their first ALGOL W course. 

Some of these had previous experience in either BASIC or 

FORTRAN (two similar structured programming languages). 

B) Intermediate: Students that just finished their first ALGOL W 

course. Some of these had previous experience in either BASIC or 

FORTRAN. 

C) Expert: Subjects that teach ALGOL W, have over 2000hr of general 

programming experience, and have an average of over 400hr of 

experience in ALGOL W. 

We altered this classification slightly to fit our needs: 

A) Beginner: just starting a Java course or similar programming 

language. 

B) Intermediate: just finished a Java course or similar programming 

language. 

C) Expert: Over 2000hrs (250 working days) of general programming 

experience and over 400hrs (50 working days of Java experience). 

For all participants, it was not specifically necessary to learn or use Java daily, 

but we were looking for groups (especially in the beginner category) who are 

starting to learn programming in a language that at least resembles or is based 

on Java (like C++, C#, Groovy, Scala, Processing, Yeti). Also, we explained 

some knowledge in programming is advised. We have actively pursued 

(learning) groups of these languages within our home university in Leiden, in 

which we have personal contacts. 
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Half of each skill level group have seen the normal version, half the 

scrambled. With three skill level groups and one trial, this resulted in a 2 x 3 

factorial design. An a priori power analysis indicated that a total calculated 

sample size of 31 subjects would be sufficient to detect a significant interaction 

effect (F(2, 25) = 0.6) at version, skill level and trial with a given power of 0.8 

and an alpha of 0.05. Moreover, as the pilot study resulted in more than 30 

participants, we expected to find around 50 participants total (given the 

experimental setting for the present study is more time consuming). Also, we 

have asked subjects their age and gender to determine the distribution of the 

sample and to see if it is representative of the field in which we operate the 

study. 

Possibilities for distribution among students and experts are the 

computer science faculties at our home Universiteit Leiden, The Netherlands, 

or the Vrije Universiteit in Amsterdam. Though, Java is usually not a language 

that is taught right away to students entering a bachelor computer science 

program. That is why we expected not to find a lot of experts among this group, 

however, the opposite turned out to be true: it was much harder to find beginners 

in the field willing to participate. However, the PERL research group5 that this 

research is a part of has a wide range of interested people in computer science 

education and interested followers on social media, as well as people who 

follow the mailing list of the PERL research group. Because we are not limited 

to classroom students like McKeithen et al., we can use social media and 

personal contacts to broadcast the questionnaire among interested people even 

 
5 The Programming Education Research Lab can be found via the following link: 
https://perlliacs.wordpress.com/  

https://perlliacs.wordpress.com/
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outside of our own circle. For example, by using fora and the PERL Twitter 

account managed by the second author. As we want a diverse group of people 

with different skill levels, we will also distribute the experiment website among 

master of science- and PhD students working in STEM fields and Computer 

Science fields. As for the experts, we will ask specific teachers or professors 

that are very familiar with Java, most of which we know from our home 

university in Leiden. As for the beginners, we will ask specific students from 

the master program Media Technology, because it is known first-year students 

get a crash course in Processing, which is closely related to Java. 

More information on the actual sample that was used to perform 

statistical analysis on can be found in the Results Section of the paper. 

3.4 Procedure and Materials  

The procedure of the experiment is as follows. A questionnaire will be made for 

subjects to participate in the study. This way, participants can enter completely 

voluntarily and it is expected there will be less of an experiment effect because 

of this. Following a link6, participants enter the webpage that starts with an 

introduction, followed by an explanation of the main question with a recall 

period with a timer, a page for descriptives and finally a short thank you note. 

The questionnaire will take around max. 15 minutes to fill in. 

The introduction explains, in short, the goal of the study, who the 

researchers are, what the contents are of the questionnaire, and finally, it 

includes a privacy statement. When subjects accept the conditions of the study 

and choose to participate, they will be shown a short explanation for the main 

 
6 A preliminary version of the questionnaire can be found via the following link: 
http://liacs.leidenuniv.nl/~hermansffj/questionnaire.html . 

http://liacs.leidenuniv.nl/~hermansffj/questionnaire.html
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question. There are two varieties to the main question, as was the case with 

McKeithen et al. The test group will be shown a normal snippet, and the control 

group will be shown a scrambled version. These will be chosen at random at the 

time of the questionnaire via a script (Javascript).  The main question contains 

either of the snippet versions and is as follows:  

1. A short explanation of the question, in which it is explained that 

subjects are to recall a snippet once under a time limit. 

2. Once a button is clicked that assures the participant is ready, a 

snippet is shown (as an image to make sure subjects do not copy the 

code) for a time frame of 2 minutes and 40 seconds (160 seconds) to 

learn the snippet as well as possible. It is not possible to click on 

‘Further’ until the time limit has expired to make sure participants 

don’t race through the questionnaire. 

3. After the time limit has expired, it is expected of subjects to click the 

‘Further’ button to continue to the next phase. A short explanation 

of the recall period is shown. Once a button is clicked that assures 

the participant is ready for recall, an online, inline, empty text editor 

is shown for a time frame of 4 minutes (240 seconds). This text 

editor field is an embedded Ace editor which “matches features and 

performance of native editors such as Sublime, Vim and TextMate” 

(Ace, n.d.). During this phase, it is possible to click on ‘Further’ 

before the time limit has expired. 

4. A summary of what participants have just done will be shown, and 

it will be explained that they are already one-third of the way there. 
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After clicking once again on ‘Further’, participants move on to the 

descriptives. 

After the trial, we ask participants to answer some descriptive questions. 

Here, very basic and limited personal information is asked: age, gender, skill 

level in programming (as by McKeithen et al.), approximate years of 

programming experience, programming languages the subjects know, and 

highest degree pursuing or completed. After the participants have filled in all 

questions (all required) participants are asked to go to the last page. Here it is 

possible to fill in an email address if people wish to know the results of the study 

after completion. 

Age and gender are asked to study the distribution and 

representativeness of the data. The skill level question asks the subjects to self-

classify. To check the validity of this, we compare these answers to the 

approximate years of programming experience, and the (amount of) 

programming languages that subjects are familiar with. For this last question, 

we decided that it is not necessary to have full mastery over a language to tick 

it on the list. The list we used was from the Tiobe index website, a well-known 

Dutch website that tracks the popularity of languages in terms of most used. The 

languages listed are: 

❑ Assembly  

❑ C  

❑ C++  

❑ C#  

❑ Dart  

❑ Go  

❑ Groovy  

❑ Java  

❑ JavaScript  

❑ MATLAB  

❑ Objective-C  

❑ Perl  



What’s in a chunk? 
N.L. de Groot 

37 
 

❑ PHP  

❑ Python  

❑ R  

❑ Ruby  

❑ Rust  

❑ SQL  

❑ Swift  

❑ Visual Basic 

We also added tick boxes for Other and None, in case this arises, 

although we expect few respondents to check these, thanks to the nature of our 

anticipated sample. 

Originally, McKeithen et al. let participants do this same exercise five 

times in a row (thus repeat the main question another five times). However, as 

we are doing the questionnaire online without supervision, we found it unwise 

to subject participants to a questionnaire duration of at least 40 minutes 

(including introduction, the trials, the descriptives and the final word).  

Figure 1. Source code snippet used for the normal condition. 
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As was stated in the literature Section above, we are reusing a snippet 

from Fakhoury et al. (2018). The snippets used for both conditions can be seen 

in Figures 1 and 2 on the previous and current page. The chosen snippet for the 

present study is from a project called JFree-Chart with a method called 

calculatePieDatasetTotal (from DatasetUtilities.java). 

 

As can be seen, the snippet is 37 lines long of which 32 actual text lines 

(including an 8-line comment and 6 lines with only brackets). We chose to keep 

the length of the snippet approximately the same as McKeithen et al. (1981) 

because we gave subjects more time, and our snippet contains a comment to 

give away the general structure of the snippet, to reduce cognitive load within 

subjects. Comments are proven to help with chunking (Busjahn et al., 2015). 

Figure 2. Source code snippet used for the scrambled condition. 
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 We made sure that the snippet is still understandable in 30 seconds or 

less, without losing the complexity of, for example, loops within loops. What’s 

more, it does not contain references to external methods, and the snippets 

contain easy to understand English identifiers, which are usual guidelines for 

snippet design by Fakhoury et al. (2018). Besides the fact that appropriate pre-

runs have already been done with the snippets, Java seemed like an obvious 

choice as there are not many other structured programming languages that have 

the same consistent usage over the past few years (from Tiobe.com). 

In summary, the following changes and/or improvements have been 

made: 

1) The biggest change to the recall experiment is the number of trials 

used for the experiment compared to McKeithen et al. Whereas the 

original study had five trials, the present study has only one. We 

believe this is enough to still demonstrate the effect of skill level on 

recall. Also, we found it too extreme to let subjects perform a 

questionnaire that would take up to 40 minutes, and we expect 

subjects might cancel midway if they find the questionnaire too 

boring or repetitive. Moreover, we have sufficient justification for 

this choice without losing the essence of the original study.  

2) Instead of the experiment taking place in a classroom where subjects 

had to view the code snippet on a projection screen, subjects can now 

do the questionnaire from the comfort of their own home or 

workspace. This will ensure a more intuitive and natural working 

environment, which will provide a presumed reduction of any 

possible experiment effects. 
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3) Instead of having to write down the recall answer on a sheet of paper 

with a pen, subjects can now code and edit in an immersive, 

imbedded text editor on their own familiar computers, which will aid 

in recalling due to features like automatic indentations, automatic 

highlighting, and a form of spell-check. As these are all features that 

are all developed and proven for better readability of code, we expect 

this will provide us with less noisy results. 

4) As mentioned before, the snippet is now a Java snippet. Choosing to 

reuse the original study’s snippet would not have proven the effect 

of skill level on chunking, but rather that ALGOL W is now quite 

unknown. Plus, we are trying to replicate the modern (programming) 

learning environment, and thus a more modern PL was the proper 

choice. 

a. The length of the snippet is 37 lines long, of which only 18 

effective text lines, instead of the original that had 31 lines 

of ALGOL W. However, we did the necessary research to 

provide us with the certainty that this snippet length does not 

interfere with cognitive load or chunking effects. Also, we 

kept the length of the snippet relative to the time frames set 

(for reading and recall) by McKeithen et al. 

b. The timing for the present study is relative to the timing of 

the original study, meaning: McKeithen et al. used a 

timeframe for the reading of the snippet of two minutes and 

a recall timeframe of three minutes. If this is relative to 31 

lines of ALGOL W, then 18 effective text lines of Java are 
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approximately relative to the current 160 and 240 seconds (2 

minutes, 40 seconds, and 4 minutes, respectively). 

5) We used the same skill level scale as McKeithen et al., meaning 

subjects have to choose between being a beginner, an intermediate, 

or an expert at coding. However, we believe to be able to get a broad, 

more varied sample of subjects, as explained under the Participants 

Section. 

3.5 Preliminary Procedures and Variables 

In the questionnaire, responses from each participant are gathered in a JSON 

package and stored in a password-protected bin on a safe server. Most of the 

single answers for one participant will be values like integers (e.g., age) or 

strings (e.g., the recall answers per trial), and some of these will be lists (e.g., 

the programming languages a participant is familiar with). To export all 

responses from the server, a JSON script is written to save all data in an excel 

datasheet. Further analyses will be done using R Studio and python, with 

appropriate packages. 

There are multiple variables to analyse. We planned to use text analysis 

techniques to infer relations of recall and chunking in the data, however, for 

this, it is necessary to pre-process it. For each final answer from the subjects, 

this consisted of removing punctuation (special characters) and white space and 

adding all unique concepts a subject used to a dictionary. This is a list of 

concepts that the subject used in the order the subject typed, which will be called 

subjectDict. Uppercases were left in the subject’s answers, as there are 

differences between using an uppercase or a lowercase for some concepts (like 
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‘Iterate’ versus ‘iterate’). An explanation of variables follows below; for a 

summary view table 1 below. 

 From subjectDict, subjectDictCount could be inferred, which is the 

amount of unique concepts within subjectDict (in other words, the length of the 

list). Because a similar list was created from the solution snippet (solutionDict), 

the overlap between each subjectDict and solutionDict could be calculated. Two 

variables arose from this: overlapDict, which contained the words that occur in 

both lists, and overlapCount, the length of overlapDict. Together, these create 

relativeOverlap. Essentially, this means overlapCount divided by 

subjectDictCount. Finally, the relative size of the subjectDictCount compared 

to the length of solutionDict is relativeSize, however, because these are so 

strongly related, no statistical analysis will be run with relativeSize. 

These variables all concern the recall of the subjects of the solution 

snippet, but using two-grams we also create variables that determine the 

chunking within subject answers. Thus, from the solution concept dictionary 

(solutionDict) we also created two-grams, and because the length of 

solutionDict is 65, there will automatically be only 64 two-grams. For example, 

in the dictionary [‘Anna’, ‘really’, ‘likes’, ‘cheese’], the two-grams will be: 

[[‘Anna’, ‘really’], [‘really’, ‘likes’], [‘likes’, cheese’]], which has a length of 

three two-grams. We use the terms two-grams and chunks interchangeably in 

the following. 

 The variable twoGramsDict is created, which is a list of two-grams of a 

subject’s answer. This is compared to the list of two-grams from the solution 

snippet, which results in the variable twoGramsOverlap. Also, the length of 

twoGramsDict will become twoGramsCount, however, because it relates 
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strongly to subjectDictCount, no further statistical analysis will be done on 

twoGramsCount.  

Table 1 Types of variables used to determine recall within subject's answers 

Variable Type Explanation 

solutionDict List of strings All concepts in the solution 

snippet 

solutionDictCount Integer (65, fixed) The length of solutionDict 

subjectDict List of strings All concepts in a subject’s answer 

snippet 

subjectDictCount Integer (3 – 55) The length of subjectDict 

overlapDict List of strings All concepts that occur in both the 

solution snippet, and the subject’s 

answer snippet 

overlapCount Integer (2 – 42) The length of overlapDict 

relativeOverlap Integer (percentage) (overlapCount / 

subjectDictCount) 

twoGramsDict List All two-grams from a subject’s 

answer snippet 

twoGramsCount Integer The length of twoGramsCount 

twoGramsOverlap Integer All two-grams that occur in both 

the solution snippet, and the 

subject’s answer snippet 

 

 In the following Results Section, analyses will be done on all variables 

in order of the previously mentioned research questions. 
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4 Results 

In this section, all analyses and results will be shown that were performed on 

the two independent variables (version, expertise), and the four dependent 

variables (subjectDictCount, overlapCount, relativeOverlap, and 

twoGramsOverlap). First, a summary of the general data is provided. Second, 

correlation effects between the dependent variables are shown. Then, the first 

and second research questions are answered in succession. The third research 

question, being reflective and conceptual in essence, is answered in Section 5.  

As examples, below two answer snippets from two participants are shown in 

Figures 3 and 4. 

 

 

Figure 3. Example answer from subject that recalled the normal version. 

Figure 4. Example answer from subject that recalled the scrambled version. 
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The dataset was cleared of insufficient answers. These fell into two 

categories. The first category contained answers with either fewer than five lines 

of code or where pseudo-code was used exclusively. Second, due to a bug in the 

code, 13 answers did not include a tag for the version which was shown to the 

subject. From these answers, the version had thus to be inferred. An extra 

variable was created to keep track of these in case of abnormality in the data. 

When a version could not be inferred for sure, the subject and its answers were 

deleted from the dataset. 

The final dataset contains 67 subjects of which 33 are in the normal code 

group (version A), and 34 in the scrambled code group (version B). The average 

age of the participants is 35, with outliers of 20 and 78 years old. Of all subjects, 

there were 11 females, 51 males, 3 subjects that preferred not to say, and 2 

subjects that identified as other (genderqueer and non-binary). Considering the 

expert level distribution in the dataset, there were 40 in the expert group, 23 in 

the intermediate group, and 4 in the novices group. Subjects had a wide range 

of native languages, the largest group being English (20 participants), and Dutch 

(21 participants). Of all participants, 27 have finished or are currently pursuing 

a master degree, 23 have finished or are currently pursuing a bachelor degree, 

13 have finished or are currently pursuing a PhD and four have other 

occupations or degrees. These are representative of the field of computer 

science. 

Contrary to what was previously expected, an imbalance in the skill 

levels presented itself during the acquisition of the data. For this reason, two 

sets of statistical analyses have been done to find out if the effects are due to the 
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imbalanced sample or not. These can be found in Sections 4.1, and 4.2, 

respectively. 

Between all continuous variables, a correlation analysis was done using 

Pearson’s r. A summary of these results can be found in the table below. 

Table 2 Variable pairs that showed a medium to large correlation 

Variable pairs r-value p-value Correlation 

overlapCount - twoGramsOverlap 0.85 < 0.05 Large 

subjectDictCount - overlapCount 0.71 < 0.05 Medium - large 

overlapCount - relativeSize 0.71 < 0.05 Medium - large 

overlapCount - twoGramsCount 0.71 < 0.05 Medium - large 

overlapCount - relativeOverlap 0.58 < 0.05 Medium - large 

relativeOverlap - twoGramsOverlap 0.53 < 0.05 Medium 

subjectDictCount - 

twoGramsOverlap 

0.52 < 0.05 Medium 

relativeSize - twoGramsOverlap 0.52 < 0.05 Medium 

twoGramsCount 

- twoGramsOverlap 

0.52 < 0.05 Medium 

 

What can be seen in the table above is that the largest correlation occurred 

between overlapCount and twoGramsOverlap (r(65) = 0.85, p < 0.05). This can 

be explained as follows: as subjects use more correct concepts in their answer 

snippet, they are apparently more likely to have included the correct order of 

these concepts. This in turn creates correct twoGrams that also occur in the 

solution snippet. The next medium to large correlation occurred between 

subjectDictCount and overlapCount (r(65) = 0.71, p < 0.05), which shows that 
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when subjects have a large dictionary, they usually have more overlap with the 

solution snippet than when they have a small dictionary. The following two 

medium to large correlations between overlapCount – relativeSize and 

overlapCount – twoGramsCount were to be expected, because both relativeSize 

and twoGramsCount are strongly related to subjectDictCount (r(65) = 0.71, p < 

0.05, and r(65) = 0.71, p < 0.05, respectively). The last medium to large 

correlation effect is between overlapCount and relativeOverlap (r(65) = 0.58, p 

< 0.05). This means that when a subject has a large number of concepts that 

overlap with the solution snippet, the relative overlap is also bigger. This is also 

related to the fact that relativeOverlap is a function of subjectDictCount and 

overlapCount. Other medium correlation effects can be found in the table. 

4.1 RQ1: Recall 

In this section, statical analyses will be performed to answer the first research 

question: How does recall of a Java snippet differ between skill levels, and 

between a normal and a scrambled version? This will first be done with the 

independent variables version (versionA, versionB) and expertise (novices, 

intermediates, experts), and the dependent variables subjectDictCount, 

overlapCount, and relativeOverlap. After this, to correct for the disbalance in 

samples within the expertise levels, the analysis will be done with version and 

expertise (intermediates, experts), and the dependent variables. Using a 

MANOVA the following hypothesis and null-hypothesis are tested: 

H1: For subjectDictCount, overlapCount, and relativeOverlap the 

means of all groups are unequal. 

H0: For subjectDictCount, overlapCount, and relativeOverlap the 

means of all groups are equal. 
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A two-way MANOVA was performed to test differences between group 

means for version and expertise across the three different dependent variables. 

First, there was no significant interaction effect between version and expertise 

on the combined dependent variables, F(6, 120) = 0.38, p = 0.89; V = 0.04. This 

means that the effect of the version on the dependent variables is the same for 

all skill level groups. Thus, there were no main effects found for either version, 

F(3, 59) = 0.46, p = 0.71; V = 0.02, and expertise, F(6, 120) = 0.71, p = 0.64; V 

= 0.07. Consequently, the null hypothesis is accepted. This means that the 

answer to research question 1 is as follows: Recall of a Java snippet does not 

differ between skill levels and versions. 

To determine if the imbalance in group sizes decided the result of the 

two-way MANOVA, multivariate multiple regression was performed to test 

differences between group means for version and expertise (intermediates and 

experts only) across three dependent variables. There were no effects found for 

version, F(3, 58) = 0.33, p = 0.81; V = 0.02, or expertise, F(3, 58) = 1.05, p = 

0.38; V = 0.05. Even though the p-values are different (higher for version, but 

lower for expertise), the outcome is still not significant, and thus, the null 

hypothesis is still accepted. 

4.2 RQ2: Chunking 

In this section, statical analyses will be performed to answer the second research 

question: How does chunking of a Java snippet differ between skill levels, and 

between a normal and a scrambled version? This will first be done with the 

independent variables version (versionA, versionB) and expertise (novices, 

intermediates, experts), and the dependent variable twoGramsOverlap. After 

this, to correct for the disbalance in samples within the expertise levels, an 
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analysis will be done with version and expertise (intermediates, experts), and 

the dependent variable. Using a two-way ANOVA, the following hypotheses 

and null-hypotheses are tested: 

Null hypotheses: Alternative hypotheses: 

(a) There is no difference in 

average twoGramsOverlap for 

any version. 

(a) There is a difference in 

average twoGramsOverlap by 

version. 

(b) There is no difference in 

average twoGramsOverlap for 

any skill level. 

(b) There is a difference in 

average twoGramsOverlap by 

skill level. 

(c) The effect of one independent 

variable on twoGramsOverlap 

does not depend on the effect of 

the other independent variable. 

(c) There is an interaction effect 

between version and skill level 

on average twoGramsOverlap. 

 

A two-way ANOVA was performed to test if there are main effects and 

interaction effects of version and expertise on twoGramsOverlap. We did not 

find a significant difference in average twoGramsOverlap by both version, F(1, 

61) = 1.33, p = 0.25, and expertise, F(2, 61) = 1.17, p = 0.32. Also, there was 

no significant interaction effect between version and expertise on the dependent 

variable, F(2, 61) = 0.16, p = 0.85. Consequently, the null hypotheses are 

accepted. This means that the answer to research question 2 is as follows: 

Chunking of a Java snippet does not differ between skill levels and versions. 

 To determine if the disbalance in group sizes decided the result of the 

two-way ANOVA, another two-way ANOVA was performed to test differences 

between group means for version and expertise (intermediates and experts only) 

for the dependent variable, twoGramsOverlap. We did not find a significant 

difference in average twoGramsOverlap by both version, F(1, 58) = 1.50, p = 
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0.23, and expertise, F(1, 58) = 0.66, p = 0.42. Also, there was no significant 

interaction effect between version and expertise on the dependent variable, F(1, 

58) = 0.08, p = 0.78. Thus, the outcome is still not significant, and thus, the null 

hypotheses are still accepted. 

5 Discussion and Conclusion 

This section is constructed as follows: first, the third research question will be 

discussed and reflected upon, with suggestions for future research. Second, 

quantitative results of the analysis (the first and second research questions) are 

discussed and contextualised with the use of related works. Finally, a summary 

of all results is presented. 

5.1 RQ3, Results, Implementations, and Suggestions 

In this first section the research question ‘How can text analyses techniques be 

implemented on recalled source code of subjects and what can be inferred from 

the results?’ will be reflected upon and answered. As this is more of a conceptual 

question, we aim to reproduce how we came to our results and how they could 

be improved, using some qualitative examples from subjects. 

 Looking back at the data and the analysis, there is a realisation that the 

program that produces the data needs to be highly detailed and goal-oriented. 

The dictionary from the answers was created by removing punctuation and non-

letter characters, except for number values. This is done in python using 

functions and for-loops to iterate over subjects’ answers. As it is not completely 

automated, but also not annotated by hand, concepts disappear from the concept 

list or get added to the list wrongfully. Even though there is more control on 

what gets filtered out and whatnot, the program used needs to be very specific 
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to extract the right kind of information, which can be a very time-consuming 

job to complete. Due to time constraints for the present research, it was decided 

to focus on (the dictionary of) concepts and the two-grams. These exclude 

indentations, white space, and newlines, which give the program overall 

structure. What is lost is then the order in which concepts and special characters 

are used, especially across multiple lines. This could potentially be detrimental 

to the precision and recall of the text analysis. The questions arise then, first, 

how many of the selected items are relevant for the current research task, and 

secondly, how many relevant items are actually selected? 

 Furthermore, we use two-grams as a measure of chunking, or to be able 

to make conclusions, to some extent, about the order of subjects’ answer 

concepts. However, because the two-grams are created based on the concept 

dictionaries – which may or may not include mistakes – the two-grams are also 

to be taken with a grain of salt, which may be why we found that the overlap 

between two-grams by the subject and two-grams from the solution snippet was 

meagre. 

This brings us to a suggestion for possible future works, as this study 

proved was there is still a lot to learn from subjects of different skill levels and 

recall studies, but also from the way we analyse these. One thing that was 

deliberately not chosen for the present study due to a shortage of time and 

knowledge in that specific field, was to use existing text overlap metrics, like 

ROUGE. It stands for Recall-Oriented Understudy for Gisting Evaluation. This 

is a type of machine learning software that evaluates automated summarization 

techniques within the field of natural language processing. However, it could be 

of great use in the field of source code analysis also. Particularly ROUGE-n 
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could be used for the present research as it is “an n-gram recall between a 

candidate summary and a set of reference summaries” (Lin, 2004). The 

candidate summary would then be the subjects’ answers, and the reference 

summary would be the solution snippet. The result is the co-occurrence of n-

grams within the subject answer and the solution snippet. Future works using 

this technique could expand on the present study. 

Looking back at the code, some things went incorrectly and need 

consideration. This was found by looking more closely at the data and going 

through the answers of the subjects by hand. Some issues were noticed that our 

program did not catch: 

1. Mistakes in uppercase and lower cases were not ignored and thus 

counted as wrong. Initially, these were kept in the solution snippet 

on purpose, as there are distinctions in meaning for, for example, the 

identifier name iterator and the class name Iterator. This 

is similar to the following point. 

2. General typos were counted by the program as wrong. For example, 

we saw that one subject made the mistake of writing iterator as 

itterator. Now each time this subject used this word, it was 

not recognized by the program as this item was not in the list of 

correct concepts from the solution snippet, even though the rest of 

the code might have been very well written and recalled. The 

question is then how strict we should be when measuring for recall. 

As the study was inspired by McKeithen et al. (1981), we felt a 

certain obligation to stay true to their rules, however, as the goal of 

the recall was not to write a completely functional program, but 
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rather to recall the meaning of the program including all its 

intricacies, these types of problems arose during analysis.  

3. Some subjects used different PLs to recall the snippet. Theoretically, 

this was not the concept of the experiment, however, what if a 

subject were to use a completely correct program that would execute 

the same idea as our Java snippet? One subject did so in C#, 

however, as this is not in our skillset, we had no means to check if 

the program was correct. This was mostly seen as wrong by our 

analysis (despite the overlap of Java and C#), however, a future 

analysis might be able to filter out different PLs, and make meaning 

of this. 

These are just some of the problems that might arise when research is done on 

source code that could potentially be very buggy. However, following the 

analysis and looking at the data gave inspiration for potential changes to the 

experiment design that could help clarify results in the future. 

5.2 Discussion of Research Questions 1 & 2 

Unfortunately, neither of the independent variables turned out to affect the 

dependent variables. Multiple conclusions could be derived from these results. 

 First, experiment wise, there were some concerns about the snippet 

being too long to be able to recall. However, for this reason, we included a 

comment, kept the same amount of actual text lines in the snippet, and gave 

subjects more time than was rationally necessary. A pilot study proved that 

recall of a snippet was inherently difficult, meaning that intrinsic load for all 

participants would be high. We assumed that a higher skill level would be able 

to surpass this disadvantage, and thus score higher for the measurement of 
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recall. This was not the case. This leads us to believe that there are external or 

internal problems within the experiment that made this study very difficult to 

perform. It could have been the fact that there was no supervision and people 

were not concentrating, or the fact that the time limit was still too short. 

However, one factor that stands out is the way that we measured skill 

level. After data acquisition had already been done, a peer made us aware of the 

fact that this scale for skill level was in fact very outdated and even 

unrepresentative of the field. Indeed, this might even be why the novice skill 

level group turned out to be so small, and also maybe why the intermediates and 

experts were so closely related in the results. Beforehand, we chose to copy this 

classification from McKeithen et al. (1981) for several reasons: a) we feel this 

was a limitation of the original study and not per se a feat for the current research 

to solve, b) using more skill level groups would require more subjects which we 

feel is not desirable under current conditions, c) the current power analysis is 

based on three skill levels, so adding more levels would result in a lower effect 

of our independent variables on our dependent variables, and d) we have chosen 

to keep the number of levels, but change the label descriptions slightly to a more 

modern view of programming experience. 

However, in future studies, it would be advisable to use a more modern 

scale such as the one from Dreyfus & Dreyfus (1989) or Mead et al. (2006), 

which is less about the literal experience and more about programming 

experience in the conceptual sense. Moreover, more recent research has shown 

that a self-classification technique of programming experience with five scales 

is better than one with only three (Siegmund et al., 2014). 
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Additionally, a point that follows the previous point, the present study 

did not prove the familiar skill level effect like De Groot (1946) proved with his 

chess studies. However, this could be due to the small sample of novices, or it 

is not an effect as traditional as previously thought. Especially for the current 

research field, this warrants more studies in the field of source code 

understanding. 

 Second, a closer look at some of the answers showed that even some of 

the subjects that were presented with version B (the scrambled version) 

sometimes put the elements of the solution snippet in somewhat the right order. 

Linking this back to the related works, this could potentially mean that even 

though subjects have seen a piece of code that makes no sense, their brain helps 

them remember in a way that seems logical, or more familiar to them, because 

this reduces load. Clark’s (2007) concept of continuity helps with understanding 

this phenomenon because coherence aids understanding, and continuity is one 

of the pillars of coherence. More research would be necessary on the order of 

recall to determine this possible effect, as it was not within the scope of the 

current research. 

 Third, source code analysis on code that is filled with mistakes due to a 

time limit and experiment effects is going to be difficult and the process to 

analyse this needs to be detailed and streamlined. This is something that was 

experienced during the analysis of the current results. We believe it is not in our 

interest to make sure subjects make as few mistakes as possible, but rather, to 

create analyses techniques that see through these mistakes and thus still be able 

to create viable results. However, to make it a little bit easier for subjects to 

make sure their code actually works is to make sure that subjects can run their 
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code to check for bugs. This is a common practice among subjects, more so in 

beginners than in experts, but it can help subjects conceptualise the code better, 

and thus create data that could be of more use to the researcher. We also believe 

this would help in creating a more immersive environment, that mirrors the 

environment of a real programming integrated development environment, like 

JupyterLab, or RStudio. 

5.3 Summary 

The present research studied the effect of version and expertise on recall and 

chunking of a Java snippet, inspired by a study previously done by McKeithen 

et al. (1981). Findings show that there are no significant effects of the 

independent variables on the dependent variables, however, the study proved 

fruitful in multiple ways. First, source code analysis using text analysis 

techniques need to be refined for future use but show a wide range of 

possibilities. Second, the study raised questions about the order of recall of 

subjects, which would indicate subjects recall in a manner that is more logical 

to them, something that can also be found in Christiansen & Chater’s (2016) 

forward models of chunking. Third, a framework for recall and n-gram analysis 

was created. Future research should focus more on the quality and accuracy of 

techniques to determine recall and chunking in source code, however, we can 

build on the field of text mining that already uses machine learning techniques 

for natural language purposes. 

6 Limitations and Risks of the Study 

Like any study, there are some risks and limitations. First, it could prove 

difficult to find enough subjects for each skill level. We do not believe it will 
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be difficult to find participants in general, because we have broad faculty- and 

social media relations that prove helpful in these situations. The only slight 

concern is to find enough beginners. Our pilot study and experience proved that 

finding beginners using fora and twitter is sometimes not fruitful. However, we 

have taken appropriate measures to be sure to reach a varied group of subjects, 

like approaching specific programming courses in our faculty. 

Second, following the first point: may it be that we find a limited number 

of subjects, this would also be a risk to the study. However, according to the 

power analyses, an amount of 31 subjects is sufficient for a viable effect. 

Third, as we test the hypotheses using only one language, Java, the 

results might not be generalisable across other programming languages. 

However, we find this a good reason for further research with a wider range of 

PLs. Also, it was found later that the snippet that was used contained a mistake, 

which was part of the original study it previously was a part of (Fakhoury et al., 

2018). This did not come to our attention until after the study had been 

performed, because Java is unfortunately not in our PL-skill set. However, as 

the mistake was not very big, and it was included in all versions of the snippet, 

we do not see this as a big limitation to the study. However, it would be 

interesting to repeat the same research in another study without the error. 

Fourth, the original study used five trials instead of the current one. 

However, in the current environment considering COVID, we found it unwise 

to perform an experiment in person, as well as unwise to make the questionnaire 

too long for subjects. This last might cause a boredom effect, which would limit 

the validity of the current experiment. Of course, this means that the present 

study is less comparable to the original and that effects might have changed, 
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that might not have happened, had we kept the five trials. This is a limit of the 

present study, but in the future, we might be able to repeat the same experiment 

in real life once more. 

Fifth, as the analyses used to determine the variables for recall and 

chunking are used in a rudimentary and exploratory manner, they are not 

perfect. However, human-created code is also just that. More advanced 

techniques can be used to find patterns in the code that include non-roman 

characters like brackets and commas, which were excluded from the present 

study. We think this is a field where much can be learnt from available 

techniques, as well as human-written code.7 Data Availability Statement 

For reproduction or otherwise experiments, we will keep the dataset available 

upon request. 

8 Acknowledgements 

I would like to thank Felienne Hermans and Ross Towns for supervising this 

thesis from such different perspectives. Both have given me renewed interest 

and energy to create the thesis like it is now. I would also like to thank the peer 

reviewers for their attendance and insight. Furthermore, I would like to thank 

Suzan Verberne for her insights on the text analyses part of the study. Finally, I 

would like to thank Tom Kouwenhoven and Fábio Costa during my struggles 

with programming that concerned the text analyses of the experiment, and the 

intricacies of the online questionnaire, respectively. 

9 References  

Ace. (n.d.). Built for Code. https://ace.c9.io/ Recovered on November 13th 2020. 

https://ace.c9.io/


What’s in a chunk? 
N.L. de Groot 

59 
 

Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system 

and its control processes. In Psychology of learning and 

motivation (Vol. 2, pp. 89-195). Academic Press. 

Baddeley, A. D., & Hitch, G. (1974). Working memory. In Psychology of 

learning and motivation (Vol. 8, pp. 47-89). Academic press. 

Bauer, J., Siegmund, J., Peitek, N., Hofmeister, J. C., & Apel, S. (2019, May). 

Indentation: simply a matter of style or support for program 

comprehension?. In 2019 IEEE/ACM 27th International Conference on 

Program Comprehension (ICPC) (pp. 154-164). IEEE. 

Binkley, D. (2007, May). Source code analysis: A road map. In Future of 

Software Engineering (FOSE'07) (pp. 104-119). IEEE. 

Brooks, R. (1983). Towards a theory of the comprehension of computer 

programs. International journal of man-machine studies, 18(6), 543-

554. 

Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson, J. H., Schulte, C., 

... & Tamm, S. (2015, May). Eye movements in code reading: Relaxing 

the linear order. In 2015 IEEE 23rd International Conference on 

Program Comprehension (pp. 255-265). IEEE. 

Cardoso, J.M., Coutinho, J., & Diniz, P. (2017). Source code analysis and 

instrumentation. In Simpson, J. (Ed.). Embedded Computing for High 

Performance: Efficient Mapping of Computations Using Customization, 

Code Transformations and Compilation. Elsevier Inc.  

Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive 

psychology, 4(1), 55-81. 

Chase, W. G., & Simon, H. A. (1973). The mind's eye in chess. In Visual 

information processing (pp. 215-281). Academic Press. 

Christiansen, M. H., & Chater, N. (2016). The now-or-never bottleneck: A 

fundamental constraint on language. Behavioral and brain sciences, 39. 

Clark, M. C. (2001). Off the beaten path: Some creative approaches to adult 

learning. New directions for adult and continuing education, 2001(89), 

83-92. 

Connolly, J. H. (2001, July). Context in the study of human languages and 

computer programming languages: A comparison. In International and 



What’s in a chunk? 
N.L. de Groot 

60 
 

Interdisciplinary Conference on Modeling and using Context (pp. 116-

128). Springer, Berlin, Heidelberg. 

Dijkstra, E. W. (1968). Letters to the editor: go to statement considered 

harmful. Communications of the ACM, 11(3), 147-148. 

Dijkstra, E. W. (1970). Notes on structured programming. 

Dreyfus, H.L. & Dreyfus, S.E. (1989). Mind over Machine: The Power of 

Human Intuition and Expertise in the Era of the Computer.  Oxford: 

Basil Blackwell. 

Ebbinghaus, H. (1913). On memory: A contribution to experimental 

psychology. New York: Teachers College. 

Fakhoury, S., Ma, Y., Arnaoudova, V., & Adesope, O. (2018, May). The effect 

of poor source code lexicon and readability on developers' cognitive 

load. In 2018 IEEE/ACM 26th International Conference on Program 

Comprehension (ICPC) (pp. 286-28610). IEEE. 

Fan, Q. (2010). The effects of beacons, comments, and tasks on program 

comprehension process in software maintenance. University of 

Maryland, Baltimore County. 

Gamble, C., Gowlett, J., & Dunbar, R. (2014). Thinking big : How the evolution 

of social life shaped the human mind. London: Thames & Hudson. 

GeeksforGeeks (2020, September 25th). Luhn Algorithm. 

https://www.geeksforgeeks.org/luhn-algorithm/ Recovered on February 

3rd 2021. 

Gobet, F., Lane, P. C., Croker, S., Cheng, P. C., Jones, G., Oliver, I., & Pine, J. 

M. (2001). Chunking mechanisms in human learning. Trends in 

cognitive sciences, 5(6), 236-243. 

De Groot, A. D. (1946). Het denken van den schaker [Thought and choice in 

chess]. Amsterdam: Noord Hollandsche. 

Hansen, M., Lumsdaine, A., & Goldstone, R. L. (2013). An experiment on the 

cognitive complexity of code. In Proceedings of the Thirty-Fifth Annual 

Conference of the Cognitive Science Society, Berlin, Germany. 

Harman, M. (2010, September). Why source code analysis and manipulation 

will always be important. In 2010 10th IEEE Working Conference on 

Source Code Analysis and Manipulation (pp. 7-19). IEEE. 

Hermans, F. (2021). The Programmer’s Brain, Manning 2012. 

https://www.geeksforgeeks.org/luhn-algorithm/


What’s in a chunk? 
N.L. de Groot 

61 
 

Hermans, F., & Aldewereld, M. (2017, April). Programming is writing is 

programming. In Companion to the first International Conference on 

the Art, Science and Engineering of Programming (pp. 1-8). 

Ichinco, M., & Kelleher, C. (2017, October). Towards better code snippets: 

Exploring how code snippet recall differs with programming 

experience. In 2017 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC) (pp. 37-41). IEEE. 

Lee, Y. S. (2012). Cognitive load hypothesis of item-method directed 

forgetting. Quarterly journal of experimental psychology, 65(6), 1110-

1122. 

Lin, C. Y. (2004, July). Rouge: A package for automatic evaluation of 

summaries. In Text summarization branches out (pp. 74-81). 

McKeithen, K. B., Reitman, J. S., Rueter, H. H., & Hirtle, S. C. (1981). 

Knowledge organization and skill differences in computer 

programmers. Cognitive Psychology, 13(3), 307-325. 

Mead, J., Gray, S., Hamer, J., James, R., Sorva, J., Clair, C. S., & Thomas, L. 

(2006). A cognitive approach to identifying measurable milestones for 

programming skill acquisition. ACM SIGCSE Bulletin, 38(4), 182-194. 

Miller, G. A. (1956). The magical number seven, plus or minus two: Some 

limits on our capacity for processing information. Psychological review, 

63, 81-97. 

Nakagawa, T., Kamei, Y., Uwano, H., Monden, A., Matsumoto, K., & German, 

D.M. Quantifying programmers’ mental workload during program 

comprehension based on cerebral blood flow measurement: A controlled 

experiment. In Proceedings of the International Conference on Software 

Engineering (ICSE). 448-451. 

Pane, J. F., & Myers, B. A. (2001). Studying the language and structure in non-

programmers' solutions to programming problems. International 

Journal of Human-Computer Studies, 54(2), 237-264. 

Pennington, N. (1987). Stimulus structures and mental representations in expert 

comprehension of computer programs. Cognitive psychology, 19(3), 

295-341. 

Portnoff, S. R. (2018). The introductory computer programming course is first 

and foremost a language course. ACM Inroads, 9(2), 34-52. 



What’s in a chunk? 
N.L. de Groot 

62 
 

Processing Foundation (n.d.). https://discourse.processing.org/ Recovered on 

February 25th 2021. 

Rayner, K. (1998) Eye movements in reading and information processing: 20 

Years of research. Psychological Bulletin 124, 3. 372-422. 

Reitman, J. S., & Rueter, H. H. (1980). Organization revealed by recall orders 

and confirmed by pauses. Cognitive Psychology, 12(4), 554-581. 

Rubin, F. (1987). GOTO considered harmful considered 

harmful. Communications of the ACM, 30(3), 195-196. 

Sanders, T., Land, J., & Mulder, G. (2007). Linguistics markers of coherence 

improve text comprehension in functional contexts. Information Design 

Journal, 15(3), 219-235. 

Sebesta, R.W. (2012). Some Early Descendants of the ALGOLs. In Concepts 

of Programming Languages (12th edition) (pp. 140-154). New York, 

New York: Pearson. 

Shneiderman, B., & Mayer, R. (1979). Syntactic/semantic interactions in 

programmer behavior: A model and experimental results. International 

Journal of Computer & Information Sciences, 8(3), 219-238. 

Siegmund, J., Kästner, C., Liebig, J., Apel, S., & Hanenberg, S. (2014). 

Measuring and modeling programming experience. Empirical Software 

Engineering. 19(5), 1299-1334. 

Siegmund, J., Kästner, C., Apel, S., Parnin, C., Bethmann, A., Leich, T., ... & 

Brechmann, A. (2014, May). Understanding understanding source code 

with functional magnetic resonance imaging. In Proceedings of the 36th 

international conference on software engineering (pp. 378-389). 

Siegmund, J., Peitek, N., Brechmann, A., Parnin, C., & Apel, S. (2020). 

Studying programming in the neuroage: just a crazy 

idea?. Communications of the ACM, 63(6), 30-34. 

Simon, H., & Chase, W. (1988). Skill in chess. In Computer chess compendium 

(pp. 175-188). Springer, New York, NY. 

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. 

Cognitive science, 12(2), 257-285. 

Thalmann, M., Souza, A. S., & Oberauer, K. (2019). How does chunking help 

working memory?. Journal of Experimental Psychology: Learning, 

Memory, and Cognition, 45(1), 37. 

https://discourse.processing.org/


What’s in a chunk? 
N.L. de Groot 

63 
 

Von Mayrhauser, A., & Vans, A. M. (1995). Program comprehension during 

software maintenance and evolution. Computer, 28(8), 44-55. 


