
 Universiteit Leiden

ICT in Business and the Public Sector

Generating process models from textual
requirements using transformer based natural
language processing

Name: Pepijn Griffioen
Student-no: s1673998

Date: 09/07/2022

1st supervisor: Dr. G.J. Ramackers
2nd supervisor: Dr. P.W.H. van der Putten

MASTER'S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Generating process models from textual
requirements using transformer based

natural language processing

Pepijn Griffioen

Leiden Institute of Advanced Computer Science
P.O. Box 9512, 2300 RA Leiden, The Netherlands

July 9, 2022

Abstract

Requirements to build a system are created and documented using differ-
ent techniques and models, the goal of these is to enable clear communica-
tion about the requirements. One of these models is the UML activity dia-
gram, which depicts the behaviour of a process in a system in a graphical
manner. The creation of such models is time-consuming and error-prone.
To overcome this problem we present a NLP pipeline to transform process
descriptions into activity models. This pipeline is a combination of novel
transformer-based NLP models and rules to transform a description into
an activity model. We have compared our results with a BPMN baseline
set of models and see that our model creates actions and conditions with
more context. Moreover, with our combination of semantic role labelling,
coreference and natural language inference we can combine different con-
ditions with more certainty than existing approaches. Furthermore, we
have implemented a UML activity metadata model to store models and
implemented it with a set of APIs to integrate it within the Prose to Proto-
type environment. We have also collaborated with a low-code vendor to
explore the opportunities to further validate our approach in a real-world
context. Based on our research and development we have provided an en-
vironment that creates editable activity models from a requirements text.
This solution decreases development time and helps the modeller create
better solutions.

iv

Acknowledgements
I would like to acknowledge some people who, without I would not have
finished this thesis. First of all, I would like to thank my first supervisor Dr.
Ramackers, who I had the pleasure to get to know and meet. We had end-
less discussions on the different topics that we would like to address and
it was inspiring to talk about the improvements to the P2P system. Also,
the meetings that he managed to set up and the people I got to meet was
an amazing experience. Guus was also good at keeping me challenged,
which was sometimes frustrating, but I got to learn a lot. Next to that, I
would like to thank my second supervisor Dr. van der Putten. Peter kept
me focused and gave me great feedback. Also, the collaboration he made
possible with Pega was a cool experience! Another professor who was of
great value is Dr. Chaudron, who gave me feedback, sent some founda-
tional literature for this thesis and asked the right questions to keep me on
track.

As for my fellow students, I would like to thank Martijn Schouten for
being the person to discuss NLP ideas with and to improve the P2P sys-
tem. Bram van Aggelen who created the visual appearance of the UML
editor and Willem-Pieter van Vlokhoven who build the APIs.

I would also like to thank my family and friends who have been sup-
portive and of great help to make sure I finished this thesis. I would like
to especially thank my girlfriend Nadine who supported me and was the
person I could always talk to. Overall I am happy with the result and look
forward to the future.

Pepijn Griffioen

iv

Version of July 9, 2022– Created July 9, 2022 - 15:37

Contents

1 Introduction 1
1.1 Problem statement 2
1.2 Research objective 3
1.3 Research approach 4
1.4 Methodology 4
1.5 Academic contribution 5
1.6 Overview 5

2 Background 7
2.1 Activity models 7

2.1.1 UML Activity Models 8
2.1.2 Other process models 8

2.2 Natural Language Processing methods 12
2.2.1 Semantic Role Labeling 12
2.2.2 Coreference 13
2.2.3 Natural language inference 14
2.2.4 Transformer models 14

2.3 Related approaches 15
2.3.1 Direct transformation 16
2.3.2 Transformation with an intermediary model 17

2.4 Datasets 18

3 Methods 23
3.1 Transformation tasks 23
3.2 Action extraction 25

3.2.1 Extraction explanation 25
3.2.2 Algorithmic extraction 27
3.2.3 Limitations 30

Version of July 9, 2022– Created July 9, 2022 - 15:37

v

vi CONTENTS

3.3 Reference resolution 31
3.3.1 Resolving personal pronouns to entities 31
3.3.2 Cluster references 33
3.3.3 Actor identification 33
3.3.4 Limitations 35

3.4 Condition extraction 36
3.4.1 Condition identification 37
3.4.2 Algorithmic transformation 40
3.4.3 Limitations 42

3.5 Sequence identification 42
3.5.1 Sequential paths 43
3.5.2 Repetition paths 44
3.5.3 Parallel paths 45
3.5.4 Path terminations 47
3.5.5 Conditional paths 49

3.6 Activity model construction 54

4 System design 57
4.1 Environment of the solution 57
4.2 Logical Design 58

4.2.1 Persistence tier 58
4.2.2 Application tier 60
4.2.3 Presentation tier 60

4.3 Technical Design 60
4.3.1 AllenNLP 61
4.3.2 P2P backend 62
4.3.3 Metamodel 63
4.3.4 UML editor 67

4.4 In-depth overview of all actions 69

5 Analysis and Results 71
5.1 Research baseline 72

5.1.1 Repetition cycles - Claim examination 73
5.1.2 SLA violation 75
5.1.3 Loan approval process - VOS 91
5.1.4 Employee expenses process - Oracle 94

5.2 FrameNet Requirements 101
5.2.1 Ordering materials FN-REQ-015 101

5.3 PURE dataset 105
5.3.1 THEMAS - Validate Temperature - SRS-008 106
5.3.2 Microcare - Voucher Maintenance System 109

vi

Version of July 9, 2022– Created July 9, 2022 - 15:37

CONTENTS vii

5.4 Industry collaboration 112
5.4.1 Demo scenario 113

5.5 Conclusion 117

6 Discussion 121
6.1 Limitations 122
6.2 Future work 123

7 Conclusion 127

Version of July 9, 2022– Created July 9, 2022 - 15:37

vii

Chapter 1
Introduction

Enterprise system development is the process of developing IT systems
within the context of an enterprise. The process can be very complex be-
cause there are multiple aspects involved such as the business environ-
ment, the number of stakeholders and the IT landscape. The systems that
are developed have a certain business focus, to overcome a problem or
task within the environment of the enterprise.

Several stakeholders are involved in the development process, which
are business specialists, business experts, UML experts and developers.
The different roles and backgrounds of the stakeholders make the devel-
opment process a multi-disciplinary effort[1]. The involvement of the dif-
ferent employees is necessary to tailor the system to their needs.

The collaboration between these employees introduces a difference in
background, that presents a knowledge gap between them. To overcome
this difference in backgrounds, graphical models are used to allow each of
the employees to understand the system that is developed. Next to models
themselves there are also approaches based on these models such as code
generation or model-driven software, to create applications. The men-
tioned approaches contribute to the increase of importance that graphical
design models have on the development process. The model we consider
in this research is the UML activity diagram, which shows the functional-
ity of a process, the different actors and the relations between the function-
ality and the actors. Such models allow the different employees, regardless
of their background, to understand the system.

Models such as the activity diagram are a result of a requirements engi-
neering process. The requirements engineering process can vary depend-
ing on the system that is being developed. Often the starting activities
of this process are the same, these are the elicitation and analysis activi-

Version of July 9, 2022– Created July 9, 2022 - 15:37

1

2 Introduction

ties. The elicitation activity is focused on collecting the requirements and
in the analysis activity the requirements will be analysed, both activities
can have a set of written requirements, a graphical model or even a proto-
type application as a result. The requirements will then be discussed and
changed if needed.

In an enterprise context, the main area of interest is business processes.
Activity models can model such business processes. The models enable
the business user to understand the processes. In this research, the focus
is on models that are used in an enterprise context. The development of
such models and requirements can be a complex task. To support such
development several approaches have been created, one often used area
of techniques is Natural Language Processing. The area consists of several
models and algorithms that are able to extract information from natural
language, such as textual requirements documents.

1.1 Problem statement

The requirements for a system are beneficial for communication but are
not a silver bullet for system development. To create a requirement sev-
eral steps are taken, in most cases, it comes down to writing and inter-
preting what is needed for a system. This process is often done manually
by analysts. The manual interpretation of text and models can easily in-
troduce mistakes, it takes quite some time and it is complex to change
one of the requirements concerning their dependencies. These obstacles
combined create a significant financial burden in the overall process. Be-
sides the obstacles, a well-known IT phenomenon is the growth of costs
for removing defects. The further a development process progresses the
more expensive the removal of a defect is compared to an earlier stage[2].
Therefore the whole process is time-consuming, error-prone and expen-
sive. Nevertheless, the textual requirements and models should not be
removed, because they are important for the overall process. Especially in
the communication facet of the development process because it allows the
different stakeholders to understand the system.

As earlier mentioned Natural Language Processing (NLP) is a tech-
nique to support the process of requirements engineering. NLP is a sub-
field of machine learning, where the main objective is to process natural
language. It is currently being applied in several tasks and processes in
our society such as chatbots, sentiment analysis and translation applica-
tions. These applications are powered with one or more NLP tools and/or
models. Recently the field of NLP has seen a significant rise in attention

2

Version of July 9, 2022– Created July 9, 2022 - 15:37

1.2 Research objective 3

as a result of the introduction of transformer-based models. The ’trans-
former’ models performed better than a lot of state-of-the-art models at
the time.

This performance increase is also interesting for the requirements engi-
neering processes because a large workload in requirements engineering
is from text documents. A community that is doing research into the NLP
and Requirements engineering area is called NLP4RE*. The research area
is at the moment of writing an active and thriving area within the require-
ments engineering domain[3]. The introduction of new NLP models and
current interest in the community shows high promises for new develop-
ments, therefore we will investigate how we can use NLP to support the
requirements engineering process. Specifically, the research will focus on
the use of transformer models to generate activity models, thus our re-
search question is as follows:

Main research question: How can Natural Language Process-
ing be used for the improvement of the iterative elicitation and
analysis activities in the requirements engineering process, with
a focus on activity models?

The objective of this research is to enable closer collaboration between
stakeholders in the system development process through the use of activ-
ity models. To find a solution for the main research question the research
approach is presented in Section 1.3.

1.2 Research objective
To give the research question a clear objective, we present our research
objectives:

• RO0: Explore automated approaches to generate activity models from ear-
lier research

• RO1: Build a prototype to transform a requirements text into an activity
model using transformer based models.

In the next chapters, we will go into these research objectives. In the
next section, we will define how we aim to approach these objectives in
our research.

*https://nlp4re.github.io/2022/

Version of July 9, 2022– Created July 9, 2022 - 15:37

3

https://nlp4re.github.io/2022/

4 Introduction

1.3 Research approach

To find a solution to the problem statement, we propose a Design Science
research approach. The methodology of Design Science (DS), is a well-
known research method in Computer Science[4]. In DS innovative arte-
facts are developed to gain an understanding of a specific problem, there-
fore this research will develop a prototype as a solution for the problem
statement. To support the prototype with a scientific background, a litera-
ture review will also be conducted.

The literature review will focus on the following research questions:

RQ1: What processes and tools with activity models as output
are available in literature?

RQ2: What intermediary models and approaches are used for
the transformation of requirements into an activity diagram?

The objective of the research questions is to develop a foundation in
literature for the development of the prototype. The foundation will make
sure the prototype is rooted in literature. In the next section on the method-
ology, we will further specify how we plan to develop our system follow-
ing the DS methodology.

1.4 Methodology

The design science approach in this thesis is based on the framework of
Peffers et al. that defines a practical framework, as an extension of the
design science framework of Hevner et al.[4, 5]. The methodology of Pef-
fers et al. consists of six components: problem identification and mo-
tivation, the objective of the solution, design and development, demon-
stration, evaluation, and communication. These components are reflected
in our research. The first two components are discussed in this Chapter,
while the development and design component will be discussed in Chap-
ter 3 and 4. The demonstration and evaluation components are part of the
results which are discussed in Chapter 5, and the communication compo-
nent is discussed in the Discussion in Chapter 6.

With this research approach, the prototype is developed in the light of
Design Science and rooted in existing literature. Potentially posing a solid
prototype for the improvement of the requirements engineering process.

4

Version of July 9, 2022– Created July 9, 2022 - 15:37

1.5 Academic contribution 5

1.5 Academic contribution
In prior work, we have seen different approaches to transforming require-
ments documents into design models, such as BPMN and Activity models.
We will reuse some of their contributions such as keyword-based identifi-
cation and using agent, verb and object parts of the text to construct our
models. We will contribute to the field with the following contributions:

1. Use novel NLP models that are based on the transformer-based ar-
chitecture.

2. Show a novel combination of NLP tasks to identify, compare and
combine conditional structures within the text. Namely the tasks of
coreference and natural language inference.

3. Present an Activity metadata class model for the storage of activity
models.

4. Create a pipeline for the transformation of requirements texts into
activity models. That can be reused, upgraded and extended in the
future.

1.6 Overview
The thesis is structured into several chapters and sections. Chapter 2 de-
scribes the different transformation approaches and datasets from related
literature. Chapter 3 explains how we use the different NLP models to
process several tasks to transform the text into an activity model. In Chap-
ter 4 the system design is discussed, which defines how all the different
components interact with one another. Then Chapter 5 demonstrates the
transformation of several examples from a requirements text into a model
and qualitatively compares them with earlier research. We discuss the fi-
nal findings in Chapter 6 which is structured as a discussion, limitation
and future work. Finally, Chapter 7 concludes the research, with the key
takeaways.

Version of July 9, 2022– Created July 9, 2022 - 15:37

5

Chapter 2
Background

The research we conduct is an investigation into several areas, such as Nat-
ural Language Processing, UML models and the transformation of natural
language into activity models. For the prototype that we develop the in-
put consists of requirements texts and our output is an activity model. To
process an input text, we need to extract information from the text, for that
we make use of NLP models. Then to create an activity model we require
knowledge of the UML activity model domain. In this chapter, we will
investigate the different domains and give a theoretical background for
them. Besides the theoretical background, we will also investigate related
literature on the approaches to transforming text to UML models and give
an overview of the available datasets.

The chapter is divided in the following sections, Section 2.1 describes
the foundations of Activity models, Section 2.2 explains the theory on the
NLP models that we use. Then Section 2.3 describes the different ap-
proaches for transformations from earlier work and Section 2.4 gives an
overview of the different available datasets to validate our transformation
approach.

2.1 Activity models

In the following section, we explain the theory of activity models. We
will discuss the components of activity models, the use cases for activity
models and the difference with similar models such as BPMN models.

Version of July 9, 2022– Created July 9, 2022 - 15:37

7

8 Background

2.1.1 UML Activity Models

Unified Modelling Language (UML) is a modelling standard that is adopted
and still managed by the Object Management Group. The Object Manage-
ment Group refers to it as: ”a graphical language for visualizing, spec-
ifying, constructing and documenting the artefacts of distributed object
systems”[6]. It is a standardisation that is widely used in software de-
velopment. The UML models and visualisations can support the system
development and requirements engineering process. UML is also used
in code generation tasks, where models are converted to code skeletons.
There are also model-driven engineering (MDE) applications that use the
UML model to completely generate the application, such as low code or
no-code platforms. UML models can be categorised into two areas: struc-
tural models and behaviour models. Both areas have several different di-
agrams, which are used depending on the use case.

In this research, we aim to generate activity models. Activity models
are specified as behavioural diagrams. Such models are used to model the
behaviour of a system. An example of an activity model can be found in
Figure 2.1. The figure is from Booch et al., where it is used as an example
to explain activity diagrams[7].

The Activity model and its components are extensively explained in
the article of Booch et al. [7], to give a summarization of the components
we included Table 2.1. The table summarises the components of the activ-
ity model, the table is created by Bastos et al.[8].

Booch et al. mention two typical use cases for activity diagram mod-
elling: a workflow or an operation[7]. Workflows are often used for busi-
ness processes and operations can define computations, such as compu-
tational steps. In this research, the goal is to improve the system devel-
opment process. In system development, business processes are of inter-
est, therefore activity models in the form of workflows are used in this
research.

2.1.2 Other process models

As activity models describe the behaviour for a certain process, there are
several other approaches to describing certain behaviour. One modelling
approach that we also look into in this research is Business Process Model
Notation (BPMN), these models are similar to activity models[9]. Never-
theless, there are differences, which are mostly in the notation of certain
nodes and certain guidelines or restrictions on how to write such models
and their actions.

8

Version of July 9, 2022– Created July 9, 2022 - 15:37

2.1 Activity models 9

Figure 2.1: Activity Diagram example[7]

Version of July 9, 2022– Created July 9, 2022 - 15:37

9

10 Background

Concept Details
Activity Ongoing non-atomic execution within a state machine.

Activities result in some action.
Action An executable atomic computation that results in a

change in the state of the system or the return of a
value.

Action State A state represents the execution of an atomic action,
typically the invocation of an operation.

Activity State It is a composite, whose flow of control is made up of
other activity states and action states. Activity states
are not atomic meaning that they may be interrupted.
Activity states can be further decomposed, their activ-
ity being represented by another Activity Diagram.

Transition Represents the flow of control between two activities.
Transition shows the path from one action or activity
state to the next action or activity state.

Object Flow Represent an object involved in a flow of control asso-
ciated with an activity diagram.

Object State A condition or situation during the life of the object
during which it satisfies some condition, performs,
some activity, or waits for some event.

Swimlane A partition for organising responsibilities for activities.
Swimlane does not have a fixed meaning, but they of-
ten correspond to organisational units in a business
model.

Table 2.1: Activity diagram concepts[8]

To demonstrate the similarity between BPMN models and Activity mod-
els we present in Figure 2.2 a BPMN example that models a business pro-
cess. In Figure 2.3 we show an example of an Activity model that models
the same process as in Figure 2.2.

Another type of process model can be found in low-code platforms.
Most of these platforms have proprietary data models that are often not
interchangeable with other models or languages. This is problematic in
the case that one would like to migrate from one vendor to another. In
some cases, the models do have similarities with activity models. An-
other common problem with these platforms is the extensibility because
the platforms are limited to the functionalities that they offer. In the case
that there is a better functionality on another platform they can not just

10

Version of July 9, 2022– Created July 9, 2022 - 15:37

2.1 Activity models 11

Figure 2.2: Representation of a business process in BPMN[9]

Figure 2.3: Representation of a business process in a Activity model[9]

Version of July 9, 2022– Created July 9, 2022 - 15:37

11

12 Background

integrate it, because they are limited to what the vendor offers[10]. Never-
theless, vendors need to make implementation decisions therefore in some
cases the modelling standards such as UML might be too limited for what
they try to achieve. Thus it is a balance between implementing standards
and building suitable solutions for the customer. Still, these platforms
might be interesting in the light of our solution and as a comparison.

2.2 Natural Language Processing methods

For the transformation of natural language texts into Activity models we
will make use of NLP tasks. In this section, we will discuss the several
NLP models and tasks, that are used within our solution.

To give an idea of what the NLP tasks are used for we briefly discuss
them here. The semantic role labelling task is used to construct the dif-
ferent actions for the activity model. The coreference resolution is used to
identify certain entities and find references between the different parts of
sentences and conditions. Finally, the natural language inference is used
for the comparison of the conditions that might be contradicting one an-
other. We will discuss the theory of each NLP task in the following sections
to give insight into what is technically happening.

2.2.1 Semantic Role Labeling

Semantic Role Labeling (SRL) is a Natural Language Processing task, where
the objective is to model the predicate-argument structure of a sentence.
The result can be described as an answer to ”who did what to whom”,
”when”, ”where” and more[11]. The information can be used for question
answering and information extraction[12].

For the labelling of semantic roles, there are multiple annotation schemes.
The schemes from FrameNet[13] and PropBank[14] are considered the main
ones. At the moment of writing PropBank is being used for the perfor-
mance evaluation of the SRL task, with the OntoNotes 5.0 dataset*. There-
fore we will further consider the PropBank annotation schema. The Prop-
Bank schema is verb sense oriented, which means for every sense of the
verb there is a set of role descriptions. The core roles within the sense
have general names, such as Arg0, Arg1, Arg2 and Arg3. Each role can
differ depending on the verb sense. Nevertheless, the role of Arg0 as the
proto-agent and Arg1 as the proto-patient are in most cases the same. The

*https://catalog.ldc.upenn.edu/LDC2013T19

12

Version of July 9, 2022– Created July 9, 2022 - 15:37

https://catalog.ldc.upenn.edu/LDC2013T19

2.2 Natural Language Processing methods 13

proto-agent is the agent executing the action and the proto-patient is the
receiving end of the action. There are also adjunct roles which describe the
modifier on the role and can have meanings such as location, temporal, di-
rection and more. An example of a frame for the word ‘reserve’ is given in
Example (1).

(1) Roleset for verb ’reserve’
• Arg0: reserver
• Arg1: thing reserved
• Arg2: benefactive
• Arg3: secondary attribute

The roleset in Example (1) shows that Arg0 en Arg1 are fulfilling the proto-
agent en proto-patient roles. The roleset is a set of roles for a certain verb
sense, in example (2) we present an annotated sentence with this verb.

(2) [The storehouse]
ARG0

has [reserved]
VERB

[the items on the list].
ARG1

As shown in these examples the task of Semantic Role Labeling can iden-
tify roles within a sentence. With the use of these roles, we can understand
what a sentence means as it can give a sense to a sentence. Also, we can
extract the structure from the sentence. In Chapter 3 we will present how
we use the SRL task to extract information out of the text to be processed.

2.2.2 Coreference

The task of coreference is to identify mentions in a text that refer to the
same entity. These mentions can have several forms, some of the most
well-known are personal pronouns, names and demonstrative pronouns.
Coreference tries to predict all of these mentions and find the entity they
refer to in the text. In the case that a combination of references is found,
a set of references can be formed, this is called a cluster or chain. One of
the important differences from other NLP tasks is that the coreference task
considers all sentences instead of one or a subset of sentences. In example
(3) we show an example with an underlining of a cluster of references.

(3) A customer brings in a defective computer and the CRS checks the
defect and hands out a repair cost calculation back. If the customer
decides that the costs are acceptable, the process continues, other-
wise she takes her computer home unrepaired.

Version of July 9, 2022– Created July 9, 2022 - 15:37

13

14 Background

As can be seen in example (3) there are two clusters to the same entity.
The first cluster refers to the customer and will look as follows: [“a cus-
tomer”,“the customer”,“she”,“her”]. Next to the customer cluster, there is
also a computer cluster: [“a defective computer”,“her computer”]. Based
on these clusters it is possible to find connections through the text and
make decisions based on other extracted information. In Chapter 3 we
demonstrate how we make use of these references and clusters.

2.2.3 Natural language inference

Natural language inference (NLI) is the task of determining what the en-
tailment relation is between two sentences. There are three categories that
a sentence can be classified as: entailment, contradiction or undetermined.
The task is also known as recognising textual entailment. The task itself
is important for multiple aspects for the analysis of complete texts and as
input for other NLP tasks. In the following examples, we show two sets of
sentences.

(4) Sentences with the label contradiction[15]
a. Met my first girlfriend that way.
b. I didn’t meet my first girlfriend until later.

(5) Sentence with the label entailment[16].
a. A soccer game with multiple males playing.
b. Some men are playing a sport

As can be seen from the examples (4) and (5) the sentences might not be
a clear contradiction or entailment. Nevertheless, the goal of the NLI task
is to be able to handle such complex situations. We will be using the NLI
task for our solution, the way we make use of this NLP task is described
in Chapter 3.

2.2.4 Transformer models

Transformer models are a type of model that have been introduced in the
last five years. These models have drastically improved the performance
in several NLP tasks. The transformer architecture was introduced by
Vaswani et al., it makes use of an encoder-decoder structure and attention
mechanisms [17]. Most of the improvements are contributed by the atten-
tion mechanisms. That provides for each input token (word) a weight of
how important it is when considering another token in the model. This

14

Version of July 9, 2022– Created July 9, 2022 - 15:37

2.3 Related approaches 15

mechanism enables the model to use the context of the whole text se-
quence, instead of only the text that has been seen just before. With this
contextual awareness, the architecture is very good at using the context of
a text.

There are various models available with the transformer architecture
and various tasks that the models excel in. The most well-known model
is the Bidirectional Encoder Representations from Transformers (BERT),
which has proven performance gains on several contextual tasks[18]. The
NLP tasks that we mentioned in the previous sections have also seen per-
formance increases, because of the transformer architecture. The models
we use in our system will also be transformer-based. In Section 4.3.1 we
further elaborate on the NLP platform that we use to implement our mod-
els and which models we use.

2.3 Related approaches
Natural language is a complex thing, hard to understand and can be very
ambiguous. Nevertheless, it is the way almost everyone communicates
with one another in a written or spoken form. There have been many
approaches proposed in several domains that aim to understand natu-
ral language. Within the domain of transforming requirements texts into
reusable activity models, this is also the case. Several contributions in lit-
erature propose a way of transforming structured or unstructured texts
into a behavioural model.

In this section, we will consider approaches to transform the text into
activity or business process models. We chose to include business pro-
cess models because there are limited research efforts in the transforma-
tion space with activity models as an output. Similar to Bellan et al. [19],
we give an overview of all the related approaches that we will discuss and
their characteristics in Table 2.2. Next to the overview, Bellan et al. have
divided the literature into two main transformation approaches, the direct
transformation and transformation with an intermediary model. We also
make this division in our models, because each approach has its’ benefits
and downsides.

The main advantage of a direct approach is that you can completely
customise the transformation process for the requirements documents. On
the contrary that is also a disadvantage, because the direct transformation
is not able to create general solutions. In the case that the context changes
the approach will perform badly.

For the approach with an intermediary model there is often an iden-

Version of July 9, 2022– Created July 9, 2022 - 15:37

15

16 Background

Author Input Transform Approach Output
van der Aa
[20]

Unstructured
text

Direct Rules and
templates

DECLARE

Han [21] Unstructured
text

Direct Artificial
Neural
Network

BPMN

Sharma [22] Unstructured
text

Intermediary Rules and
frames

Activity &
Sequence

Yue [23] Use case
models

Intermediary Rules and
templates

Activity,
Sequence
& Class

Friedrich
[24]

Unstructured
text

Intermediary Rules BPMN

Sawant [25] Use case de-
scriptions

Intermediary Templates BPMN

Honkisz
[26]

Unstructured
text

Intermediary Rules BPMN

Table 2.2: Overview of all related transformation approaches.

tification step and a model building step, that both make use of an in-
termediary model. The separation of the two steps enables the approach
to be easier to extend and the intermediary model requires the two steps
to conform to the requirements of the intermediary model. Therefore the
advantage of the intermediary model is that in most cases it is more gen-
eralised and can move between different contexts. Nevertheless, this does
still depend on the implementation and how specific it is to that domain.

Furthermore, in this section, we will present some of the related ap-
proaches. They are divided into two transformation types and we will
start with the direct transformation.

2.3.1 Direct transformation

A direct transformation approach is an approach where the text is directly
transformed into an activity or business process model. The parts of the
text that represents parts of processes are transformed into certain actions,
decision points, gateways or repetitions.

In the work of van der Aa et al., the authors define an approach to
extract declarative process models from natural language. The process
models are extracted through a tailored natural language pipeline, which

16

Version of July 9, 2022– Created July 9, 2022 - 15:37

2.3 Related approaches 17

can identify activities and their relations. The pipeline makes use of part-
of-speech tagging and dependency grammar to identify, extract and com-
bine all parts for the process model. For the evaluation, van der Aa et
al. made use of 103 pairs of constraint descriptions and declarative con-
straints. Their model achieved a recall of 0.72 and precision of 0.77, which
results in an F1 score of 0.74[20].

Han et al. make use of an Ordered Neurons Long Short-Term Mem-
ory (ON-LSTM) model which is trained on Process Definition Documents,
which are structured process descriptions. The ON-LSTM can extract a
contextual structure from the description and with a learned semantic rep-
resentation is able to generate a business process and a business process
model[21]. The generated diagrams only have an average similarity of
only 32% with the taken gold standard, overall it can correctly generate
57% of the edges and 75% of the nodes[21].

2.3.2 Transformation with an intermediary model

The approach with an intermediary model means that there is some model
used as a way to temporarily store data, for later reuse. The type of inter-
mediary model does not matter, but it differs from a direct approach.

Sharma et al. present an approach to transform unstructured require-
ments descriptions automatically into UML activity and sequence dia-
grams. To transform these texts an intermediary model called frames is
filled. The frames are filled using grammatical knowledge patterns and
lexical and syntactic analysis using the Stanford Tagger[27] and Parser[28].
There are two limitations, the first is an assumption that there is no redun-
dancy and ambiguity in the written scenario. The second limitation is the
requirement that the sequence of occurrence of the actions in the text, is the
way the actions should follow one another. Thus making it not possible to
refer back or link back to an earlier set of actions.[22].

aToucan is the tool developed in the research of Yue et al., it can au-
tomatically transform use case models to UML analysis models such as
class, sequence and activity models. The use cases are modelled follow-
ing the Restricted Use Case Modelling, which enables the use cases to be
loaded into an intermediary model. Then it is converted to a metamodel
and formalised using the Stanford Parser. Through a transformation of
a set of rules a UML model is generated[23]. Unfortunately, the input is
limited to structured use cases.

The approach that is mostly used as a baseline by other research is the
work from Friedrich et al. [24]. They propose a solution which makes use

Version of July 9, 2022– Created July 9, 2022 - 15:37

17

18 Background

of the Stanford CoreNLP library, an algorithm for anaphora resolution and
keywords to identify certain gateway types. Furthermore, WordNet and
VerbNet are used to extend the keywords. They validate their approach
using a dataset of 47 combinations of descriptions and process model dia-
grams. The models that Friedrich et al. have created, have a 77% similarity
with the testing dataset.

Sawant et al. generate an ontology and business process model from
use case descriptions. Their approach is an extension of earlier work by
Goncalves et al.[29]. Sawant et al. make use of a rule-based approach
to specify their world model and use coreference resolution to combine
all the entities. In a final step, they build a business process model and
extract an ontology which can be used for further analysis. The results are
evaluated using a private dataset of 123 use case descriptions[25].

Honkisz et al. create a business process model from texts. The ap-
proach extracts Subject-Verb-Object (SVO) triplets, then the actors are ex-
tracted and all triplets are clustered together. Followed by a keyword-
based extraction, certain gateways are extracted. All the information is
saved into an intermediary model, which is used to build a BPMN dia-
gram. A limitation of this paper noted by Bellan et al.[19] is that the results
are not thoroughly evaluated[26].

To conclude this section and answer the research questions from Sec-
tion 1.3 there are several transformation approaches proposed in the exist-
ing literature. Business process models are more common to be generated
as output than activity models. To power the transformation approach
there are several NLP tools and models available, in most cases, the Stan-
ford Parser and Tagger have been used. The most common used NLP
tasks are dependency parsing and coreference resolution. There are sev-
eral different approaches possible with an intermediary model or direct
transformation. The most used approach is an intermediary model, an ad-
vantage of this approach is the ability to understand where certain aspects
of the activity model come from.

2.4 Datasets

Datasets are often used in research to create, test or validate hypotheses.
Thus it can support the validity of research that is executed. Unfortunately
in the area of requirements engineering the number of datasets is very
limited. In Table 2.3 we present an overview of the different requirements
datasets. The number of documents specifies the number of documents
that are part of the dataset. Labelled specifies if the requirements text is

18

Version of July 9, 2022– Created July 9, 2022 - 15:37

2.4 Datasets 19

Table 2.3: Overview of the different datasets.

Name Number of
documents

Labelled Label technique

FN-RE [30] 34 Yes FrameNet frames
[13]

PURE[31] 79 Partially Self defined XSD
format

Process descriptions
and BPMN models
[32]

47 No -

PET [33] 47 Yes BPMN artefacts

labelled and the labelling technique specifies the type of labelling. For the
PURE example, the partial label indicates that only 12 of the documents
have been labelled. In the case of the Process descriptions and BPMN
models from Friedrich et al., there is nothing labelled, instead, a set of
corresponding BPMN models is provided with each text. In the next part
of this section, we will discuss the different datasets.

Semantic parsing is the technique to add semantic structure to text,
but to do this a corpus must be used. Such corpora are missing in the
current landscape of NLP4RE. Alhoshan et al. try to fill this gap with the
creation of a corpus of requirements documents. FN-RE is the name of
the corpus and it is based on the semantic frames in FrameNet[13]. The
requirement statements were manually labelled by two annotators, who
have an average agreement of 72.85 by f-score, therefore the annotations in
the corpus are reliable. The corpus is openly available to support research
purposes[30].

Publicly available datasets are not common in the NLP4RE landscape.
Ferrari et al. acknowledge this fact in their paper, to overcome this prob-
lem they have created a collection of requirements documents under the
name of the Public Requirements dataset (PURE). The collection consists
of 79 natural language requirements documents collected from the web. In
their research they compare the requirements documents with the Brown
dataset [34], to show the peculiarities of requirements jargon such as re-
stricted vocabulary and long sentences. Furthermore, the authors have
transformed 12 documents in the dataset into a reusable XML format and
hope other RE researchers will further annotate the dataset for their own
downstream tasks[31].

Friedrich et al. propose an extensive approach to transforming natu-

Version of July 9, 2022– Created July 9, 2022 - 15:37

19

20 Background

ral language into business process models[24]. In their approach to vali-
date these models, they have collected 47 process descriptions in combina-
tion with a “correct” business process model and their generated process
model, the process descriptions are not annotated[24]. Although a busi-
ness process model is not the same as an activity model, the models have
many similarities, which we previously mentioned in Section 2.1.2. Sev-
eral other authors used the dataset of Friedrich et al. as a benchmark.
Some comparison results can be found in the overview paper of Bellan et
al.[19].

Furthermore, Bellan et al. investigate the area of approaches to extract
processes from texts, where most of the approaches use NLP techniques
to build business process models or similar models. In their discussion,
they note that the dataset of Friedrich et al. is in several viewpoints quite
limited, but at the moment of writing there are not datasets available with
higher quality. The main criticism is that the dataset is not a representa-
tion of real-world requirements texts, the standard validation steps for a
dataset are not executed and the correspondence between text and result-
ing business process model structures is also missing. Nevertheless, the
dataset is a good first approach. Next to that, Bellan et al. state that a
qualitative dataset might be too ambitious, but it would give the research
field an enormous boost. A qualitative dataset would consist of process
descriptions, business models and annotated texts. Another important
statement is the fact that defining smaller transformation tasks will also
improve the overall quality and research opportunities[19].

As a solution to the limitations stated by Bellan et al. concerning the
datasets [19], they propose the PET dataset, which is an annotated dataset
of existing requirements documents. The dataset consists of process de-
scriptions, where the activities, gateways, actors and flow information are
annotated. The data from Friedrich et al. has been used as a starting
point[24], which is a well-known dataset in the community and it was
not yet annotated. An important limitation of the diagrams of Friedrich
et al. is that they were not validated by experts, therefore Bellan et al. do
not include the diagrams in the PET dataset. The dataset contains 45 doc-
uments with a narrative description and annotated elements. The paper
is at the moment of writing in pre-print, therefore we will not rely heavily
on the paper, but we will use it as a reference work[33].

As we have shown there is only one available dataset with require-
ments documents and business process models, the dataset of Friedrich et
al.[24]. The reuse of the dataset from Friedrich et al. in the PET dataset
is a good contribution for the future and will make the evaluation pro-
cess in the future more sound[33]. Unfortunately, the dataset is at the mo-

20

Version of July 9, 2022– Created July 9, 2022 - 15:37

2.4 Datasets 21

ment of writing not been reviewed by other researchers, which makes it at
the moment potentially incomplete. The incompleteness might introduce
changes in the future, in case of a change it would make our evaluation
incorrect. Therefore we will make use of the dataset by Friedrich et al. and
in the future might reevaluate our results with the PET dataset.

Version of July 9, 2022– Created July 9, 2022 - 15:37

21

Chapter 3
Methods

In this chapter, we will define the different tasks we have encountered in
the transformation process. For each task, we will propose an approach to
execute the task, so that we can transform parts of the text into an activity
model. All these different approaches combined make up our transforma-
tion pipeline. The pipeline can transform requirements text into activity
models. In the first section, we will define the tasks and show how these
tasks and in what order make up the pipeline.

3.1 Transformation tasks

As mentioned in the introduction we have developed a pipeline to extract
information from the requirements texts, to build an activity model. The
information that we are extracting can be divided into four tasks. With
these different tasks, we can collect the information we need to build an
activity model. We specify the following processing tasks:

1. Action extraction

2. Condition extraction

3. Reference resolving

4. Sequence identification

In the next sections, we will further elaborate on the different process-
ing tasks and clarify their goal, the results it generates and how we have
implemented them. All of these tasks combined make up our transforma-
tion pipeline. To give a clear overview of how these tasks interact with one

Version of July 9, 2022– Created July 9, 2022 - 15:37

23

24 Methods

Figure 3.1: Pipeline overview.

24

Version of July 9, 2022– Created July 9, 2022 - 15:37

3.2 Action extraction 25

another we have created an activity model, which is shown in Figure 3.1.
Each action in the activity model contributes to one or more NLP tasks.

Each action in the model contributes to a processing task and each of
the swimlanes depicts a system where the action is executed. We have
four different systems. The front-end is the application that enables a user
to interact with the pipeline. The pipeline system is the process that en-
capsulates all the transformation actions. The natural language models
provide the NLP models that are used in the solution, such as semantic
role labelling, coreference resolution and textual entailment. The activity
model backend is the system where the final activity model is stored. In
the following sections, we will dive deeper into what each processing task
does and how it contributes to the whole pipeline.

3.2 Action extraction
Actions are executable atomic computations, which were briefly explained
in Subsection 2.1.1. The action nodes can change the state of an activity
model through an execution, thus it specifies the actions executed in an
activity model. The action nodes are the building blocks of an activity
model. For our goal to build an activity model from an unstructured text,
we need to be able to extract these actions from a text and specify them in
our activity model.

Several approaches in literature have earlier tried to extract actions
from texts. Friedrich et al. extract actors, verbs and objects separately
and in a later step combine them to create actions. They make use of the
Stanford Parser, Verbnet and FrameNet to identify actions through gram-
matical relations[24]. Quishpi et al. extract the actions after the conditions
have been selected. The actions are selected through a regular expression
method called Tregex and extracted using semantic role labelling[35].

3.2.1 Extraction explanation
In our approach, we chose to use semantic role labelling (SRL) for the se-
lection and extraction of action nodes. The choice for SRL enables us to
handle more complex sentence structures and give a semantic meaning to
that sentence. This information allows us to make extraction decisions for
our actions and conditions. An explanation of what SRL is can be found in
Section 2.2.1. Based on the roles that SRL can predict in a sentence, we can
extract an actor, verb and object. The roles also give us more information
than just an actor, verb and object combination, such as the adverbial. To

Version of July 9, 2022– Created July 9, 2022 - 15:37

25

26 Methods

give a clear idea about the transformation process we show in Example (1)
a sentence and in the sub-examples its’ rolesets.

(1) A customer brings in a defective computer and the CRS checks the
defect and hands out a repair cost calculation back.
a. [A customer]

ARG0
[brings]
VERB

[in]
ARG3

[a defective computer]
ARG1

...

b. ... [the CRS]
ARG0

[checks]
VERB

[the defect]
ARG1

...

c. ... [the CRS]
ARG0

... [hands]
VERB

out [a cost repair calculation]
ARG1

.

Example sentence[32] with its’ SRL rolesets.

To transform these rolesets into actions we will select the actor, verb and
object and everything in between those in the roleset. Example (1-a) will
start with Arg0 and the end will be Arg1, such that it includes all found
roles. For Example (1-b) it is a similar to the extraction process for the
previous example. For Example (1-c) it is a bit more tricky, because there
is overlap with Example (1-b). In Figure 3.2 we demonstrate the rolesets
as action nodes based on Example (1).

Figure 3.2: Action nodes transformed from a sentence and its’ rolesets.

There are multiple approaches to extracting the information from a SRL
result. One approach is to only select the words that correspond with roles
and remove all other words. The limitation of this approach is that we will
lose meaningful parts of the sentence that might be important to under-
stand the resulting actions. A second approach is to select the roleset and
take everything in between. The challenge of this approach is to define
a way to choose between certain role sets and in the case of an overlap
to combine or split them. We chose to use this second approach because

26

Version of July 9, 2022– Created July 9, 2022 - 15:37

3.2 Action extraction 27

it gave the most meaningful actions and surrounding information about
these actions.

To solve the problem of which roles we should select we have chosen
to select all individual rolesets and in the case of overlapping rolesets, we
combine them into a larger action. Example (1) has two of these overlap-
ping actions, that are Example (1-b) and (1-c). We demonstrate in Figure
3.2 how these combined rolesets will show up in the final action. The data
behind this combined action also holds the information of the found role-
sets, such that we can use them in other transformation tasks. With this
approach, we keep the most valuable information in the actions for later
use. It might not be the correct action, but it does preserve important in-
formation that can be used by a human analyst to rewrite the actions. In
the following subsection, we will describe how the transformation works
on an algorithmic level.

3.2.2 Algorithmic extraction

First, we process the text using a SRL task, the results from the SRL are
then used to extract the actions. In Algorithm 1 we describe how we select
the different SRL results, that we will process into actions. The SRL results
are grouped per sentence and within the sentence, there can be multiple
role sets. The role sets can overlap with another role set, therefore we
need to make a selection of the role set. The selection process is based on
the roleset tags that are given in the SRL result.

Then with these identified rolesets we continue in Algorithm 2. Here
we describe how we process all identified SRL results for a text and build
actions. We have chosen not to include all functions that are referred to
in the algorithm because these are not very important and the name gives
an idea of what it does. Based on the identified roleset tags we identify
several ranges and use these ranges to check if there is overlap between the
rolesets. In the case, that we have found an overlap we make sure to grab
the roleset with the longest tag length to make sure we include everything.
There is one exception, in the case we have an adverbial, we will then split
the result and tag them to reuse the information in the condition extraction
process.

Finally, we end up with a selection of parts of the sentences and have
information about the agent, verb, object and adverbials. These parts are
in most cases the actions we end up with. The information is also pro-
cessed by our reference processing and condition extraction. Where the
reference processing mostly replaces some parts of the sentence with the

Version of July 9, 2022– Created July 9, 2022 - 15:37

27

28 Methods

Algorithm 1 Extract agent,verb,object from SRL results
Require: list semantic role labelling results (srl results)

procedure EXTRACT AVO FROM TAGS(srl results)
text result dict()
for index, tag in srl results do

if tag 6= “O” then
if “begin index” not in text result then

text result[“begin index”] index
end if
text result[“end index”] index
if “ARG0” in tag then

text result[“agent”] begin & end index
end if
if “B-V” in tag or “I-V” in tag then

text result[“verb”] begin & end index
end if
if “ARG1” in tag then

text result[“object”] begin & end index
end if
if “ARGM-ADV” in tag then

text result[“ADV”] begin & end index
end if

end if
end for
return text result

end procedure

28

Version of July 9, 2022– Created July 9, 2022 - 15:37

3.2 Action extraction 29

Algorithm 2 Extract agent,verb,object from SRL results
Require: list semantic role labelling results (srl results)

procedure EXTRACT ACTIONS(srl results)
avo results list
for srl result in srl results do

result avo results list
for srl verbs result in srl result[“verbs”] do

result extract avo from tags(srl verbs result)
if “ADV” in result then

result remove conditional keyword(result)
end if
append result to result avo results

end for
ranges combine or split results(result avo results
for range in ranges do

sel result select result range(range,result avo results)
append sel result to avo results

end for
end for
return avo results

end procedure

Version of July 9, 2022– Created July 9, 2022 - 15:37

29

30 Methods

corresponding reference and the condition extraction mostly interprets the
found condition and action. In the next section, we will further elaborate
on the references and in Section 3.4 we will explain how we extract condi-
tions.

After these processing steps have been finished we will transform the
found sentence results into actions. This is a straightforward process be-
cause the processed text is added to an action node. The creation of the ac-
tion node finalises the action extraction process. In Chapter 4 we demon-
strate how our solution is implemented. For the SRL process, we made
use of SRL BERT which is a transformer-based SRL model and was imple-
mented by Shi et al.[12].

3.2.3 Limitations

The approach we have presented here is bound to some limitations. First
of all the selection of the actions. For each sentence, we extract role sets
and transform these into actions. The selection of these roles is hard be-
cause there can be information in there that we do not need. Therefore we
have chosen to select all the information to make sure we do not lose any
information, but this does not guarantee correct actions.

Another problem based on the identification is the splitting of actions.
Where does a roleset specify the end of an action and should we continue
with the next roleset. There might be actions that should be a combination
of multiple rolesets and actions that should be smaller than a roleset. For
this problem in a conditional structure, we have implemented an approach
that combines separate role sets if there is a ‘and’ between them and it
is part of a conditional structure. We further describe this in the Section
3.5.5.4. Still, this is just one approach, we have seen that there are several
corner cases that need to be addressed.

Next to these identification problems, there is also the limitation of the
construction of actions. We have chosen to keep the text mostly original
and only replace some personal pronouns for clarity (Section 3.3.1). By
keeping the original text we do not lose any textual information, but the
actions can become long and incorrect. Other approaches have chosen to
convert the sentence part to an active form, to make sure the actions stay
concise. This transformation can cause some information to be lost. We
have chosen to not do such a transformation, to keep most information
available in the actions and enable the modeller to easily understand the
actions. Still this is in some ways a limitation for the construction of activ-
ity models.

30

Version of July 9, 2022– Created July 9, 2022 - 15:37

3.3 Reference resolution 31

3.3 Reference resolution
In the process of building a model, the different parts of text are extracted
from their context. An example of this is the creation of actions, we create
an action by extracting it from the text. With that extraction, the surround-
ing text is not there anymore. Thus an action is removed from its context
in the whole text. The extracted action can have several references to or
within the context. These references were clear in the context, but with-
out the context the references in the part of text become unclear or are
lost in the process. Therefore it is important to identify where references
refer to and make sure they are clear. To determine these references and
their referred entities we make use of the NLP task coreference resolution.
We have already explained the theory of coreference resolution in Section
2.2.2.

We identify the different entities using a coreference algorithm devel-
oped by Lee et al. [36]. The algorithm is implemented in the SpanBERT
model, a transformer-based model, which was created by Joshi et al.[37].
We make use of the implementation library of AllenNLP, which we fur-
ther describe in Section 4.3.1. The model can predict spans of text and
couple them to entities they refer to[37]. The outcome of the model is a
set of spans of text that refer to their antecedents in the text. Based on this
outcome we can solve a few tasks:

1. Resolving personal pronouns to entities.

2. Couple similar references to one another.

3. Identify actors.

The approaches that we propose for each task are not completely stan-
dalone. Some of the tasks overlap with one another.

3.3.1 Resolving personal pronouns to entities

Personal pronouns refer to certain entities in a text. If these personal pro-
nouns get extracted from their context it is hard to identify which entities
they refer to. Therefore we need to be able to resolve the personal pro-
nouns to the entities they refer to, which is called an antecedent.

(2) If the customer decides that the costs are acceptable, the process
continues, otherwise she takes her computer home unrepaired.
Coreference example sentence[32].

Version of July 9, 2022– Created July 9, 2022 - 15:37

31

32 Methods

Figure 3.3: coreference example

Algorithm 3 Resolve personal pronouns to entities
Require: dict coreference result, list avo sents

reference results select words refer antecedents(coreference result)
found pers pronouns select personal pronouns(reference results)
main antecedents find main antecedents(found pers pronouns)
tag pronoun antecedent(avo sents,main antecedents)
for avo sent in avo sents do

avo sent[“node text”] replace text coref result(avo sent)
end for

To demonstrate this problem we show Example (2) with the references
to the same entity underlined, namely “the customer”. In Figure 3.3 we
show how this sentence with the personal pronouns replaced would look
like in an activity model. In the action that models the part of the sentence
“otherwise she takes her computer home unrepaired” we have replaced
the word “she” with its antecedent “the customer”. It is possible to still
understand the model with the word “she” because in the alternative path
there is a mention of the word customer. In the case that there would be
multiple alternative paths or with several actions in a larger process, it
might be unclear to which entity “she” is referring. Therefore we have
replaced it with the entity it refers to and will do this for all personal pro-
noun examples.

For the personal pronouns, we would like to know which entities they
refer to. This makes it possible to replace the personal pronoun with the re-
ferred entity. The replacement will make it easier to read and understand
the sentences and the resulting action nodes. There are several personal
pronouns we can look for and replace, but not all personal pronouns can
be replaced in such a way. Therefore we have specified a subset of per-
sonal pronouns we would like to replace, which are ‘i’, ‘we’, ‘he’, ‘she’,
‘you’, ‘they’, ‘it’. Based on these pronouns we replace them with their re-
ferred entity. In Algorithm 3 we describe our approach to replacing these
personal pronouns.

32

Version of July 9, 2022– Created July 9, 2022 - 15:37

3.3 Reference resolution 33

We show in Algorithm 3 how we process the coreference result from
AllenNLP to be able to replace the personal pronouns with their antecedent.
First, we select all found references and filter them on personal pronouns.
Then we select the antecedents of the personal pronouns, in the result, we
keep a combination of antecedents and the pronouns. The antecedents
we select are the “main” antecedents, with this we mean antecedents that
are the main entity. As there are cases where a personal pronoun in one
sentence refers to another. With the “main” antecedent we keep travers-
ing the tree until we found the first mention of the antecedent. This does
not ensure the antecedent is not a personal pronoun, but in most cases,
it is replaced. Then we tag the pronoun-antecedent combination in the
avo sents. The avo sents are all results that we have selected from our SRL
result as possible actions. Finally based on the found pronoun-antecedent
combination we build the text for the node based on the text with the ref-
erence replaced by its antecedent. In the case there was not a coreference
in the avo sent, we keep the original text. Through this approach, we can
resolve the different personal pronouns and build understandable action
nodes.

3.3.2 Cluster references

For condition extraction, we need to understand if certain sentences refer
to the same entity. Therefore our approach needs to be able to cluster the
different results that we use within our transformation process. To be able
to do this we make use of the coreference results, we generated for the
personal pronouns.

In Algorithm 4 we demonstrate our approach to tag the different clus-
ters in our avo sent results. We process the cluster data we receive from
the AllenNLP coreference model. Then we order the coreference results
per sentence, with the order we go through the avo sents and check if
there is an overlap with the range of the cluster and the avo sent. If there
is an overlap we append the cluster id to the avo sent. Through this ap-
proach, we can tag the different clusters in our results. In the condition
extraction, we further explain how we use the cluster id to link the results
together.

3.3.3 Actor identification

To understand the responsibilities within an activity model it is impor-
tant to identify the different actors in a model. With these responsibilities,

Version of July 9, 2022– Created July 9, 2022 - 15:37

33

34 Methods

Algorithm 4 Cluster results
Require: dict coreference result, list avo sents, string text

clusters coreference result[“clusters”]
cluster per sent organise cluster per sent(clusters,text)
for avo sent in avo sents do

if avo sent[“sent index”] in cluster per sent then
sent range range(sent begin,sent end)
for cluster in cluster per sent do

if overlap cluster.range and sent range then
append cluster.id to avo sent[”coref id”]

end if
end for

end if
end for

we can create swimlanes, which we briefly discussed in Section 2.1.1. We
have not implemented swimlanes in our model and editor but could do
this with the actors that we have identified. From a sentence structure
perspective, this is often the subject of a sentence. To be able to extract
such an actor we can use the SRL results from our AllenNLP model. In
Section 2.2.1 we demonstrated the general definitions of all roles in a SRL
result. The tag Arg0 in the roleset defines the proto-agent role, that is in
most cases the entity that executes the action defined in the role. Therefore
as a way to identify an actor in an action, we make use of the Arg0 for each
SRL result.

The identification of actors was not a goal of our solution, therefore the
solution we present is an example and not a perfect solution. For good
results, we suggest that Named Entity Recognition and Coreference clus-
tering should be added. In our prototype, we do not make use of this,
because our main focus is on building activity models.

In Algorithm 5 we demonstrate how we select the actors. It is a fairly
straightforward process. Within each avo result there is a collection of the
outputs from the SRL tagging. We use these outputs to extract the data
for the actors and use the Arg0 selected by the SRL tagging. Finally, in
the process of building a node, we check if there is a “actor” key in the
avo sent. In the case that there is one, we remove it from the node text
and add it in front of the node text and then build a node. This creates
in a node a clear specification of the responsibility. This approach could
be extended to build swimlanes, which are structures within an activity
model to denote responsibilities.

34

Version of July 9, 2022– Created July 9, 2022 - 15:37

3.3 Reference resolution 35

Algorithm 5 Select swimlanes
Require: dict avo results

for avo result in avo results do
for srl result in avo result[“avo results”] do

if “agent” in srl result then
avo res[“actor text”] srl res[“agent”][“words”]
avo res[“actor range”] srl res[“agent”][“range”]

end if
end for

end for

3.3.4 Limitations

The limitations of the references are based on the three main tasks. For the
resolving of personal pronouns, there are the incorrect personal pronouns
that have been incorrectly replaced. In this aspect, some improvements
should be on the specification of how we identify the personal pronouns
and also on the model that predicts them. Another limitation with the
personal pronouns is that in some cases the coreference cluster picks up
an entity that should replace the personal pronoun, but the actor identifi-
cation that we have done selects more than just the actor. Thus resulting
in an incorrect action.

For the clusters, we found some examples where the incorrect cluster
was predicted. On further investigation, we found out that it was not the
fault of the model that predicted the cluster, but a human mistake in the
specification of the antecedent. The pronoun was incorrectly specified as
they instead of he or she, this problem is demonstrated in Section 5.3.2 at
Problem 1.. Thus it is important to not forget the human aspect within
these limitations.

Finally, our actor identification is a limitation, because some of the ac-
tors are incorrectly extracted. We already mentioned this previously, be-
cause it is just a demonstration. The incorrect actors are the result of our
simple approach based on the Arg0 role from the SRL roleset. This needs
to be further improved to identify the correct actors and make sure the
actors are actors and not just the subject of a sentence.

Version of July 9, 2022– Created July 9, 2022 - 15:37

35

36 Methods

Figure 3.4: Example of conditional nodes transformed from two sentences.

3.4 Condition extraction

Within activity models, there are several types of nodes. One of them is a
diamond-shaped node that specifies a decision node. The decision node is
a node that can split the incoming flow into multiple flows. It has exactly
one incoming flow and one or more outgoing flows. A merge node (simi-
lar shape) is the opposite, it can have multiple incoming flows and exactly
one outgoing flow. On the edges (flows) between these nodes, there can
be a text, which is called a guard. The guard depicts a condition that must
be true to follow that path of the flow. In Figure 3.4 we show what such a
decision node with its guards can look like.

In our transformation approach, we need to be able to identify a con-
dition and its alternative conditions to model them in our activity model.
With these conditions, we model them as a structure of conditions as shown
in Figure 3.4. Each condition is a flow with a guard. Another important
aspect is to identify which actions are part of a conditional flow and which
belong to an alternative flow or should not be within the conditional struc-
ture.

In related literature, there are several approaches to extracting condi-
tions and building certain conditional structures. In the preprint work of
Hematialam et al., a model is proposed to predict conditions and their fol-
lowing actions in healthcare texts by using pre-trained transformer mod-
els and logistic regression[38]. Unfortunately, the models are specifically
trained on medical prescription guidelines and would not perform very
good on other types of text. Friedrich et al. make use of a rule-based ap-
proach, where they make use of conditional markers[24]. Their standard
approach is when a marker is just a single marker, the word following it
will be a gateway of the marker type e.g. condition. In the case of a con-
ditional marker in a “mark” relation in the dependencies results from the
Stanford parser, they consider the adverbial as a condition. Another ap-

36

Version of July 9, 2022– Created July 9, 2022 - 15:37

3.4 Condition extraction 37

Conditional markers Words
Friedrich et al.[24] if, whether, in case of, in the case of, in case, for

the case, whereas, otherwise, optionally
Our markers if, whether, in case of, in the case of, in case, for

the case, optionally
Table 3.1: Overview of conditional markers

proach from Ferreira et al. defines several rules to identify certain business
process elements[39]. The rules make also use of signal words and specific
language structures to identify BPM gates, which are similar to decision
structures.

A generic approach would be to build and train a machine learning
model to predict conditions and their actions. Unfortunately, as we men-
tioned in Section 2.4 there are not many datasets of requirement texts avail-
able to train a model, therefore requirements texts with annotated condi-
tions are even more uncommon. Based on the mentioned approaches and
the lack of an annotated requirements dataset, we will use a combination
of NLP models and conditional markers.

In Table 3.1 we show the set of conditional markers by Friedrich et al.
and ours. Ferreira et al. define a similar set to the one of Friedrich et al.
with some extra words, but we have experienced that the set of Friedrich
et al. is sufficient. In the future, we might extend the set of words. We did
remove some markers, which are ‘whereas’ and ‘otherwise’. We still use
‘otherwise’ as a marker but in another way. We consider it to not have a
condition following it because in most cases ‘otherwise’ defines an alter-
native action and does not introduce a new condition. In the next section,
we demonstrate how we handle the ‘otherwise’ cases. Next to these in-
dicators, we make use of the semantic roles provided by the SRL model
from AllenNLP. Specifically, we look in these roles for adverbial clauses.
We consider similar to Friedrich et al. that if we find an adverbial clause
in combination with a conditional indicator we have found a condition
and action. We also consider roles without the adverbial clauses, and we
demonstrate this in the next section.

3.4.1 Condition identification

To demonstrate our identification process we will show two examples.
Each with its’ unique problems and context. After the two transforma-
tions, we will present an overview of our extraction algorithm in Section

Version of July 9, 2022– Created July 9, 2022 - 15:37

37

38 Methods

Figure 3.5: Example (3) transformed into an activity model

3.4.2. We first start with Example (3). The first line is the sentence that
we will process then the sub-examples are the different SRL roles for the
sentence.

(3) If the customer decides that the costs are acceptable, the process
continues, otherwise she takes her computer home unrepaired.
a. If [the customer]

ARG0
[decides]
VERB

[that the costs are acceptable]
ARG1

...

b. ... [the costs]
ARG0

[are]
VERB

[acceptable]
ARG1

...

c. [If the customer decides that the costs are acceptable]
ARGM-ADV
[the process]
ARG1

[continues]
VERB

...

d. ... [otherwise]
ARGM-DIS

[she]
ARG0

[takes]
VERB

[her computer]
ARG1

[home]
ARGM-DIR

[unrepaired]
ARGM-PRD

.

Example sentence[32] with SRL rolesets.

In our transformation approach, we need to be able to interpret such a
piece of text. As previously mentioned we make use of a list of conditional
markers and semantic role labelling roles. The sentences in Example (3)
can be transformed into an activity model that we show in Figure 3.5.

In Example (3) we can use the conditional indicator ‘if’ to identify that
there is a condition. Then to extract the condition we make use of the first
semantic role that follows the indicator which is Example (3-a). Then we
need to consider Example (3-b), but it is a subset of the earlier example. So
we skip it. The next role set Example (3-c) specifies an adverbial with the
tag ‘ARGM-ADV’. The adverbial specifies that there is a relation between
the found condition in Example (3-a) and the next set of SRL tags in Ex-
ample (3-c). This adverbial clause can be used to couple the condition and

38

Version of July 9, 2022– Created July 9, 2022 - 15:37

3.4 Condition extraction 39

following action. Through this approach, we can identify a condition and
its following action. Then in Example (3-d) there is an alternative path for
the condition. This alternative path specifies the condition “the costs are
not acceptable”, but does this implicitly. We identify this path, by looking
for other conditional indicators, in this case, we have the word ‘otherwise’.
This indicates as we have earlier mentioned a conditional keyword that
only specifies an action. After this sentence, we have found all the con-
ditions and actions for the example. To define where we should end our
search process, we search for flow terminations and alternative flows. We
explain these concepts in Section 3.5.4 and 3.5.5.

Another example with two conditions in separate sentences is shown
in Example (4) and (5). In Figure 3.4 we show the activity model that
models these sentences.

(4) If the part is available in-house, it is reserved.
a. If [the part]

ARG0
[is]
VERB

[available]
ARG1

[in - house]
ARGM-LOC

...

b. ... it [is]
VERB

reserved.

c. [If the part is available in - house],
ARGM-ADV

[it]
ARG1

is [reserved].
VERB

Example sentence[32] with its’ SRL rolesets.

(5) If it is not available, it is back-ordered.
a. If [it]

ARG0
[is]
VERB

[not]
ARGM-NEG

[available],
ARG1

...

b. [If it is not available],
ARGM-ADV

[it]
ARG1

[is]
VERB

[back - ordered].
ARG2

c. ... [it]
ARG1

is [back]
ARGM-DIR

- [ordered].
VERB

Example sentence[32] with its’ SRL rolesets.

Example (4) and (5) are two sentences that follow one another. The con-
dition and action identification can be done in the same way as we did
for the previous example. We use the conditional indicator, to identify the
condition and the adverbial to find the following action. The difference
in these examples is that there is not a clear definition of the alternative
path. In the previous Example this was denoted by the word ‘otherwise’,
but here the alternative path is the second condition. It is important to
be able to identify the second condition such that we can use it as an al-
ternative path. As a human, it is easy to see the contradiction between

Version of July 9, 2022– Created July 9, 2022 - 15:37

39

40 Methods

the two sentences because the two conditions contradict one another. For
a computer, it is not that easy as it needs some way to know the condi-
tions contradict one another. This could be achieved through using the
‘ARGM-NEG’ tag which specifies a negotiation in the condition. Never-
theless, there can be situations where an implicit contradiction is made,
in that case, there would not be an ‘ARGM-NEG’ available. To be able to
handle these contradictions we make use of an NLP task called entailment
or natural language inference. We have explained the theory of entail-
ment in Section 2.2.3. With this model, we can compare the two sentences
to identify if they contradict one another. In the case that there is a con-
tradiction we have found an alternative path. In Section 3.5.5 we further
explain how we use the result from the entailment task to identify these
alternative paths and conditions.

The transformation examples we have demonstrated are the main ap-
proach that we use to transform the text into conditional structures for an
activity model. Next, we will discuss how we do this in an algorithmic
approach.

3.4.2 Algorithmic transformation

In the previous section, we have demonstrated how we can extract text
and transform it into an activity model. In this section, we will demon-
strate how we do this in an algorithmic approach. In Algorithm 6 we
show how we identify the conditions and their following actions.

We first select the sentences with conditional keywords, which are the
keywords shown in Table 3.1 with the empty conditional keywords added.
In our case, this is only ‘otherwise’. After we have selected the sentences
and the begin and end index of the conditional indicators, we process this
data per sentence and then per indicator. For each indicator, we search
the SRL tags to try to identify an adverbial after or before the conditional
indicator. In the case that we do find an adverbial sentence, we have the
combination with the following action. We extract the begin and end index
of the condition and action and add them to the results. For the case,
where we did not find an adverbial we try to find a role set that is near the
conditional keyword. In the case we found a role set, we denote this as the
condition. The next part is to find the roleset that is just after the condition,
in most cases, this is the action following the condition. There are cases
where we can’t find the following action then we leave the action empty
and return the condition. In the case of an empty conditional keyword, we
return an empty condition but do return a filled action.

40

Version of July 9, 2022– Created July 9, 2022 - 15:37

3.4 Condition extraction 41

Algorithm 6 Collect condition action data
Require: dict srl results, string text

condition action results list
condition sentence data select sentences with conditions(text)
for sent id in condition sentence data[“sentence ids”] do

cond ind condition sentence data[“indicators”][sent id]
for cond indicator in cond ind do

begin index, end index conditional indicator
adverb data search adverbial(begin index,end index)
if adverb data then

action data get srl result(adverb data)
condition action results.append([adverb data, action data])

else
cond result get srl result(begin index,sent id)
action result get srl result(cond result.end index,sent id)
condition action results.append([cond result, action result])

end if
end for

end for
return condition action results

Version of July 9, 2022– Created July 9, 2022 - 15:37

41

42 Methods

The action data we generated from the text and have shown in Section
3.2 is used in the condition and action process. We use the identified con-
ditions and actions to tag them in the action data. An action data result is
tagged if there is an overlap of the index between a condition or action that
we have identified. We tag this result with the word ‘condition’ or ‘action’
accordingly. Furthermore, we also add the conditional indicator, to make
sure we can reuse it if needed. In Section 3.5.5 we further specify how we
handle multiple conditions and how we couple the correct ones using en-
tailment. In Section 3.5.4 we demonstrate how we specify terminations in
conditional structures.

3.4.3 Limitations
There are some limitations to the demonstrated condition extraction ap-
proach. First, there are examples where the condition or action is not cor-
rectly tagged. The approach is very dependent on the sentence structures
and conditional keywords, but the dependency does not by definition pro-
vide the correct results. There could be other conditions and actions in one
or more sentences. These limitations need to be taken into account when
looking into the final results.

3.5 Sequence identification
Sequence or path identification is a complex task in the transformation
of text into activity models. By sequence identification, we mean the se-
quence of actions that are specified in a text. Based on the possible struc-
tures in activity models and earlier work we define the following paths:

1. Sequential paths.

2. Repetition paths.

3. Parallel paths.

4. Termination paths.

5. Conditional paths.

We will describe for each path type how we identify and handle the
paths. For the repetition and parallel paths, we have not implemented a
solution, therefore we will describe a possible implementation. The con-
ditional path is the most extensive because there we have put most of the
effort into.

42

Version of July 9, 2022– Created July 9, 2022 - 15:37

3.5 Sequence identification 43

Figure 3.6: Action nodes transformed from a sentence and its’ rolesets.

3.5.1 Sequential paths

By sequential path, we mean a path of actions that follow one another.
One could argue these are the normal path cases, where it is clear which
action follows the previous action and the order is chronological. In our
case and similar to other research contributions, we assume that the text is
written in chronological order. From this assumption we can process the
actions in the order they are written when we go through the text from the
beginning to the end. There are corner cases to this approach, for example
with references that refer to previously defined actions. For all actions
where we cannot identify another type of path, like conditional, repetition
or parallel, we process them in sequential order. For our solution, this
means that, when in a text first action ‘X’ is described and then action ‘Y’
is described, in the final solution action ‘Y’ will come after action ‘X’. With
this approach, we can make sure the chronological order of the text keeps
existing and the sequential paths. To give an example of how this would
look like we present Example (6) that we transform into the activity model
shown in Figure 3.6.

(6) A customer brings in a defective computer and the CRS checks the
defect and hands out a repair cost calculation back.
Example sentence[32] with its’ SRL rolesets.

3.5.1.1 Limitations

The processing approach of sequential paths is fairly simple, as we take
the actions in the order we have found them. A limitation to this approach
are the actions that are processed through this approach but should have
been processed in another way. Such as a repetition, condition or parallel

Version of July 9, 2022– Created July 9, 2022 - 15:37

43

44 Methods

Figure 3.7: An example of a repetition based on Example (7).

way. This is the effect of our solution not being able to identify the correct
paths in the text.

3.5.2 Repetition paths
Another important type of path in a text is repetition. A repetition refers
back to an earlier mentioned action and makes sure the action or set of ac-
tions is repeated. Repetitions are also present in activity models, therefore
it is important to be able to identify these. In our approach, we did not
implement this approach but defined a way it could be implemented.

(7) The storehouse immediately processes the part list of the order and
checks the required quantity of each part. If the part is available
in-house, it is reserved. If it is not available, it is back-ordered. This
procedure is repeated for each item on the part list.
Example[32] sentences for a repetition.

To process a repetition, as shown in Example (7), it is important to first
identify that something has to be repeated. Then we need to understand
what will be repeated. So the problem is two-fold, an identification prob-
lem and a reference problem. To demonstrate how this would look like
in an activity model we present Figure 3.7. Here we have presented the
repetition path with a guard returning to the earlier decision node where
the parts are being reserved and ordered.

For the identification problem, we can make use of keywords that spec-

44

Version of July 9, 2022– Created July 9, 2022 - 15:37

3.5 Sequence identification 45

ify a repetition. In Friedrich et al. they specify the following set of repe-
tition words: ‘next’, ‘again’ and ‘back’ [32]. Besides these keywords, we
propose to add the word ‘repeat’. With these words, we can identify that
there is repetition within a certain sentence. For example in Example (7)
this is the verb ‘repeated’.

Then the next part is to resolve the reference to the action that should
be repeated. In Example (7) this would be the process of checking the
required quantity of each part and then reserving or back order it. The
reference to the earlier action is indicated by the word ‘this’. We need to
be able to couple the word ‘this’ to the earlier action. The most common
approach to identify this is to use a coreference model to resolve the refer-
ence. Such reference resolutions are good at processing references to per-
sons and entities. An important aspect of repetition references are demon-
strative pronouns, which are pronouns such as ‘this’, ‘that’, ‘these’ and
‘those’. However as recent research has shown the performance to resolve
demonstrative pronouns is quite poorly, which is mostly caused by the
low number of demonstrative pronouns in the training datasets in com-
parison to other pronouns[40]. Many repetition references are denoted
using demonstrative pronouns, therefore the low performance makes this
approach not usable. Another approach could be through using certain
relations between the sentences, but this has to be on the text level instead
of the more common sentence level. We could use only the references that
coreference is currently able to handle, but then a large number of repeti-
tions will be missed.

To be able to process repetition paths with certain confidence we need
better tools and models to annotate and understand a text. In the case that
coreference is also able to handle demonstrative pronouns, the approach
can be used to handle repetition with more confidence than we currently
can.

3.5.3 Parallel paths

Parallel paths are two or more paths (flows) that are executed simultane-
ously. To identify the path that specifies the parallelism we can also make
use of keywords. The sentence that specifies the parallelism is in most
cases referring back to previous sentences. The challenge is to identify
the sentences and actions it refers to, to be able to create a correct parallel
structure. To show this challenge we present Example (8).

(8) Hotel example with a parallel path.

Version of July 9, 2022– Created July 9, 2022 - 15:37

45

46 Methods

Figure 3.8: Example of a parallel structure.

a. She then submits an order ticket to the kitchen to begin prepar-
ing the food.

b. She also gives an order to the sommelier (i.e., the wine waiter)
to fetch wine from the cellar and to prepare any other alcoholic
beverages.

c. Finally, she assigns the order to the waiter.
d. While the kitchen and the sommelier are doing their tasks,

the waiter readies a cart (i.e., puts a tablecloth on the cart and
gathers silverware).

Example[32] sentences defining a parallel path.

In Example (8) multiple sentences are part of the repetition. The sen-
tences are stated in this order, one sentence has been removed because
it was a sentence that did not describe an action. In sentence (8-d) the
parallelism is specified and the reference to the earlier sentences are con-
structed, with ‘the kitchen’ and ‘the sommelier’ referring the to same en-
tities in sentence (8-a) and (8-b), therefore the tasks mentioned in sentence
(8-d) are the tasks performed in sentence (8-a) and (8-b). Next to the spec-
ification in sentence (8-d), there is also an action performed by the waiter,
this action is being performed in parallel to the referred actions. If the sen-
tences were transformed into an activity model, this would look like the
activity model shown in Figure 3.8.

Our approach to process this would be to identify the sentence with a
parallel keyword: ‘while’. Then we extract the sentence structure through
SRL results and use a coreference model to identify the three entities: ‘the
kitchen’, ‘the sommelier’ and ‘the waiter’. The SRL results enable us to
identify the parallel actions, that can be found in the SRL role that follows
the parallel keyword. Then the SRL enables us to identify the second ac-
tion in the same sentence. To combine all referred sentences we can use a
coreference model to find the previous references to the entity mentioned
in the parallel sentence shown in sentence (8-d). A problem with this ap-
proach is where should we stop identifying sentences that should be part

46

Version of July 9, 2022– Created July 9, 2022 - 15:37

3.5 Sequence identification 47

Figure 3.9: Example of a condition with a termination.

of the parallel system. In the text where Example (8) is taken from the
sentence before sentence (8-a) does not contain a reference to any of the
entities that we consider in sentence (8-d). With this knowledge, it would
be easy to state that we can stop, if we do not find any references to the
entities we are considering. Although at first, this might seem like a good
solution it is not a generic one, because there could be certain references
that should not be on the parallel path. Therefore the proposed approach
would not transform the text into a ‘correct’ solution and might even in-
troduce more vagueness to the resulting activity model.

A way to solve this would be to understand the text and understand
where the parallelism starts and stops. There might be an approach that
we have not considered yet, but they do not exist in our current under-
standing. Future improvements with transformer models might be able to
provide better solutions. Also, the current developments in the datasets
in the research area, as mentioned in Section 2.4, are a promising area to
provide a result for this solution.

3.5.4 Path terminations

Path terminations are places where the flow stops. These are important
to specify because there are places where the process should no longer
continue. In Figure 3.9 we show an example of what such a termination
would look like.

The black circle in Figure 3.9 is the node that ends the activity flow.
The termination is clearly stated with the word ‘cancelled’, as it shows the
process needs to stop. This can easily be handled with a keyword-based
approach. Unfortunately with a keyword-based approach, we are not al-
ways sure to terminate a process, because there can be scenarios where the
termination keyword does not mean to terminate the flow. For example in

Version of July 9, 2022– Created July 9, 2022 - 15:37

47

48 Methods

the sentence in Example (9).

(9) If the storehouse has successfully reserved or back-ordered every
item of the part list and the preparation activity has finished, the
engineering department assembles the bicycle.
Example[32] sentence with a non termination keyword.

In the shown example the word ‘finished’ does finish the preparation ac-
tivity, but the process is not finished. Another example where we should
identify a termination is in the case of an implicit end of the process. In
Example (10) we show a sentence with an implicit termination.

(10) If the customer decides that the costs are acceptable, the process
continues, otherwise she takes her computer home unrepaired.
Example[32] sentence with an implicit termination.

The part following the word ‘otherwise’ introduces an implicit termina-
tion. The implicit termination is clear for a human to understand, because
of the context of the sentence. For our system, there is not a clear end to
this process. This is important to realise because we would need to under-
stand the context to identify this termination. For both Example (9) and
(10) we need further context to understand if we should stop the process.

For our implementation, we are not going to solve the problem for Ex-
ample (10) because we need a clear context to create a termination and
we do not have the models to do this. For Example (9) we can process it
by skipping this mention of ‘finished’. To do this we have chosen to only
process termination keywords if we are in a conditional structure that has
at least a second flow to continue the process and the termination hap-
pens inside an action. In all other cases, we skip the termination keyword.
This way we can handle terminations in the clearest examples and do not
terminate the process too early.

To identify the final node we make use of a list of termination key-
words. The list might need to be updated in the future, but for now, we
consider the following words: ‘cancel’, ‘finish’, ‘stop’. Using these key-
words we can identify terminations and process them accordingly.

3.5.4.1 Limitations

The first limitation is the choice to only create termination nodes when we
have a conditional path. There should also be terminations in the model
when we are dealing with a normal path. We chose to not do this be-
cause the model would create loose ends. Thus the model would not be

48

Version of July 9, 2022– Created July 9, 2022 - 15:37

3.5 Sequence identification 49

completely linked and in some cases, this must be. So here we need to im-
prove our approach, to make sure we can also create terminations in other
cases.

A second limitation is the way we identify the terminations. We chose
to use keywords, and stick to paths that have an alternative path. To make
this approach more robust, there should be a way to identify the mean-
ing and understand if a termination keyword really terminates the pro-
cess. Through that approach, we can create better terminations within the
model.

3.5.5 Conditional paths
A conditional path is a flow with a guard and some actions, the flow starts
at a decision node. Conditional paths are a set of multiple of these flows
that offer multiple views on the same subject in a condition. In Section
3.4 we already discussed our condition identification and extraction ap-
proach. Here we will further explain how we combine the identified con-
ditions and make sure they are conditions that refer to the same subject.
We have identified three types of conditions in a text that we need to be
able to handle. These different types each have their approach to compare
them and identify if they need to be merged using a decision node.

1. Sequential conditions.

2. Conditions spread throughout the text.

3. Conditions without an explicit alternative condition.

4. Actions in a conditional path.

For each of these types, we will demonstrate an example in text and
then how we combine the identified conditions using our coreference and
entailment approaches.

3.5.5.1 Sequential conditions

With sequential conditions, we mean conditions that follow one another in
the text. To demonstrate such a condition we show Example (11). Where
the first condition is stated in the first sentence and in the next sentence
the second condition is stated.

(11) Conditional sentences from the bicycle example [32].

Version of July 9, 2022– Created July 9, 2022 - 15:37

49

50 Methods

Figure 3.10: Example of conditional nodes transformed from Example (11)

a. If the part is available in-house, it is reserved.
b. If it is not available, it is back-ordered.
Example[32] sentences to show a sequential conditional structure.

The sentences from Example (11) can be transformed into an activity
model, which we show in Figure 3.10. In Example (11) we have under-
lined the two conditions. As previously mentioned with our approach we
can identify these conditions and their actions. The second sentence in the
example directly follows the previous sentence in the text it is taken from.
Therefore we can with almost certainty identify that they are referring to
the same condition and defining two conditional paths. To ensure the sen-
tences contradict one another, we make use of textual entailment, which
we explained in Section 2.2.3. We compare both conditions with the textual
entailment model, which can predict if the sentences are a ‘contradiction’,
‘entailment’ or ‘neutral’. We store the prediction from the textual entail-
ment in the data we keep about the conditions. For the case, we found a
contradiction we combine the two conditions with a decision node. The
actions we found next to the condition we push behind the decision node
and its corresponding condition guard.

3.5.5.2 Conditions spread throughout the text

Another type of condition is a set of conditions where the condition sen-
tences have other process text in between them. For example when condi-
tion ‘A’ has been stated, then a lot of other process text is described for that
particular process, after that condition ‘B’ is defined. In that case, we need
to be able to combine conditions ‘A’ and ‘B’, to build a correct conditional
structure. To give a clear idea we use Example (12).

(12) Conditional sentences from our example.

50

Version of July 9, 2022– Created July 9, 2022 - 15:37

3.5 Sequence identification 51

a. A customer enters an order.
b. If the order total is more than 10.000 euros, the order needs to

be approved by the manager.
c. If the order is not approved, it is cancelled.
d. If the order is approved, or the total is less than 10.000, the in-

ventory manager allocates the stock.
e. If the stock level is too low, the product is reordered.
Examples of text with conditions.

Within the example, we have underlined the two conditions we mean to
show as an example. The conditions are not directly following one an-
other, because there is another sentence in between and even a second
condition structure, which is the order approval and the scenarios where
it is approved or not approved. The order approval condition can be pro-
cessed using the technique we previously proposed for Example (11). The
condition that we have underlined needs to be solved differently. To do
this we need to understand that the conditions are focusing on the same
subject, in this case, ‘the order total’. We can identify this reference using
a coreference model. From the coreference model, we can use the found
coreference clusters which we discussed in Section 3.3.2. The coreference
clusters are tagged in each action result, therefore we can use the action
results that are tagged as conditions and if there is a cluster similarity
we can compare the conditions. The comparison can be made using the
textual entailment model. In the case of a contradiction, we can almost
accurately combine the conditions. For such cases, we first try to find a
follow-up condition, if we can’t find any conditions in the sentence after
its’ specification we use the coreference clusters.

In Figure 3.11 we demonstrate how Example (12) would look like as
an activity model. We have drawn a red box around the condition that
we coupled to the earlier condition using coreference. With the entail-
ment and coreference approach, we can handle more complex structures
to build our activity models.

3.5.5.3 Conditions without an explicit alternative condition

Lastly, we need to be able to handle conditional paths if we could not
find an alternative conditional path. In that case, we probably missed an
implicit conditional as we also describe in Section 3.4.1. We know that
our solution will not be able to give 100% correct solutions and as ear-
lier mentioned this is not the goal. Therefore in the case, we could only
find one condition we create an alternative flow to the merge node that

Version of July 9, 2022– Created July 9, 2022 - 15:37

51

52 Methods

Figure 3.11: Example of a condition with a termination.

comes after the last action in the conditional path. This alternative flow
will then be defaulted to have the guard ‘[else]’ on it, with this flow our
model will specify conditional structures and handle missing conditions.
To view what this would look like we show an example in Figure 3.12,
where we could only find one condition. The user can change the flow
to point to the correct following action or change the guard in our editor,
which we further demonstrate in Section 4.3.4.

3.5.5.4 Actions in a conditional path

In the previous sections, we have demonstrated how to combine the differ-
ent conditions. Another important aspect of these conditions is to be able
to identify where a conditional path stops and continues with the next
one. In the previous examples, the end of a conditional path and action
was clear, because we only considered the first found agent verb object
result as the following action. In the scenario, where we found another
conditional keyword we would consider it as an alternative conditional
path. For the final conditional phrase, we need to be able to identify when
we do not consider new actions. It is hard to identify this because there
are no clear markers and easy ways to do this. Therefore we have cho-
sen to only use the first found result. Through the tests that we ran, we
found corner cases of different actions that should be part of the structure.
Most of these results were coupled using conjunctions. In Example (13)
we show such a conditional path with actions that should be combined

52

Version of July 9, 2022– Created July 9, 2022 - 15:37

3.5 Sequence identification 53

Figure 3.12: Example of a condition with a termination.

through their conjunction.

(13) a. If the assessment is positive, a garage is phoned to authorise
the repairs and the payment is scheduled (in this order).

b. Otherwise, the claim is rejected.
Conditional example with a conjunction[32]

To be able to handle such cases we extended our approach with the search
for a conjunction before stopping the search for a follow-up action. We do
this by a comparison of each agent verb object result with the result that
entails them. If there is an ‘and’ in between the two results in the sentence.
We tag both results with a key to identify the relation and the conjunction
word. The key specifies the beginning for the first action and the end
for the following action with the words “and-conj-begin” and “and-conj-
end”. Through this approach we look for “and-conj-end” when building
the conditional structure, if there is such a key in the agent verb object
result we know it was coupled to the previous condition or action. With
this approach we can build conditional structures such as in Figure 3.13,
thus processing more complex conditional structures.

3.5.5.5 Limitations

The demonstrated approaches are quite good at comparing the examples
and finding contradictions. A limitation of these approaches is that not all
conditional structures always have contradictions. There can also be other
statements in the conditions. Therefore the approach is in some cases, not
the best. For the best results, an analysis of the whole text that returns the

Version of July 9, 2022– Created July 9, 2022 - 15:37

53

54 Methods

Figure 3.13: Example of a conditional path with a conjunction between two ac-

tions based on example (13).

paths within a text would be a better result for identifying the conditional
paths and building the structures.

3.6 Activity model construction
After all of these transformation tasks, the final task is to combine all of the
collected information into an activity model. The information is stored in
a list called avo sents, which we have mentioned in some of the previous
sections. The data stored in the avo sents is in chronological order. There-
fore we go through the list of elements in avo sents and create a node or
multiple nodes for each element. The elements in avo sents are dictionar-
ies, such that we can store different types of information there.

There are several pieces of information stored in each avo sents ele-
ment. The most important ones for the creation of the model are:

1. Text for the node.

2. A tag for condition.

3. The conditional keyword.

4. A tag for the action following a condition.

5. The coreference cluster id.

6. The NLI value with its’ neighbour.

54

Version of July 9, 2022– Created July 9, 2022 - 15:37

3.6 Activity model construction 55

7. The NLI value for the coreference neighbours.

8. The SRL results for all the data in this element.

We process each of the avo sents elements in the order they are pre-
sented, which is the chronological order. In the case of a normal action,
we process it by creating a new node and binding it with an edge to the
previous node. Finally, we update the previous node.

For the cases that we have a ‘conditional’ key in the avo sents element,
we process a subset of the avo sents starting at the element with a ‘condi-
tional’ key. We use the information we presented in the enumeration for
building everything. We keep track of all the created decision and merge
nodes, such that we can use them for special conditions. After the condi-
tional structure has been created we continue with the last element. The
last created merge node is the node we set as the previous node.

In the case of a special condition that refers back to an earlier condition
through reference, we use the set of created decision and merge nodes. We
use it to connect our coreference condition back to the previous condition.
Then we take the corresponding merge node and set it as the previous
node. We then continue with the avo sents result that follows the result
we just used.

Finally, we go through the model as a whole and add to all the decision
nodes with only one outgoing edge an extra ‘[else]’ edge that connects to
the first found merge node. After that we search the whole model for
merge nodes with only one incoming edge, we remove these merge nodes
and connect the incoming edge to the outgoing edge.

This process enables us to build an activity model based on the data
that we have collected during our earlier described methods. Finally, this
data is saved to the database in our system, which we will further explain
in the next chapter on our system design.

Version of July 9, 2022– Created July 9, 2022 - 15:37

55

Chapter 4
System design

In this chapter, we will specify how our system has been set up and which
components contribute to the process within the system. Different from
standard research practices, the software that we build will be used and
form the basis for other research projects in the future. Therefore we had to
build a system that can be extended, upgraded and reused. These require-
ments are the reason for the extensive description of the system design in
this chapter.

To begin, we will explain the environment our system operates in, in
Section 4.1, because our system is part of a larger software solution. Then
we discuss the logical design of the solution in Section 4.2. Finally, we end
the chapter with the technical design of the solution in Section 4.3.

4.1 Environment of the solution

The proposed solution is part of a larger environment. This environment
is a combination of several projects, each to help users create better re-
quirements. The whole environment is called P2P which is short for Prose
to Prototype, which points to the written documents we transform into
UML models. The vision for the P2P project is described in the paper
of Ramackers et al., which describes the different components in more
detail[41]. From the paper, we have taken the logical architecture for all
the components and show it in Figure 4.1.

As shown in Figure 4.1 several components together create the whole
P2P System. The solution we propose in this research makes use of many
of these components and is an extension of some components. Specifically,
our solution introduces new additions for the specification mapping, the

Version of July 9, 2022– Created July 9, 2022 - 15:37

57

58 System design

Figure 4.1: Prose to Prototype Architecture[41]

artefact management and UML modeller components. In the next sec-
tions, we will elaborate on how our solution is defined and adds to these
existing components.

4.2 Logical Design

The logical design of our solution is an overview of the functions that our
system provides. A schematic overview of this is shown in Figure 4.2.

The architecture consists of 3-tiers a presentation, application and per-
sistence tier. Each tier has its’ own responsibilities. In the following sec-
tion, we will describe what each tier does and how it is part of the archi-
tecture.

4.2.1 Persistence tier

The persistence tier holds all the data for the applications. There are two
main functionalities for the persistence tier. The first is to store all the re-
quirements texts that have been given as input. These texts can be reused
in other tasks and might be useful for comparison with the generated mod-

58

Version of July 9, 2022– Created July 9, 2022 - 15:37

4.2 Logical Design 59

Figure 4.2: Logical architecture of our solution.

Version of July 9, 2022– Created July 9, 2022 - 15:37

59

60 System design

els. The second functionality is the storage of the generated activity mod-
els.

4.2.2 Application tier

The application tier is the tier where most of the processing takes place.
There are several tasks performed in this layer. The first task is to extract
actions from the text. Then we will extract the conditions and their corre-
sponding actions, and tag them in the data we keep. After that, we process
the different references and tag the found references in the data. Then we
use the references to identify the actors in the text. With the found in-
formation we identify the different sequences in the text that are used to
build the activity model flows. Finally with all the information from the
previous steps we construct an activity model. The model is then stored
in the persistence layer.

4.2.3 Presentation tier

The presentation tier has two tasks. The first task is the collection of the
requirements text, which is used to start the processing of the text. The
second task is the visualisation of the model, this will enable the user to
see the extracted model from the text.

4.3 Technical Design

With the logical design from Section 4.2, we have proposed the different
functionalities that our solution will fulfil. In the following sections, we
will outline how we implemented these functionalities from a technical
perspective. Our architecture is a combination of several technical com-
ponents, that together make the transformation process of requirements
documents into activity models possible. In Figure 4.3 we show what com-
ponents exist and how they are dependent on one another. In the next sub-
sections we will describe the subsystems, such as the Django Framework,
AllenNLP and the P2P database.

The technical architecture in Figure 4.3 shows two main subsystems,
the Django Framework and the AllenNLP system. Besides these two im-
portant systems, the P2P database and UML activity model editor are also
important aspects of our solution. We run all of these components in
Docker containers to make sure they run anywhere. This also allows us

60

Version of July 9, 2022– Created July 9, 2022 - 15:37

4.3 Technical Design 61

Figure 4.3: Technical architecture of our system.

in the future to deploy everything to external services to provide better re-
sources for the resource-intensive services, like AllenNLP. In the next sec-
tions, we will go further into each of the systems that we have mentioned
as important. We start with the NLP models from AllenNLP.

4.3.1 AllenNLP

To be able to run our system we make use of several Natural Language
Processing models. There are several models and platforms available all
with their specific benefits. A complex problem is to get each of the models
working correctly, for the models we have chosen AllenNLP because they
provide close to the state-of-the-art performance and are very reliable. To
further elaborate, AllenNLP is an NLP platform that enables researchers
to easily implement and use concise NLP algorithms in their research[42].
It takes the need to debug and work on the complex implementation prob-
lems away. In their platform, they provide several models for all kinds of
NLP tasks. The tasks we use in our solution are mentioned and described
in Section 2.2. For now, we make use of the semantic role labeling model
from Shi et al. [12]. The coreference model is from Lee et al. [36] and the
textual entailment model is built by Liu et al. [43]. These models can be

Version of July 9, 2022– Created July 9, 2022 - 15:37

61

62 System design

replaced by downloading new ones and updating the paths that load the
models.

For our approach, we run the AllenNLP models in a docker container.
The implementation with Docker enables us to move the models to al-
most any device. Each of the models has its own endpoint and is loaded
using the AllenNLP libraries. There is an out-of-the-box AllenNLP docker
image* available, but we have chosen to build the docker image by our-
selves. This enables us to only download the preferred models and keep
the whole container smaller than the out-of-the-box version which retrieves
more models. We might switch to the out-of-the-box version in the future
if the P2P solution will be using more AllenNLP models in the future.

4.3.2 P2P backend

The P2P backend is the system that is used for the communication between
all the components. The framework was first introduced with the Django
framework in the work of Driessen et al.[44]. In our research, the system
is extended to be able to store activity models. The whole system can be
almost directly mapped on the P2P Architecture in Figure 4.1, most of the
systems shown in that Architecture are part of the system.

The work of Driessen et al. introduced the system, to generate and
edit run-time applications from class models[44]. Tang et al. extended the
system to incorporate an NLP pipeline to transform requirements texts
into class models[45]. With this work combined the system was now able
to generate an application based on a piece of requirements text.

To further extend this work for activity models we have implemented
an activity metamodel, and API endpoints to create, read, update and
delete the activity models and the activity model generation pipeline. The
metamodel is defined in Section 4.3.3 where we show the different classes
we have taken from the Object Management Group (OMG) Activity model
standard. The different API endpoints can handle the data that is specified
using the activity metamodel. The activity model generation pipeline is a
combination of all demonstrated transformation approaches and the NLP
models. Next to these contributions we also save all the requirements text
to the backend, for future reuse and research.

*https://docs.allennlp.org/main/#installing-using-docker

62

Version of July 9, 2022– Created July 9, 2022 - 15:37

https://docs.allennlp.org/main/#installing-using-docker

4.3 Technical Design 63

4.3.3 Metamodel
As a target for our pipeline, we have defined a metamodel, the model
allows our solution to save and retrieve the created activity models. The
metamodel is a derivation of the UML standard for the activity model
because the standard is too extensive for our solution. We have identified
a set of basic classes which are most often used in activity models. We will
first define the specification of our metamodel, then we will discuss some
of the classes that are important to understand the metamodel.

4.3.3.1 Metamodel specification

In our implementation, we have chosen to select several classes from the
activity model definition as it allows us to keep the model comprehensi-
ble and possible to work with. An overview of all the important classes
can be found in Figure 4.4, we do not implement all of these classes, but
demonstrate them to show their relations to other classes.

Based on the subset presented in Figure 4.4 we have implemented a
subset of these classes, which are all the classes except for a few. The
classes we did not implement are: Classifier, ActivityPartition, Behavior,
ObjectNode, ActivityParameterNode and State. It is possible to add the
excluded classes in the future for further implementation.

Version of July 9, 2022– Created July 9, 2022 - 15:37

63

64 System design

Fi
gu

re
4.

4:
S

u
b

s
e
t

o
f

A
c
ti

v
it

y
m

o
d

e
l

c
la

s
s
e
s
.

64

Version of July 9, 2022– Created July 9, 2022 - 15:37

4.3 Technical Design 65

4.3.3.2 Behavior

Within UML there are different models to model certain objects, such as
behavior. These models can be grouped into two groups, which are the
static and behaviour models. The static models can model the static parts
of a system, such as class models. Behaviour models are used to model
the dynamic aspects of a system, such as how objects are changed over
time. The behavior models are instantiated through the main behavioural
class which is called Behavior. The class specifies the following instances:
StateMachines, Activities and Interactions. These instances are used in Se-
quence and Activity models, which are called behavioural models. These
models can model behavior and allow the behavior to be executed. As
these behavioural models are part of the larger UML family it allows the
different types of models to interact with one another, thus allowing classes
to define activities. Through this connection, classes can specify the exe-
cution of behavior in the form of activities.

In our implementation, the Behavior class is tied to the Activity Class,
such that other types of classes can make use of the behavior properties
and methods. As shown in Figure 4.4 at the top the class Behavior is
shown as a class from which Activity is inherited. This enables us to use
other UML standards and refer to them through the Behavior class.

4.3.3.3 Action

Actions are the most basic form of activities in the Activity Model. The
Action class models functionality that can be executed in some cases the
functionality is behavior in itself. Through this mechanism, it is possible to
point to another activity model. An example of this reference is the CallBe-
haviorAction, which is a subtype of the Action class. CallBehaviorAction
points to another Activity model, that has a whole process defined. There
are also other subtypes for the Action class, such as Invocation Actions,
Object Actions, Variable Actions and more. The numerous subtype op-
tions for the Action class illustrate the large set of possibilities to model
instances and behavior with the UML specification. On the other side,
this large set of possibilities makes it complex to create simple represen-
tations. Therefore in our metamodel implementation, we have chosen to
use a simplified set of some of these actions. In particular we make use
of CallBehaviorAction and CallOperationAction, as these references are often
used in Activity modelling practices.

Version of July 9, 2022– Created July 9, 2022 - 15:37

65

66 System design

Figure 4.5: ATM Activity Model example

4.3.3.4 ValueSpecification

The class ValueSpecification can model a specification of a value for a class.
It can have zero or more values, which can be of different types. The fol-
lowing types are directly integrated with a ValueSpecification: unlimited-
Natural, string, real, integer and boolean. More types can be implemented
in the ValueSpecification such as time, opaque, literal, interval and more.
For now, we have implemented ValueSpecification as a string, such that
multiple values can be added there. The interpretation of these values is
for our approach currently not relevant, so that functionality can later be
further specified.

The definition of a ValueSpecification does not give a clear meaning of
how it works, therefore we show an example of a ValueSpecification. In
the Activity model, the ValueSpecification is used in several classes, but for
simplicity, we will use the guard attribute on an ActivityEdge. The guard
attribute on an ActivityEdge is used to only allow tokens that evaluate
true to a certain value, which is specified in the ValueSpecification. For
example in Figure 2.1 of Booch et al. [7], which models the process of
building a house. In this example, the edges after the decision node show
a ValueSpecification, where the value of the token from the decision node
can either be [not accepted] or [else]. As the diagram shows the process
will continue if the value equals [else] otherwise it will return to the ”Bid
plan” activity. In this case, the two ValueSpecifications are [not accepted]
and [else], the values are strings and evaluated by the ValueSpecification.

66

Version of July 9, 2022– Created July 9, 2022 - 15:37

4.3 Technical Design 67

The ValueSpecification can come in multiple shapes and sizes in Equa-
tion 4.1 and 4.2 we show some examples. These examples are from Figure
4.5 describing an ATM process. Where earlier activities have retrieved the
Amount and Balance variables.

[Balance >= Amount] (4.1)

[Balance < Amount] (4.2)

With the definition of these variables, the next steps in the activity can
be executed. We show the ValueSpecifications in the following equations:
Equation 4.1 is used to evaluate if the card has enough funds to make the
transaction and Equation 4.2 when the amount is insufficient. The exam-
ple in Equation 4.1 and 4.2 are examples where two floats are compared
and return a boolean from the comparison. Another common example in
the ATM activity diagram is whether the pin code is valid. This is also a
comparison that returns a boolean value.

4.3.4 UML editor
The UML editor is a modelling tool to model UML models. It is a web-
based editor, which was developed by a student named Max Boone to
create and edit UML class models. We have extended the capabilities of
the editor by introducing the activity model in collaboration with Bram
van Aggelen. In Figure 4.6 we show the editor with a class model.

With the introduction of the activity model, the editor can create and
edit UML activity models. The editor is also able to save the model to a
JSON file and to an external API which was described in Section 4.3.2. In
Figure 4.7 we demonstrate an example of an activity model, that we gen-
erated with our pipeline. The added activity and action nodes are defined
using the specified Metamodel from Subsection 4.3.3.

These examples are just some parts of what the editor can do. The edi-
tor is continuously in development. Other students are currently working
on extending the modeller further, with several projects such as enforce-
ment rules for the activity edges, a pipeline to pre-process requirements
texts for the different NLP pipelines and more. The UML editor will con-
tinue to be further updated in the future.

Version of July 9, 2022– Created July 9, 2022 - 15:37

67

68 System design

Figure 4.6: UML editor with a class example

Figure 4.7: UML editor with a generated activity model

68

Version of July 9, 2022– Created July 9, 2022 - 15:37

4.4 In-depth overview of all actions 69

Figure 4.8: Pipeline overview.

4.4 In-depth overview of all actions
In this section, we once more show an overview of all the actions that occur
in our pipeline. The difference with the overview in Section 3.1 is that in
this overview we give more in-depth information on the different actions
that are executed in our pipeline. We present this overview in our activity
model in Figure 4.8.

Version of July 9, 2022– Created July 9, 2022 - 15:37

69

Chapter 5
Analysis and Results

In this chapter, we will demonstrate the performance of our pipeline. We
did consider to compare our results using precision and recall, but unfor-
tunately, there is not a uniform dataset available to measure such perfor-
mance for activity models. Therefore we will qualitatively compare the
performance of our pipeline. We compare our generated models with a
dataset of process descriptions and corresponding BPMN models. Next to
that dataset, we also have some process descriptions without a business
process model. For these process descriptions, we check if all actions and
conditional structures are present in our generated model.

We have pushed 38 process descriptions through our pipeline to see if
the pipeline does not fail. The used process descriptions were taken from
the datasets in this chapter. We used 4 of these process descriptions more
extensive, to see where our model could be improved. These four process
descriptions have been taken from the dataset of the Humboldt Univer-
sity of Berlin, which were provided in the dataset of Friedrich et al.[32].
The titles of these process descriptions are the bicycle order, computer re-
pair, underwriters and hotel process descriptions. We did not use these
descriptions and models for the validation presented in this chapter.

For our validation approach we took four examples from the baseline
dataset of Friedrich et al.[24], one process description from the FrameNet
Requirements (FN-RE) dataset from Alhoshan et al. [30] and two process
descriptions from the Public Requirements (PURE) Dataset from Ferrari
et al.[31]. The models from the FN-RE and the PURE dataset do not have
business process models with examples.

For each of the generated models, we will compare our model with that
of a human or annotated text. For the models of Friedrich et al., we will
also compare them to their generated model. We make use of red mark-

Version of July 9, 2022– Created July 9, 2022 - 15:37

71

72 Analysis and Results

ings for the comparison in the model, these markings indicate the different
problems with the model. In the text where we explain the differences, we
further elaborate on what the problem is, why it occurred and what could
be done to solve it.

Next to the comparisons with the requirements documents, we also
present a collaboration with an industry partner. The goal of the collabo-
ration is to explore the possibilities of connecting the NLP pipeline to an
industry Business Process Modelling tool.

5.1 Research baseline

First, we will compare the results of our pipeline to that of a dataset that
has been used in several research approaches as a baseline, that is the
dataset of Friedrich et al.[24]. The dataset consists of 47 requirements texts
and their corresponding BPMN model. The BPMN model comes in two
varieties, one created by a human modeller and one generated by the NLP
system of Friedrich et al.[24]. We will discuss four different examples, each
with different properties, such as the source, length of the text and com-
plexity of the text. We take the requirements text as input and generate
an activity model, then we compare our model with the manually created
model and the system-generated model from the dataset. In our develop-
ment process, we have used a subset of the dataset for testing purposes.
To make a clear distinction between validation and test data, we will not
use these examples in our validation process. The texts and models we
used for testing are the bicycle order, computer repair, underwriters and
hotel process descriptions.

As previously mentioned the whole dataset consists of 47 requirements
documents. Several of these documents have been translated from Ger-
man into English and contain errors[33]. To overcome this problem and
other typos, Bellan et al. have rewritten some of these texts to remove
errors, therefore we make use of the versions from them[33]. Still, there
could be more problems in the translations, to mitigate this risk we chose
to not use the models that are of German origin. Next to the obstacle of
translation, some models have been transformed from another model type
(sequences) into a BPMN model. Sequence models are quite different from
activity models, therefore we will also not use these models. With these
considerations, the dataset is narrowed down to 21 models. From which
we have selected 4. To demonstrate the properties of these models we
show an overview in Table 5.1. We will discuss the results of each of these
process descriptions in the next sections.

72

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.1 Research baseline 73

Name Number of sentences Source
Claim examination 5 Research
Service Level Agreement violation 38 Research
Loan approval - VOS 6 Business
Employee expense process - Oracle 15 Business

Table 5.1: Overview of process descriptions from Friedrich et al. [32].

Figure 5.1: Claim examination process, made by a human modeler.

5.1.1 Repetition cycles - Claim examination

The claim examination process describes a process of a claim that is sent in.
The description is presented in Example (1). Then in Figure 5.1 we present
the BPMN model created by a human, the model created by our pipeline
is shown in Figure 5.2 and the model from the system from Friedrich et al.
is presented in Figure 5.3.

(1) After a claim is registered, it is examined by a claims officer. The claims
officer then writes a ’settlement recommendation’. This recommendation
is then checked by a senior claims officer who may mark the claim as ’OK’
or ’Not OK’. If the claim is marked as ’Not OK’, it is sent back to the
claims officer and the recommendation is repeated. If the claim is OK, the
claim handling process proceeds.
Claim examination process[24].

In Figure 5.2 we show our generated model with numbers to point to
the problems of our model. The first comparison between our model and
the manually created model shown in Figure 5.1, shows that our model
has more information than the manually created model. The difference
here can be explained through the approach of action creation. Some of
the actions specified in the text area in the manual model are modelled
through the structure of the model. On the contrary, we have specified
these actions explicitly. To demonstrate such an explicit action we can
have a look at the piece of text ‘it is sent back to the claims officer’. Our
model models this with the action ‘a claim is sent back to the claims of-

Version of July 9, 2022– Created July 9, 2022 - 15:37

73

74 Analysis and Results

Figure 5.2: Claim examination process with notes.

Figure 5.3: Claim examination process, made by Friedrich system.

74

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.1 Research baseline 75

ficer’. The manual model specifies this action with the edge and guards
‘Not OK’ that returns to the earlier gateway (decision). Another example
of such a modelling structure versus an explicit action is the action that
marks the claim as OK or Not OK. The manual model represents this with
the gateway structure following the examine claim, our model shows this
explicitly with an action.

Besides these differences, there are some errors with our model. The
problem denoted with 1. in Figure 5.2 shows that the identified actor is not
correct and the action text is incorrect. The actor is incorrectly predicted,
because of our approach to actor identification. The approach extracts all
ARG0 tags from an SRL roleset and states it as the actor, which is not per
se the correct actor. The action should be ‘the claim handling process pro-
ceeds’, this is probably caused by the SRL roleset that was selected. The
resulting roleset does not take the verb ‘proceeds’ into account with the
found roleset.

The other problem with our model is the missing repetition denoted
by the 2. in our model. This action should create a repetition, but as we
previously mentioned in Section 3.5.2 we do not identify and create repe-
titions.

5.1.1.1 Difference generated model

The model in Figure 5.3 is generated by the pipeline of Friedrich et al.[24].
The models differ a bit. The model from Friedrich has an incorrect first
conditional gateway because the ‘not OK recommendation’ action should
follow the ‘check recommendation’ action. This also introduces a problem
with the guards on the last gateway. Here the guard ‘marks the claim’
should be ‘not OK recommendation’. In this comparison, the order of ac-
tions is better structured in the model from our pipeline. The actions from
the model from Friedrich are better phrased but miss helpful context in
some cases.

5.1.2 SLA violation

The SLA violation text is a process description of a Service Level Agree-
ment violation. We collected it from the dataset of Friedrich et al., who
took it from the TU Berlin[24]. It is the largest text we show in our exam-
ples.

(2) At the beginning the customer perceives that her subscribed service has
degraded. A list with all the problem parameters is then sent to the Cus-

Version of July 9, 2022– Created July 9, 2022 - 15:37

75

76 Analysis and Results

tomer Service department of TELECO. At the customer service an em-
ployee enters (based on the received data) a problem report into system
T.. Then the problem report is compared to the customer SLA to identify
what the extent and the details of the service degradation are. Based on
this, the necessary counter measures are determined including their re-
spective priorities. An electronic service then determines the significance
of the customer based on information that has been collected during the
history of the contractual relationship. In case the customer is premium,
the process will link to an extra problem fix process (this process will not be
detailed here). In case the customer is of certain significance which would
affect the counter measures previously decided upon, the process goes back
to re-prioritize these measures - otherwise the process continues. Taking
together the information (i.e. contract commitment data + prioritized ac-
tions) a detailed problem report is created. The detailed problem report is
then sent to Service Management. Service Management deals on a first
level with violations of quality in services that are provided to customers.
After receiving the detailed problem report, Service management investi-
gates whether the problem is analyzable at the level of their department or
whether the problem may be located at Resource Provisioning. In case Ser-
vice Management assesses the problem to be not analyzable by themselves,
the detailed problem report is sent out to Resource Provisioning. If Service
Management is sure they can analyze it, they perform the analysis and
based on the outcome they create a trouble report that indicates the type of
problem. After Resource Provisioning receives the detailed problem report,
it is checked whether there are any possible problems. If no problems are
detected, a notification about the normal service execution is created. If a
problem is detected this will be analyzed by Resource Provisioning and a
trouble report is created. Either trouble report or the ‘normal execution’
notification will be included in a status report and sent back to Service
Management. Service Management then prepares the final status report
based on the received information. Subsequently it has to be determined
what counter measures should be taken depending on the information in
the final status report. Three alternative process paths may be taken. For
the case that no problem was detected at all, the actual service performance
is sent back to the Customer Service. For the case that minor corrective ac-
tions are required, Service Management will undertake corrective actions
by themselves. Subsequently, the problem resolution report is created and
then sent out to Customer Service. After sending, this process path of Ser-
vice Management ends. For the case that automatic resource restoration
from Resource Provisioning is required, Service Management must create
a request for automatic resource restoration. This message is then sent to

76

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.1 Research baseline 77

Resource Provisioning. Resource Provisioning has been on-hold and wait-
ing for a restoration request - but this must happen within 2 days after the
status report was sent out, otherwise Resource Provisioning terminates
the process. After the restoration request is received, all possible errors are
tracked. Based on the tracked errors, all necessary corrective actions are
undertaken by Resource Provisioning. Then a trouble-shooting report is
created. This report is sent out to Service Management; then the process
ends. The trouble-shooting report is received by Service Management and
this information goes then into the creation of the problem resolution re-
port just as described for ii). Customer Service either receives the actual
service performance (if there was no problem) or the problem resolution
report. Then, two concurrent activities are triggered, i.e. i) a report is
created for the customer which details the current service performance and
the resolution of the problem, and ii) an SLA violation rebate is reported to
Billing & Collections who will adjust the billing. The report for the cus-
tomer is sent out to her. After all three activities are completed the process
ends within Customer Service. After the customer then receives the report
about service performance and problem resolution from Customer Service,
the process flow at the customer also ends.
SLA violation description[24].

Version of July 9, 2022– Created July 9, 2022 - 15:37

77

78 Analysis and Results

Fi
gu

re
5.

4:
S

L
A

v
io

la
ti

o
n

e
x

a
m

p
le

g
e
n

e
r
a
te

d
b

y
a

h
u

m
a
n

p
a
r
t

1
[2

4
].

78

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.1 Research baseline 79

Fi
gu

re
5.

5:
S

L
A

v
io

la
ti

o
n

e
x

a
m

p
le

g
e
n

e
r
a
te

d
b

y
a

h
u

m
a
n

p
a
r
t

2
[2

4
].

Version of July 9, 2022– Created July 9, 2022 - 15:37

79

80 Analysis and Results

Fi
gu

re
5.

6:
S

L
A

v
io

la
ti

o
n

e
x

a
m

p
le

g
e
n

e
r
a
te

d
b

y
o

u
r

s
y

s
te

m
p

a
r
t

1
.

80

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.1 Research baseline 81

Fi
gu

re
5.

7:
S

L
A

v
io

la
ti

o
n

e
x

a
m

p
le

g
e
n

e
r
a
te

d
b

y
o

u
r

s
y

s
te

m
p

a
r
t

2
.

Version of July 9, 2022– Created July 9, 2022 - 15:37

81

82 Analysis and Results

Fi
gu

re
5.

8:
S

L
A

v
io

la
ti

o
n

e
x

a
m

p
le

g
e
n

e
r
a
te

d
b

y
o

u
r

s
y

s
te

m
p

a
r
t

3
.

82

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.1 Research baseline 83

Fi
gu

re
5.

9:
S

L
A

v
io

la
ti

o
n

e
x

a
m

p
le

g
e
n

e
r
a
te

d
b

y
o

u
r

s
y

s
te

m
p

a
r
t

4
.

Version of July 9, 2022– Created July 9, 2022 - 15:37

83

84 Analysis and Results

The generated model has been divided into 4 different screenshots be-
cause the models would not be readable if we put them all in one screen-
shot. The screenshots can be lined up using the different guards, that if
you would put them next to one another would line up. We will start with
Figure 5.10 and then mention if we go to the next screenshot.

Problem 1. points to an action that should have been a condition. The
condition specified in the sentence modelled here is implicit, thus there
is not a conditional keyword available. To process implicit conditions we
would need to have some form of knowledge of the action to understand
that it is a condition and be able to see how this would fit in the larger
process model. Because of this required information, it is hard to process
such implicit conditions.

The model from the human modeller shown in Figure 5.4 has at the
first gateway (decision node) following the path for a premium customer,
a link to another process. As mentioned in the text this process is not de-
scribed in detail here, therefore we only know that it should link to another
process. In our model at Problem 2. we model it as an action, this could
be something to be improved, but we would need to understand where
to end a process or go to another process. This would be a task for the
sequence identification task in the text.

Problem 3. specifies a problem of a set of actions that could have been
a conditional structure. These actions are part of a sentence that starts
with the conditional keyword ‘in case of’. Our model does not handle this
correctly which is similar to the model in Figure 5.4 where the sentence
was also created as two actions instead of a conditional structure. The
actions in Figure 5.4 that specify this are ‘compare customer SLA and prob-
lem report’ and ‘Determine counter measures inclu. priorities’. Our model also
was not able to process this as a conditional structure, while it should have
been because we filter for conditions using the keyword ‘in case’. This is
probably an error. Another problem with our model is the empty action.
We suspect this empty action to be created because of the character ‘-’ in
the sentence and the SRL roleset around that character. These characters
might also have been the reason for the problem with the missing condi-
tional structure.

After these actions, we have several actions that could have been com-
bined into one action. Starting with the action ‘Taking together information’
and the last action ‘a detailed report is created’. Our model split these because
we create actions based on SRL rolesets, in the case of this sentence, there
are multiple rolesets. The actions can be combined by a UML modeller.

Then we continue with the next part of the model in Figure 5.11. Here
Problem 4. shows an incorrect guard, that we present in Example (3).

84

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.1 Research baseline 85

(3) ‘After receiving the detailed problem report, Service management
investigates whether the problem is analyzable at the level of their
department or whether the problem may be located at Resource
Provisioning’.

This part of the text should have been created as an action such as in the
human model: ‘investigate whether this problem is analyzable at this level’,
then after this action there should be a decision node with the choice be-
tween analyzable by them or the service provisioning department. The
model that we have generated makes such a decision structure with the
other two guards: ‘Service management assesses the problem to be not ana-
lyzable by themselves’ and ‘Service management is sure they can analyze it’.
So only the guard that should have been an action is problematic in that
structure. The error of our model is caused by the conditional keyword
‘whether’ that is within the part of the text. That makes our pipeline pro-
cess it as a condition, and because of a conditional structure it is coupled
with the guard ‘Service Management assesses the problem to be not analyzable
by themselves’ and our entailment predicts it as a contradiction. To solve
this we would narrow down our conditional keywords, but there are cases
where we should keep the word ‘whether’ as a condition. So it is not an
easy to fix solution.

For Problem 5. we are dealing with a correct condition and action, but
the process that occurs after the last action should be continued at another
merge node. This problem is the effect of Problem 6. because the flow
should continue at the Resource Provisioning actions. Problem 6. does
not make that possible. Then Problem 6. shows an incorrect conditional
structure. The guard ‘they perform the analysis’ should be an action instead
of a guard. What is strange about this guard is that there is not a condi-
tional keyword present. This guard is the result of our assumption that
if a conditional keyword is in the sentence and we have an adverbial, the
adverbial part of the sentence specifies the condition. In Example (4) we
present the sentence.

(4) ‘If Service Management is sure they can analyze it, they perform the
analysis and based on the outcome they create a trouble report that
indicates the type of problem.’

In this sentence, the first adverbial is ‘If Service Management is sure they
can analyze it’, which is the correct condition. However in this sentence,
there is another adverbial: ‘based on the outcome’, this caused the pipeline
to make the range of our adverbial also include the other adverbial. We
use the adverbial range to find out if a found action is part of a condition.

Version of July 9, 2022– Created July 9, 2022 - 15:37

85

86 Analysis and Results

We specify the adverbial range by checking for the adverbial’s begin and
end tag in an SRL roleset. The range identification is fairly straightforward
and does not take into account that an adverbial in one SRL roleset can be
split. Thus the action ‘they perform the analysis’ is taken by our pipeline as
part of the adverbial that specifies a condition. If the action was not tagged
as a condition it would have been an action and part of the alternative path
with the guard ‘Service management is sure they can analyze it’. To solve this
we will need to be more specific with the identification of our condition
and adverbials.

As mentioned with Problem 5. we should have continued after the
merge node from Problem 6.. Besides these problems, we also see a clear
difference with the human-generated model in Figure 5.4, the use of swim-
lanes. Our pipeline does not generate such swimlanes, because we did
not implement it and there are multiple approaches to it. Nevertheless,
it is important for the structure of a model, especially in cases where the
actions of each actor are not following one another. In most examples, we
have seen the actions directly follow one another and actions per actor are
clustered together. Still, there are texts where this is not the case, in those
cases, swimlanes are a good addition to the structure and an important
aspect for future work.

Then we come to Problem 7., here we have a decision node with correct
and incorrect guards. We present the three guards in Example (5).

(5) Three guards near Problem 7.
a. ‘no problem was detected’
b. ‘For the case that minor corrective actions are required, Service

Management will undertake corrective actions by themselves’
c. ‘For the case that automatic resource restoration from Resource

Provisioning is required, Service Management must create a
request for automatic resource restoration’

The guard in Example (5-a) is correct with its’ action that follows, different
from the model made by the human is the fact that we do not stop the pro-
cess. The next guard is Example (5-b), this should only have been ‘the case
that minor corrective actions are required’. We looked into the SRL rolesets
and saw that there is another ARGM tag used for the part of the condition
than the adverbial tag that we have used. The condition is tagged as an
ARGM-PNC, which is an argument purpose not cause. The tag specifies
the motivation for a certain action. This led to a roleset that filled the whole
sentence and as it has a conditional keyword the whole sentence became
a condition. Then there is a set of actions that should have been linked to

86

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.1 Research baseline 87

this guard, which we will discuss later as we first discuss the other guard
at the current decision node. The third guard is Example (5-c), here we
have the same problem as with the guard in Example (5-b), because the
condition is marked with the SRL tag ARGM-PNC. So it should have been
split into a guard and action node.

Besides the problem with the guard itself, it is good to see that we can
link this guard to the decision node that was created three actions back
in the text. The link is possible through the use of coreference clusters to
link conditions. A side effect (Problem 8.) here is the fact that this and
other guards have been linked to several other decision nodes that are
in the same coreference cluster and have one contradiction through the
comparison with entailment. This approach of multiple incorrect guards
could have been solved by only creating one coreference cluster guard and
first checking for the closest decision points from the text.

Now we move onto the next screenshot of the model in Figure 5.8. We
start with Problem 9. here we see the two actions that should have fol-
lowed the guard with the ‘minor corrective actions are required’. The actions
themselves are correctly stated when we look at the model created by a
human, only the path they are on is incorrect. To combine these actions
with the condition we would need to be able to couple them. For the stan-
dard conditions we have used the sentence structure, but these actions are
not part of the sentence. So this is hard to solve, it could be done by iden-
tifying possible follow-up sentences through entailment, which we have
tried. Unfortunately, the problem with entailment is that many sentences
can be seen as an entailment for another sentence, but they might not be
the correct following sentence. The entailment approach is not very strict.

Then Problem 10. which was already specified, but we would like to
show it again. Through the use of coreference to find similar conditions
and compare them with entailment, several guards have been created. As
we previously mentioned with Problem 8. that the solution lies in limiting
the number of coreference guards the pipeline creates. In such a solution
we only create one guard for a coreference guard and use a specific search
solution to consider decision node candidates. The search approach will
first select the closest conditional sentences and extend from there, to make
sure we find the best solution first.

We continue to the final screenshot with Figure 5.9. Here we have the
final set of actions that are part of this activity model. The first problem
we encounter is 11. this problem indicates a missing actor. We are not sure
why the actor is not found, because the ARG1 tag is present in the role set
and in the action we suggest that this has to do with the overlap with the
next action.

Version of July 9, 2022– Created July 9, 2022 - 15:37

87

88 Analysis and Results

Finally, the last problem 12. is the missing of a parallel path. In our
approach we have not implemented parallel paths, thus it is not a problem,
but it could be implemented in the future.

To conclude our comparison, most of the actions and structures are
modelled by our generated model. Not all, but many actions that have
been presented in the human-generated model are also present in our
model. Next to that most simple conditional structures are also generated
by our model. The more complex structures are partially created which
is the effect of implicit conditions or not correctly modelled conditions by
our approaches. Nevertheless, the generated model does present a good
first approach to generating models and a good starting point for the cre-
ation of an activity model.

5.1.2.1 Difference with generated models

In comparison with the model of Friedrich et al. in Figure 5.10 and 5.11, we
see differences on multiple levels[32]. They have several actions that have
been put to the active form, which makes it easy to read and the actions
are clear.

A disadvantage of the approach to converting text and rewriting the
text to create actions is that in some cases information is lost. Two ex-
amples of this are actions that are removed and actions where important
words were removed. One removed action is the final action ‘receive the
problem resolution’ that is removed because of extraction. An example of
important words missing is the action ‘perform based’, which misses infor-
mation on what it should perform based on.

Furthermore, there are problems with multiple conditional structures.
The second condition after the action ‘fix process’ is a conditional statement
that misses the guards and misses correct actions. We have shown with
Problem 3. that our pipeline was also not able to create this condition
correctly. The next problem with a conditional structure is at the guard
‘the problem is analyzable’. This part of the text is also quite hard to correctly
process, as we also see in our model, that we demonstrate at Problem 4..

The next problem is the next conditional structure here we see that the
guard ‘service management is sure’ is incorrect. The rewriting of the text
removed the part of the sentence that explained the guard, which is ‘they
can analyze it’. With the use of our models’ complete sentences we kept
the context here and therefore the correct guard. Another guard problem
is at the next conditional structure. Here we have the guards define a
problem detection, the guards about detection are correct, but the guard
‘possible problems’ should not have been a separate path. It should have

88

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.1 Research baseline 89

Figure 5.10: SLA violation example generated by a system part 1[24].

Version of July 9, 2022– Created July 9, 2022 - 15:37

89

90 Analysis and Results

Figure 5.11: SLA violation example generated by a system part 2[24].

90

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.1 Research baseline 91

been an action before the first conditional node. Also, some important
information is removed with the action of investigating whether there are
possible problems. Our model did not model the part of the sentence as a
condition, because there was not an action following after the condition.

Furthermore, there are several conditional structures without any guards,
but these are correct because in the text there is not a condition given just
two different paths.

Then the next conditional structures with guards are not combined cor-
rectly and there is even a process termination. The three possible paths are
correctly found, but they are not linked together. Next to that, there are in-
correct actions. Our model can correctly combine these paths in the same
node, but it also introduces problems with too many edges with the same
guard. We know how to fix this, thus it shows that the approach of using
coreference and entailment enables us to create more correct and complex
conditional structures. One thing that the system of Friedrich et al. does
better in this conditional structure is the identification of actions that be-
long on a certain path. The actions following the guard ‘for the case that
minor corrective actions are required’ are the actions that should be part of
this alternative path. In our model we were not able to do this correctly,
we demonstrate this with Problem 9.. There are more points to discuss,
but we would like to keep our analysis to this point.

We do see that the model of Friedrich et al. does model the different
processes quite correctly. Especially it is good at defining concise actions
and is good at finding certain paths of actions. The conditional structures
can be improved and we have shown a way to do this. The problems of
Friedrich et al. are not to show that is a bad solution, because it is a really
good solution and in some ways still outperforms our solution. We want
to show what is going wrong, to identify where we could improve. Our
pipeline also needs improvement in certain areas, but it does create a first
good starting point for the model generation.

5.1.3 Loan approval process - VOS

The loan approval process is a process description from a tutorial on mod-
elling a description as a business process. The description is from a tutorial
with the BPMN tool ActiveVOS.

(6) The loan approval process starts by receiving a customer request for a loan
amount. The risk assessment Web service is invoked to assess request. If
the loan is small and the customer is low risk, the loan is approved. If the
customer is high risk, the loan is denied. If the customer needs further

Version of July 9, 2022– Created July 9, 2022 - 15:37

91

92 Analysis and Results

Figure 5.12: Loan approval process, made by a human modeler.

review or the loan amount is for $10,000 or more, the request is sent to
the approver Web service. The customer receives feedback the assessor or
approver.
Loan approval process - VOS [32].

In Figure 5.13 we demonstrate the model that resulted from our pipeline
with the process description as input. There are some problems with our
model. Problem 1. specifies a problem with the conditional statement. The
condition in the text is ‘the loan is small and the customer is low risk’, in our
model the statement has been divided into two different conditions. For
Problem 2. it is an arguable problem, in the model in Figure 5.12 we see
that after the ‘high risk’, ‘low risk’ or ‘review’ guard there is a mail icon. This
icon represents the feedback that is sent to the customer. In our model, this
action is also executed at the end of the whole flow of actions. One could
argue this should have been directly after the actions ‘the loan is denied’ or
‘the loan is approved’. On the contrary, the following guards and actions can
just be ignored, because these will not be executed as we follow the flows
with ‘[else]’. Thus the problem here is a bit of a style and best practices
discussion, because of the complexity of path identification we were not
able to merge and combine these actions in the mentioned way.

The path identification does bring us to the final problem, that we have

92

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.1 Research baseline 93

Figure 5.13: Loan approval process with notes.

Figure 5.14: Loan approval process, made by Friedrich system.

Version of July 9, 2022– Created July 9, 2022 - 15:37

93

94 Analysis and Results

denoted with Problem 3. At first, glance we see a similar problem with the
two conditions being split up. This is a result of the way we process con-
ditions because there are two ways to handle them. We could keep them
as separate conditions which might help us in linking back to earlier con-
ditions or always merge them. In hindsight, we should have merged the
two separate conditions, if we could not couple them to an earlier condi-
tion (through coreference). Besides this division of conditions, we would
like to have seen the path that starts at ‘the customer needs further review’
to be another path next to the guards ‘the loan is small or the customer is
low risk’ and ‘the customer is high risk’. Our approach to combining such
conditions that are not directly following one another is a combination of
coreference clusters and entailment. The coreference cluster allows us to
compare conditions that are apart in the text. The entailment enables us to
compare the sentences on a semantic level. We only state that a condition
is an alternative condition from another condition if the highest prediction
of the entailment model returns ‘contradiction’, which means that the con-
ditions contradict one another. In this example, we did compare the guard
‘the customer needs further review’ with the ‘the customer is low risk’ and ‘the
customer is high risk’, because they have the same coreference cluster of
‘customer’. Unfortunately, the guard ‘the customer needs further review’ is
not a contradiction of the other two conditions, thus we do not consider
the condition as an alternative path.

5.1.3.1 Difference generated model

In comparison with the model generated by Friedrich et al. in Figure
5.14[24]. They also have the guard of ‘the loan is small’ not combined with
‘the customer is low risk’. The same is the case for the review guard and
the amount of the loan. The action of the customer receiving feedback is
incorrectly shown because the customer is not defined. Finally, the action
of receiving feedback should have been a final step for all the paths. Here
we also see that it is hard to define a ‘correct’ condition and identify the
paths in a logical order.

5.1.4 Employee expenses process - Oracle

The text from the Oracle tutorial specifies the process of processing a list
of employee expenses. We present the textual description in Example (7).

(7) An employee purchases a product or service he requires. For instance, a
sales person on a trip rents a car. The employee submits an expense report

94

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.1 Research baseline 95

with a list of items, along with the receipts for each item. A supervisor
reviews the expense report and approves or rejects the report. Since the
company has expense rules, there are circumstances where the supervisor
can accept or reject the report upon first inspection. These rules could be
automated, to reduce the workload on the supervisor. If the supervisor re-
jects the report, the employee, who submitted it, is given a chance to edit
it, for example to correct errors or better describe an expense. If the su-
pervisor approves the report, it goes to the treasurer. The treasurer checks
that all the receipts have been submitted and match the items on the list. If
all is in order, the treasurer accepts the expenses for processing (including,
e.g. , payment or refund, and accounting). If receipts are missing or do
not match the report, he sends it back to the employee. If a report returns
to the employee for corrections, it must again go to a supervisor, even if the
supervisor previously approved the report. If the treasurer accepts the ex-
penses for processing, the report moves to an automatic activity that links
to a payment system. The process waits for the payment confirmation. Af-
ter the payment is confirmed, the process ends.
Oracle tutorial text[32].

Version of July 9, 2022– Created July 9, 2022 - 15:37

95

96 Analysis and Results

Figure 5.15: Oracle expense processing example made by a human[24].

96

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.1 Research baseline 97

Fi
gu

re
5.

16
:O

r
a
c
le

e
x

p
e
n

s
e

p
r
o

c
e
s
s
in

g
e
x

a
m

p
le

g
e
n

e
r
a
te

d
b

y
o

u
r

s
y

s
te

m
w

it
h

n
o

te
s
.

Version of July 9, 2022– Created July 9, 2022 - 15:37

97

98 Analysis and Results

The text shown in Example (7) has been taken as input to generate
an activity model. In Figure 5.16 we demonstrate the model generated by
our pipeline and in Figure 5.15 we show the result from a human modeller
that created a model based on the same text. Besides these models, we also
have the model from Friedrich et al. which is presented in Figure 5.17. We
will first compare our generated model with the input text and the model
shown in Figure 5.15.

Figure 5.15 shows the model made by a human modeller. We will look
into the shortcomings of our model and compare how it is presented in
Figure 5.15. The first Problem 1. has a large name for the actor in this
action. This is caused by the replacement of the personal pronoun ‘it’ in
the sentence with its antecedent, which is the following ‘expense report with
a list of items, along with the receipts for each item’. In Figure 5.15 the mention
of it is not shown or replaced.

The next problem presented by Problem 2., an incorrect coreference re-
placement of ‘it’ is presented. The word ‘error’ should have been the word
‘report’, again for the human modeller this is not a problem. Then Prob-
lem 3. shows a problem with a guard, the guard near the 3.. When we
follow the flow further to the next decision node the guard is seen again.
So there is a duplicate guard. Formally seen there is nothing wrong with
this structure because there is not a final node or a scenario that would hin-
der the process. Nevertheless, the condition and action following should
have been part of the previous decision node.

Problem 4. specifies a correct guard, but the place is incorrect. The
guard should not be an alternative path for the conditions presented in
the guards about the supervisor’s rejection or approval. It should have
been a decision node after the action of sending back the report to the
employee. The guard has been coupled to these guards because they are
also conditions and have the same coreference cluster of the entity ‘report’.
We do not have a solution currently to solve this, but it could be solved in
the future when we identify paths in a text.

Then Problem 5. is a partial effect of problem 4., because the guard
in problem 5. should have been an action following the previously men-
tioned guard. Nevertheless, this would have been created as an action,
because our pipeline identified the possible action as a condition. The ac-
tion was seen as a condition because of the conditional keyword ‘if’ in the
part of the text. It should not have been a condition, as it does not indicate
a condition but a saying ‘even if’.

Then Problem 6. specifies the two guards that should not be alternative
paths to one another. As previously mentioned the condition with the part
of text ‘even if’ should not have been a guard, but an action. Even more,

98

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.1 Research baseline 99

the two guards should not be alternative paths for one another. This is
caused by the conditions that follow one another and the result from our
entailment model that specifies that the guards contradict each other. The
solution here is to make sure the condition identification works better, to
make sure the action was not identified as a condition.

Finally, Problem 7. notes a problem with the order of the actions. The
last two actions here should only be executed if the guard ‘the treasurer
accepts the expenses for processing’ is fulfilled. The alternative path that we
have mentioned in the previous problems, enables the flow to also exe-
cute the final actions without fulfilling the requirement of the treasurer
accepting the expenses. Therefore these actions should be following the
action ‘[an automatic activity that] the report moves to links to a payment
system’. As we have seen in the model from Section 5.1.2 there we have
the same problem. We are not able to connect some actions to a certain
conditional path. That is the same case here.

Another action that we do not see in the text because it is an implicit
action is waiting on the response of the employee. This action is shown in
Figure 5.15. Although our system does introduce some problems and the
actions and actors are not always correctly spelt, it does give somewhat
correct actions and keeps the context in those actions.

Version of July 9, 2022– Created July 9, 2022 - 15:37

99

100 Analysis and Results

Fi
gu

re
5.

17
:O

r
a
c
le

e
x

p
e
n

s
e

p
r
o

c
e
s
s
in

g
e
x

a
m

p
le

m
a
d

e
b

y
a

s
y

s
te

m
[2

4
].

100

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.2 FrameNet Requirements 101

Name Number of sentences Source
Ordering materials 13 Business

Table 5.2: Process description overview from FN-RE.

5.1.4.1 Difference with generated model

Friedrich et al. also generated a process model for this description, that
we present in Figure 5.17. The model of Friedrich is better at identifying
the different paths. There are some exceptions with the first alternative
path, which should have been two actions following one another. Then
the last conditional structure has an incorrect alternative path where there
is an action ‘do not match the report’ that should have been part of the guard
above it. A problem with the order of actions is about the payment process
and its’ confirmation, these actions should also be executed in the flow
where the receipts are missing. So that these actions are executed after the
receipts are added and the actions should be executed after the ‘approve
the report’ action. We see that the model from Friedrich is in some cases
better at defining spans of actions following a guard, but it also has its’
limitations.

5.2 FrameNet Requirements

The FN-RE dataset is a set of annotated requirements documents labelled
using the FrameNet schema[30]. The dataset only contains labelled re-
quirements documents and does not have any process models. Neverthe-
less, we have selected one interesting process description, that we split
into two process descriptions. We generate a model for each process de-
scription and compare the generated models with the text itself. For the
comparison, we annotate the text with actions, conditions and actions fol-
lowing a condition. We do this ourselves because the annotated frames do
not give any additional value for the activity model information.

5.2.1 Ordering materials FN-REQ-015

The ordering materials text specifies the process of ordering materials and
the process of preparing a purchase request. We present this text in Exam-
ple (8).

Version of July 9, 2022– Created July 9, 2022 - 15:37

101

102 Analysis and Results

(8) The first thing we do is request material using a Purchase Request form.
Then the Purchasing department either identifies our current supplier for
the kind of material requested or sets out to identify potential suppliers.
If we have no current supplier for the needed item, purchasing requests
bids from potential suppliers and evaluates their bids to determine the best
value. Once a supplier is chosen, Purchasing orders the requested ma-
terial. Those requesting material must first prepare a Purchase Request.
The requester must then obtain the Account Managers approval or that
of the designated backup, for the purchase. Purchase Requests submitted
for Account Manager approval must include the Account Number for the
Project that will fund the purchase. Account Managers or their desig-
nated backup, are responsible for, and must approve, all purchases made
against their project accounts. After the Account Manager approves the
purchase, an authorisation signature may be required. To avoid a poten-
tial conflict of interest, the requester cannot be the same individual who
approves or authorises the request. Purchase Requests involving Direct
projects require an authorisation signature whereas Indirect projects do
not. Once all the appropriate signatures are in place, the requester sub-
mits the signed Purchase Request to Purchasing. Purchasing then orders
the requested material and tracks it as a Purchase Order.
Ordering materials text[30].

The text can be split into two processes the process of ordering the ma-
terials and the process of preparing a purchase request. In Example (9)
we describe all the actions and conditions of the order materials process
and in Example (10) we do the same for the purchase request. Each sen-
tence in the examples is an action, in he case of a condition or action after
a condition, this is indicated by the bold text in front of the sentence.

(9) All actions for the first process on ordering materials.
a. The first thing we do is request material using a Purchase Re-

quest form
b. the Purchasing department identifies our current supplier for

the kind of material requested
c. the Purchasing department sets out to identify potential sup-

pliers
d. Condition: If we have no current supplier for the needed item
e. Action after condition: purchasing requests bids from poten-

tial suppliers and evaluates their bids to determine the best
value

f. Condition Once a supplier is chosen

102

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.2 FrameNet Requirements 103

g. Action after condition: Purchasing orders the requested mate-
rial

(10) Actions for the process of approving and preparing a purchase
request.
a. Those requesting material must first prepare a Purchase Re-

quest
b. The requester must then obtain the Account Managers ap-

proval or that of the designated backup, for the purchase.
c. Purchase Requests submitted for Account Manager approval

must include the Account Number for the Project that will
fund the purchase.

d. Account Managers or their designated backup, are responsi-
ble for, and must approve, all purchases made against their
project accounts.

e. After the Account Manager approves the purchase
f. an authorisation signature may be required.
g. To avoid a potential conflict of interest, the requester cannot

be the same individual who approves or authorises the re-
quest.

h. Condition: Purchase Requests involving Direct projects re-
quire an authorisation signature

i. Alternative condition: whereas Indirect projects do not.
j. Condition: Once all the appropriate signatures are in place
k. Action after condition: the requester submits the signed Pur-

chase Request to Purchasing.
l. Purchasing then orders the requested material and tracks it as

a Purchase Order.

We have generated models for each text. First we discuss the model
that is generated with Example (9) as input. Figure 5.18 demonstrates the
generated model with the problems noted in red. First, Problem 1. is the
action ‘a supplier is chosen’, this should be a condition instead of an action.
This condition is not found, because there is not a conditional keyword to
identify the condition. The keyword we could have used is ‘once’, but we
do not use this word as a conditional keyword. We could add the keyword
to our list of conditional keywords to support the search for conditions,
but we would need to have more examples to do this.

The next problem is Problem 2., here an action is missing. The action
should have been ‘Purchasing orders the requested material’. Why the action
is missed is quite unclear, because the part of the sentence does return an

Version of July 9, 2022– Created July 9, 2022 - 15:37

103

104 Analysis and Results

Figure 5.18: Order materials - order process with notes.

SRL roleset in the example of the AllenNLP model. We looked into this
problem and it shows that the AllenNLP model for SRL that we have used
did not return any roleset for the part of the sentence defined in Example
(9-g). We have seen such behaviour before with other verbs, such as ‘ship’.
In that case, we also did not receive an SRL result, while it did when testing
it in the demo environment. This might be caused by a bug in the library,
we suspect it to be a bug. To solve this we might need to upgrade to a
newer version of the AllenNLP library. Aside from these small problems
the generated model does mostly model the actions in a correct action and
sequence.

The second generated model is shown in Figure 5.19, for this model
Example (10) has been used as input. The model is fairly straightforward,
with most actions. There are two conditional structures missing at the
places of 1. and 3.. These conditional structures are not created, because
there is not a conditional keyword that we look for. For the place of 3. the
word ‘Once’ is used again, we have seen this keyword before and it might
be a good extension to our set of conditional keywords.

Another problem is shown with 2., here the text of the action is missing.
We looked into the roleset of the part of the sentence that was used to
generate this action, that is ‘whereas Indirect projects do not’. The SRL tagger
returned a roleset for the verb ‘do’, unfortunately only the word annotated
in this frame is ‘do’. Thus the action that is created is only ‘do’. To solve
this we need to enhance our SRL roleset selection approach.

104

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.3 PURE dataset 105

Figure 5.19: Order materials - purchase request with notes.

Name Number of sentences Source
Validate Temperature 8 Business
Voucher Maintenance System 13 Business

Table 5.3: Overview of the process descriptions taken from the PURE dataset[31]

5.3 PURE dataset

The PURE dataset is another dataset with some requirements documents,
that we described more in-depth in Section 2.4[31]. The requirements do
not have a model that represents the process. Also, we had to manually ex-
tract data from the text. Luckily, Martijn Schouten, another student work-
ing on another pipeline in the P2P project pointed us to the process texts
in the collection of requirements documents. From these results, we have
selected two process descriptions, that we will annotate with the actions
and conditions. This enables us to compare the generated model with our
annotations.

Version of July 9, 2022– Created July 9, 2022 - 15:37

105

106 Analysis and Results

5.3.1 THEMAS - Validate Temperature - SRS-008

The Validate Temperature process description has been taken from a Soft-
ware Requirements Specification named THEMAS, which stands for The
Energy Management System. In Example (11) we present the process de-
scription.

(11) Two types of temperature data shall be recognized from the thermostats:
1) the temperature setting and 2) the current temperature. This mod-
ule shall process both types of data. A current temperature value that
is received from an individual thermostat shall be compared to the valid
temperature range values. If the current temperature value is strictly
less than the lower value of the valid temperature range or if the re-
ceived temperature value is strictly greater than the upper value of the
valid temperature range, then the THEMAS system shall identify the
current temperature value as an invalid temperature and shall output
an invalid temperature status. Otherwise, the THEMAS system shall
output a valid temperature status. A temperature setting value that is
received from an individual thermostat shall be compared to the valid
temperature range values. If the temperature setting value is strictly less
than the lower value of the valid temperature range or if the temperature
setting value is strictly greater than the upper value of the valid tem-
perature range, then the THEMAS system shall identify the temperature
setting as an invalid temperature and shall output an invalid tempera-
ture status. Otherwise, the THEMAS system shall realize the value for
that thermostat’s temperature setting.
Validate temperature description[31].

As we mentioned there is not a model available for this process. There-
fore we will manually annotate the text with actions and conditions. This
is not a complete annotation, but mostly to identify the main actions and
conditions. We present the annotations in Example (12).

(12) Actions for the process of approving and preparing a purchase
request.
a. Two types of temperature data shall be recognized from the

thermostats: 1) the temperature setting and 2) the current tem-
perature.

b. This module shall process both types of data.
c. A current temperature value that is received from an indi-

vidual thermostat shall be compared to the valid temperature
range values.

106

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.3 PURE dataset 107

Figure 5.20: Generated validate temperature model.

d. Condition: If the current temperature value is strictly less
than the lower value of the valid temperature range or if the
received temperature value is strictly greater than the upper
value of the valid temperature range,

e. Action following condition: then the THEMAS system shall
identify the current temperature value as an invalid tempera-
ture and shall output an invalid temperature status.

f. Alternative action: Otherwise, the THEMAS system shall out-
put a valid temperature status.

g. A temperature setting value that is received from an individ-
ual thermostat shall be compared to the valid temperature
range values.

h. Condition: If the temperature setting value is strictly less than
the lower value of the valid temperature range or if the tem-
perature setting value is strictly greater than the upper value
of the valid temperature range,

i. Action following condition: then the THEMAS system shall
identify the temperature setting as an invalid temperature and
shall output an invalid temperature status.

j. Alternative action: Otherwise, the THEMAS system shall re-
alize the value for that thermostat’s temperature setting.

We will use the annotations from Example (12) to validate our model.
The model generated from the input of Example (11) can be found in Fig-
ure 5.20. The different red numbers are the problems that we will describe.

Problem 1. specifies a problem with the condition and its transforma-
tion into a structure. The condition is stated in Example (12-d), here there
are two conditions coupled with the word ‘or’. As we have seen in an

Version of July 9, 2022– Created July 9, 2022 - 15:37

107

108 Analysis and Results

earlier result in Section 5.1.3, this type of sentence can specify the guard
for two different paths. We split these two conditions to make sure that
in the case we should couple them to another earlier specified condition
we can couple them. However, in the case of Example (12-d) both condi-
tions should be kept together and both should be a guard to the following
action. To solve this problem, the guard next to the 1. should be com-
bined with an ‘or’ with the guard that states ‘the received temperature value
is strictly greater than the upper value of the valid temperature range’.

Then Problem 2. is similar to the previous problem. The condition
stated in Example (12-h) is also a conjunction by the word ‘or’ of two con-
ditions. Just like the previous problem these conditions should have been
combined in one guard. Although they look similar, the first structure is
different from the previous problem. In this example, the guard is not
on the same decision node as with the previous example, because it has
a link to the coreference cluster of the previous decision node and is a
contradiction to one of the guards in that decision node. The coreference
cluster is coming from the entity ‘the valid temperature range’ so the coref-
erence is correct, but we do not want to compare these conditions. We
do not want to compare them, because they are statements about other
entities, namely the ‘temperature setting value’ and the ‘received temperature
value’. This does indicate that the way we select conditions with coref-
erence clusters to compare using entailment should be extended with a
way to identify the important entities in a sentence, such that we only use
entailment on conditions that are about the same entity of interest. With
this in mind, the contradiction between the guard next to the problem 2.
marking is a contradiction with the guard ‘the received temperature value
is strictly greater than the upper value of the valid temperature range’. If we
look closely at the guards that have been compared for entailment, we see
that those are not exact contradictions, because they use other main en-
tities ‘temperature setting value’ and ‘received temperature value’. These two
entities are very similar, that is why the entailment model has compared
these two and noted them as a contradiction. Again the result of the en-
tailment is not 100% correct, but the conditional sentences are very similar.
With an extension of the coreference condition comparison, we should be
able to also handle the incorrect contradiction, because we only compare
sentences that should be compared.

Overall the model and its’ actions are correctly created the only prob-
lem is multiple conditions that should be modelled in the same conditional
structure. Nevertheless, it is a good representation of the given process de-
scription.

108

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.3 PURE dataset 109

5.3.2 Microcare - Voucher Maintenance System

Another requirements document from the PURE Dataset is the Microcare
document[31]. The document describes the requirements for building a
Voucher Management System. The goal of the system is to manage the
distribution of vouchers that can be used for the treatment of STDs. VMU
stands for the Voucher Management Unit. In Example (13) we present the
process description.

(13) The VMU will create the vouchers and sell it to clients through distribu-
tors. The distributor will submit the sales details back to the VMU. Each
voucher should have two portions with three tear off voucher slips each
for Client and Partner. The client and/or the partner will choose the ser-
vice provider and will get treatment. First visit is called as Consultation
and if the patient is not cured then they can go for first follow up and
second follow up. If the patient is not cured then the doctor will refer the
patient to some other Hospitals the hospital may be another VSP or any
other. Each visit details (including Diagnosis, Lab Test and Drugs) of
the patient is called a claim. The VSP will submit the claim to VMIU
field office to enter those into the database. The filed office will validate
the claim form manually and through system. If any of mandatory infor-
mation is missed or any false information is existing then the field office
will reject the claim back to VSP and the system will keep those claim in
a quarantine area. The quarantined forms will be sent back to the VSP
for verification, if the VSP returns the claim with satisfactory details, the
claims will be entered on to the system, in the following month’s batch.
Based on the payment terms agreed by VSP, the field office will generate
BiMonth or Monthly financial and medical report and send it to MSIU
Admin team to arrange the payments for the VSP. To understand the
satisfaction of client the MSIU Admin team will get client feedback from
some of the clients and send those documents to field office to enter those
into database.
Process description from the Microcare document[31].

As mentioned in the previous text, the PURE dataset does not provide any
models with the requirements document. Therefore we will annotate the
text with actions and conditions. We will compare the annotated text with
the generated model. In Example (14) we present the annotated text.

(14) Actions for the process of approving and preparing a purchase
request.
a. The VMU will create the vouchers and sell it to clients through

Version of July 9, 2022– Created July 9, 2022 - 15:37

109

110 Analysis and Results

distributors.
b. The distributor will submit the sales details back to the VMU.
c. Each voucher should have two portions with three tear off

voucher slips each for Client and Partner.
d. The client and/or the partner will choose the service provider

and will get treatment.
e. First visit is called as Consultation
f. Condition: the patient is not cured
g. Action after condition: they can go for first follow up and

second follow up.
h. Condition: the patient is not cured
i. Action after condition: the doctor will refer the patient to

some other Hospitals the hospital may be another VSP or any
other.

j. Each visit details (including Diagnosis, Lab Test and Drugs)
of the patient is called a claim.

k. The VSP will submit the claim to VMIU field office to enter
those into the database.

l. The filed office will validate the claim form manually and
through system.

m. Condition: any of mandatory information is missed or any
false information is existing

n. Action after condition: the field office will reject the claim
back to VSP and the system will keep those claim in a quar-
antine area.

o. The quarantined forms will be sent back to the VSP for verifi-
cation

p. Condition: the VSP returns the claim with satisfactory details
q. Action after condition: the claims will be entered on to the

system, in the following month’s batch.
r. Based on the payment terms agreed by VSP, the field office

will generate BiMonth or Monthly financial and medical re-
port and send it to MSIU Admin team to arrange the pay-
ments for the VSP.

s. To understand the satisfaction of client the MSIU Admin team
will get client feedback from some of the clients and send
those documents to field office to enter those into database.

110

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.3 PURE dataset 111

Fi
gu

re
5.

21
:G

e
n

e
r
a
te

d
M

ic
r
o

c
a
r
e

o
u

tl
in

e
v

o
u

c
h

e
r

m
a
in

te
n

a
n

c
e

s
y

s
te

m
m

o
d

e
l.

Version of July 9, 2022– Created July 9, 2022 - 15:37

111

112 Analysis and Results

In Figure 5.21 we present the model generated based on the text shown
in Example (13). We have added the red annotations to show the problems
of the generated model.

The first problem, Problem 1. is an incorrect personal pronoun replace-
ment. The coreference cluster has predicted for the word ‘they’ that it refers
to the entity ‘the client and/or the partner’, but if we look into the structure
and definition of the sentence we see that it does refer to ‘patient’. The
incorrect coreference cluster is probably the effect of an incorrect personal
pronoun ‘they’. ‘they’ is a plural pronoun, while ‘the patient’ is a singular
pronoun. This difference is what we suspect to be the issue, because when
we switch ‘they’ with ‘he’, ‘she’ or ‘he or she’ the coreference finds the cluster
of ‘patient’. So it is just a problem with the text.

Problem 2. is the split of the sentence into two actions, that should have
been kept together. The division is the effect of a new SRL roleset in the
sentence and not in clear conjunction with the word ‘and’ between the two
rolesets. This could be overcome with scanning if a roleset is in the same
sentence, but there are cases where we would like to split the two parts.

We have seen Problem 3. before it is a condition that should have been
combined with the next condition. The conditions have been split because
there are two SRL role sets in the condition statement. The role sets are
split with the word ‘or’.

To conclude the actions are quite correct and there are problems with
some conditional structures. Nevertheless, the problems are solvable and
the resulting model is quite correct. Another important aspect here is that
the text was not very complex and very structured, because there were not
any forward or backward references.

5.4 Industry collaboration
Together with Pegasystems (Pega), we have been working on a collabora-
tion, to see how our work supports their software and the users using it.
The goal of the collaboration is to explore the possibilities of our pipeline
and try to fit the output into the software of Pega to ease the build pro-
cesses and applications. In this effort, we have defined together with Pega
a text that we can use as a demo scenario and as input for our pipeline. Be-
sides the pipeline, another student Willem-Pieter van Vlokhoven is creat-
ing an API mapping software to convert the data generated by our system
into a format that can be used in the system of Pega. With this software,
we can create an activity model in our system and transform it into a Pega
process model. In the following sections, we will demonstrate the text

112

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.4 Industry collaboration 113

and the resulting activity models, that we have written and built for this
collaboration.

5.4.1 Demo scenario
Pega makes use of the case life cycle design approach. In this approach,
several cases are used to specify a process and how it is executed. Within
a case, several stages can be executed and within each case there are steps.
These steps can be certain actions that are executed. We want to be able to
transform our activity model into such a case life cycle. We will not go into
the details of how we define this, which will be something the other stu-
dent Willem-Pieter van Vlokhoven will write more about in the future. We
focus on writing the process descriptions and generating activity models
for the collaboration.

To follow the case life cycle approach we have defined four different
texts. The first text is an overview of the different stages, where each action
in the state is a case in itself. In the other three texts, we define the actions
that occur in each case.

5.4.1.1 Process overview

The first scenario is an overview of the whole process. We present this text
in Example (15). In this text, the different cases are defined and specified
in how they interact with one another.

(15) The first stage is the customer captures the order. Then the order
manager approves the order. Finally the order is processed by the
warehouse manager.

The process description in Example (15) is used to generate an activity
model, that we present in Figure 5.22. The model is not very big or exten-
sive, because the input text is brief.

5.4.1.2 Stage models

Based on these different stages we have defined process descriptions for
each stage to see what such a process would look like. In Example (16) we
present a few sentences for each stage.

(16) Sentences for each stage.
a. A customer enters an order.

Capture order

Version of July 9, 2022– Created July 9, 2022 - 15:37

113

114 Analysis and Results

Figure 5.22: Process overview of order example for Pega.

Figure 5.23: Process of capture order example for Pega.

b. If the order total is more than 10.000 euros, the order needs
to be approved by the manager. If the order is approved, the
inventory manager allocates the stock. If the order is not ap-
proved, it is cancelled.
Approve order

c. If the order total is less than 10.000 euros, the inventory man-
ager allocates the stock. If the stock level is too low, the prod-
uct is reordered.
Process order

For each of these stages we have generated a model. The model for
Example (16-a) is shown in Figure 5.23, Example (16-b) is presented in
Figure 5.24 and Example (16-b) in Figure 5.25.

These stage models are used for the creation of a process model in the
Pega system. The models themselves are quite simple, but the goal of
them is to try to build a working collaboration. In the future, these can be

114

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.4 Industry collaboration 115

Figure 5.24: Process of approve order example for Pega.

Figure 5.25: Process of process order example for Pega.

Version of July 9, 2022– Created July 9, 2022 - 15:37

115

116 Analysis and Results

extended further to be of added value for the creation of processes in low
code systems.

5.4.1.3 Complete model

Next to the overview and stage models we also wanted to combine the
different stage models, into one larger model. The goal is to identify prob-
lems with the smaller models and see how they could be combined. Un-
fortunately, some parts could not be easily combined, therefore we rewrote
some of the parts. Also, we changed some unclear actions that we found
while looking into the stage models, such as the stock allocation which
only happens when the order is of a certain amount. We could have
changed the stage process descriptions also to define them again, but we
would like to show that there can be change, such that the stage models
can be improved in the future. Therefore we kept the old stage model de-
scriptions which we have shown in Example (16). To show the complete
process description we present Example (17).

(17) The process starts with the first activity, where the customer cap-
tures order details. This is followed by capture customer details.
If the order amount is larger than 10.000 euros, the order needs to
be approved by the order manager. If the order is not approved,
the order is cancelled. Otherwise, the warehouse manager checks
the inventory. If the inventory is too low, the stock is reordered.
Finally the warehouse manager ships the order.
Complete demo scenario.

Based on the process description in Example (17) we have generated an
activity model. The activity model is shown in Figure 5.26.

These models can be used to generate a process model in the low code
platform of Pega. The transformation process will be shown in the future
in the work of Willem-Pieter van Vlokhoven. He will create an API map-
ping layer to transform the models that we have created into Pega models.

The first finding of this collaboration is the difference in ways that ven-
dors such as Pega have built their interpretation of systems, such as the
case life cycle. In the case of Pega, they focus on a hierarchical struc-
ture, because that is how some of the process descriptions are specified.
The process descriptions are explanations of several levels of the process,
so there is a high-level description of the stages and a more in-depth de-
scription of each stage. The use of stages required us to tailor our activity
model to their interpretation of how a system should be defined. This is

116

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.5 Conclusion 117

Figure 5.26: Pega order process

not problematic, but it requires an extra interpretation step to transform
our models into the Pega models. Such a proprietary model and archi-
tecture is not only defined at Pega, there are other vendors which made a
similar decision or took a whole other approach. Therefore the difference
in interpretation of how to define process models and descriptions needs
to be taken into account when moving forward in this area.

As we mentioned at the beginning of this section, the collaboration is
mostly exploratory. There will be more findings along the way, which will
be reported together with other case studies in the future work of Willem-
Pieter van Vlokhoven.

5.5 Conclusion
To conclude our results, we have created several models from process de-
scriptions. Some of these models had BMPN models to compare with, and
some did not. For the ones that did not have any comparison options, we
annotated the text to compare our models.

In comparison with the work of Friedrich et al., we have seen that our
pipeline is good at keeping the context of actions and conditions because
we do not transform our text. Next to that, the use of our conditional ex-
traction approach with conditional keywords and sentence structures such
as adverbials works quite well. The path identification was also good be-
cause the coreference and entailment approach enabled us to make more
certain decisions about conditions than Friedrich et al. could do. These

Version of July 9, 2022– Created July 9, 2022 - 15:37

117

118 Analysis and Results

choices enabled us to create better conditional structures. Besides these
achievements we did see parts where we could improve, such as the con-
dition extraction, actor identification and action identification for condi-
tional paths.

For the other models, we have mostly investigated if the actions and
conditions were correctly created. Here we mostly found problems with
split-up conditions and the combinations of incorrect conditions that were
based on coreference. Also the word ‘once’ could have been a good ex-
tension of the conditional keyword list to find more conditions. Overall
the created models represent the processes quite good and there are minor
tweaks needed to create a correct activity model.

To summarise the the parts where our pipeline can improve we have
defined a list of problems and improvements:

1. Actors

(a) Incorrect actors;

(b) Missing actors;

2. Action extraction

(a) Remove demo or example text;

(b) Improve rolesets selection, to counter empty rolesets.

3. Condition selection

(a) Better identification of the adverbials, because they can be split
in two.

(b) Update the list of conditional keywords e.g. add ‘once’.

(c) Condition split in twice with the ‘or’ word, keep these together.

(d) Add the ARGM-PNC SRL tag to the condition extraction ap-
proach.

4. Path identification

(a) Improve the condition comparison with coreference and entail-
ment, to search first for neighbouring conditions.

(b) Improve the identification of actions that should be part of a
certain path. e.g. actions part of an alternative path.

118

Version of July 9, 2022– Created July 9, 2022 - 15:37

5.5 Conclusion 119

The possible improvements are the result of testing our pipeline on a
set of unseen process descriptions. Next to these improvements, we would
also like to enhance our work with some concepts we have not had the
time to touch upon, such as repetition and parallel paths. These are for
our future work.

Besides these parts on which we could improve, some parts are quite
hard to improve upon. We present these problems as follows:

1. Implicit structures

(a) actions, which are created using the structure of the model.

(b) Implicit conditions, for which we need to understand the con-
text of the sentence.

2. References to other processes.

3. Missing SRL rolesets.

With all of these improvements in consideration, our pipeline can be
further improved to be better at transforming process descriptions into
activity models. Nevertheless, as we have shown the performance of our
pipeline does come near the performance of the model of Friedrich et al.,
still, it is at some points better than our pipeline. Another important aspect
of our approach is to note that with the extraction of parts of the text and
the creation of activity models we have been working on several tasks all
at once. These tasks or problems are path identification, matching and
combining conditions, extracting actions and building a correct activity
model. What we have seen is that each of these tasks can be a research
topic itself. So the results that we have produced are promising and there
can be more improvement in this field.

Version of July 9, 2022– Created July 9, 2022 - 15:37

119

Chapter 6
Discussion

In this thesis, we have presented a prototype that we have created to im-
prove the requirements engineering process concerning the creation of
activity models. Next to this prototype, we have demonstrated several
approaches to extract information for the creation of these activity mod-
els. To be able to do this, we have investigated earlier contributions in
this field. We found out that most contributions did not consider activity
models, but the more widely used BPMN. Nevertheless, the similarities
between these two modelling approaches enabled us to use the contribu-
tions from the field of BPMN. From these contributions, we reused some
extraction approaches, such as conditional keywords and inspiration for
our action extraction. The few available datasets were also helpful in the
validation of our approaches.

To improve the existing approaches from the literature we wanted to
use state-of-the-art NLP models in our approach. We especially wanted to
use the newer transformer models, because they perform well at under-
standing context. Our first assumption and aim were to use these models
as a way to understand our text as a whole and extract activity models
through them, but unfortunately, the models were not directly fit for this
approach. The limited number of datasets was also a limiting factor for
some of the machine learning and natural language processing approaches
to construct activity models. Therefore we used transformer models for
specific NLP tasks, such as semantic role labelling, coreference resolution
and textual entailment. With these tasks, we could extract useful infor-
mation about the text. The combination of these models and their output
enabled us to construct activity models.

The dataset with BPMN models that were available did help us in our
validation of our prototype and approaches. In our results we have shown

Version of July 9, 2022– Created July 9, 2022 - 15:37

121

122 Discussion

that our model is good at finding actions and keeping the context, also it
is better at combining conditions than the model of Friedrich et al.. Over-
all the approach for action extraction and combining conditions is a good
improvement in the field of process extraction from text. Specifically, the
use of coreference and entailment has been a good approach to combining
and comparing conditions with more certainty.

To conclude we have presented a prototype to enhance the creation of
activity models for the requirements engineering process. These models
can help modellers, to quickly create models and easily understand pro-
cesses, faster than starting with nothing.

6.1 Limitations

There are some limitations to our work, which we will discuss. The first
limitation pertains to the structure of texts. As seen in earlier work, there
have long been modelling approaches that required some sort of struc-
ture in the text. This could range from a text in steps to texts structured
in spreadsheet-like formats. In our approach we did not want to work
with any structured input, to be able to handle most types of input. Nev-
ertheless, as we have previously mentioned it is hard to understand the
sequence of actions within the text. Thus we have assumed that the or-
der of the given text is the order of execution of the process. We do try to
overcome this by using coreference for our conditions, to be able to move
back and forth when combining process parts in the text. In the future we
would like to be able to not be bound to this assumption, but to be able to
do this we will need to be able to identify flows of action within a text. At
this point, we have not found such approaches.

Another limitation to our approach is that we are not able to process
implicit information in a process description. With implicit information
we mean information that is clear for a human or expert, but not explicitly
stated in the text. Our pipeline relies heavily on all of the information
stated in a text and does not have a sense of context, therefore we are
not able to handle such information. To be able to work with implicit
information our model needs to gather and use such information. This
could be a knowledge graph or some sort of domain knowledge input,
that the pipeline takes into account.

A point of preference is the way to construct actions. Our approach
uses the SRL tags within a sentence to construct the actions that we use.
Through this approach, we can extract more information from the sen-
tence, than with only a subject, verb and object extraction. For BPMN

122

Version of July 9, 2022– Created July 9, 2022 - 15:37

6.2 Future work 123

models most activities are presented with brief actions. In activity models,
this is not limited to brief actions and longer pieces of text can be used.
Because of our transformation, it is often not clear how everything came
together, therefore the use of longer actions enables the end-user to under-
stand what an action does and he or she can change it accordingly. Still,
this is more of a preference on how the actions should be created.

6.2 Future work

Previously in Section 5.5 we already showed a list of possible improve-
ments for our pipeline. Furthermore, we will propose some possible im-
provements for the future.

During our research, we found out that the goal of transforming activ-
ity models is a combination of several tasks. We would like to propose,
similar to Bellan et al. [33], that the research area starts with a separation
of the different transformation tasks. Such a task could be action extrac-
tion, path identification, condition identification or other tasks. With the
definition of these tasks, the problems that we are trying to solve will be-
come more general than only process model specific. Each contribution
to one of the tasks will improve the overall performance of the transfor-
mation task. Next to that field of research will also be open to researchers
that are not experts in the process domain. Still an important thing to take
into account about these different tasks, is that they are dependent on one
another. We have also seen this in our approaches when we tried to solve
one task it sometimes influenced another task.

These different research tasks can be optimised if there is enough data
available to validate the approaches with. Therefore we and others[19]
with us would like to point out that the research in this area will be im-
proved if there are more datasets available. The datasets can be divided in
to several smaller datasets, but there are two main types of output possi-
ble for the datasets. The first output type are textual annotations such as
output that specify certain nodes or structures for the process models. The
other output type is a ‘correct’ process model.

Each of these outputs should have their own performance metrics. For
the annotations this could be a recall and precision, but these metrics are
mostly focused on the performance of our model to create the required
text. In the process of building nodes there are also textual transformations
happening that change the text. The use of recall and precision are then
less useful, because the required output for the text is not the same as in
the previous text. Therefore the other metrics like similarity might be a

Version of July 9, 2022– Created July 9, 2022 - 15:37

123

124 Discussion

good addition to measure the performance on the textual aspect of the
processes.

For the modelling aspects we can make use of the standard precision
and recall metrics, but similarity metrics would also be a good addition
to compare the generated models with the ‘correct’ models. These metrics
can be quite extensive, but for simplicity the first ones could be distance
between nodes, number of nodes and edges and the differences in control
nodes such as decision and merge nodes. Another good approach is to
use conformance checking to compare the a process model and what is
supposed to execute[46].

Overall on the side of datasets and metrics there is a lot to be improved,
there have been several approaches to introduce certain metrics[24, 33].
These metrics should be embraced and reused to make sure they will be
further implemented and the research can be more easily be compared and
quantitatively show where improvements can be made in the field.

Based on the different research tasks, one of the complex things to do
is the identification of flows in a text. By flows, we mean the sequence
in which the different actions, conditions and other process structures are
executed. It is important to identify such a flow, to be able to create the
process nodes in the desired order. For conditions, we have proposed a
way to combine the different conditions with the use of coreference and
entailment, but this is only one type of flow. There are more flows within a
text that we would like to identify and process. Therefore the identification
of flows is an interesting task that will improve the research area and this
work.

On the extension of flows, one approach to identifying and under-
standing sequence in a text is demonstrative pronouns. Demonstrative
pronouns are words like ‘this’ and ‘that’. These words indicate a direction
within a text and can be used to understand the flow of a text. The direc-
tion of these pronouns can be found using the predictions from a model
such as a coreference resolution. Unfortunately, the performance of coref-
erence resolution on the predictions for demonstrative pronouns is quite
poor[40]. In the case this performance is improved, the demonstrative
pronouns can be used as an indicator of the flow in a text.

As we have previously mentioned our approach for the combination
of conditions is based on coreference and entailment. We have seen that it
works quite well on the datasets that we have experimented with. How-
ever, in the future, we would like to see how these two will perform on
more and more complex data. So there is a good opportunity to further
research the use of the two NLP models for the identification of condition
sets.

124

Version of July 9, 2022– Created July 9, 2022 - 15:37

6.2 Future work 125

An interesting research area that could be beneficial for the generation
of process models is the code generation contributions. These contribu-
tions introduce models that take natural language text as input to gen-
erate code[47, 48]. These models and their techniques can demonstrate
improvements for understanding texts and might in the future help the
overall generation of process models.

Our approach has been powered by three NLP models and the combi-
nation of these models enabled us to build activity models from process
descriptions. Another approach for the generation of activity models is to
use other types of machine learning models. For example, a model that is
trained using activity models and their corresponding process description,
such that a new description can be given and a model is generated. Unfor-
tunately, this is quite hard to do, because there is a lot of data needed, but
there are not many datasets available. A way that would be more doable
is with smaller tasks or subsets of the activity model. Such as conditional
structures or parallels. It is easier to train a model for such a task and the
results can be combined for the creation of a complete activity model. Still,
there needs to be a large amount of data available for this.

To conclude there are many ways to go forward from this point and
many areas to further investigate. Each of these to create better activity
models from process descriptions!

Version of July 9, 2022– Created July 9, 2022 - 15:37

125

Chapter 7
Conclusion

Our research presents a new prototype for the transformation of process
descriptions into activity models. The transformation approach is a com-
bination of the output of NLP models and rules that define how to trans-
form that output into activity nodes and structures. These NLP models
are transformer-based and implemented in the AllenNLP library, so the
performance of these models is state-of-the-art or close to that. We have
implemented this transformation in an existing environment and made
sure that the NLP models can be upgraded and the transformation steps
can be extended, to make the solution future-proof. The additional heuris-
tic rules that we use are keyword and structure-based and make use of the
outputs of the NLP models, some of which have been reused from earlier
contributions. This whole approach enables us to generate activity mod-
els.

We have tested and validated our models with the available datasets.
In the validation process, we have seen that our model is strong at keeping
the context of actions and conditions. Furthermore, the combination of se-
mantic role labelling, coreference and natural language inference enabled
us to combine conditions with more certainty than earlier approaches. For
future work, we propose that our approach needs to be tested on a larger
dataset because there will be more corner cases that need to be solved.

Our solution provides a novel approach to activity model generation
from process descriptions and it supports UML modellers in the process
of creating activity models.

Version of July 9, 2022– Created July 9, 2022 - 15:37

127

Bibliography

[1] C. B. Keating and P. F. Katina, Systems of systems engineering: prospects
and challenges for the emerging field, International Journal of System of
Systems Engineering 2, 234 (2011).

[2] F. P. Brooks, No Silver Bullet Essence and Accidents of Software Engineer-
ing, IEEE computer 20, 10 (1987).

[3] L. Zhao, W. Alhoshan, A. Ferrari, K. J. Letsholo, M. A. Ajagbe, E.-
V. Chioasca, and R. T. Batista-Navarro, Natural Language Processing
(NLP) for Requirements Engineering: A Systematic Mapping Study, ACM
Computing Surveys (CSUR) 54, 1 (2021).

[4] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, A de-
sign science research methodology for information systems research, Journal
of Management Information Systems 24, 45 (2007).

[5] A. R. Hevner, S. T. March, J. Park, and S. Ram, Design science in in-
formation systems research, MIS Quarterly: Management Information
Systems 28, 75 (2004).

[6] O. M. Group, About the Unified Modeling Language Specification Version
2.5.1, (2017).

[7] G. Booch, J. Rumbaugh, and I. Jacobson, Unified Modeling Language
User Guide, The (2nd Edition) (Addison-Wesley Object Technology Series),
volume 10, Addison Wesley, first edition edition, 1998.

[8] R. M. Bastos and D. D. A. Ruiz, Extending UML activity diagram
for workflow modeling in production systems, Proceedings of the 35th
Annual Hawaii International Conference on System Sciences , 3786
(2002).

Version of July 9, 2022– Created July 9, 2022 - 15:37

129

130 BIBLIOGRAPHY

[9] C. V. Geambaşu, BPMN vs. UML activity diagram for business process
modeling, Proceedings of the 7th International Conference Accounting
and Management Information Systems AMIS , 934 (2012).

[10] A. Sahay, D. D. Ruscio, A. Pierantonio, and A. Indamutsa, Support-
ing the understanding and comparison of low-code development platforms,
46th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA) , 171 (2020).

[11] D. Jurafsky and J. H. Martin, Speech and Language Processing, (2021).

[12] P. Shi, J. Lin, and D. R. Cheriton, Simple BERT Models for Relation Ex-
traction and Semantic Role Labeling, arXiv preprint arXiv:1904.05255
(2019).

[13] J. Ruppenhofer, M. Ellsworth, M. R. L. Petruck, C. R. Johnson, C. F.
Baker, and J. Scheffczyk, FrameNet II: Extended Theory and Practice,
2016.

[14] M. Palmer, D. Gildea, and P. Kingsbury, The Proposition Bank: An
Annotated Corpus of Semantic Roles, Computational linguistics 31, 71
(2005).

[15] A. Williams, N. Nangia, and S. R. Bowman, A Broad-Coverage Chal-
lenge Corpus for Sentence Understanding through Inference, arXiv
preprint arXiv:1704.05426 (2017).

[16] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning, A large anno-
tated corpus for learning natural language inference, Conference Proceed-
ings - EMNLP 2015: Conference on Empirical Methods in Natural
Language Processing , 632 (2015).

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, Attention is all you need, Pro-
ceedings of the 31st International Conference on Neural Information
Processing Systems 2017-December, 6000 (2017).

[18] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, BERT: Pre-training
of deep bidirectional transformers for language understanding, Proceed-
ings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers) 1, 4171 (2019).

130

Version of July 9, 2022– Created July 9, 2022 - 15:37

BIBLIOGRAPHY 131

[19] P. Bellan, M. Dragoni, and C. Ghidini, Process Extraction from
Text: state of the art and challenges for the future, arXiv preprint
arXiv:2110.03754 (2021).

[20] H. van der Aa, C. D. Ciccio, H. Leopold, and H. A. Reijers, Extracting
Declarative Process Models from Natural Language, International Con-
ference on Advanced Information Systems Engineering , 365 (2019).

[21] X. Han, L. Hu, L. Mei, Y. Dang, S. Agarwal, X. Zhou, and P. Hu, A-
BPS: Automatic Business Process Discovery Service using Ordered Neu-
rons LSTM, Proceedings - 2020 IEEE 13th International Conference
on Web Services, ICWS 2020 , 428 (2020).

[22] R. Sharma, S. Gulia, and K. K. Biswas, Automated generation of activity
and sequence diagrams from natural language requirements, ENASE 2014
- Proceedings of the 9th International Conference on Evaluation of
Novel Approaches to Software Engineering , 69 (2014).

[23] T. Yue, L. C. Briand, and Y. Labiche, aToucan: An Automated Framework
to Derive UML Analysis Models from Use Case Models, ACM Transac-
tions on Software Engineering and Methodology 24 (2015).

[24] F. Friedrich, J. Mendling, and F. Puhlmann, Process Model Generation
from Natural Language Text, pages 482–496, Springer, 2011.

[25] K. P. Sawant, S. Roy, S. Sripathi, F. Plesse, and A. S. Sajeev, Deriving re-
quirements model from textual use cases, Companion Proceedings of the
36th International Conference on Software Engineering , 235 (2014).

[26] K. Honkisz, K. Kluza, and P. Wiśniewski, A concept for generating busi-
ness process models from natural language description, Knowledge Sci-
ence, Engineering and Management 11061 LNAI, 91 (2018).

[27] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, Feature-rich
part-of-speech tagging with a cyclic dependency network, Proceedings
of the 2003 Human Language Technology Conference of the North
American Chapter of the Association for Computational Linguistics ,
252 (2003).

[28] M.-C. D. Marneffe, B. Maccartney, and C. D. Manning, Generating
typed dependency parses from phrase structure parses., Proceedings of
the Fifth International Conference on Language Resources and Eval-
uation (LREC) 6, 449 (2006).

Version of July 9, 2022– Created July 9, 2022 - 15:37

131

132 BIBLIOGRAPHY

[29] J. C. de A.R. Gonçalves, F. M. Santoro, and F. A. Baião, Let Me Tell
You a Story - On How to Build Process Models, Journal of Universal
Computer Science 17, 276 (2011).

[30] W. Alhoshan, R. Batista-Navarro, and L. Zhao, Towards a corpus of
requirements documents enriched with semantic frame annotations, 2018
IEEE 26th International Requirements Engineering Conference (RE) ,
428 (2018).

[31] A. Ferrari, G. O. Spagnolo, and S. Gnesi, PURE: A Dataset of Public
Requirements Documents, Proceedings - 2017 IEEE 25th International
Requirements Engineering Conference, RE 2017 (2017).

[32] F. Friedrich, Automated Generation of Business Process Models from Nat-
ural Language Input, (2010).

[33] P. Bellan, H. V. D. Aa, M. Dragoni, C. Ghidini, S. P. Ponzetto, and F. B.
Kessler, PET: A new Dataset for Process Extraction from Natural Language
Text, arXiv preprint arXiv:2203.04860 (2022).

[34] W. N. Francis and H. Kucera, Brown Corpus Manual, Brown University
(1979).

[35] L. Quishpi, J. Carmona, and L. Padró, Extracting Annotations from Tex-
tual Descriptions of Processes, International Conference on Business
Process Management , 184 (2020).

[36] K. Lee, L. He, and L. Zettlemoyer, Higher-order coreference resolution
with coarse-to-fine inference, NAACL HLT 2018 - 2018 Conference of the
North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies - Proceedings of the Confer-
ence 2, 687 (2018).

[37] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy,
SpanBERT: Improving Pre-training by Representing and Predicting Spans,
Transactions of the Association for Computational Linguistics 8, 64
(2020).

[38] H. Hematialam and W. W. Zadrozny, Identifying Condition-action State-
ments in Medical Guidelines: Three Studies using Machine Learning and
Domain Adaptation, (2021).

[39] R. C. B. Ferreira, L. H. Thom, and M. Fantinato, A Semi-automatic Ap-
proach to Identify Business Process Elements in Natural Language Texts,

132

Version of July 9, 2022– Created July 9, 2022 - 15:37

BIBLIOGRAPHY 133

Proceedings of the 19th International Conference on Enterprise Infor-
mation Systems - Volume 1: ICEIS , 250 (2017).

[40] H. Zhang, X. Zhao, and Y. Song, A Brief Survey and Comparative Study
of Recent Development of Pronoun Coreference Resolution in English, Pro-
ceedings of the Fourth Workshop on Computational Models of Ref-
erence, Anaphora and Coreference , 1 (2021).

[41] G. J. Ramackers, P. P. Griffioen, M. B. Schouten, and M. R. Chaudron,
From Prose to Prototype: Synthesising Executable UML Models from Nat-
ural Language, 2021 ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Companion (MODELS-
C) , 380 (2021).

[42] M. Gardner, J. Grus, M. Neumann, O. Tafjord, P. Dasigi, N. F. Liu,
M. Peters, M. Schmitz, and L. Zettlemoyer, AllenNLP: A Deep Semantic
Natural Language Processing Platform, Proceedings of Workshop for
NLP Open Source Software (NLP-OSS) , 1 (2018).

[43] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, V. Stoyanov, and P. G. Allen, RoBERTa: A Robustly
Optimized BERT Pretraining Approach, arXiv (2019).

[44] R. Driessen, UML Class Models as First-Class Citizen: Metadata at
Design-time and Run-time, Leiden University. Leiden Institute of Ad-
vanced Computer Science (LIACS) , 1 (2020).

[45] T. Tang, From Natural Language to UML Class Models: An Automated
Solution Using NLP to Assist Requirements Analysis, Leiden University.
Leiden Institute of Advanced Computer Science (LIACS) , 1 (2021).

[46] S. Dunzer, M. Stierle, M. Matzner, and S. Baier, Conformance check-
ing: A state-of-the-art literature review, Proceedings of the 11th interna-
tional conference on subject-oriented business process management ,
1 (2019).

[47] M. Chen et al., Evaluating Large Language Models Trained on Code,
ArXiv abs/2107.03374 (2021).

[48] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou,
S. Savarese, and C. Xiong, A Conversational Paradigm for Program Syn-
thesis, ArXiv abs/2203.13474 (2022).

Version of July 9, 2022– Created July 9, 2022 - 15:37

133

	Introduction
	Problem statement
	Research objective
	Research approach
	Methodology
	Academic contribution
	Overview

	Background
	Activity models
	UML Activity Models
	Other process models

	Natural Language Processing methods
	Semantic Role Labeling
	Coreference
	Natural language inference
	Transformer models

	Related approaches
	Direct transformation
	Transformation with an intermediary model

	Datasets

	Methods
	Transformation tasks
	Action extraction
	Extraction explanation
	Algorithmic extraction
	Limitations

	Reference resolution
	Resolving personal pronouns to entities
	Cluster references
	Actor identification
	Limitations

	Condition extraction
	Condition identification
	Algorithmic transformation
	Limitations

	Sequence identification
	Sequential paths
	Repetition paths
	Parallel paths
	Path terminations
	Conditional paths

	Activity model construction

	System design
	Environment of the solution
	Logical Design
	Persistence tier
	Application tier
	Presentation tier

	Technical Design
	AllenNLP
	P2P backend
	Metamodel
	UML editor

	In-depth overview of all actions

	Analysis and Results
	Research baseline
	Repetition cycles - Claim examination
	SLA violation
	Loan approval process - VOS
	Employee expenses process - Oracle

	FrameNet Requirements
	Ordering materials FN-REQ-015

	PURE dataset
	THEMAS - Validate Temperature - SRS-008
	Microcare - Voucher Maintenance System

	Industry collaboration
	Demo scenario

	Conclusion

	Discussion
	Limitations
	Future work

	Conclusion

