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Abstract

Group detection from spatio-temporal data is helpful in many applications, such
as automatic driving and social sciences. Most previous works in this domain
are based on conventional machine learning methods with feature engineering;
only a few works are based on deep learning. We proposed a graph neural
network (GNN) based method for group detection. Our method is an exten-
sion of neural relational inference (NRI) [1]. We made the following changes to
the original NRI: (1) We applied symmetric edge features with symmetric edge
updating processes to output symmetric edge representations corresponding to
the symmetric binary group relationships. (2) Inspired by Wavenet [2], we ap-
plied a gated dilated residual causal convolutional block to capture both short
and long dependency of the sequences of edge features. We name our method
“WavenetNRI”. Our experiments compare our method with several baselines,
including the original NRI on two types of data sets: (1) six spring simula-
tion data sets; (2) five pedestrian data sets. Experimental results show that on
the spring simulation data sets, NRI and WavenetNRI with supervised training
outperform all other baselines, and NRI performs slightly better than Wavenet-
NRI. On the pedestrian data sets, our method WavenetNRI with supervised
training outperforms other pairwise classification-based baselines. However, it
cannot compete against the clustering-based methods. In the ablation study,
we study the effects of our changes to NRI on group detection. We find that on
the spring simulation data sets, the gated dilated residual causal convolutional
block can slightly improve the performance of NRI. On the pedestrian data sets,
the symmetric edge features with the symmetric edge updating processes can
significantly improve the performance of NRI.

2



Contents

1 Introduction 5

2 Problem Formulation 7

3 Related work 8
3.1 Group Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Graph Neural Networks for Spatio-Temporal Data . . . . . . . . 9

4 Methodology 10
4.1 GNN Encoder: Interactions Modelling . . . . . . . . . . . . . . . 11

4.1.1 Symmetric edge features and updating . . . . . . . . . . . 12
4.1.2 Gated dilated residual causal convolutional block . . . . . 13

4.2 Training Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.1 Supervised Training . . . . . . . . . . . . . . . . . . . . . 15
4.2.2 Unsupervised Training . . . . . . . . . . . . . . . . . . . . 15

5 Experiments 17
5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1.1 Spring Simulation . . . . . . . . . . . . . . . . . . . . . . 17
5.1.2 Pedestrian Datasets . . . . . . . . . . . . . . . . . . . . . 19
5.1.3 Data Exploration . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 23
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.5.1 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . 24
5.5.2 WaventNRI versus baselines . . . . . . . . . . . . . . . . . 27
5.5.3 Confusion matrices of the supervised pairwise classifica-

tion methods . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.5.4 Unsupervised Training of NRI & WavenetNRI . . . . . . 32

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.6.1 Comparison between the two types of data sets . . . . . . 34
5.6.2 Problems with pairwise classification-based methods . . . 35
5.6.3 Limitations of our work . . . . . . . . . . . . . . . . . . . 36

3



CONTENTS 4

6 Conclusion and future work 37

7 Appendix 42
7.1 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.1.1 Visualisation of Trajectories . . . . . . . . . . . . . . . . . 42
7.1.2 Confusion Matrices of WavenetNRI and NRI . . . . . . . 44
7.1.3 MSE and edge accuracy of NRI and WavenetNRI with

unsupervised training . . . . . . . . . . . . . . . . . . . . 49
7.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



Chapter 1

Introduction

Group detection from spatio-temporal data finds groups of agents based on
their spatial features at multiple time steps. For instance, group detection can
be applied to social science and psychology areas. For example, in schools,
detecting groups of pupils playing on a playground can help teachers find out
which pupils prefer group activities and which prefer solitary activities; this can
help to analyze pupils’ personalities.

Groups may have different definitions in different applications and situa-
tions. E.g., we can define pedestrians walking together and sharing a common
destination on streets as a group. We can also define pupils who are involved
in the same activity at the same time as a group. Therefore, formalising a gen-
eral definition of groups and describing the standard underlying features that
determine groups is difficult. In our work, we focus on detecting groups in two
different situations: pedestrians and spring simulations. In the pedestrian case,
groups are defined as the pedestrians walking close to each other and sharing
the same destination. The spring simulation is used to simulate a playground
of particles. The groups of particles are randomly generalised; the particles in
the same group have a high probability of interacting; in contrast, the particles
in different groups have a low probability of interacting.

Most previous works of group detection rely on conventional machine learn-
ing methods with feature engineering, such as [3, 4]; the usage of deep learning
in group detection is relatively unexplored. Feature engineering often requires
domain knowledge and is limited to specific data types and applications, lim-
iting the generalisation of the methods. Since graph neural networks (GNNs)
show strong potential for relational reasoning [5]; i.e., GNNs can model agents
as nodes and their relationships as edges, we believe that group detection can
benefit from GNNs. A recent work [6] proposes a method that applies a graph
convolutional network (GCN) to detect conversational groups. A conversational
group refers to a group of agents involved in the same conversation; the agents in
the conversational groups are static, and this work does not consider the move-
ments of the agents. Since we focus on detecting groups of moving agents, this
work is not within the scope of our research. Our work is the first to apply GNN
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CHAPTER 1. INTRODUCTION 6

to spatio-temporal data to detect groups to the best of our knowledge. Kipf et
al [1] proposed a GNN-based method Neural Relational Inference (NRI), which
applies a GNN to infer the interactions between particles given their spatio-
temporal sequences in a physical system. The differences between the inference
of pairwise interactions in a physical system and group detection are: (1) The
interactions in a physical system are constant through the given time window.
In contrast, the interactions in group detection tasks can change over time. (2)
The group relationships are transitive, meaning that a group member does not
need to interact with all other group members. (3) The group relationships are
imbalanced; the number of pairs in a group is relatively small [7]. We made the
following changes to the original NRI to tackle these differences. (1) The single-
layer 1D convolutional layer in NRI is replaced with a gated dilated residual
causal convolutional block, proposed by Wavenet [2]. We expect this architec-
ture to help capture both short and long dependence in the group detection
tasks where the interactions change over time. (2) We apply the Louvain com-
munity detection algorithm to transform the pairwise interactions into clusters
denoting groups. (3) The weighted cross-entropy loss function is applied to deal
with the imbalanced group relationships. The original NRI builds and updates
edge features by simply concatenating the node features, which does not satisfy
the symmetric property of group relationships. We use symmetric temporal
edge features and symmetric edge updating to tackle this problem.

Our contributions are:

• We proposed a framework for group detection based on NRI. We extended
NRI by applying the Louvain community detection algorithm to transform
the predicted interactions into predicted groups.

• We evaluated the framework using six spring simulation data sets and
five pedestrian data sets. We compared our method with the following
baselines Yamaguchi et al [4], Solera et al [3], GD-GAN [8] and the original
NRI.

• We verified the effects of our changes to the original NRI by ablation
study. The results showed that the gated dilated residual causal con-
volutional block could improve the performance of the spring simulation
data sets. The symmetric temporal edge features with symmetric edge
updating processes can improve the performance of the pedestrian data
sets.

The rest of this thesis is organised as follows. In Chapter 2 we will formalise
the problem. In Chapter 3 we will discuss the related works. In Chapter 4 we
will present our methods. In Chapter 5 the experiments will be discussed. In
Chapter 6 we will make conclusions and plan future work.



Chapter 2

Problem Formulation

The group detection for spatio-temporal data can be defined as follows: given
N agents in a time window with a duration of T time steps, the measurement of
one agent i ∈ 1, ..., N at a time step t ∈ 1, ..., T is denoted as Xt

i . The spatial-
temporal sequences of all agents can be denoted as X1:T

1:N . The goal is to detect
the existing groups C = {cj |j = 1, ...,K} of these agents, where K ≤ N is the
number of the groups. We assume that the group relationships are constant in
a time window. The problem is formulated as a pairwise binary classification
with a community detection algorithm. A GNN encoder is applied to predict
the pairwise interactions Î between agents of the time window given X1:T

1:N , i.e.,

P (Î|X). The Louvain community detection algorithm is applied to transform
the predicted pairwise interactions Î into predicted groups Ĉ. In our work,
we will try to train the GNN encoder in both supervised and unsupervised
ways. In the supervised way, we will use the ground truth pairwise group
relationships G as labels to train the GNN encoder. G(i,j) = 1 means agent i
and agent j are in the same group while G(i,j) = 0 means agent i and agent

j are in different groups. The difference between G and Î will be minimised
during training. In unsupervised learning, we assume that the movement of
an agent i is influenced by its group members with high probability and by the
outsiders with low probability. The movement of the agent i at time step t can be
modelled as the increments ∆Xt

i = Xt+1
i −Xt

i . A GNN decoder will predict ∆Xt

given the predicted interactions Î to reconstruct X1:T
1:N , i.e., P (X̂1:T

1:N |Î); here, the
interactions refer to the influences on movements of the agents. By joint training
the GNN encoder and GNN decoder, i.e., minimising the differences between
X1:T

1:N and X̂1:T
1:N , the GNN encoder can predict the pairwise influences Î.
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Chapter 3

Related work

3.1 Group Detection

In this section, we discuss the related works for detecting groups of moving
agents. We found that most previous works, such as [4, 3], are based on
conventional machine learning methods with hand-crafted features. Creating
hand-crafted features needs domain knowledge, and these hand-crafted features
usually depend on particular data types and applications. E.g., the feature
engineering applied to coordinate data may not be suitable for velocity and
acceleration data. The features created for detecting pedestrians walking in
groups on streets may not apply to detecting children playing in groups on a
playground. Yamaguchi et al [4] proposed an SVM-based framework applying
normalised histograms of distances, velocity and direction features to classify
the binary group detection. Solera et al [3] proposed a structural SVM [9] frame-
work, which finds groups of pedestrians by applying supervised clustering based
on hand-crafted features such as distance, motion causality, trajectory shape
and paths convergence. Zhao et al [10] extended the work of Solera et al [3]
by adding more hand-crafted features such as velocity and orientation. Chen et
al [11] proposed a framework using graph clustering algorithm to detect groups
of indoor activities, where the edge features denoting the similarity between
agents, which is based on Feature Engineering of acceleration, audio and loca-
tion features from sensors. One deep learning-based work is GD-GAN [8], which
applies a LSTM-based generator to predict future trajectories. The groups can
be detected by clustering the hidden states of the generator.

We categorise the related works of group detection into two categories: (1)
Clustering-based and (2) Pairwise classification-based. Most previous works are
clustering-based, such as [3, 8, 10, 11], which apply unsupervised or super-
vised clustering methods to output the clusters denoting groups. The Pairwise
classification-based methods do not predict the groups directly; they predict the
pairwise binary group relationships or interactions between agents. One exam-
ple of Pairwise classification-based method is the work of Yamaguchi et al [4].

8



CHAPTER 3. RELATED WORK 9

Our work uses a GNN encoder to predict the pairwise interactions; therefore,
our work belongs to the pairwise classification-based methods. The main ad-
vantage of the pairwise classification-based methods is their simplicity. I.e., the
models can be trained directly with the ground truth group relationships with-
out special optimisation algorithms, such as the Block-coordinate Frank-Wolfe
(BCFW) algorithm.

3.2 Graph Neural Networks for Spatio-Temporal
Data

This section will discuss the related works using GNN for Spatio-temporal data.
Based on the application of the GNN, we categorise the related works into two
categories: (1) Edge-centric and (2) Node-centric.

Edge-centric works focus on predicting the edges, which often model the
edges as categorical variables. The edges can denote the interaction or relation
types between nodes. Examples of edge-centric works include the encoder part of
NRI [1], which applies a GNN-encoder to predict the interaction types between
particles in a physical system, and TrafficGraphNet [12], which predicts the
interaction types between traffic actors.

Node-centric works focus on learning the representations of nodes by aggre-
gating the neighbourhood of the nodes. Examples of node-centric works include
the work of Kipf et al [13] and GraphSAGE [14], which use GNN to generate
node representations for node classification tasks; the decoder part of NRI ag-
gregates types of incoming interactions predict the trajectories of the particles.
STGAT [15], Social-STGCN [16] and GraphTCN [17] use GNN to aggregate the
neighbourhood context into the representation of nodes, which denote pedes-
trians, and then predict the future trajectories of the pedestrians. The final
representation of nodes will usually be applied to downstream tasks such as
node classification, node clustering and node states prediction.

Most GNN-based works for Spatio-temporal data focus on forecasting tasks,
such as TrafficGraphNet [12], STGAT [15], Social-STGCN [16] and GraphTCN [17].
These works are node-centric and do not directly model the pairwise interac-
tions or group relationships of agents. The edge representations cannot indicate
group relationships, making them unsuitable for group detection tasks. In our
work, we extended the encoder part of NRI, which predicts the interactions be-
tween particles, for group detection; the details will be discussed in Chapter 4.
Our work is the first to apply GNN on Spatio-Temporal Sequences to the best
of our knowledge to detect groups.



Chapter 4

Methodology

In this chapter, we will discuss the architecture of our method. We will first
discuss the approach to model the interactions between agents with a GNN
encoder. Then we will discuss the methods to train the GNN encoder, including
supervised and unsupervised training methods. Since the GNN encoder is based
on NRI [1] and we applied a gated Residual Dilated Causal Convolutional Block,
proposed by the architecture of Wavenet [2], we name our model “WavenetNRI”.
The visualisation of the training approaches of our model is shown in Figure 4.1.

GNN encoderX1:T
1:N Î

Supervised Training: minimising H(Î , G)

GNN Decoder

Unsupervised Training:minimising ‖X̂1:T
1:N −X1:T

1:N‖

X̂1:T
1:N

Community Detection ĈÎ

Figure 4.1: Diagram of our proposed model (WavenetNRI). The GNN encoder takes the

spatio-temporal sequences X1:T
1:N as input and outputs predicted pairwise interactions Î. In the

supervised training method (shown in the light green block), the cross-entropy loss between

the predicted interactions Î and ground truth pairwise group relationships labels G, which is
denoted by H(Î, G), will be minimised. In the unsupervised training method (shown in the

red block), a GNN decoder will take the predicted interactions Î to reconstruct the spatio-
temporal sequences X1:T

1:N . The GNN encoder and GNN decoder will be trained jointly. After
training, a community detection algorithm will be applied to transform the pairwise predicted
interaction Î to predicted clusters Ĉ denoting groups of the agents.
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CHAPTER 4. METHODOLOGY 11

4.1 GNN Encoder: Interactions Modelling

In this section, we will present our approach to modelling the interactions be-
tween agents. Our method is based on NRI [1]. The core part of our method
is a GNN encoder, which predicts the distribution of the interaction and non-
interaction edges. The encoder can be trained in a supervised way, i.e., we
will train the encoder with ground truth group relationships by minimising the
binary classification loss function. In an unsupervised way, i.e., we will jointly
train the GNN encoder and a GNN decoder, which reconstructs the spatio-
temporal sequences based on predicted interactions.

The X1:T
1:N denotes spatio-temporal sequences of the all N agents from time

steps 1 to T . The spatio-temporal sequence of agent i is denoted as Xi =
[X1

i , ..., X
T
i ]. The measurement of an agent i at one time step t is denoted

as Xt
i . The initial edge feature of the agents i and j at one time step t is

denoted as et(i,j). The sequence of the edge features of the agents i and j of

from the time step 1 to the time step T is denoted as e1:T(i,j). A neural network

will be applied to the sequence e1:T(i,j) to get a vector representation h1
(i,j). The

vector representation h1
(i,j) will be passed to node and edge updating functions

to get the final edge representation h2
(i,j), which denotes the logits of the two

edge types, where h2
(i,j),1 denotes the logit of the non-interaction edge type and

h2
(i,j),2 denotes the logit of the interaction edge type.
In NRI, the initial edge features and edge updating are implemented by

concatenating the features of the end nodes. which is shown in Equation 4.1 and
Equation 4.3, respectively. [·, ·] denotes concatenation. fe denotes edge updating
function. h1

j denotes the node representation of the agent j. h1
j computed by

passing the aggregated coming edges
∑

i ̸=j h
1
(i,j) of node j to a node updating

function fv, which is shown in Equation 4.2. The edge and node updating
functions fe and fv are multilayer perceptrons (MLPs).

et(i,j) = [Xt
i , X

t
j ](t ∈ 1, ..., T ) (4.1)

h1
j = fv(

∑

i ̸=j

h1
(i,j)) (4.2)

h2
(i,j) = fe([h

1
i , h

1
j ]) (4.3)

NRI applies a 1D convolutional layer to transform the edge sequence e1:T(i,j)

into the edge vector representation h1,(i,j), which is shown in Equation 4.4.

h1
(i,j) = fCNN (e1:T(i,j)) (4.4)

The function fCNN consists of a 1D convolutional layer with attentive pool-
ing. The architecture of fCNN is explained in Figure 4.2.
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e1 e2 e3 e4 e5 e6

o1 o2 o3 o4 o5 o6

1D CNN

s1 s2 s3 s4 s5 s6
a1 a2 a3 a4 a5 a6

× × × × × ×

Σ

Attentive Pooling

∑
t a

t = 1

h1
(i,j) =

∑
t a

tst

Figure 4.2: 1D Convolutional layer with Attentive Pooling. The 1D convolutional layer is
shown in the green dashed line block. The attentive pooling is shown in the red dashed line
block. The edge index (i, j) is ignored in the figure for clarity. The sequence of edges features
e1:T will be fed into a 1D convolutional layer with kernel size=3, denoted by the blue arrows in
the green dashed line block, to get hidden states o1:T . The hidden states o1:T will be fed into
two 1D CNNs fpred and fscore with kernel size=1 separately, denoted by the red and yellow
lines in the red dashed line block, respectively. fpred predicts the edge representation st; fscore
predicts the attention score at, where

∑
t a

t = 1. The edge representation is h1
(i,j)

=
∑

t a
tst.

The number of time steps is six here.

There are several limitations in the GNN encoder of the original NRI: (1)
Building and updating edge features and representations by simply concate-
nating the node features (shown in Equation 4.1,4.3) cannot explicitly model
the spatial differences of agents, and the results are not symmetric, which may
not satisfy the symmetric group relationships. (2) Using only one convolutional
(shown in Figure 4.4) layer cannot capture the long-term interactions of the
sequences of edge features. To tackle these limitations, we made the following
changes to the original NRI:

• We include the spatial differences between agents and temporal increments
in the initial temporal edge features et(i,j), and update the edge features
by element-wise product of the end nodes’ representations. In this way,
the final edge vector representations h2

(i,j) are symmetric and can capture
both spatial differences between the agents and their movements.

• We replace the single 1D convolutional layer in NRI with a gated dilated
residual causal convolutional Block to learn the temporary edge features.
Compared with the 1D convolutional layer in NRI, we expect this archi-
tecture can capture both short and long-term interactions of the sequences
of edge features.

4.1.1 Symmetric edge features and updating

In our work, we construct the edge features by concatenating the spatial differ-
ences of the node measurements and the temporal increments, i.e., movements
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of each node, shown in Equation 4.5. The Euclidean distances between agent
measurements are used to model the spatial difference between agent i and agent
j, which is denoted by ∥Xt

i −Xt
j∥; the temporal increments, i.e., the movements

are modelled by element-wise production of the increments of the two agents,
which is denoted by ∆Xt

i ⊙ ∆Xt
j , where ∆Xt

i = Xt+1
i − Xt

i . In this way, the
temporal edge et(i,j) captures the spatial difference between agent i and agent
j as well as the temporal increments of the nodes. Another benefit is that the
edge features are symmetric, i.e., et(i,j) = et(j,i), corresponding to the symmetric
properties of the pairwise group relationships.

et(i,j) = [∥Xt
i −Xt

j∥,∆Xt
i ⊙∆Xt

j ](t ∈ 1, ..., T − 1) (4.5)

The edge sequences e1:T(i,j) are passed to a gated residual dilated causal con-

volutional block to get the vector representations of edges, denoted by h1
(i,j).

The details will be discussed in Section 4.1.2.
For a node j, the vector representation h1

(i,j) of incoming edges will be ag-
gregated and fed to a node updating function fv to get higher level node repre-
sentation h1

j of the node j, which is the same as the node updating process in
NRI, shown in Equation 4.2. These node representations will be combined by
element-wise production and fed to another neural network fe to get final edge
representations h2

(i,j), which represents the logits of categorical distributions of
edges, shown in Equation 4.7. Through this process, the final edge representa-
tion h2

(i,j) not only capture the interaction between node i and node j, but also

the interactions of node i and node j with other nodes [1].
The GNN encoder can be trained in both supervised and unsupervised ways,

which will be discussed in Section 4.2. After training, a community detection
algorithm can be applied to the interaction graphs to find clusters denoting
groups. In our work, we choose the Louvain community detection algorithm [18].

h1
j = fv(

∑

i ̸=j

h1
(i,j)) (4.6)

h2
(i,j) = fe([h

1
(i,j), h

1
i ⊙ h1

j ]) (4.7)

4.1.2 Gated dilated residual causal convolutional block

Instead of using a single convolutional layer like NRI (shown in Equation 4.4),
we apply a gated residual dilated causal convolutional block to transform the
edge sequences e1:T(i,j) into the vector representation h1

(i,j), shown in Equation 4.8.

The architecture is proposed by Wavenet [2] to learn the raw audio data, and
is also used in other works for spatio-temporal data, such as [17].

h1
(i,j) = fWavenetCNN (e1:T−1

(i,j) ) (4.8)

The causal convolution preserves the order of the edge sequences by using
features from past time steps. With dilated convolutional kernels, the receptive
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fields can be expanded exponentially by staking convolutional layers [2]. The
skip connection, a 1D CNN, solves the gradient vanishing problem when we
attempt to increase the number of layers [19]. The gating activation function
regulates the information flow and performs significantly better than rectified
linear activation (ReLU) [2]. The gating activation is described in Equation 4.9.
l is the layer index. W 1

l and W 2
l are two different learnable 1D-convolution

parameters of the layer l; el denotes the hidden states of edge features of the
layer l. ∗ denotes the convolutional operation. σ and ⊙ denote sigmoid function
and element-wise multiplication, respectively. A 1D convolutional layer with
attentive pooling over all timesteps is applied to get the vector representations
of the edges h1

(i,j). The visualisation of this process is shown in Figure 4.3.

el+1 = tanh(W 1
l ∗ el)⊙ σ(W 2

l ∗ el) (4.9)

e1 e2 e3 e4 e5 e6

m6m5m4m3m2m1

o1 o2 o3 o4 o5 o6Wavenet CNN Block

W 1
1

W 1
2 Ws

W 2
1

W 2
2o = tanh(W 1

2 ∗m) � σ(W 2
2 ∗m) +Ws ∗ e

m = tanh(W 1
1 ∗ e) � σ(W 2

1 ∗ e)

s1 s2 s3 s4 s5 s6
a1 a2 a3 a4 a5 a6

× × × × × ×

Σ

Attentive Pooling
h1(i,j) =

∑
t a

tst

∑
t a

t = 1

dilation=1

dilation=2

Figure 4.3: 1D gated residual dilated causal CNN block with Attentive Pooling. The CNN
block consists of two convolutional layers, shown in the green dashed line block. The attentive
pooling is shown in the red dashed line block. The edge index (i, j) is ignored in the Figure
for clarity. The sequence of edges features e1:T will be fed into a gated dilated 1D CNN block
with skip connections to get hidden states o1:T . W 1

l and W 2
l denote two different learnable

convolutional parameters with kernel size=3 of the layer l, shown by the blue arrows. The
dilation of the first convolutional layer is 1, and that of the second layer is 2. Ws denotes
the skip connection, which is a 1D CNN with kernel size=1, shown by the green arrow.
The hidden states o1:T will be fed into two 1D CNNs fpred and fscore with kernel size=1
separately. fpred predicts the edge representation st, shown by the red arrows; fscore predicts
the attention score at, shown by the yellow arrows, where

∑
t a

t = 1. The edge representation
is h1

(i,j)
=

∑
t a

tst. The number of time steps is six here.
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4.2 Training Methods

In this section, we will discuss the training methods for the GNN encoder. The
GNN encoder can be trained by both the supervised and unsupervised methods.

4.2.1 Supervised Training

In supervised training, the ground truth pairwise group relationships Gi,j will
be used as labels; i.e., G(i,j) = 1 denotes agent i and agent j are in the same
group while G(i,j) = 0 denotes agent i and agent j are not in the same group.
Due to the imbalanced distribution of the labels, the weighted cross-entropy is
used as a loss function, where the rare labels are assigned higher weights. The
weight of each label is computed based on the label distribution on the training
data set. We use wG to denote the weight of the group label and wḠ to denote
the weight of the non-group label. The calculation of the weights are shown
in Equation 4.10 and Equation 4.11, where nG and nḠ denotes the number of
group labels and non-group labels in the training dataset, respectively.

wG =
nG + nḠ

2nG
(4.10)

wḠ =
nG + nḠ

2nḠ

(4.11)

The predicted distribution of interaction types is denoted as Î(i,j) and de-

scribed in Equation 4.12. Î(i,j),1 denotes the probability of non-interaction while

Î(i,j),2 denotes the probability of interaction.

Î(i,j) = softmax(h2
(i,j)) (4.12)

The weighted cross-entropy H(Î , G) is described in Equation 4.13. By min-
imising the weighted cross-entropy, we expect the encoder to detect the inter-
actions between the agents of the same group while ignoring the interactions
between the agents of different groups.

H(Î , G) = −
∑

(i,j)

[wGG(i,j)log(I(i,j),2) + wḠ(1−G(i,j))log(I(i,j),1)] (4.13)

4.2.2 Unsupervised Training

In the unsupervised training, we will jointly train the GNN encoder with a
GNN decoder as a variational autoencoder (VAE), the same as NRI. The GNN
decoder will take the sampled predicted interactions z(i,j) as input and recon-
struct the spatio-temporal sequences X1:T

1:N ; we used Gumbel Softmax [20] to
sample the logits h2

(i,j), which is described in Equation 4.14, where g denotes
the Gumbel noise and τ denotes the temperature. The temperature τ controls
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the ”smoothness” of the sampling; the sampled results converge to one-hot dis-
tributions when τ → 0. We follow the original NRI and set τ to 0.5. More
details about Gumbel Softmax can be found at [20].

z(i,j) = softmax((h2
(i,j)+g)/τ) (4.14)

We used the same GNN decoder introduced in NRI, in which the separate
neural networks are used for each edge type. This idea is also used by some
works using interactions to predict the trajectories of traffic actors, such as
TrafficGraphNet [12] and the work of Lee et al [21], where the idea of using
separate edge networks for each edge type is named “Typed Graph Network”.

Since we focus on detecting groups of agents, the interaction edges and
non-interaction edges need to be explicitly distinguished. In our work, the
sampled latent variable z(i,j) is a 2-dimensional variable where z(i,j),1 denotes
the non-interaction edge type and z(i,j),2 denotes the interaction edge type where
z(i,j),1 > 0, z(i,j),2 > 0 and z(i,j),1 + z(i,j),2 = 1. The non-interaction edge type
z(i,j),1 will be ignored in the ”Typed Graph Network” of the decoder, i.e., we
only consider using z(i,j),2 to predict the replacement of the agents. This process

is formulated in Equation 4.15 and Equation 4.16; f̃e and f̃v denote the edge
network and node network in the decoder respectively. h̃t

(i,j) denotes the edge

representation of the edge (i, j).

h̃t
(i,j) = z(i,j),2f̃e([X

t
i , X

t
j ]) (4.15)

X̂t+1
j = Xt

j + f̃v(
∑

i ̸=j

h̃t
(i,j)) (4.16)

The loss function consists of two parts: the reconstruction error and the
Kullback-Leibler (KL) divergence of the predicted distribution of edge types
Î(i,j) and a prior distribution of edge types, where Î(i,j),k denotes the probability

of the kth edge type. The computation of Îi,j is described in Equation 4.12. We
use a uniform prior for the distribution of the edge types; the KL divergence is
the negative entropy of distribution Î(i,j) added with a constant Klog(K) where
K denotes the number of edge types. In our work, K = 2 since there are two
edge types and we ignore the constant Klog(K) in the loss function. The loss
function is described in Equation 4.17.

loss =
∑

i

T∑

t=2

∥Xt
i − X̂t

i∥
2σ2

+
∑

i

2∑

k=1

Î(i,j),klog(Î(i,j),k) (4.17)

By minimising the loss function, we expect the encoder to detect the interac-
tions that influence agents’ movements. The assumption is that the movements
of the agents are influenced by their group members with high probability and
influenced by the outsiders with low probability; i.e., the influences on move-
ments can indicate the group relationships.



Chapter 5

Experiments

We are interested in answering the following questions with our experiments:

1. Can symmetric edge features with the symmetric edge updating processes
improve the performance for group detection with supervised training?

2. Can the gated residual dilated causal convolution block improve the per-
formance for group detection with supervised training?

3. How is the ranking of our method compared with other methods?

4. How do the predicted interactions relate to the ground truth group rela-
tionships for the supervised pairwise classification-based methods?

5. In unsupervised training, to what extent can the influences between the
agents on their movements indicate their group relationships?

5.1 Datasets

In this section, we will discuss the data sets in our experiments.

5.1.1 Spring Simulation

Kipf et al [1] proposed a spring simulation, where a number of particles are
put in 2D box and randomly connected by springs, which are used to simu-
late the interactions between the particles. We extended the spring simulation
of Kipf et al [1] by defining groups of particles. In our the spring simulation;
there are N ∈ {5, 10} particles in a 10 × 10 2D box, which can be regarded
as a “playground” of particles. The initial measurements, i.e., locations and
velocities of the particles and the relations between them, i.e., interactions or
non-interactions will be randomly generated at the beginning of the simulation.
We assume that a particle interacts with its group members with high proba-
bility and interacts with outsiders with low probability. We use G(i,j) to denote

17
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the group relationship between particle vi and vj . G(i,j) = 1 if vi and vj are
in the same group otherwise G(i,j) = 0. The interaction between vi and vj is
denoted by I(i,j). The probability that vi and vj interact with each other given
their group relation G(i,j) is given by Equation 5.1.

P (I(i,j) = 1|G(i,j) = 1− exp(−a(G(i,j) + b))(a > 0, b > 0) (5.1)

The movements of the particles are determined by Hooke’s law F(i,j) =
−k(ri − rj)I(i,j) where F(i,j) is the force from particle vj to particle vi; k is the
spring constant and ri is the location vector of particle vi; I(i,j) is an indicator
function; I(i,j) = 1 if there is interaction between vi and vj , i.e., there is a spring
connnecting vi and vj ; otherwise I(i,j) = 0.

The values of a and b control the probabilities of Group Interaction and
Non-Group Interaction. The value of a controls the overall magnitude of the
probabilities, and the value of b has great impact on the non-group interaction
probability. According to Equation 5.1, the group interactions probabilities are
always greater than non-group interaction probabilities. During simulation, the
pairwise interactions between particles will be dynamically evaluated at each
time step according to Equation 5.1. Since the group relations are symmetric
and transitive, i.e., if G(i,j) = 1, then G(j,i) = 1 and if G(i,j) = 1 ∧ G(j,k) = 1,
then G(j,k) = 1; it is not reasonable to independently initialize the pairwise
group relations G. Instead, we randomly initialize a group assignment matrix
GA at the beginning of each simulation. GA(i,k) = 1 if particle vi belongs to
group k otherwise GA(i,k) = 0. The group relations G can be derived from the
group assignment matrix GA; i.e. if GA(i,k)=1 ∧GA(j,k)=1, then G(i,j) = 1.

In our experiments, we use N ∈ {5, 10} particles. The value of a is set to 3
to create big group interaction probability (≥ 95.3%). The values of b vary from
0.02 to 0.05, and the corresponding non-group interaction probabilities range
from 5.8% to 13.9%. The six data sets are described in Table 5.1.

Dataset num of particles a b Group Interact Non-Group Interact

sim1 5 3 0.02 95.3% 5.8%

sim2 8 3 0.02 95.3% 5.8%

sim3 10 3 0.02 95.3% 5.8%

sim4 10 3 0.03 95.4% 8.6%

sim5 10 3 0.04 95.6% 11.3%

sim6 10 3 0.05 95.7% 13.9%

Table 5.1: Five simulation data sets. From left to right, the columns denote the name of the
dataset, the number of particles, the value of a, the value of b, and the probability of group
interaction and non-group Interaction, respectively.

We study the effect of non-group interaction probability on the performance
of our model by comparing the results of the data sets sim3 to sim6. By
comparing the results of sim1 and sim3, we can study the effect of the number
of agents on the performance of group detection performance. By comparing
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the results of sim3 to sim6, we can study the effect of the non-group interaction
probabilities. Every data set has 2500 simulations, and the duration of each
simulation is 20 seconds corresponding to 50 time steps. In our experiments,
60% of the examples will be randomly chosen for training; 20% will be randomly
chosen as validation, and the left 20% are testing set. The input features of these
data sets are the locations and velocities of the particles. The code to generate
the spring simulation data sets can be found in this Github repository1.

5.1.2 Pedestrian Datasets

We select 5 public pedestrian datasets, namely zara01, zara02 and students03
from Lerner et al [22], BIWI ETH and BIWI Hotel from Pellegrini et al [23].
These data sets can be found at OpenTraj2. We will use the sequences of
annotated locations of the pedestrians, i.e., the trajectories, as input features
and try to detect pedestrians walking in groups. The duration, the number of
pedestrians and groups of these pedestrian data sets are listed in Table 5.2.

To evaluate the performance of different methods, in each data set 60% of the
time steps will be used for training, and the remaining time steps will be used for
validation and test. We manually created six types of training/validation/test
splits, which is explained in Figure 5.1. A sliding window with six seconds, i.e.,
fifteen time steps is applied in the training, validation and test period to create
examples; the number of pedestrians in each example can be different.

Figure 5.1: The training period, validation period and test period are denoted by green, blue
and red line, respectively. We can create six splits for each pedestrian data set by exchanging
the validation and test period.

5.1.3 Data Exploration

In this section, we will explore the two types of data sets. We will compare the
pairwise sequence features from the same groups and those from different groups,
i.e., whether these features can be used to distinguish the group relationships

1https://github.com/fatcatZF/WavenetNRI
2https://github.com/crowdbotp/OpenTraj
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Dataset Duration(s) Pedestrians Groups

zara01 360.4 148 45

zara02 420.4 204 58

students03 215.6 428 104

BIWI ETH 713.4 360 65

BIWI Hotel 722.4 389 41

Table 5.2: The columns from left to right denote the name, duration, the number of pedes-
trians and groups of the pedestrian data sets.

and non-group relationships. We will compute the binary group relationship
distributions, i.e., the imbalance of the group and non-group labels.

Sequence Features

We randomly select examples from the pedestrian and spring simulation data
sets. The visualisations of the trajectories of pedestrian data sets and spring
simulation data sets are shown in Figure 7.1 and Figure 7.2 of Appendix 7.1.1,
respectively.

As shown in Figure 7.1, the trajectories of the same groups have similar
shapes and the same directions, i.e., the group members have similar movement
patterns; the agents try to keep small distances from their group members.

As shown in Figure 7.2, the trajectories of the spring simulation are more
complex compared with the trajectories of the pedestrians. The trajectories
of the same group can have different shapes and directions; i.e., the group
members can have different movement patterns. The distances between the
group members can rapidly change over time.

To quantify the differences between the sequences of pedestrian data sets and
the spring simulation data sets, we use dynamic time warping (DTW) [24] to
compute the dissimilarity between sequences. Higher distances indicate higher
dissimilarity between sequences. The DTW distances are listed in Table 5.3.
We also compute Euclidean distances between agents, listed in Table 5.4.

According to Table 5.3, in the pedestrian data sets, the average DTW dis-
tances between group members are much lower than those between pedestrians
from different groups. I.e., the sequences of agents are much more similar to their
group members’ sequences than outsiders’ sequences. Therefore, the DTW dis-
tances can help distinguish group and non-group relationships. Compared with
the pedestrian data sets, the differences between the DTW distances of group
members’ sequences and those between different groups are much smaller in the
spring simulation data sets, as shown by the fourth columns of Table 5.3a and
Table 5.3b. Therefore, the DTW distances may not help detect group relation-
ships for the spring simulation data sets. According to Table 5.3b, with the
increase in the number of particles and the non-group interaction probability,
the differences between the average DTW distances of the same groups and that
of different groups become more negligible, as shown in Table 5.3b.
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Data set Ave.dtw(G) Ave.dtw(NG) G/NG

zara01 3.658 18.522 0.198

zara02 3.082 16.828 0.183

students03 3.520 23.667 0.149

ETH 4.026 19.305 0.209

Hotel 2.710 17.517 0.155

(a) Average DTW distances of pedestrian
data sets.

Data set Ave.dtw(G) Ave.dtw(NG) G/NG

sim1 7.349 13.698 0.536

sim2 7.104 11.667 0.609

sim3 7.018 11.385 0.616

sim4 6.834 9.784 0.699

sim5 6.783 8.486 0.799

sim6 6.763 8.156 0.829

(b) Average DTW distances of spring
simulation data sets.

Table 5.3: Table 5.3a presents the average DTW distances of the pedestrian data sets.
Table 5.3b presents the average DTW distances of the spring simulation data sets. The
columns from left to right denote the names of the data sets, average DTW distances between
group members, average DTW distances between agents from different groups, and the ratios
of the average group DTW distance to average non-group distances.

Data set Ave.dist(G) Ave.dist(NG) G/NG

zara01 1.002 4.678 0.210

zara02 0.827 4.236 0.195

students03 0.952 6.038 0.158

ETH 1.140 4.977 0.229

Hotel 0.709 4.439 0.160

(a) Average distances of pedestrian data
sets.

Data set Avg.dist(G) Avg.dist(NG) G/NG

sim1 1.096 2.236 0.490

sim2 1.053 1.796 0.586

sim3 1.042 1.706 0.611

sim4 1.010 1.501 0.673

sim5 0.992 1.319 0.752

sim6 0.980 1.233 0.795

(b) Average distances of spring simula-
tion data sets.

Table 5.4: Table 5.4a presents the average euclidean distances of the pedestrian data sets.
Table 5.4b presents the average euclidean distances of the spring simulation data sets. The
columns from left to right denote the names of the data sets, average distances between group
members, average distances between agents from different groups, and the ratios of the average
group distance to average non-group distances.

According to Table 5.4, in the pedestrian data sets, the average Euclidean
distances between group members are much lower than those between pedestri-
ans from different groups. I.e., the pedestrians are closer to their group members
than outsiders. Therefore, the Euclidean distances can help detect group rela-
tionships. Compared with the pedestrian data sets, the differences between the
euclidean distances of the same groups and that of different groups are insignif-
icant in the spring simulation data sets. Therefore, the Euclidean distances do
not help detect group relationships. With the increase in the number of parti-
cles and the non-group probability, the differences between the average distances
of group members and those from different groups become more negligible, as
shown in Table 5.4b.
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Distributions of Group Relationships

The visualisation of the distributions of the pairwise group relationship labels
and the pairwise non-group relationship labels is shown in the bar charts of
Figure 5.2.

According to Figure 5.2, Both pedestrian data sets and spring simulation
data sets are very imbalanced, i.e., the non-group labels account for the majority
of the labels.

(a) Pedestrian (b) Spring Simulation

Figure 5.2: Visualisation of Pairwise Labels Distributions. Figure 5.2a shows the label
distribution of the pedestrian data sets; Figure 5.2b shows the label distribution of the spring
simulations. The blue bars denote the rates of the group labels and the orange bars denote
the rates of the non-group labels.

5.2 Baselines

We will compare the results of our method with the following four baselines:

• Yamaguchi et al (2011) [4]: a linear SVM classifies the binary group re-
lationships based on hand crafted histograms of distance, direction and
velocity. The regularisation parameter C of the SVM is set to 10.

• Solera et al (2015) [3]: a structured SVM (SSVM) predict the clusters
of the pedestrians based on distance, temporal causality, trajectory sim-
ilarity and common goals from motion. The SSVM consists of a SVM
predicting the pairwise similarities of the agents and a correlation clus-
tering component predicting the clusters. This SVM is trained with the
Block-Coordinate Frank Wolfe (BCFW) [25] algorithm. The regularisa-
tion parameter C of the SVM is set to 10.

• GD-GAN (2018) [8]: a LSTM-based GAN predicting the future trajectory
of agents. The DBSCAN algorithm is applied to the hidden states of the
LSTM to find the groups. The dimensions of hidden states are 256 in
our experiment. The assumption of this baseline is that the agents in the
same group have similar movement patterns.
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• NRI (2018) [1]: to evaluate the effects of our changes to the original NRI,
i.e., the symmetric edge features with symmetric edge updates and the
gated residual dilated causal convolutional block; we extended the original
NRI by applying the Louvain community detection algorithm to transform
the predicted pairwise interactions to clusters denoting groups. The kernel
size of the 1D convolutional layer is set to 5. The node updating and
edge updating processes are implemented with multiple layer perceptrons
(MLPs). The hidden dimension size of the MLPs is set to 256.

5.3 Evaluation Metric

We apply Group Mitre ∆GM (C, Ĉ) proposed by Solera et al [3] to measure
the quality of the predicted groups, where C and Ĉ are disjoint sets denoting
the true groups and predicted groups respectively. One choice to measure the
quality of group detection is pairwise loss ∆PW (C, Ĉ), which is defined as the
ratio between the number of pairs on which C and Ĉ disagree on their group
membership and the number of all possible pairs of elements. There are two
problems of the metric pairwise loss ∆PW (C, Ĉ): (1) ∆PW (C, Ĉ) only considers
positive intra-group relations and neglects singletons[3][8], (2) because of the
quadratic number of links that exist among agents, ∆PW (C, Ĉ) tends to be
imprecise when dealing with large number of agents[3]. Group Mitre ∆GM (C, Ĉ)
can overcome these two problems. Group Mitre ∆GM (C, Ĉ) is an extension
of the Mitre loss[26]. Mitre loss represents groups as spanning trees instead
of complete graphs, which results in a linear amount of positive and negative
links rather than the quadratic number of links in pairwise loss ∆PW (C, Ĉ)[26].
Group Mitre loss ∆GW (C, Ĉ) solves the problem of neglecting singletons by
adding each agent αi a fake counterpart α′

i; the agent αi will be in the same
group with its fake agent α′

i if αi is a singleton. The computation of recall

of Group Mitre ∆GM (C, Ĉ) is shown in Algorithm 1; to compute precision of
∆GM , we can simply exchange C and Ĉ in Algorithm 1.

5.4 Implementation Details

In our experiments, we set the kernel size of the gated residual dilated causal
convolutional block to five, which is explained in Equation 4.9 and Equation 4.8.
The node and edge functions are multiple layer perceptrons (MLPs). The hidden
dimension size of the node functions of Equation 4.6,4.16 and the edge functions
of Equation 4.7,4.15 is set to 256. The stochastic gradient descent (SGD) with
momentum is applied for optimisation. The momentum is set to 0.9. In each
experiment, the number of training epochs is 200. The code to implement
WavenetNRI can be found in this Github repository3.

3https://github.com/fatcatZF/WavenetNRI
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5.5 Results

In this section, we will discuss the results of the experiments. For each spring
simulation data set, every method will be evaluated fifteen times. For each
pedestrian data set, every method will be evaluated three times for each type
of training/validation/test splits. I.e., every method will have eighteen experi-
mental results on each pedestrian data set. Therefore, each method has ninety
experimental results on the six spring simulation data sets and the five pedes-
trian data sets. To compare the methods on multiple data sets, Friedman test
is applied to check the significant differences between rank means and Nemenyi
post-hoc test is then applied to check the significant pairwise differences in av-
erage ranks. The rankings of the methods are visualised by critical differences
(CD) diagrams [27] with a significance level of 0.05. More details about CD
diagrams can be found in the work of Demsar et al [27]. In the tables and
figures, we use the text “un” in brackets to denote unsupervised training of
WavenetNRI and NRI, respectively.

We will first discuss the ablation study, which studies the effects of our
changes to the original NRI, corresponding to the research questions 1 and 2.
Then we will compare our method WavenetNRI with other baselines, corre-
sponding to the research question 3. We will compare the confusion matrices
of the supervised pairwise classification-based methods, corresponding to re-
search question 4. Finally, we will discuss the unsupervised training of NRI and
WavenetNRI, corresponding to the research question 5.

5.5.1 Ablation Study

This section will study the effects of our changes to the original NRI. To test the
effects of the symmetric edge features and symmetric edge updating process, we
use a method applying the same 1D convolutional as the original NRI with the
symmetric edge features and the symmetric edge updating process; we name
this method “NRI-Sym”. To test the effects of the gated dilated residual causal
convolutional block, we use another method named “Wavenet-Uns”, which ap-
plies the gated dilated residual causal convolutional block with the same edge
features and edge updating process as the original NRI. We will compare these
two methods with our method WavenetNRI and the original NRI on the spring
simulation data sets and the pedestrian data sets. The results of the spring
simulation and pedestrian data sets are listed in Table 5.5 and Table 5.6, re-
spectively. The corresponding CD diagrams of the mean rankings are shown in
Figure 5.3 and Figure 5.4, respectively. All the methods are trained supervised.
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sim1 sim2 sim3 sim4 sim5 sim6

R P R P R P R P R P R P

NRI 0.995 0.994 0.992 0.988 0.997 0.994 0.998 0.994 0.997 0.995 0.998 0.996

±0.002 ±0.003 ±0.005 ±0.005 ±0.002 ±0.002 ±0.001 ±0.002 ±0.003 0.003 ±0.001 ±0.001

NRI-Sym 0.990 0.987 0.982 0.971 0.981 0.964 0.976 0.960 0.981 0.966 0.981 0.961

±0.004 ±0.006 ±0.007 ±0.010 ±0.007 ±0.013 ±0.011 ±0.014 ±0.007 ±0.009 ±0.007 ±0.009

Wavenet 0.998 0.997 0.997 0.995 0.999 0.997 0.999 0.997 0.999 0.997 0.998 0.997

NRI-Uns ±0.002 ±0.001 ±0.003 ±0.005 ±0.001 ±0.002 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Wavenet 0.990 0.988 0.987 0.976 0.985 0.970 0.986 0.965 0.983 0.970 0.986 0.972

NRI ±0.010 ±0.013 ±0.004 ±0.007 ±0.005 ±0.010 ±0.006 ±0.012 ±0.005 ±0.008 ±0.004 ±0.007

Table 5.5: Ablation study results of spring simulation data sets. The columns denote recall
(R) and precision (P) based on Group Mitre ∆GW . The best average values of recall and
precision are highlighted with bold text.

Spring simulation data sets

(a) CD diagram of recall based on group mitre ∆GW of different
methods on the spring simulation data sets.

(b) CD diagram of precision based on group mitre ∆GW of dif-
ferent methods on the spring simulation data sets.

Figure 5.3: CD diagrams of different methods on the spring simulation data sets. Figure 5.3a
represents the average ranking of different methods of recall based on group mitre ∆GW ;
Figure 5.3b represents the ranking of precision based on group mitre ∆GW . The numbers
in the diagrams denote the mean ranks (lower means better). The average ranks with non-
significant difference are connected with a horizontal line.

According to Figure 5.3 and the results listed in Table 5.5, the methodWavenetNRI-
Uns performs slightly better than NRI and the performance of NRI-Sym is lower
than NRI. Therefore, the gated dilated residual causal convolutional block can
slightly improve the performance of NRI on the spring simulation data sets, and
the symmetric edges and the symmetric edge updating process have negative
effects on the original NRI.
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Pedestrian data sets

(a) CD diagram of recall based on group mitre ∆GW of different
methods on the pedestrian data sets.

(b) CD diagram of precision based on group mitre ∆GW of dif-
ferent methods on the pedestrian data sets.

Figure 5.4: CD diagrams of different methods on the pedestrian data sets. Figure 5.4a
represents the average ranking of different methods of recall based on group mitre ∆GW ;
Figure 5.4b represents the ranking of precision based on group mitre ∆GW . The numbers
in the diagrams denote the mean ranks (lower means better). The average ranks with non-
significant difference are connected with a horizontal line.

zara01 zara02 students03 ETH Hotel

R P R P R P R P R P

NRI 0.801 0.737 0.720 0.673 0.610 0.469 0.663 0.669 0.577 0.565

±0.096 ±0.108 ±0.050 ±0.078 ±0.048 ±0.046 ±0.083 ±0.080 ±0.122 ±0.122

NRI-Sym 0.851 0.813 0.780 0.749 0.761 0.704 0.679 0.686 0.708 0.739

±0.093 ±0.091 ±0.081 ±0.079 ±0.045 ±0.061 ±0.094 ±0.096 ±0.121 ±0.115

Wavenet 0.719 0.625 0.718 0.658 0.622 0.492 0.542 0.530 0.566 0.554

NRI-Uns ±0.138 ±0.165 ±0.059 ±0.106 ±0.053 ±0.051 ±0.146 ±0.147 ±0.169 ±0.163

Wavenet 0.893 0.900 0.804 0.776 0.722 0.650 0.793 0.815 0.748 0.790

NRI ±0.090 ±0.107 ±0.051 ±0.061 ±0.050 ±0.049 ±0.078 ±0.079 ±0.106 ±0.086

Table 5.6: Ablation study results of pedestrian data sets. The columns denote recall (R)
and precision (P) based on Group Mitre ∆GW . The best average values of recall and precision
are highlighted with bold text.

According to Figure 5.4 and the results listed in Table 5.6, the method
NRI-Sym performs better than the NRI and the method WavenetNRI-Uns has
similar performance to NRI on the pedestrian data sets. Therefore, the sym-
metric edge features with the symmetric edge updating process can improve the
performance of NRI on the pedestrian data sets, and the gated dilated residual
causal convolutional block does not have significant effect on the performance
of NRI on the pedestrian data sets.
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5.5.2 WaventNRI versus baselines

In this section we will compare our method WavenetNRI with the baselines.
The results of the spring simulation data sets are listed in Table 5.7. The
corresponding CD diagram is shown in Figure 5.5. The results of the pedestrian
data sets are listed in Table 5.8. The corresponding CD diagram is shown in
Figure 5.6.

Spring simulation data sets

(a) CD diagram of recall based on group mitre ∆GW of different
methods on the spring simulation data sets.

(b) CD diagram of precision based on group mitre ∆GW of dif-
ferent methods on the spring simulation data sets.

Figure 5.5: CD diagrams of different methods on the spring simulation data sets. Figure 5.5a
represents the ranking of different methods of recall based on group mitre ∆GW ; Figure 5.5b
represents the ranking of precision based on group mitre ∆GW . The numbers in the diagrams
denote the mean ranks (lower means better). The mean ranks with a non-significant difference
are connected with a horizontal line.

According to Table 5.7 and Figure 5.5, NRI and WavenetNRI outperform all
other baselines, and NRI performs slightly better than WavenetNRI with super-
vised training. With unsupervised training, NRI and WavenetNRI have similar
performances, which are lower than other baselines. According to the columns
of the fifth and the seventh rows in Table 5.7, both recall and precision based
on group mitre ∆GW of NRI(un) and WavenetNRI(un) decrease from the data
set sim1 to sim6. Since the data sets sim1, sim2 and sim3 have the same
probabilities of group and non-group interactions and the different number of
particles. We notice the trend that the performances of NRI(un) and Wavenet-
NRI(un) decrease with the increasing number of particles. The data sets sim3,
sim4, sim5 and sim6 have the same number of particles and they have different
probabilities of non-group interactions; the non-group interaction probability
increases from sim3 to sim6. We can notice the performances of NRI(un) and
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sim1 sim2 sim3 sim4 sim5 sim6

R P R P R P R P R P R P

Yamaguchi 0.579 0.481 0.521 0.399 0.512 0.388 0.511 0.387 0.512 0.387 0.511 0.386
et al ±0.017 ±0.020 ±0.017 ±0.021 ±0.009 ±0.015 ±0.006 ±0.006 ±0.004 ±0.004 ±0.006 ±0.005

Solera 0.664 0.600 0.543 0.463 0.529 0.413 0.462 0.392 0.472 0.374 0.459 0.382

et al ±0.075 ±0.067 ±0.028 ±0.033 ±0.039 ±0.017 ±0.055 ±0.019 ±0.028 ±0.033 ±0.037 ±0.030

GD-GAN 0.531 0.430 0.525 0.401 0.514 0.383 0.511 0.382 0.511 0.381 0.512 0.383

±0.003 ±0.004 ±0.005 ±0.009 ±0.003 ±0.004 ±0.002 ±0.004 ±0.003 ±0.004 ±0.003 ±0.004

NRI 0.995 0.994 0.992 0.988 0.997 0.994 0.998 0.994 0.997 0.995 0.998 0.996

±0.002 ±0.003 ±0.005 ±0.005 ±0.002 ±0.002 ±0.001 ±0.002 ±0.003 ±0.003 ±0.001 ±0.001

NRI(un) 0.988 0.985 0.539 0.415 0.431 0.259 0.344 0.174 0.318 0.151 0.290 0.138

±0.009 ±0.010 ±0.026 ±0.024 ±0.013 ±0.015 ±0.015 ±0.008 ±0.010 ±0.006 ±0.014 ±0.005

Wavenet- 0.990 0.988 0.987 0.976 0.985 0.970 0.986 0.965 0.983 0.970 0.986 0.972

NRI ±0.010 ±0.013 ±0.004 ±0.007 ±0.005 ±0.010 ±0.006 ±0.012 ±0.005 ±0.008 ±0.004 ±0.007

Wavenet- 0.985 0.981 0.553 0.452 0.401 0.242 0.331 0.169 0.298 0.138 0.277 0.131

NRI(un) ±0.010 ±0.011 ±0.097 ±0.100 ±0.048 ±0.032 ±0.019 ±0.006 ±0.022 ±0.012 ±0.016 ±0.011

Table 5.7: Experimental results of spring simulation data sets. The columns denote recall (R)
and precision (P) based on Group Mitre ∆GW of the baselines and our method (WavenetNRI)
on spring simulation data sets. The text “un” in the bracket of NRI and WavenetNRI denotes
unsupervised training. The best average values of recall and precision are highlighted with
bold text.

WavenetNRI(un) decrease with increasing non-group interaction probability.
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Pedestrian data sets

(a) CD diagram of recall based on group mitre ∆GW of different
methods on the pedestrian data sets.

(b) CD diagram of precision based on group mitre ∆GW of dif-
ferent methods on the pedestrian data sets.

Figure 5.6: CD diagrams of different methods on the pedestrian data sets. Figure 5.6a
represents the ranking of different methods of recall based on group mitre ∆GW ; Figure 5.6b
represents the ranking of precision based on group mitre ∆GW . The numbers in the diagrams
denote the mean ranks (lower means better). The mean ranks with a non-significant difference
are connected with a horizontal line.

According to Table 5.8 and Figure 5.6, the baseline GD-GAN and Solera et
al outperform all other methods in both recall and precision of group mitre
∆GW . With supervised training, our method WavenetNRI outperforms the
original NRI, and the baseline Yamaguchi et al. With unsupervised training,
WavenetNRI and NRI rank lower than other baselines.

5.5.3 Confusion matrices of the supervised pairwise clas-
sification methods

In this section, we will compare the confusion matrices of our method Wavenet-
NRI with other two supervised pairwise classification-based baselines: Yam-
aguchi et al and NRI. Since the pariwise classification-based methods predict
the pairwise interactions, we are interested in how the predicted interactions
relate to the ground truth group relationships. The more the predicted in-
teractions relate to the ground truth group relationships, the more likely the
community detection algorithms can produce good clustering results based on
the predicted interactions. We define the following measurements: true negative
rate (tn), false positive rate (fp), true positive rate (tp) and false negative rate
(fn). We compute the average tn, fp, tp and fn on all the test data sets and
visualise the results with confusion matrices.
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zara01 zara02 students03 ETH Hotel

R P R P R P R P R P

Yamaguchi 0.889 0.879 0.555 0.443 0.512 0.404 0.745 0.746 0.833 0.841

et al ±0.076 ±0.077 ±0.117 ±0.145 ±0.052 ±0.056 ±0.067 ±0.087 ±0.072 ±0.068

Solera 0.893 0.906 0.879 0.876 0.805 0.798 0.887 0.911 0.925 0.927

et al ±0.026 ±0.033 ±0.037 ±0.037 ±0.085 ±0.112 ±0.027 ±0.021 ±0.024 ±0.030

GD-GAN 0.949 0.934 0.850 0.838 0.857 0.832 0.931 0.950 0.925 0.944

±0.046 ±0.051 ±0.077 ±0.084 ±0.019 ±0.032 ±0.037 ±0.028 ±0.084 ±0.058

NRI 0.801 0.737 0.720 0.673 0.610 0.469 0.663 0.669 0.577 0.565

±0.096 ±0.108 ±0.050 ±0.078 ±0.048 ±0.046 ±0.083 ±0.080 ±0.122 ±0.122

NRI(un) 0.509 0.398 0.511 0.373 0.512 0.353 0.436 0.406 0.357 0.349

±0.120 ±0.106 ±0.102 ±0.086 ±0.048 ±0.051 ±0.136 ±0.125 ±0.112 ±0.124

Wavenet- 0.893 0.900 0.804 0.776 0.722 0.650 0.793 0.815 0.748 0.790

NRI ±0.090 ±0.107 ±0.051 ±0.061 ±0.050 ±0.049 ±0.078 ±0.079 ±0.106 ±0.086

Wavenet- 0.567 0.480 0.543 0.423 0.541 0.374 0.513 0.495 0.502 0.497

NRI(un) ±0.131 ±0.144 ±0.097 ±0.079 ±0.064 ±0.068 ±0.171 ±0.172 ±0.092 ±0.097

Table 5.8: Experimental results of pedestrian data sets. The columns denote the recall (R)
and precision (P) based on group mitre ∆GW of the baselines and our method (WavenetNRI)
on pedestrian data sets. The text ”un” in the brackets of NRI and WavenetNRI denotes
unsupervised training. The best average values of recall and precision are highlighted with
bold text.

The true negative rate (tn) is defined as the ratio of the predicted nega-
tive interactions, which are equal to the corresponding ground truth non-group
relationships to the total negative ground truth group relationships.

tn =

∑
(i,j) 1Î(i,j)=0∧Î(i,j)=G(i,j)∑

(i,j) 1G(i,j)=0
(5.2)

The false positive rate (fp) is defined as:

fp = 1− tn = 1−
∑

(i,j) 1Î(i,j)=0∧Î(i,j)=G(i,j)∑
(i,j) 1G(i,j)=0

(5.3)

The true positive rate (tp) is defined as the ratio of the predicted positive
interactions, which are equal to the corresponding ground truth group relation-
ships to the total positive ground truth group relationships.

tp =

∑
(i,j) 1Î(i,j)=1∧Î(i,j)=G(i,j)∑

(i,j) 1G(i,j)=1
(5.4)

The false negative rate (fn) is defined as:

fn = 1− tp = 1−
∑

(i,j) 1Î(i,j)=1∧Î(i,j)=G(i,j)∑
(i,j) 1G(i,j)=1

(5.5)
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The layout of the confusion matrices is explained in Table 5.9.

Î = 0 Î = 1

G = 0 tn fp

G = 1 fn tp

Table 5.9: The layout of confusion matrices. The rows denote the ground truth group
relationships. The columns denote the predicted interactions. The diagonal elements denote
the ratio of the predicted interactions equal to the ground truth relationships to the total
given ground truth relationships.

The higher the values of tns and tps are, the more the predicted interactions
Î relate the corresponding ground truth group relationships G. High tn values
indicate that high proportion of the true non-group relationships (G = 0) can be
covered by the predicted non-interaction edges (Î = 0). High tp values indicate
that high proportion of the true positive group relationships (G = 1) can be
covered by the predicted interaction edges (Î = 1).

Spring simulation data sets

The measurements tn, fp, fn and tp of the supervised pairwise classification-
based methods on the spring simulation data sets are listed in Table 5.10. The
corresponding confusion matrices are shown in Figure 7.3 of Appendix 7.1.2.

sim1 sim2 sim3 sim4 sim5 sim6

tn tp tn tp tn tp tn tp tn tp tn tp

Yamaguchi

et al
0.999 0.001 1 0.001 1 0 1 0 1 0 1 0

NRI 0.997 0.997 0.996 0.994 0.998 0.998 0.999 0.995 0.999 0.998 0.998 0.995

WavenetNRI 0.996 0.997 0.993 0.991 0.993 0.993 0.995 0.991 0.996 0.992 0.989 0.981

Table 5.10: Average true negative rate (tn) and true positive rate (tp) of the methods
Yamaguchi et al, NRI and WavenetNRI on the spring simulation data sets. The highest
values in each column are highlighted by bold texts.

According to Table 5.10 and Figure 7.3, the baseline Yamaguchi et al has
high true negative rates (tn) on all the spring simulation data sets. However, the
true positive rates (tp) are low (≈ 0), suggesting that the baseline Yamaguchi et
al can hardly retrieve positive group relationships. Both NRI and WavenetNRI
have high true negative rates and true positive rates on all the spring simulation
data sets. The true negative rates and true positive rates of NRI are slightly
higher than WavenetNRI on most spring simulation data sets.

Pedestrian data sets

The measurements tn, fp, fn and tp of the supervised pairwise classification-
based methods on the pedestrian data sets are listed in Table 5.11. The corre-
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sponding confusion matrices are shown in Figure 7.4 of Appendix 7.1.2.

zara01 zara02 students03 ETH Hotel

tn tp tn tp tn tp tn tp tn tp

Yamaguchi

et al
0.939 0.855 0.977 0.189 0.974 0.337 0.86 0.761 0.947 0.904

NRI 0.739 0.818 0.823 0.839 0.823 0.948 0.771 0.618 0.727 0.829

WavenetNRI 0.885 0.915 0.883 0.999 0.914 0.97 0.853 0.938 0.91 0.987

Table 5.11: Average true negative rate (tn) and true positive rate (tp) of the methods
Yamaguchi et al, NRI and WavenetNRI on the pedestrian data sets. The highest values in
each column are highlighted by bold texts.

According to Table 5.11 and Figure 7.4, the baseline Yamaguchi et al has
higher true negative rates than NRI and WavenetNRI on all the pedestrian data
sets. The WavenetNRI has higher true positive rates than Yamaguchi et al and
NRI. The true negative rates of WavenetNRI are higher than NRI.

5.5.4 Unsupervised Training of NRI & WavenetNRI

This section will discuss the unsupervised training of NRI and WavenetNRI.
We will compare the true negative rates (tn) and true positive rates (tp) of the
unsupervised trained methods NRI(un) and WavenetNRI(un) with their corre-
sponding supervised trained methods. The unsupervised training of these two
methods is based on the assumption that the influences between the agents on
their movements can indicate their group relationships. We will validate this
assumption on the spring simulation and pedestrian data sets. To validate this
assumption, we plot the mean squared error (MSE) between the ground truth
sequences X1:T

1:N and the reconstructed sequences X̂1:T
1:N and the edge accuracy

during the training process. Since the GNN encoder predicts the pairwise influ-
ences on the movements and the GNN decoder reconstructs the spatio-temporal
sequencesX1:T

1:N given the predicted influences, the MSE betweenX1:T
1:N and X̂1:T

1:N

can indicate whether the GNN encoder correctly predicts the pairwise influences.
We define edge accuracy as the ratio of the number of predicted edges equal to
the corresponding ground truth pairwise group relationships to the total edges.
Suppose there are N agents; the number of total edges is N(N − 1). The edge
accuracy is defined as:

acc =

∑
(i,j) 1Î(i,j)=G(i,j)

N(N − 1)
(5.6)

Spring simulation data sets

The true negative rate, false positive rate, false negative rate and true positive
rate of the method NRI and WavenetNRI with unsupervised training on the
spring simulation data sets are listed in Table 5.12. The corresponding confusion
matrices are shown in Figure 7.5 of Appendix 7.1.2.
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sim1 sim2 sim3 sim4 sim5 sim6

tn tp tn tp tn tp tn tp tn tp tn tp

NRI(un) 0.991 0.986 0.716 0.982 0.651 0.982 0.535 0.987 0.469 0.986 0.413 0.988

Wavenet

NRI(un)
0.995 0.971 0.773 0.978 0.662 0.973 0.543 0.974 0.45 0.971 0.392 0.969

Table 5.12: Average true negative rate (tn) and true positive rate (tp) of the methods NRI
and WavenetNRI with the unsupervised training on the spring simulation data sets. The
highest values in each column are highlighted by bold texts.

According to Table 5.12 and Figure 7.5, the true positive rates of NRI and
WavenetNRI with unsupervised training on the spring simulation data sets are
close to their corresponding supervised training results, listed in Table 5.10.
The true negative rates of NRI and WavenetNRI decrease from sim1 to sim6,
which shows that the true negative rates of these two methods with unsupervised
training decrease with the increasing of the number of agents and the value of
non-group interaction probability.

The average MSE plots and the average edge accuracy of the spring sim-
ulation data sets are shown in Figure 7.7 and Figure 7.8 of Appendix 7.1.3,
respectively. According to Figure 7.7, the MSEs of NRI and WavenetNRI on
all the spring simulation data sets decrease during training, which suggests that
the GNN encoder correctly predicts the pairwise influences. The corresponding
edge accuracy of the data sets sim1, sim2 and sim3 increase during training
(shown in Figure 7.8a to Figure 7.8c), which suggests that the pairwise influ-
ences on the movements indicate the pairwise group relationships. However, the
indication becomes weaker with the increase of the number of particles since the
edge accuracy will converge at lower values. With the increase of the non-group
probability, the corresponding edge accuracy will stop increasing and converge
at lower values (shown in Figure 7.8d to Figure 7.8f), which indicates that
when non-group interaction probability increases, the influences’ indication of
the group relationships become weaker.

Pedestrian data sets

The true negative rate, false positive rate, false negative rate and true posi-
tive rate of the method NRI and WavenetNRI with unsupervised training on
the pedestrian data sets are listed in Table 5.13. The corresponding confusion
matrices are shown in Figure 7.6 of Appendix 7.1.2.

According to Table 5.13 and Figure 7.6, the true negative rates and true posi-
tive rates of NRI and WavenetNRI with unsupervised training on the pedestrian
data sets are much smaller than their corresponding supervised training results,
listed in Table 5.11.

The average MSE plots and the average edge accuracy of the pedestrian data
sets are shown in Figure 7.9 and Figure 7.10 of Appendix 7.1.3, respectively.
According to Figure 7.9, the average MSEs of NRI and WavenetNRI on all he
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zara01 zara02 students03 ETH Hotel

tn tp tn tp tn tp tn tp tn tp

NRI(un) 0.597 0.386 0.62 0.447 0.62 0.263 0.498 0.507 0.501 0.432

Wavenet

NRI(un)
0.576 0.606 0.487 0.944 0.622 0.471 0.643 0.473 0.557 0.459

Table 5.13: Average true negative rate (tn) and true positive rate (tp) of the methods NRI
and WavenetNRI with the unsupervised training on the pedestrian data sets. The highest
values in each column are highlighted by bold texts.

pedestrian data sets decrease, which indicates the GNN encoders of NRI and
WavenetNRI can correctly predict the pairwise influences on their movements.
However, the corresponding edge accuracy on all the pedestrian data sets fluc-
tuates around low values (shown in Figure 7.10a to Figure 7.10e). Therefore,
the influences on the movements cannot reflect the group relationships in the
pedestrian data sets.

5.6 Discussion

In this section, we will first compare the results of the spring simulation and the
pedestrian data sets. Then we will discuss the problems of pairwise classification-
based methods. Finally, we will discuss the limitations of our work.

5.6.1 Comparison between the two types of data sets

According to Table 5.7 and Table 5.8, the baselines GD-GAN [8] and Solera
et al [3] perform much better on the pedestrian data sets than on the spring
simulation data sets. GD-GAN [8] is based on the assumption that the group
members have similar movement patterns, which is invalid in the spring sim-
ulation data sets; therefore, GD-GAN [8] can not correctly predict the groups
on the spring simulation data sets. The baseline solera et al [3] is based on the
hand-crafted features, which are designed for pedestrians and not useful for the
spring simulation data sets.

On the other hand, NRI and WavenetNRI with the supervised training per-
form much better on the spring simulation data sets than on the pedestrian
data sets. With unsupervised training, NRI and WavenetNRI can retrieve the
most positive group relationships on the spring simulation data sets (shown in
Table 5.12 and Figure 7.5). However, in the pedestrian case, NRI and Wavenet-
NRI have low true positive rates (tp) (shown in Table 5.13 and Figure 7.6).
I.e., with unsupervised training, NRI and WavenetNRI cannot retrieve most
positive group relationships on the pedestrian data sets. The reason for these
phenomenons is the oversimplified interaction patterns on the spring simulation
data sets. In the spring simulation data sets, the agents have a high probability
of interactions with all their group members and a low probability of interac-
tions with outsiders (shown in Equation 5.1). I.e., the interaction graphs of the
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groups are cliques. However, in the pedestrian case, not every group member
needs to be connected with every other members [3] due to the transitivity prop-
erty of group relationships. On all the spring simulation data sets, the group
interaction probabilities (≥ 95.3%) are much higher than the non-group interac-
tion probabilities (≤ 13.9%), which satisfies the assumption that the movements
of agents are influenced by their group members with high probabilities and by
outsiders with low probabilities. However, with the increase of the number of
particles and the value of the non-group probabilities, the influences’ indication
of the group relationships becomes weaker, which is discussed in Section 5.5.4.
The reason is that the true negative rates (tn) become smaller with the increase
of the number of particles and non-group interaction probabilities (shown in
Table 5.12 and Figure 7.5). On the pedestrian data sets, the true negative rates
(tp) of NRI and WavenetNRI with unsupervised training are low (shown in Ta-
ble 5.13 and Figure 7.6), which suggests that the a large number of non-group
relationships cannot be retrieved. The outsiders could influence the movements
of group members in the pedestrian case. The influences from the outsiders
can have different patterns with the influences from the group members; e.g., a
pedestrian usually follows their group members and avoids collisions with the
outsiders. The following and avoidance of collision are different patterns of
influences on movements.

5.6.2 Problems with pairwise classification-based methods

The baseline Yamaguchi et al, NRI and our method WavenetNRI are pairwise
classification-based. According to Table 5.8, the performances of these pair-
wise classification-based methods are unstable compared with the clustering-
based baselines GD-GAN and Solera et al. I.e., the pairwise classification-based
methods generally have high standard deviations of recall and precision based on
group mitre (∆GW ), which can limit the application of these methods in prac-
tice. According to Finley et al [7], the pairwise classification-based methods
have the following problems:

• Pairwise classifiers cannot directly optimise the clustering objects. In
our works, the goal of the pairwise classification-based methods such
as WavenetNRI, NRI and Yamaguchi et al, optimise the edge accuracy
defined by Equation 5.6, rather than our evaluation metris, i.e., recall
and precision based on group mitre (∆GW ). Compared with pairwise
classification-based methods, the supervised clustering based baseline Sol-
era et al [3] can directly optimise the group mitre ∆GW with the BCFW
algorithm [25].

• The imbalanced distribution of group/non-group labels can lead to un-
derestimation of pairwise similarity. In our work, the imbalanced label
distributions are shown in Figure 5.2. The non-group labels account for
the majority, which could be the potential reason for the low true positive
rates of Yamaguchi et al on all the spring simulation data sets and some
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pedestrian data sets, i.e., zara02 and students03 (shown in Table 5.10 and
Table 5.11). We applied the weighted cross-entropy loss function to ad-
dress the imbalance problem in NRI and WavenetNRI. However, our work
has not studied the effects of the weighted cross-entropy loss.

• Pairwise classifiers usually assume the pairs of agents are independent and
cannot use the dependencies between the pairs. Although in our works,
WavenetNRI and NRI can apply GNN to model the dependencies between
different pairs by iterative node and edge updates and WavenetNRI can
model the symmetric properties of the pairs, the transitive property of the
group relationship cannot be learned effectively.

5.6.3 Limitations of our work

There are several limitations of our work:

• We only applied the Louvain community detection algorithm to transform
the predicted pairwise interactions into groups. The effects of different
community detection algorithms have not been studied.

• We have not explored the optimal hyperparameters in our work. Since our
work is based on NRI, we use the hyperparameters suggested by Kipf et al
(2018) [1], such as the hidden dimensions of the neural networks. However,
in different cases, the optimal hyperparameters could be different. E.g.,
the number of examples of the pedestrian data sets is smaller than that of
the spring simulation data sets, so the optimal hidden dimensions for the
pedestrian data sets could be smaller than that for the spring simulation
data sets.

• We have not studied the effect of the weighted cross-entropy loss function.
I.e., whether the weighted cross-entropy loss function can help to solve the
imbalanced group relationship problem.



Chapter 6

Conclusion and future work

In this work, we explored the application of graph neural networks (GNN) for
group detection. We extended the work Neural Relational Inference (NRI) [1] for
group detection. We tried to improve the performances for group detection by
applying symmetric edge features with symmetric edge updating processes and
replacing the 1D convolution layer with a gated dilated residual causal convolu-
tion block, as proposed by Wavenet [2]. We tested the effects of our changes to
the original NRI on the performance of group detection in the ablation study.
We found that on the spring simulation data sets, the gated dilated residual
causal convolution block can slightly improve the performance of NRI. At the
same time, the symmetric edge features with symmetric edge updating processes
negatively affect the performance of NRI. On the pedestrian data sets, the sym-
metric edge features with symmetric edge updating processes can improve the
performance of NRI, while the gated dilated residual causal convolution block
has no significant effect on NRI. We compared our method WavenetNRI with
other baselines on the six spring simulation data sets and five pedestrian data
sets. NRI and WavenetNRI with supervised training outperform all other base-
lines on the spring simulation data sets. On the pedestrian data sets, although
our method WavenetNRI cannot compete against the strong clustering-based
baselines GD-GAN [8] and Solera et al [3], with supervised training, our method
can outperform the pairwise classification-based method Yamaguchi et al [4] and
the original NRI. We validated the assumption of the unsupervised training of
NRI and WavenetNRI. The assumption is that the movements of the agents
are to be influenced by their group members with high probabilities and by
outsiders with low probabilities; i.e., the influences on movements can indicate
group relationships. Although on the spring simulation data sets, the predefined
interaction pattern satisfies this assumption, with the increase of the number
of agents and the non-group interaction probabilities, the influences’ indica-
tion of group membership becomes weaker. The assumption is invalid for the
pedestrian data sets.

In future work, we will tackle the limitations of our current work. We will
study the effects of different community detection algorithms. We will explore

37
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optimising the hyperparameters of our model. We will study the effects of the
weighted cross-entropy functions. It is worth studying how to extend our current
pairwise classification-based method to supervised clustering; the corresponding
optimisation algorithms need to be developed.
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Chapter 7

Appendix

The figures and algorithms taking too much space are included in this appendix.

7.1 Figures

This appendix is used to provide access to the figures of trajectory visualisation,
the confusion matrices of the pairwise classification-based methods and the plots
of the mean squared error (MSE) and edge accuracy of the unsupervised training
processes of NRI [1] and WavenetNRI.

7.1.1 Visualisation of Trajectories

The visualisation of the trajectories of the agents of the pedestrian data sets and
that of the spring simulation data sets is shown in Figure 7.1 and Figure 7.2,
respectively.
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Figure 7.1: Visualisation of trajectories of pedestrian data sets. The colours denote the
groups and the pedestrians or particles in the same group are labeled by the same colour; the
arrows denote the directions of the trajectories.
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Figure 7.2: Visualisation of trajectories of spring simulation data sets. The colours denote
the groups and the pedestrians or particles in the same group are labeled by the same colour;
the arrows denote the directions of the trajectories.

7.1.2 Confusion Matrices of WavenetNRI and NRI
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Figure 7.3: Confusion matrices of Yamaguchi, NRI and WavenetNRI on the spring simula-
tion data sets.
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Figure 7.4: Confusion matrices of Yamaguchi, NRI and WavenetNRI on the pedestrian data
sets.
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Figure 7.5: Confusion matrices of NRI and WavenetNRI with unsupervised training on the
spring simulation data sets.
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Figure 7.6: Confusion matrices of NRI and WavenetNRI with unsupervised training on the
pedestrian data sets.
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7.1.3 MSE and edge accuracy of NRI and WavenetNRI
with unsupervised training
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Figure 7.7: MSE of spring simulation data sets with unsupervised training. Figure 7.7a to
7.7f show the training MSE of sim1 to sim6. The green and red lines denote the average
measurements of WavenetNRI and NRI, respectively. The corresponding shadow denotes the
standard deviation.
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Figure 7.8: Edge accuracy of NRI and WavenetNRI of spring simulation data sets with
unsupervised training. Figure 7.8a to 7.8f show the corresponding training edge accuracy. The
green and red lines denote the average measurements of WavenetNRI and NRI, respectively.
The corresponding shadow denotes the standard deviation.
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Figure 7.9: MSE of NRI and WavenetNRI on pedestrian data sets with unsupervised train-
ing. Figure 7.9a to 7.9e show the training MSE of zara01 to Hotel. The green and red lines
denote the average measurements of WavenetNRI and NRI, respectively. The corresponding
shadow denotes the standard deviation.
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Figure 7.10: Edge accuracy of NRI and WavenetNRI on pedestrian data sets with unsu-
pervised training. Figure 7.10a to 7.10e show the corresponding training edge accuracy. The
green and red lines denote the average measurements of WavenetNRI and NRI, respectively.
The corresponding shadow denotes the standard deviation.

7.2 Algorithms

The algorithm to compute recall of Group Mitre is listed in Algorithm 1. To
compute precision of Group mitre, we can simply exchange the predicted group
partition Ĉ and the label group partition C.
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Algorithm 1: Computation of Recall of Group Mitre ∆GW (C, Ĉ)

Input: True group partition C and predicted group partition Ĉ, where
C = {ci} and Ĉ = {ĉj}; ci and ĉj are sets denoting a single group of
true and predicted partitions respectively. The elements in ci and ĉi
are the agents, denoted by α; the corresponding fake agents are
denoted by α′.

Result: Recall of Group Mitre ∆GM

1 forall ci ∈ C do
2 if |ci| = 1 then
3 forall α ∈ ci do
4 generate α′

5 ci := ci ∪ {α′}
6 end

7 else
8 forall α ∈ ci do
9 generate α′

10 C := C ∪ {α′}
11 end

12 end

13 end

14 forall ĉj ∈ Ĉ do
15 if |ĉj | = 1 then
16 forall αinĉj do
17 generate α′

18 ĉj := ĉj ∪ {α′}
19 end

20 else
21 forall α ∈ ĉj do
22 generate α′

23 Ĉ := Ĉ ∪ {α′}
24 end

25 end

26 end
27 missing links := 0
28 correct links := 0
29 forall ci ∈ C do
30 num partitions := 0
31 partitions := {}
32 size := |ci|
33 forall α ∈ ci do

34 forall ĉj ∈ Ĉ do
35 if α ∈ ĉj then
36 if partitions = ĉj then
37 continue
38 else
39 partitions := ĉj
40 num partitions := num partitions+ 1

41 end

42 end

43 end
44 correct links := correct links+ size− 1
45 missing links := missing links+ num partitions− 1

46 end

47 Recall := correct links−missing links
correct links

48 return Recall
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