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Abstract

Since the dawn of the Information Age, all facets of business are rapidly digitizing. While having
accomplished impressive feats, the craft of software engineering still faces many challenges. In this
thesis, business stakeholder involvement is wielded to tackle one significant pitfall: the misalignment
of software functionality with the end-user’s needs. To enable this, a software component is built
that transforms business rules to Python source code. Firstly, a transformation framework applies
Natural Language Processing techniques to map business rules, defined in natural language, to a
formal rule language. Then, formal rule strings are converted to source code and inserted into a
Django run-time prototype environment for instant feedback provision. In support of this endeavour,
a taxonomy of business rules, together with a mapping to implementation types, is presented.
Finally, the usability and effectiveness of the developed software solution are evaluated with a
small-scale user experiment. This research was conducted as part of the Next Generation UML
research group at the Leiden Institute of Advanced Computer Science. Their aim is to facilitate
effective business stakeholder contribution to the software development process by integrating
Natural Language Processing techniques and UML specification models within an environment for
rapid prototype generation.
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1 Introduction
Since the creation of FORTRAN as the first general-purpose programming language in the 1950s
[5], the world has been set on a course of increased digitization. As information processing devices
like the laptop and smartphone are reaching a state of ubiquity, the general quality of software
solutions is increasing in lock step. However, challenges remain, with 19% of software projects
failing in 2006 [9]. Much research has been conducted on the pitfalls of software engineering, and a
list of signs that prelude project failure is compiled in [28]. These include: “Project managers don’t
understand user’s needs”, “The project’s scope is ill-defined”, “Project changes are handled poorly”
and “Users are resistant” (p. 19). Their common denominator is an inadequate alignment of the
provided solution with the user’s needs. Many contributions have been articulated to address this
challenge, ranging from requirement elicitation methods to entire software development frameworks
(e.g., SCRUM). However, these solutions did not challenge the foundation of software development,
namely how source code is written.

Next Generation UML (ngUML) is a research group at the Leiden Institute of Advanced Computer
Science. It was founded by dr. Ramackers with the aim to ease the participation of non-IT
domain experts in the software development process through a re-imagination of this process. By
extending a Model Driven Engineering approach with natural language processing capabilities, the
software engineering process is structured with accessibility and clarity at its core. The ngUML
group is working on a software solution that converts software requirements that are defined in
natural language to a prototype application at run-time. Furthermore, prototypes are mapped to
specification models expressed in the Unified Modeling Language (UML) standard, such that these
models are usable to directly alter the prototype’s source code.

1.1 Contribution

This bachelor thesis contributes to the ngUML project by extending the software with rule handling
capabilities. Natural language processing functionality enables the integration of business rules,
stated in natural language, to application prototypes at run-time. To realize this, a formal language
is defined to unambiguously express these rules. To demonstrate the viability of this solution, the
aforementioned functionality is implemented for a specific rule type. Furthermore, extensibility
is prioritized in the architectural design of the rule component to ensure a future-proof result.
Lastly, in an endeavor to guide future discourse, a taxonomy of the rules-domain is outlined with a
mapping to implementation types in Django, the development framework of the ngUML engine.

1.2 Thesis overview

Section 2 outlines related work and relevant background information. In 3, a taxonomy of business
rules is presented. Section 4 outlines the system design of the software component over multiple
subsections. Firstly, the logical design is discussed in 4.1. Then, in section 4.2, the technical design
is outlined. After categorizing various validator implementation techniques in 4.2.1, a mapping
between these implementation types and the rules taxonomy is discussed in 4.2.2. In section 4.2.3,
the language to formulate rules of a certain type is formally defined using Extended Backus-Naur
Form. Then, in 4.2.4, the conversion of natural language rules to formal rule strings is discussed,
which is followed by an outline of the transformation of these formal rule strings into source code
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in 4.2.5. Finally, section 5 gives a worked example, 6 outlines the validation results of this project’s
deliverables, future research opportunities are presented in section 7, and the conclusion is discussed
in section 8.
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2 Background & Related Work

2.1 Model Driven Engineering

Model Driven Architecture (MDA), as defined by the Object Management Group in [19], “provides
an approach for deriving value from models and architecture in support of the full life cycle
of physical, organizational and I.T. systems” (p. 1). It is a set of standards that enables the
unambiguous definition of models that represent systems at any level of abstraction. At the core of
this paradigm are the Platform Independent Model (PIM) and Platform Specific Model (PSM).
Through this partition, separation of concerns is supported regarding a system’s end goals and
implementation. Since a PIM abstracts away implementation-dependent details, it enables the
gathering of a more durable body of knowledge regarding the specification of the intended result.
Modeling adds value to the software engineering process by aiding mutual understanding of systems
in their current and desired state. In OMG’s vision, these models should also offer functionality
to be queried, analyzed, validated, simulated, and transformed into other models [19]. Applying
this approach would result in the predictable, reproducible, and efficient production of a software
solution.

In the widely cited article by S. Kent, a framework is outlined for a Model Driven Engineering
(MDE) method that integrates the tools and philosophy provided by MDA [23]. It’s firstly argued
that, within a software development project, there may be many more modeling dimensions of
interest besides abstraction. For example, ‘subject area’ specifies a purpose like inventory logistics
or customer support. ‘Aspect’ is also mentioned, this dimension would specify system characteristics
like distribution or security. Within the envisioned MDE method, applicable dimensions for the
project at hand are selected where they serve as guiding parameters for model definition. It’s
also proposed that models and their mutual mappings should be viewed as infrastructure to be
implemented in a broader mode of operation. Both components affect each other, as the modus
operandi dictate the priorities by which models should be created and used, while models enable
the exploration and definition of systems that result in the effective formulation of operational
methods. The value of an MDA-driven application is determined by the benefit of producing
and maintaining model artifacts in relation to its costs. Kent argues that effective tools that
enable, among other things, enforcement of well-formedness constraints, mapping between models,
dashboard representation, and distributed working are essential for lowering the break-even point.
Finally, the value of meta-level language definition is discussed. As MDA should be applicable
in a wide variety of domains, different modeling languages and dialects should be available. A
comprehensive meta-language for defining such dialects could enable the configuration of tools to
specific application domains, enabling specialized functionality.

G. Mussbacher et al. argue in [2] that, while having been successfully adopted in a wide variety of
industries, model-driven engineering still is a “niche technology” (p. 184). Considerable progress
has been made in the domains of modeling languages, model analysis, and model transformation.
Successful adoption has however been hampered because modeling methods do not hold up to
the complex requirements of software engineering applications. Limited interoperability between
models and tools, the complicated usage of these modeling tools, and the absence of a Body of
Knowledge exacerbate this. A 2020 analysis of the state of the research expresses a similar attitude:
much progress has been made on several fronts but big challenges remain [1]. Amongst other things,
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light is shed on the increasing MDE agility, modeling of heterogeneous views, and “expressing . . .
requirements in human-readable notation that can be understood by a computer program” (p. 9).

2.2 Natural Language Processing

The first research on natural language processing (NLP) dates back to the late 1940s with the first
application being machine translation [24]. The method was rule-based: a dictionary was used for
word translation whereafter a permutation scheme reordered the words according to the target
language’s structure. Performance was very limited as semantic ambiguity and context-dependency
were not addressed. In the 1990s, the statistical or corpus-based approach gained popularity as
relatively simple implementations proved effective when trained on large data sets [20]. These
methods used a ‘bag of words’ approach: only the collection of words was used to derive meaning,
disregarding the overarching context. Today, such approaches still form a baseline that is not easily
surpassed.

D. Liddy outlines the ‘levels of language’ approach, which delineates several levels of language
understanding [24].

• Phonology: “the interpretation of speech sounds within and across words” (p. 6).

• Morphology: the interpretation of word components that represent the smallest units of
meaning. An example approach is the dissection of a word in prefix, suffix, and stem.

• Lexical: the semantic interpretation of individual words. Various processing techniques can
be applied to achieve this, like part-of-speech (POS) tagging and the replacement of words by
a semantic equivalent.

• Syntactic: the interpretation of the grammatical structure within sentences to uncover the
dependency relationships between words.

• Semantic: the disambiguation of word meanings by interpreting word-level interactions in a
sentence.

• Discourse: the holistic interpretation of multiple sentences.

• Pragmatic: the inference of meaning derived from domain knowledge, as opposed to exclusively
using the knowledge that is endemic to the source text.

2.2.1 Recent trends

In an overview study by Young et al. [33], the recent rise of deep learning based methods in natural
language processing is detailed. Following the statistical approach to NLP, distributional vectors
(word embeddings) rest on the distributional hypothesis, which states that “words with similar
meanings tend to occur in similar context” (p. 2). This focus on word-context enables the capture of
lexical meaning within a corpus of text. Word embedding based models like the popular CBOW and
skip-gram by Mikolov et al. have attained state-of-the-art results in a variety of NLP tasks in the
past. However, as the incorporation of context into word representations proved fruitful, individual
word embeddings using a small interval of neighboring words became a limitation. Early word
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embedding methods considered every sentence containing a certain word to create a generalized
representation. This limits semantic understanding of words as many are polysemic (“She went
right” vs. “She was right”). Furthermore, the small window-size (nr. of neighboring words analyzed)
resulted in similar embeddings for opposing words that generally occur within a similar context
(e.g., “good” and “bad”), impeding downstream tasks like sentiment analysis. Contextualized word
embeddings tackle this problem by creating a different representation for every occurrence of the
word, thus enabling a variety of interpretations. Renowned models using this type of embedding
are ELMo and BERT, the latter of which outperformed state-of-the-art results “by a large margin”
(p. 6). The study continues with an outline of deep learning methods that have been the focus of
research over recent years.

Convolutional neural networks (CNN) enable contextualized word embeddings. Consecutive words
(n-grams) are extracted from the corpus, generating higher-level features. An input sequence
{s1, s2, ...sn} of n words is encoded into a series of word embeddings {v1, v2, ...vn}. As opposed
to previous methods that handled sequences of single words, the extended window-size enabled
the construction of abstract features with richer context, proving effective for several NLP tasks.
However, maintaining long-distance contextual information was still difficult (e.g., “Chris is easy to
consider it impossible for anyone but a genius to try to talk to him.” [7]).

A recurrent neural network (RNN) also encodes an input sequence, the differential characteristic
being that the word embeddings depend on previous word embeddings within the same sequence.
This architecture creates continuity in encoding and is therefore referred to as a form of memory.
Word order can now be utilized to extract semantic meaning, improving on the aforementioned
challenges of polysemy and the embedding of opposing words with similar contexts. Another upside
to this method is the ability to process input of arbitrary length. RNNs are not necessarily superior
to CNNs however, this depends on the application context.

Later, an attention mechanism was introduced for application within RNNs and likewise methods.
This mechanism enabled the prioritization of input-sequence components, resulting in more selective
encoding capabilities and closer representation of the input sequence in the output sequence. Dense
or lengthy text could thus be handled more effectively, improving applications like summarization
and translation. Vaswani et al. progressed on this method by substituting recurrence and convolution
in the encoding step altogether in favor of attention mechanisms [4]. This new architecture was
called a transformer, well-known for its effective Sesame Street-themed models (BERT, ALBERT,
et cetera).

The structure of recursive neural networks, like RNNs, lends itself to the representation of language.
The former can be presented as a constituency parsing tree where the representation of each
internal node depends on the representation of its descendant nodes, enabling bottom-up syntactical
representations of sentences (see figure 1). Thus, the characteristics of a recurrent neural network
fit the hierarchical characteristics of language, while a RNN corresponds to its sequential aspects.
Applications of recursive neural networks include parsing and sentiment classification.
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Figure 1: Sentiment classification using a recursive neural network. Source: [33]

2.3 The ngUML project

The ngUML project was established to provide an accessible approach to model and prototype
generation from natural language requirements. Extending on the MDE framework, the project
proposed ([8], p. 3) the usage of UML models “not just as design-time artifacts, but ... also deploying
them as run-time artifacts alongside the application.” Thus, these models do not exclusively
represent the software product’s design to the user, they are also directly mapped to the source
code of a prototype application. Through the model editor, alterations to the UML diagram are
reflected in the corresponding source code at run-time.

Figure 2: The envisioned ngUML architecture. Source: [27]
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Natural language input is processed to compile ‘metadata’, data about models and their repre-
sentation. This metadata is saved in the ‘metamodel’, a data store. Because natural language
is inherently ambiguous, a human-in-the-loop approach is proposed in [27]. The aforementioned
UML capabilities with its mapping to the source code already contribute to this as the model
representation provides feedback to the user. Further progress will be realized by implementing,
among others, conversational components (e.g., a chatbot) and recommender functionality. See
figure 2 for an overview of the envisioned system architecture.

The workflow starts with a user submitting a natural language input in text or audio format.
Natural language processing techniques are applied to the input to determine the UML diagram
type that best represents it and to compile the entities that populate it. For example, “A customer
has a name and address” would translate to a class diagram with a ‘Customer’ class that owns the
properties ‘name’ and ‘address’. The extracted entities, together with their representation, form
the metadata that is held in the metamodel. The UML diagram can be rendered in the front-end
(see figure 3) and altered if needed. Any changes will be directly reflected on the metamodel and
the prototype, enabling rapid iteration.

Figure 3: Example of a UML diagram in the front-end. Source: [27]

2.4 Formal languages

A formal language is an unambiguously defined structure whereby its products (strings), derived from
an alphabet through a grammar, can be systematically checked for well-formedness (correctness).
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Chomsky’s work on the precise characterization of the structure of natural languages has heavily
influenced the contemporary field of formal language theory. Another important endeavor was
the definition of ALGOL 60. This programming language improved on cornerstone concepts like
recursion and nested functions, consequently paving the way for many others like Pascal and C.
Interlinked with the rise of ALGOL 60 was the metasynax Backus-Naur form (BNF), as it was
used in the original report of the programming language [6].

2.4.1 The structure of a formal language

The following terminology is described in [29] by Moll et al. A formal language consists of terminal
symbols, making up the characters of the produced strings, and non-terminal symbols, making
up characters that may appear in derivations but not in the produced strings. A production is an
inductive rule containing the aforementioned symbols. Every string in a given grammar begins
with a start symbol. Finally, an alphabet is a nonempty finite set of symbols. All in all, a grammar
(G) consists of a terminal alphabet (X), a non-terminal alphabet (V), a start symbol (S), and its
productions (P). Strings that are produced using a grammar G in language L are well-formed in
relation to that language. A useful example is given regarding a language of parentheses where
every opened parenthesis should be closed. Here, G is defined as:

X = (, )

V = S

S = S

P = {S → (), S → (S), S → SS}

Using G, the following string can be constructed: S → SS → (S)S → (S)SS → (())()()

Also, an important division is made between context-free and context-sensitive languages. The
former is a language that is generated using context-free grammar, meaning that in every production
v → w, v is a single non-terminal symbol. For context-sensitive languages, this is not the case.
Context-free definitions are widely utilized, like for programming languages.

2.4.2 Backus-Naur form

Before J. Backus formulated his metasyntax, programming languages like FORTRAN and IAL
were defined by a combination of natural language components and some formative patterns. This
method did not wield enough expressive power to consistently define simple control structures
unambiguously, impeding downstream definition of more complex structural components like
declarations [6]. After P. Naur altered Backus’s notation slightly to improve readability, BNF was
created.

Taking figure 4 as an example, the following about BNF can be outlined. It consists of a set of
terminal symbols, a set of non-terminal symbols, and a set of production rules in the form Left
Hand Side (LHS) ::= Right Hand Side (RHS) where LHS is a single non-terminal symbol (ergo,
context-free) and RHS is a sequence of symbols that may be terminal or non-terminal. ‘::=’ indicates
that LHS must be replaced by the sequence RHS. The vertical bars indicate a choice between
possible substitutions.
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Figure 4: BNF definition of arithmetic expressions in the ALGOL 60 report. Source: [6]

Following the popularity of BNF, many slight variants were used in academic literature. In hopes
of realizing a new standard, N. Wirth proposed a slightly extended variant, later named Extended
BNF (EBNF). The additions did not improve BNF’s expressivity, rather they eased the expression
process. Most notably, it facilitates an explicit iteration construct that obviates verbose use of
recursion [31]. Wirth’s attempt was to no avail, as there are many dialects of EBNF and BNF in
use today [34]. In this paper, the rule language will be defined using the ISO/IEC 14977 [22] EBNF
standard.
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3 Business rule taxonomy
Rules form the heart of this project, so a charting of the rule domain is essential. The ngUML solution
is developed to ease the involvement of non-IT domain experts within the software engineering
process. It, therefore, handles high-level business rules as well as their low-level implementation. In
the following chapters, a taxonomy of rules is presented that exists on both levels.

The rules that govern an organization are defined in [32] as all rules that govern its conduct and
procedures. This ruleset encompasses business rules, rules that can be altered by the business itself,
as well as regulation, rules that are exogenously enforced by governing bodies. Furthermore, it’s
argued that even the laws of physics are to be considered when holistically modeling the ruleset
that governs an organization: a timetabling application should enforce that every person can only
be in one place at the same time. Also, a distinction is made between descriptive and prescriptive
rules. Descriptive rules describe reality as it is (“the order total is the sum of all product prizes
multiplied by their quantity”), while prescriptive rules articulate how it should be (“the order total
should exceed 50 dollars”). Within this project, all described rules are prescriptive: they govern the
behavior and state of existing classes and processes.

At the implementation level, rules are often named assertions. An assertion is a boolean expression,
connecting to some point(s) in the program, that should evaluate to true at its connected point(s)
in the program on execution. It is meant to formalize and guard assumptions, thus ensuring safe
and reliable behavior [30].

Considering the applicability of rules within the scope of the ngUML project, two views can be
differentiated. By utilizing both views, the presented taxonomy should ensure clarity through a
logically divisible delineation and expressiveness through a variety of specifications.

In [32], a business process is defined as “an activity that is managed by an organization to produce
results of value to that organization, its customers, its suppliers, and/or its partners” (p. 15). The
‘rational view’ of the following taxonomy outlines a higher dimensional representation of rules that
are directly applicable to entire business processes or substantial components. It relates to high-level
concepts like variability. For example, within the context of a casino, “a customer must be at least
21 years old” and “a customer may not order extra chips” should be handled differently. The former
must always be satisfied, while the latter is instance-dependent: its applicability is evaluated using
contextual parameters like a customer’s account balance.

The ‘specified view’ represents a lower dimension that boarders the implementation of rules: it
defines rules that restrict, for example, what values an attribute can take or whether these values
should be ordered. The rational view contains super-types of the rules in the specified view, thus
exclusively the lowest sub-types in the latter view are instantiable.

3.1 Taxonomy of rules: rational view

Figure 5 presents rules through the rational viewpoint. The UML ‘generalize’ relation is used to
specify rule sub-types.
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Figure 5: Taxonomy of rules: rational view

Definition 1 (Rule). An assertion that must hold as specified in its definition.

Definition 2 (Invariant rule). A rule that applies constantly.

An invariant rule must hold at all times. For example, “a customer should be at least 21 years of
age.”

Definition 3 (Context rule). A rule that only applies when its embedding context satisfies certain
parameters.

A context rule applies conditionally in relation to its embedding context. Such a rule is formulated
as “if X, then rule”; for example, “if a customer enters the casino, they should be at least 21 years
of age.”

Definition 4 (Entity rule). A rule that restricts the behavior or structure within an entity or the
association between entities.

Definition 5 (Structure rule). A rule that restricts what structural characteristics an entity can
possess.

The aforementioned rule “a customer should be at least 21 years of age” is a structure rule that
restricts the values that an entity’s property can take on. For a detailed outline on the variety of
possible applications, see the rule taxonomy’s specified view in chapter 3.2.

Definition 6 (Behavior rule). A rule that restricts which actions an entity can perform.

A behavior rule restricts what activities an entity can perform or participate in. For example, “only
an administrator can alter the delivery schedule.”
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Definition 7 (Association rule). A rule that restricts the characteristics of relationships between
entities.

Where the structure and behaviour rule restrict intra-entity characteristics, the association rule
restricts on an inter-entity level. For example, a scrum team entity might consist of a scrum master
entity, a business analyst entity, and multiple developer entities. An association rule would restrict
the characteristics of such a ‘consist’ relationship (e.g., maximally one scrum master).

Definition 8 (Procedure rule). A rule that takes sequentiality into account when considering its
application.

Since sequentiality is evaluated relative to a point of reference (a trigger, another procedure, et
cetera), it is always a specialization of a context rule.

Definition 9 (Pre-condition rule). A rule that applies before a procedure is begun.

A pre-condition rule specifies the state that its embedding context should conform to before an
activity commences. For example, “a user’s e-mail address should be confirmed before they can
reset their password.”

Definition 10 (Post-condition rule). A rule that applies after a procedure is completed.

Like a pre-condition rule, a post-condition rule specifies a state that its embedding context should
conform to. In this case, the condition should hold after an activity is finished. For example, “after
order checkout is completed, the payment should be received within two business days.”

Definition 11 (Decision rule). A rule that restricts the set of subsequent activities.

A decision rule governs the possibility space when choosing subsequent activities; it controls the
workflow. The fundamental difference between pre and post-condition rules is that a decision rule
restricts the activity-space, rather than the state-space. E.g., “if the order total is above $100,000,
the sales officer should be notified.” So-called trigger rules or event rules fall within this definition.

3.2 Taxonomy of rules: specified view

The specified view outlines a lower-dimensional representation of rules: it further delineates rules
to instantiable sub-types that border the technical implementation.

In figure 6, rules within a circle further specify the rational rule set shown underlined, meaning that
they are the successors of the rules in this rule set. Like the rational taxonomical representation,
the ‘generalize’ relation is used to specify rule sub-types. In the specified view, a division is made
between invariant sub-types and context sub-types because they possess different successors. This
division is indicated by the vertical line. The green circle presents the specified rule types with the
rational structure, behavior, and association rules as predecessors, considering invariant sub-types
exclusively. The blue and red circles show all specified rules for context sub-types. There is an
overlap between the blue and red circle: the inclusive, exclusive, and order rules are successors from
both rule set B and rule set C. Since the specified view further delineates the rational view, all
rules exist in both representations. For example, the rule “a customer’s age should be at least 21” is
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an invariant structure rule in the rational view and an inclusive demarcation rule specifying rule
set A in the specified view.

Figure 6: Taxonomy of rules: specified view

Definition 12 (Demarcation rule). A rule that specifies what values can be assigned to an entity,
set of entities, or to an association between entities.

Whether a demarcation rule sub-type specifies a structure rule or association rule depends on the
characteristics of the entities that it restricts. It specifies the former if it restricts entities that are
treated as properties within a single entity, it specifies the latter if it restricts otherwise independent
entities that are connected through an association. For example, considering the rule “the name on
a booking receipt should be the same as the name on the booker’s passport”, the characteristics of
‘booking receipt name’ and ‘booker’s passport name’ are the differentiator. It is a structure rule if
they are treated as properties on a single booking entity, it is an association rule if they are treated
as two separate entities that are related to a booking entity.

Definition 13 (Differential rule). A rule that specifies what values can be assigned to an entity or
set of entities in relation to another entity or set of entities.

The differential rule fundamentally differs from the inclusive and exclusive rule because it explicitly
refers to another entity or set of entities when demarcating a set of legally assignable values.
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Definition 14 (Unique rule). A rule that specifies that the content of a data item or combination
of data items must be unique in relation to the content of another data item or combination of
data items.

For example, “the combination date of birth and username should be unique for every customer in
relation to all other customers.”

Definition 15 (Equality rule). A rule that specifies that the content of a data item or combination
of data items must be equal or unequal to the content of another data item or combination of data
items.

The aforementioned rule “the name on a booking receipt should be the same as the name on the
booker’s passport” is an example of this

Definition 16 (Proportion rule). A rule that specifies what numerical values can be assigned to
an entity or set of entities in relation to another entity or set of entities.

For example, “the load of a truck should always be 50 pounds less than the capacity of the truck.”

Definition 17 (Rule set A & B: Inclusive rule). A rule that specifies what set of values can be
assigned.

The inclusive rule can implement a structure, behavior, association, post, or pre-condition rule, as
well as a decision rule. The interpretation of this lower-level rule depends on the type of rational
rule it implements. Within the context of rule set A and B, the inclusive rule specifies a required
state: what values should be assigned to a corresponding entity or set of entities. An inclusive rule
implementing a pre-condition is “a clerk should have at least five years of experience before they
can be promoted to store manager.”

Definition 18 (Rule set C: Inclusive rule). A rule that specifies what set of procedures can be
executed.

With regard to rule set C, the inclusive rule restricts the state-space: what procedures can be
executed considering the context. An inclusive rule implementing a decision rule is “after the
customer selects order checkout, they can either opt for credit or debit card payment.”

Definition 19 (Rule set A & B: Exclusive rule). A rule that specifies what set of values cannot be
assigned.

Like the inclusive rule, an exclusive rule can implement a structure, behavior, association, post, or
pre-condition rule, as well as a decision rule. The differentiating feature is that the exclusive rule
defines what values or procedures do not belong to the possibility set.

Definition 20 (Rule set C: Exclusive rule). A rule that specifies what set of procedures cannot be
executed.

Definition 21 (Trait rule). A rule that specifies what characteristics the values assigned to an
entity, set of entities, or association between entities should have.
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A trait rule specifies the characteristics of data items within a demarcated space of legal assignments.
Like the demarcation rule, whether trait rule sub-types specify a structure or association rule
depends on the autonomy of the restricted entities.

Definition 22 (Access rule). A rule that specifies what types of access to an entity or set of entities
are legal.

An access rule defines how the content of a data item or combination of data items can be accessed,
for example, “only an administrator can alter the delivery schedule.”

Definition 23 (Format rule). A rule that specifies how the content of a data item or a combination
of data items must be formatted.

A format rule defines what format is required when handling, representing, or saving data. For
example, “timestamps should be formatted as MM/dd/yyyy HH:mm:ss.SSSS.”

Definition 24 (Rule set A & B: Order rule). A rule that specifies how a set of entities or the
content within an entity or set of entities should be ordered.

When implementing rule set A and B, an order rule defines what order is required when handling,
representing, or saving data. For example, “outgoing orders should be ordered descendingly on the
due date.”

Definition 25 (Rule set C: Order rule). A rule that specifies the sequential execution of procedures.

When implementing rule set C, an order rule defines the sequential traversal of the state-space. For
example, “when stock is delivered, the products should be inspected before they are unloaded.”
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4 System design
The goal of this project is to transform natural language input into a source code implementation
of rules for enforcement in a run-time prototype application. In the following chapters, a software
solution is presented that fulfills this goal. Under ‘Logical design’, a high-level overview of the
implementation and its function within the greater ngUML project is outlined. Under ‘Technical
design’, a low-level description of the implementation is presented.

4.1 Logical design

4.1.1 System requirements

The software solution presented in this paper should realize the following requirements.

1. The resulting implementation should be able to convert rules that are defined in
a natural language into source code at run-time. The goal of the ngUML project is to
improve the accessibility of software development for non-IT domain experts, construction
of models is therefore done using natural language input. Thus, the specification of rules
governing such models should be possible using natural language as well. These submitted
rules should result in source code that is applicable to prototypes at run-time.

2. The resulting implementation should be able to implement expressive rules.
Business rules can be nuanced and complex. Thus, the software solution should show promise
in handling such rules.

3. The resulting implementation should ensure general user-friendly functionality
for non-IT experts. Accessibility is an essential target for this project. Thus, non-IT experts
should experience the resulting implementation as easy to use.

4. The resulting implementation should be extensible. Many people have contributed to
the ngUML project and many more will continue to do so. Therefore, the software solution
that is delivered needs to be expandable to make it future-proof.

4.1.2 System overview

The software solution presented in this paper transforms textual requirements into enforceable rules
by converting constraints formulated in natural language to source code. An important pre-condition
for this process is that the submitted rules apply to existing classes. As shown in figure 7, the
workflow starts with a user submitting text or audio that is converted to metadata, which is saved
in the metamodel. Only after this, rules can be formulated and applied. The natural language
processing, formal rule generation, and rule object management are bundled in a single component
that is named ‘Rule Manager’. The Rule Manager is implemented to handle a subset of the rules
taxonomy, namely the invariant inclusive demarcation rule that specifies rule set A. In order to
enable this functionality, a generic architecture is implemented that can be extended to handle
many more rule types. Figure 7 depicts its position within the complete ngUML software’s workflow.
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Figure 7: Activity diagram of the ngUML software’s workflow

The diagram in figure 8 shows the relevant parts of the Rule Manager. The implementation is
divided into three subsystems, each feeding data to the next one. The Rule Manager interacts with
the existing ngUML code base at specific points. It fetches user input, metadata artifacts, and rule
alterations in the front-end; it exports the structured rule strings, validator code, and a user view
representation of rules.

The Rule Manager essentially forms an extra pipeline within the ngUML engine. It works end-
to-end: taking in user input, altering the metamodel, and applying the resulting source code to
the prototype (see figure 9). The NLP component requires an interface to the user where it can
fetch input. After this, the input gets tokenized, lemmatized and parts of speech are tagged. The
Formal Rule Generator maps metadata to the input object and validates if the result is correct and
interpretable. If so, the object is articulated in a structured rule language, which is designed to
act as an intermediary between the expressive capacity of natural language and the unambiguous
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nature of programming languages (see 4.2.3). Finally, the Rule Object Manager transforms this
structured rule string into Python code and enforces it on the metamodel.

Figure 8: Component diagram of the Rule Manager

Figure 9: Activity diagram of the Rule Manager’s workflow
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4.2 Technical design

This section expands on the previously outlined conceptual view of the software solution by
presenting technical implementation details. Three types of validator implementation are outlined
and subsequently mapped to the rule taxonomy. Then, after defining the structured rule language
for a subset of the rule taxonomy, some examples are showcased.

4.2.1 Validator implementation methods

At the source code level, a rule is an assertion that governs the properties and methods of class
instances by throwing an error if it evaluates to false. The exact implementation of an assertion
depends on several factors and is generalizable to three levels: atomic, intra-class, and inter-class.
Since the back-end of the ngUML application is built using the web-framework Django, the following
chapters outline the different validator implementations within the context of a Django application.
However, the generic nature of this proposed division should enable usage at a conceptual level,
independent of the implementation context.

Django is a python-based web-framework. As stated in [11], the Django philosophy is efficient
development. It subscribes to the ‘Don’t repeat yourself’ (DRY) principle which postulates that
“Every piece of knowledge must have a single, unambiguous, authoritative representation within a
system” ([21]). The tech community appears to appreciate its efficacy: it is used at Instagram [10],
Mozilla [26], and Spotify [25].

Within Django, an object relational mapper mediates between data models and a relational database.
All models are defined using Python classes (see listing 1). Django performs some validation out-of-
the-box when an instance is saved to the database and offers several access points for customizing
this process [14]. Within Django, assertions are called ‘validators’: functions that take a value and
raise a ValidationError object if some criteria are not met [17]. Django performs validation in a
three-step process that is coordinated by full_clean() [14]:

1. Atomic validation using Model.clean_fields();

2. Intra-model validation using Model.clean();

3. Field uniqueness validation using Model.validate_unique().

The full_clean() method is not called by default when saving an instance. Thus, to enable the
execution of custom validator functions, it needs to be added to the save() method of a class for
nearly all use-cases in the three aforementioned levels of evaluation [14]. Within the full_clean()
method, exceptions can be gathered to display in the front-end.

Atomic validation At the atomic level, an individual instance’s properties are evaluated. A
basic level of such functionality executes by default. When an instance of the Customer object
(as shown in listing 1) is saved, MinValueValidator and MaxValueValidator are implicitly called
on the age property to enforce that the entered integer value falls within a domain that is safe
to enter into the underlying database [13]. Custom rules can be enforced by adding validators to
class properties. Listing 1 shows that the min_balance validator is linked to the account_balance
property. When a Customer instance is saved to the database with an account balance value of less
than $5, a ValidationError is raised. In this way, many atomic rules are enforceable.
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1 def min_balance(value):
2 if value < 5:
3 raise ValidationError(
4 _("Your account balance should be at least $5.")
5 )
6

7 class Customer(models.Model):
8 username = models.CharField(max_length =100)
9 account_balance = models.FloatField(validators =[ min_balance ])

10 age = models.IntegerField ()
11 ...
12 def save(self , *args , ** kwargs):
13 try:
14 self.full_clean ()
15 except ValidationError as e:
16 ...
17 super().save(*args , ** kwargs)

Listing 1: Atomic evaluation

Intra-class validation At the intra-class level, the states of multiple properties within a single
class are evaluated to enforce constraints. To enable this type of custom validation, functionality
needs to be added to a model’s corresponding clean() method. In listing 2, the rule “only a
customer with a premium subscription may opt for drone delivery” is enforced.

1 class Customer(models.Model):
2 username = models.CharField(max_length =100)
3 subscription = models.CharField(max_length =100)
4 default_delivery = models.CharField(max_length =100)
5 ...
6 def clean(self):
7 if self.subscription != "premium" and self.default_delivery == "drone":
8 raise ValidationError(
9 _("Drone delivery is only possible with a \

10 premium subscription.")
11 )
12 ...
13 def save(self , *args , ** kwargs):
14 try:
15 self.full_clean ()
16 except ValidationError as e:
17 ...
18 super().save(*args , ** kwargs)

Listing 2: Intra-class level evaluation

Inter-class validation At the inter-class level, the state of multiple classes – and possibly
their properties – are evaluated to enforce constraints. Models can be related through a One-to-
One, Many-to-One, or Many-to-Many relationship. Models can be directly connected, indirectly
connected, or not connected at all. Directly connected means that two models are connected because
either model has a foreign key relation to the other. Indirectly connected means that two models
are connected through one or more intermediate models. Listing 3 shows a directly connected
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Many-to-One relationship that enforces the rule “only customers with a premium subscription may
opt for evening delivery”. This is again enabled by customizing the model’s save() function. The
same method works when constraining a One-to-One relationship.

1 class Customer(models.Model):
2 username = models.CharField(max_length =100)
3 subscription = models.CharField(max_length =100)
4 default_delivery = models.CharField(max_length =100)
5

6

7 class Order(models.Model):
8 delivery_slot = models.CharField(max_length =100)
9 customer = models.ForeignKey(

10 "Customer", on_delete=models.CASCADE , null=True
11 )
12 ...
13 def clean(self):
14 if self.delivery_slot == "evening" and
15 self.customer.subscription != "premium":
16 raise ValidationError(
17 _("Evening delivery is only possible with a \
18 premium subscription.")
19 )
20 ...
21 def save(self , *args , ** kwargs):
22 try:
23 self.full_clean ()
24 except ValidationError as e:
25 ...
26 super().save(*args , ** kwargs)

Listing 3: Inter-class Many-to-One evaluation

In the case of a Many-to-Many relationship, both instances have to be saved before they can be
linked together using add(). However, add() does not call save() out of performance considerations
[15]. Django does provide a hook to customize the process of saving Many-to-Many instances to the
database through the m2m_changed signal (listing 4, line 23). This signal can be utilized to monitor
changes concerning such relationships because it is called before and after saving any changes [16].
Since m2m_changed is called for every Many-to-Many alteration, a redirect function should check
the involved instance-types and call their corresponding validation functions (line 1).

1 def m2m_redirect(sender , instance , action , model , ** kwargs):
2 # Mentor added to Mentee
3 if model is Mentor and isinstance(instance , Mentee):
4 pass
5 # Mentee added to Mentor
6 if model is Mentee and isinstance(instance , Mentor):
7 Mentor_m2m_Mentee(instance)
8

9 def Mentor_m2m_Mentee(instance):
10 if instance.mentee_set.all() > 4:
11 raise ValidationError(
12 _("A mentor may have maximally 4 mentees.")
13 )
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14

15 class Mentor(models.Model):
16 ...
17

18 class Mentee(models.Model):
19 ...
20 mentor = models.ManyToManyField(Mentor)
21

22

23 m2m_changed.connect(m2m_redirect)

Listing 4: Inter-class Many-to-Many evaluation

The aforementioned examples regarding the different levels of implementation represent typical
applications. The atomic and intra-class examples could easily be transformed into an inter-class
implementation if the database were queried for other metadata when enforcing a rule. In listing 5,
the cash coverage ratio is calculated before a new customer instance is added, transforming the
atomic validation from listing 1 to inter-class validation. In this way, rules can span many classes
that are directly linked, indirectly linked, or not linked at all.

1 def min_coverage(value):
2 total_deposit = value
3 total_cash = request_cash_reserve ()
4 res = Customer.objects.all()
5 for i in range(len(res)):
6 total_deposit += res[i]. account_balance
7 if not (total_cash / total_deposit * 100 >= 80):
8 raise ValidationError(
9 _("Required cash coverage ratio is breached."))

10

11

12 class Customer(models.Model):
13 username = models.CharField(max_length =100)
14 account_balance = models.FloatField(validators =[ min_coverage ])
15 age = models.IntegerField ()

Listing 5: Atomic evaluation transformed to inter-class evaluation

4.2.2 Mapping rules to implementation

This section presents a mapping between the rules taxonomy and the levels of implementation.
The charting of the rule domain, together with the following mapping, is meant to contribute to
effective discourse on the implementation and assessment of the ngUML project’s rule handling
capabilities.

There are many ways to enforce rules in Django because of the framework’s flexibility. While this is
indeed useful, the following assertions are valuable because they enforce a pragmatic and qualitative
angle on the implementation.

1. The input of a model’s property field is handled as a single value.

2. If an invariant rule can be stated as a context rule, this should be done.
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Assertion 1 is not necessarily the case, because Django offers the possibility of creating custom
property fields. For example, one could construct a ‘MultiEmailField’ that takes a comma-separated
list of e-mails that can be parsed and treated as having multiple of values [12]. This could be
of value in edge-cases, but it also enables mapping to impractical implementations of rules. For
example, one could construct a validation field that implements an atomic context access rule.
Taking input in the form password :value, the value would only be alterable when the entered
password is correct. While this is a workable solution, it needlessly pollutes the input channel. Since
assertion 1 enforces a pragmatic angle on these obscure edge-cases and keeps the mapping clear, it
is worth the restriction.

Assertion 2 is valuable because it protects implementation quality by excluding the application
of context rules as hard-coded invariant rules. For example, one could enforce the rule “only an
administrator can book a meeting” in two ways. In the form of a context rule, it would first check
the trigger if meeting_schedule.altered == True and then check the contextual parameter if
user.role != administrator. When implemented as an invariant, it would be implemented as
if not (user.role != administrator) and meeting_schedule.altered == True. The latter
implementation needlessly combines the validation-trigger and the contextual requirement in a
single enforcing statement, effectively hard-coding context into the rule. Ensuring this separation
is crucial when the number of contextual parameters increases to the level of real-world business
applications.

Figure 10 and 11 present the mapping of all rules in the rule taxonomy’s specified view to Django
implementation types. Figure 10 shows the rules as invariant sub-types: meaning that the inclusive,
exclusive and order rule can only implement rule set A (see figure 6). Figure 11 shows the rules as
context rule sub-types, the ‘rule set B’ and ‘rule set C’ rows signify what rational rule super-types
correspond to the subsequent inclusive, exclusive, and order rule rows.

Invariant
Rule Implementation type

Atomic Intra-class Inter-class
Unique X X
Equality X X

Proportion X X
Access X X
Format X X X

Rule set A
Inclusive X X
Exclusive X X

Order X X

Figure 10: Mapping of invariant rule types to implementation levels
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Context
Rule Implementation type

Atomic Intra-class Inter-class
Unique X X
Equality X X

Proportion X X
Access X X
Format X X

Rule set B
Inclusive X X
Exclusive X X

Order X X
Rule set C

Inclusive X
Exclusive X

Order X

Figure 11: Mapping of context rule types to implementation levels

4.2.3 EBNF definition of the inclusive demarcation rule

In this section, the structured syntax of the invariant inclusive demarcation rule that specifies
rule set A (i.e., A_DEM_INCL) is defined using Extended Backus-Naur Form. The definition is
specified according to the ISO/IEC 14977 EBNF standard ([22]), and partitioned in components
with a short explanation. When applying this rule type within an inter-class context, it constrains
the multiplicity of relationships. Since One-to-One relationships fix their multiplicity at a database
level, the use-case for this relationship type is excluded from the A_DEM_INCL syntax definition.
The following operators are used:

• = splits the left hand side and the right hand side. The term on the LHS is a meta-identifier,
this term can be substituted by any terminal or non-terminal symbol on the RHS. A symbol
is a sequence of one or more characters.

• | indicates a choice between symbols, the meta-identifier on the LHS can be substituted by
any of the choices on the RHS.

• " and ’ are used to enclose terminals.

• [ and ] indicate option, meaning that the enclosed symbols can be omitted or used once.

• { and } indicate repetition, meaning that the enclosed symbols can be omitted or repeated
any number of times.

• , is used to concatenate symbols.

• ; is used to terminate a sequence of symbols.
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1 rule string =
2 "’", rule name , "---" , context information , "---" , constraints , "’" ;
3

4 rule name = "A_DEM_INCL" ;
5 context information = property information | direct relation information ;
6 """a + b = y + z"""
7 constraints =
8 a * [ "(" ] , block , y * [ ")" ],
9 { logical operator , b * [ "(" ] , block , z * [ ")" ] } ;

Listing 6: Rule definition 1/5

A rule string consists of three parts: the rule name tag, context information, and constraints. The
invariant inclusive demarcation rule that implements rule set A is tagged with A_DEM_INCL. ‘Rule
name’ is not fixed at A_DEM_INCL because this definition may be reusable for other rules, like
the invariant exclusive demarcation rule implementing rule set A. The context information firstly
defines if the rule is atomic or inter-class and secondly provides its application context. If a rule
is atomic, the corresponding classifier and property name are passed. If the rule is inter-class, a
query term and possibly a foreign key alias are passed (see listing 7). Constraints define the
actual rule and are split into blocks. Brackets can enclose blocks to explicitly state the precedence
of logical operators, it is required that the number of opening brackets equals the number of closing
brackets (line 6). Since the logical operators get directly translated to Python (see listing 12, line
5), their precedence is interpreted as defined in the documentation [18].

1 direct relation information =
2 "rel." , many to one relation | many to many relation ;
3 many to one relation =
4 possessor , ".m2o." , possession , "." , foreign key alias , query term ;
5 many to many relation =
6 possessor , ".m2m." , possession , "." , query term ;
7 foreign key alias = identifier ;
8 query term = identifier ;
9

10 property information = "field." , class name , "." , property name ;
11 class name = identifier ;
12 property name = identifier ;

Listing 7: Rule definition 2/5

Direct relation information can either be of the type Many-to-One or Many-to-Many. A Many-to-
One relationship is defined by assigning a foreign key value to a model’s property (see listing 3,
line 9), the name of this property should therefore be passed as a foreign key alias. A query
term is used to retrieve all related instances. Atomic rules are enforced on the properties of classes,
therefore the assignment of a class name and a property name is required.

1 block = "|" , ( direct relation block | property block ) , "|" ;
2

3 property block =
4 type constraint , "=" |
5 "=" , ( digit range constraint | letter range constraint ) |
6 type constraint , "=" , digit range constraint |
7 "*int=" , digit range constraint | "*let=" , letter range constraint ;
8
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9 direct relation block = "=" , digit range constraint ;

Listing 8: Rule definition 3/5

A property block contains a = sign that separates the type constraint on the LHS from the digit
range constraint on the RHS. A property block can be defined by passing both a LHS and RHS,
constraining both the type and multiplicity of the target. Omitting one of the two sides is a legal
formulation as well, resulting in the enforcement of the constraint on the side that’s defined. One
can only pass a digit range constraint in a direct relation block, since the type is already fixed at
the related class. For example, when enforcing such a constraint on a Mentor-Mentee relation, only
the multiplicity can be determined because the type is fixed at Mentor or Mentee. Instead of a
type constraint, *int or *let can be passed. The former defines the actual integer value that a
property should have, the latter defines the letter value (e.g., *let=“admin”).

1 """a + b = y + z"""
2 type constraint =
3 a * [ "(" ] , type , y * [ ")" ],
4 { logical operator - "and" , b * [ "(" ] , type , z * [ ")" ] } ;
5

6 digit range constraint =
7 a * [ "(" ] , interval , y * [ ")" ],
8 { logical operator , b * [ "(" ] , interval , z * [ ")" ] } ;
9

10 letter range constraint = a * [ "(" ] , string , y * [ ")" ],
11 { logical operator , b * [ "(" ] , string , z * [ ")" ] } ;

Listing 9: Rule definition 4/5

The type, digit range, and letter range constraint follow the same structure as the meta-identifier
constraints defined in listing 6, the differences being the terms that are enclosed by brackets and
the number of legal logical operators. Currently, a type constraint is used to enforce that a class
property is (a combination of) the type ‘integer’ or ‘letter’. Since any single value cannot be both
at once, the and operator is excluded from usage.

1 string = ’"’ , sequence , ’"’ ;
2 sequence = letter , { letter } ;
3 interval =
4 digit | lower bound , digit , "," | "," , digit , upper bound |
5 lower bound , digit , "," , digit , upper bound ;
6

7 identifier = letter , { letter | digit | "_" } ;
8 lower bound = "{" | "["
9 upper bound = "}" | "]"

10 type = "int" | "let"
11 logical operator = "or" | "and" | "xor"
12 digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
13 letter = "A" | "B" | "C" | "D" | "E" | "F" | "G"
14 | "H" | "I" | "J" | "K" | "L" | "M" | "N"
15 | "O" | "P" | "Q" | "R" | "S" | "T" | "U"
16 | "V" | "W" | "X" | "Y" | "Z" | "a" | "b"
17 | "c" | "d" | "e" | "f" | "g" | "h" | "i"
18 | "j" | "k" | "l" | "m" | "n" | "o" | "p"
19 | "q" | "r" | "s" | "t" | "u" | "v" | "w"
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20 | "x" | "y" | "z" ;

Listing 10: Rule definition 5/5

An interval can be defined as having a single bound, a lower and upper bound, or a constant value.
Regarding the upper and lower bound: ‘{’ defines an exclusive bound and ‘[’ defines an inclusive
bound.

4.2.4 From natural language to structured rules

The rules in this project are constructed from natural language input. To enable a lexical interpre-
tation of this input, an NLP pipeline is implemented. Some essential functionalities are realized
with Stanza, an open-source Python NLP toolkit, developed by Qi et al. [3]. All functionality is
based on neural network methodology, providing competitive results: it generally outperforms the
widely used NLP toolkits UDPipe and spaCy (see figure 12).

Figure 12: Performance comparison on the Universal Dependencies test treebanks. Source: [3]

In figure 9, an overview of the rule generation process is given. Tokenization, lemmatization, and
part-of-speech (POS) tagging is performed by the Stanza toolkit. The NLP Pipeline produces a
Python list with tagged tokens for every input-sentence. The tag-set consists of:

• log_op, mapped to tokens that specify a logical operator like ‘and’.

• val_op, mapped to tokens that specify relationships between values like ‘less’ or ‘most’.

• terminal, mapped to tokens that specify a value like ‘digit’ or ‘letter’.

• num, mapped to numbers like ‘20’ or ‘three hundred’. Stanza’s POS tagging is used for this.

• lit, mapped to words that are enclosed by double-quotes.
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JSON objects are used for the tagging of log_op, val and terminal. These JSON objects map
tokens to their corresponding tag.

The list that is generated by the NLP Pipeline is passed to the Formal Rule Generator, which
gathers all existing metadata and checks for every noun in the input-string if it matches classes or
properties. Here, two more tags are added:

• class, mapped to words that correspond to an existing class name.

• prop, mapped to words that correspond to an existing property name.

This list, together with other input-related data, is bundled in a data structure and finally evaluated
for correctness. If all tests are passed, the structured rule string is generated. A simple overview of
the input conversion is shown in figure 13.

Figure 13: Conversion of natural language input to a structured rule

4.2.5 From structured rules to code

Within this project, the invariant inclusive demarcation rule that specifies rule set A is implemented.
As an invariant, the rule should always hold, so no precursory conditions are implemented. At the
atomic level, the inclusive demarcation rule defines what values are legal for the property of a class.
Possible examples are: “a customer should be at least 21 years old” or “a username should consist
of at least five characters”. At the inter-class level, the rule defines requirements regarding the
relation of entities. For example, in a class diagram with a Mentor and Mentee class, rules like “a
mentor has at least five mentees” could be enforced. Such rules implement a refined multiplicity
requirement on the Mentee and Mentor relation that was originally on a simple Many-to-One basis.

Atomic If a natural language sentence contains one classifier and one property, it is treated as
atomic. The following are examples of A_DEM_INCL rule strings.

1. ‘A_DEM_INCL- - -field.Customer.account_balance- - -|int=[5,500]|’

2. ‘A_DEM_INCL- - -field.Employee.department- - -|*let="sales" or "IT" or "management"|’

3. ‘A_DEM_INCL- - -field.Employee.department- - -|*let="admin"| or (|let or int={5,|
and |=100|)’
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Taking rule 2 as an example, A_DEM_INCL defines the rule type and field.Employee.department
defines that its an atomic rule that applies to the class Employee and property department. The
third part describes the actual rule that is to be implemented: the value of the property should
either be “sales”, “IT” or “management”.

1 def A_DEM_INCL_Customer_account_balance(value):
2 results = [domain_Customer_account_balance_b1(value)]
3 if not (results [0][0]):
4 errors = []
5 for result in results:
6 if result [0] == 0:
7 errors.append(result [1])
8 raise ValidationError(errors)
9

10 def A_DEM_INCL_Customer_account_balance_b1(value):
11 errors = []
12 for symbol in value:
13 if not(check_symbol_type(symbol , "int")):
14 errors.append(
15 ValidationError(_("%(value) err_msg"),
16 params ={"value": value},)
17 )
18 break
19 if not(5 <= len(value) <= 500):
20 errors.append(
21 ValidationError(_("%(value) err_msg"),
22 params ={"value": value},)
23 )
24 if len(errors) > 0:
25 return[0, errors]
26 return [1]

Listing 11: Atomic string example 1 to code

Listing 11 shows the validator source code as converted from the string in example 1. Such validators
are constructed in a predefined structure: a coordinating parent validator and sub-validators. The
first function retrieves all results (line 2) and combines the evaluations of all sub-validators to
determine the final result (line 3). Finally, it gathers all errors and sends them to the front-end.
The second function is a sub-validator. It first checks if all symbols are of the type integer (line
12-13), and secondly if the input length falls within the specified bounds. Any errors are aggregated
and sent to the parent.

1 def A_DEM_INCL_Employee_department(value):
2 results = [A_DEM_INCL_Employee_department_b1(value),
3 A_DEM_INCL_Employee_department_b2(value),
4 A_DEM_INCL_Employee_department_b3(value)]
5 if not (results [0][0] or (results [1][0] and results [2][0])):
6 errors = []
7 for result in results:
8 if result [0] == 0:
9 errors.append(result [1])

10 raise ValidationError(errors)
11

12 def A_DEM_INCL_Employee_department_b1(value):
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13 ...
14 if not(check_input_type(value ,"let")):
15 ...
16 if not(value == "admin"):
17 ...
18 if len(errors) > 0:
19 return[0, errors]
20 return [1]
21

22 def A_DEM_INCL_Employee_department_b2(value):
23 ...
24 for symbol in value:
25 if not(check_symbol_type(symbol , "let") or
26 check_symbol_type(symbol , "int")):
27 ...
28 if not(len(value) > 5):
29 ...
30 if len(errors) > 0:
31 return[0, errors]
32 return [1]
33

34 def A_DEM_INCL_Employee_department_b3(value):
35 ...
36 if not(len(value) == 100):
37 ...
38 if len(errors) > 0:
39 return[0, errors]
40 return [1]

Listing 12: Atomic string example 3 to code

Listing 12 shows the source code that corresponds to the string in example 3. Line 5 gives a clear
example of how the parent validator combines the evaluation of all three sub-validators. In the first
block of the rule-string, the unsign symbol is used (*let) to indicate that the whole input should
consist of letters and that the value should equal ‘admin’. In sub-validator two, the let or int
type constraint is enforced by iterating over every symbol. The final sub-validator checks exclusively
if the length of the input-value equals one hundred. While this rule string is semantically not very
useful, it shows the flexibility of the source code generator.

Direct inter-class If a natural language sentence contains two classifiers and zero properties,
it is treated as direct inter-class. The following are examples of such inclusive demarcation rule
strings.

1. ‘A_DEM_INCL- - -rel.Mentor.m2o.Mentee.mentor.mentee_set- - -|={1,5]|’

2. ‘A_DEM_INCL- - -rel.Employee.m2m.PriorityTask.prioritytask_set- - -|=2|’

3. ‘A_DEM_INCL- - -rel.PriorityTask.m2m.Employee.employees- - -|={10,|’

Example 1 shows a rule string that enforces the rule “a mentor should have more than one and
maximally five mentees” on a Many-to-One relationship. When splitting the context information
at each dot, the second and fourth term specify the possessor and possession. This is essential
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for determining the direction of a rule in Many-to-Many relationships. The fifth term passes the
name of the property on the Mentee class that holds the foreign key reference to Mentor. The last
term specifies the term that should be used to query all referenced Mentees on a Mentor instance.
Examples 2 and 3 implement a constraint on the Many-to-Many relationship between Employee
and PriorityTask. The former string regards Employee as the possessor and PriorityTask as the
possession, implementing the rule “an employee should always be assigned two high priority tasks.”
The latter string constrains the relation from PriorityTask to Employee. The last term is again the
query term, its content depends on which class holds the foreign key reference.

1 def A_DEM_INCL_Mentor_m2o_Mentee(instance):
2 results = [A_DEM_INCL_Mentor_m2o_Mentee_b1(instance)]
3 if not (results [0][0]):
4 errors = []
5 for result in results:
6 if result [0] == 0:
7 errors.append(result [1])
8 raise ValidationError(errors)
9

10 def A_DEM_INCL_Mentor_m2o_Mentee_b1(instance):
11 errors = []
12 if not(1 < len(instance.mentor.mentee_set.all()) <= 5):
13 errors.append(
14 ValidationError(_("%( instance) err_msg"),
15 params ={"instance": instance},)
16 )
17 if len(errors) > 0:
18 return[0, errors]
19 return [1]

Listing 13: Inter-class string example 1 to code

Listing 13 shows the implementation of rule string 1. The implementation is nearly identical to
the atomic implementation, except for the evaluation (line 12). This similarity also holds for rule
strings 2 and 3. The main difference between atomic and inter-class implementation is the method
whereby the validator functions are linked to their corresponding model, as outlined in section
4.2.1.
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5 Worked example
In this chapter, a worked example is outlined according to the user workflow in figure 7. While the
creation of the model and the prototype application form important steps in this workflow, the
incorporation of rules will be the point of focus. Figure 14 shows the creation of an information
system for a university.

Figure 14: Creating a project

In figure 15, the class diagram showcases a simple model of such an information system. Because
Many-to-Many relationships cannot be implemented as source code yet, it is not possible to enforce
Many-to-Many rules on metadata. Therefore, both relationships are defined as Many-to-One. A
user can submit business rules in the rules menu on the right side. Successfully implemented rules
are shown underneath the text-box, where they can be edited and deleted as desired. Taking figure
15 as an example, a variety of inclusive demarcation rules are currently implementable:

1. Rules that restrict the relation multiplicity of directly related classes. For example, “A lecturer
should give at least four lectures”.

2. Rules that restrict the integer value of a property. For example, “The attendance of a lecture
can maximally be one hundred and five”.

3. Rules that restrict the letter value of a property. For example, “A lecturer’s faculty can be
“Economics” or “Science” ”.

4. Rules that restrict the number of symbols for a property. For example, “The username of an
administrator should be at least six characters long”.
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5. Rules that restrict the type of symbols for a property. The example at item 4 is applicable
here. The possible types are: letters, characters and integers.

Figure 15: Implementing rules in a model

Figure 16: Creating an application prototype
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In the current prototype generator, one can construct pages for creating class instances. Figure 16
shows a prototype application using the entities and rules that were defined in 15. In this example,
a single page is created for every entity. The user creates these pages by selecting the relevant
classes and incorporating input-fields for the class instance’s properties. Figure 17 shows how the
Rule Manager adds value to a prototype. When the user tries to create an announcement with
an urgency-value other than “high” or “medium”, the corresponding rule is reflected back at them
when attempting to save the instance. Figure 18 shows the enforced character minimum for an
Administrator’s username. If no rules are broken, no rules are shown.

Figure 17: Creating an Announcement instance

Figure 18: Creating an Administrator instance

Lastly, figure 19 shows the enforcement of a direct relationship rule between the Lecturer and
Lecture classes. All three Lecture instances are linked to a single Lecturer, this should be at least
four.
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Figure 19: Creating an Lecture instances

5.1 Error messaging

The NLP pipeline component boasts substantial input validation functionality. Currently, faulty
rule sentences are filtered out of the input-stream and relevant error messages are generated. The
error messages are not shown in the front-end yet. In this section, pairs of user input and their
corresponding error messages are listed as a demonstration of the error messaging capability. All
input-error pairs are based on the class model in figure 15.

The username of a lecturer and administrator may consist of letters and numbers.
["Too many properties. If a rule contains two classes, it should contain no
properties."]
The Lecturer and Administrator classes, together with the username property, are mentioned in this
rule. Since user input is restricted to rules with two classes and zero properties (direct relationship
rule) or one class and one property (atomic rule) to ensure interpretability, the ‘too many properties’
error is appended.

A lecturer should give at most three announcements per month.
["No direct connection. The classes ‘Lecturer’ and ‘Announcement’ were found.
They do not share a direct connection, therefore no rules can be applied.",
"Metadata found: Class: ‘Lecturer’. Class: ‘Announcement’."]
When two classes are mentioned in a rule, this is interpreted as a direct relationship rule definition.
Since Lecturer and Announcement are not connected, it appends the ‘no direct connection’ exception.
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An announcement’s subject should consist of letters only.
["Stray property found. Word ‘subject’ was linked to property ‘subject’.",
"Missing property. If a rule contains one class, it should also contain one
property.’, "Metadata found: Class: ‘Announcement’. Stray properties found:
‘subject’."]
The subject property belongs to the Lecture class, not to Announcement. It is therefore marked as
a ‘stray property’. Because no correct property is mentioned, the ‘missing property’ exception is
also appended.

A lecture should give at most two lecturers.
["m2o: wrong direction. Tried to enforce rule from ‘Lecture’ to ‘Lecturer’, but
‘Lecture’ is the dependent class."]
Lastly, this example illustrates the validation of the directionality when submitting a rule. In a
Many-to-One relationship, multiplicity rules can only be applied from the Many side, since Many-
to-One already enforces that every dependent class instance can only be related to one independent
class instance. Lecturer is the independent class in the model, therefore the directionality of the
defined rule is indeed wrong.
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6 Validation
To ascertain the value of the added rule handling capability within the ngUML solution, a user-
experiment and survey were created. Firstly, respondents got a document that outlined the user’s
workflow and explained all necessary information regarding the creation of a class model and a
corresponding prototype application (see appendix A). Each respondent performed the experiment
on my computer because that enabled me to fulfill some irrelevant technical prerequisites like
starting the Docker containers and visiting the appropriate localhost addresses. The rest of the
user workflow was performed by the users themselves. The experiment was targeted at respondents
that know little to nothing about software development because the goal of the ngUML solution is
to be accessible to this audience.

In the survey, each item consists of a statement. For every statement, the respondent could pick
one of the following answers, indicating their agreement: “Strongly disagree”, “Somewhat disagree”,
“Somewhat agree”, “Strongly agree”. In order, the statements were:

1. I am knowledgeable regarding software development

2. All steps of the validation workflow were clearly described

3. Managing rules in the model was intuitive

4. The added rules were sufficiently expressive

5. The rules were noticeably enforced in the prototype

6. The method whereby rules were shown to me was understandable

7. I was confronted with the rules at natural points in the prototype workflow

8. The addition of rule functionality adds value to the class model

9. The addition of rule functionality adds value to the prototype

6.1 Results

Figure 20 shows the results of the survey. The questions are numbered according to their order in
the survey, as enumerated above.
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Question Number of responses per answer
Strongly disagree Somewhat disagree Somewhat agree Strongly agree

1 1 - - 3
2 - - 2 2
3 - - 1 3
4 - 1 3 -
5 - - - 4
6 - - 1 3
7 - - 3 1
8 - - 3 1
9 - - 1 3

Total respondents 4

Figure 20: Survey results

Firstly, the table shows that most respondents indeed knew very little about software development.
The responses to questions 3, 5, 6 and 7 show however that the management of rules in the class
model and the incorporation of rules in the prototype application felt mostly natural to these
inexperienced users. Not all respondents were as convinced about the expressiveness of the current
rule handling capability (Q. 4), which is understandable when seen from the perspective of a user
that purely cares for the usability of the end-product. Hopefully, now that the infrastructure for
natural language rule conversion to Python source code is implemented, the marginal cost of adding
implementable rule types is significantly reduced such that swift extension is feasible. Lastly, the
responses to question 8 and 9 show that respondents were convinced of the value added by the
implementation of rule handling capability to the ngUML solution, indicating the fruitfulness of
future research on this front.
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7 Further research
The ngUML research team’s objective to transform natural language requirements into software
at run-time pushes boundaries and therefore yields many future objectives and challenges. The
rule component is no exception. The following paragraphs will hopefully point to meaningful
opportunities, together with recommended uses for this project’s deliverables.

Adding implementable rule types While sufficiently functioning as a proof-of-concept, it is
clear that enforcing merely this subset of the rules domain does not begin to cover the real-world
need for business rule expressiveness. Therefore, the functionality of the NLP Pipeline and the
Formal Rule Generator components should be extended to handle a diverse range of rule types.
The business rules taxonomy presented in this thesis will hopefully guide and structure future
discourse on this front. Furthermore, by applying the described Django implementation types,
together with their mapping to the rules taxonomy, much of the down payment has already been
fulfilled, enabling expansion at a reduced marginal cost.

Improving integration of the Rule Manager within application prototypes Currenty,
the Rule Manager is not fully integrated into the application prototypes, resulting in limited
functionality. Because the procedure whereby user-submitted data is converted to a new class
instance was designed to efficiently handle a large variety of use-cases, Django’s recommended
methods for validating such instances cannot easily be integrated. Thus, enabling full functionality
of rule enforcement capabilities requires refactoring part of the Execution Engine (see figure 7).
At the moment, rules are only displayed as a warning to the user in the prototype, the storage of
non-compliant instances is not blocked.

Extending the user’s rule editing capability Because natural language is inherently am-
biguous, the human-in-the-loop approach is an important component of ngUML’s vision. While
existing rules can already be edited, this leaves a gap between the supplied user definition and
its interpretation by the NLP Pipeline and Formal Rule Generator. It would thus be valuable to
introduce a rule editing component that bypasses much of this interpretation by enabling lower-level
access to the formal rule. To maintain accessibility, this tool should be visually driven to offset its
more technical nature. It could include a selection menu of metadata entities, relationships (less
than, unique compared to), features (invariant, context), and logical operators.

Refining the business rule taxonomy The goal of the presented rule taxonomy is pragmatic:
it is meant to be a tool for structuring progress when extending the Rule Manager’s capabilities.
While already being quite extensive, future progress on this front will lead to advanced insight and
consequently call for refinement of the taxonomy to ensure maximal usability. It would therefore be
wise to treat the taxonomy as a dynamic structure, involving it in the evolution of the ngUML
project.
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8 Conclusions
This paper delivers a proof-of-concept on the extensibility of the ngUML solution with rule handling
capabilities. To realize this, a Rule Manager was built to apply business rules, defined in natural
language, to the existing run-time prototype environment as Python source code. Important
elements of this rule component are the NLP Pipeline and the Formal Rule Generator. Together,
they form the transformation framework that maps user-submitted rules to a formal rule language
that was defined to mediate between the expressiveness of natural language and the unequivocalness
of source code. Lastly, the Rule Object Manager was implemented to handle rule instances and
perform source code generation.

The implementation presented in this paper incorporates end-to-end rule handling capabilities into
the ngUML solution, showing the viability of such an endeavour. There is still much room for
improvement, and the validation results show that this is a fruitful avenue for future research. In
an attempt to decrease the cost of functionality expansion, this paper presents a rules taxonomy,
together with a mapping to implementation types in Django. Furthermore, the integral position
of the formal rule language within the Rule Manager’s architecture is intended to function as a
foundation for future extension, as the architecture to convert such rules to source code is already
implemented.

This project was conducted as part of the Next Generation UML research group. By extending
the functionality of their solution, the project contributes to their aspiration of improving the
accessibility of software development for non-IT domain experts. Through this contribution, the
project also addresses Model Driven Engineering’s challenged adoption in the software engineering
community by contributing to the development of adequate tooling.
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A User-experiment document

Validation of the ngUML rules component

This document is used to validate the functionality of the rules component that was added to the
ngUML project. I will direct you to the front-end and prototype page. After this, please follow the
directions in this document. First, the general workflow will be outlined to set up a model and
prototype app. After this, examples are shown regarding the addition of rules to a model and how
rules are shown in the prototype. At the end, you are asked to fill in a short survey. This process
should take 15 minutes at most. Your participation is very much appreciated!

Creating a model

On the home page, click on the blue button to create a model. As shown in figure 21, input a project
name and description, and input the following model definition: “A student has a username and
GPA. Business Courses and Science Courses are types of courses. Each course consists of multiple
lectures, and have a course name, code and date. A course coordinator organizes the courses. Each
course has one or more lecturers, a location, time slot, and set of dates. Lecturers will give lectures,
and administrators will make announcements that are for a particular course. Each course will
have assignments and an exam. Students must attend to the lectures, complete the assignments
and take the exam. Lecturers will give grades. A course grade consists of an assignment grade and
exam grade. An exam is either a first exam or a retake. Students will receive their course grades by
email." Click on the submit button.

Figure 21: Creating the project

In the next screen, check all boxes and select the class model option, then click on the submit button.
A class diagram will be rendered on the screen as in figure 22. Click on a class to display a menu on
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the right side. The figure also shows how to add properties to a class and alter a relationship. Since
only Many-to-One relationships can be implemented by the prototype generator at the moment,
change all relationships to this type. It would be logical to define the Lecturer and Administrator
classes on the One side of the relationships.

Figure 22: Adding properties and relationships to the class model

Add properties to the model, an example result is shown in 23. This figure also shows the next
step: adding rules to the model. This thesis is a first proof-of-concept concerning the application of
business rules to models, thus, not all rules are implementable yet. Some guidelines for creating
rules:

1. Rules can only consist of two classes and zero properties, or one class and one property.

(a) Two classes and zero properties: these rules apply to direct relationships between classes.
Taking figure 23 as an example, such rules concern the Administrator-Announcement
relationship and the Lecturer-Lecture relationship.

(b) One class and one property: these rules apply to the property of a class. For example,
the department of a Lecturer.

2. Rules constrict a domain.

(a) It constricts how many letters, characters or numbers a property can hold.

(b) It constricts what the numerical value of a property or relationship should be.

(c) It constricts the textual value that a property should hold, this is done by enclosing
the intended value by double-quotes. For example, “A lecturer’s faculty should be
“Economics"."
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3. Class-property rules can be restricted in all aforementioned ways. A direct relationship rule
can only be restricted with regards to the numerical value (multiplicity), because the types
are fixed at the corresponding classes. A direct relationship rule could be “A lecturer should
give at least three lectures."

4. When a numerical value is mentioned without a type value, it is interpreted as the numerical
value that a property or relationship should hold. For example, “A lecture’s attendance should
be at most one hundred" is interpreted as a value restriction only.

5. When a numerical value is mentioned together with a type value, it is interpreted as a type
and length constriction on a property. For example, “An administrator’s username should
consist of at least 10 characters" restricts the quantity of input-symbols and what type they
should be. Explicitly mentioning a type requirement together with a numerical value ensures
that they are correctly linked, which is relevant when combining such statements using and’s
and or’s.

Figure 23: Adding rules to the class model

The rule menu can be opened by hovering over the plus symbol on the left side. In 23, the following
rules specification is used: “A lecturer should give at least four lectures. A lecturer’s faculty can
be “Economics" or “Science". The attendance of a lecture can maximally be one hundred and
five. The username of an administrator should be at least six characters long. The urgency of
an announcement can either be “high" or “medium"." After submitting the input, the rules are
depicted in the rule menu. They can be altered and deleted as desired. When creating your own
rules, they may not always show up in the menu. This is because faulty rules are filtered out of
the input to ensure safe processing. Sadly, while the relevant error messages are already generated,
they are not yet shown to the user.
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Rules in a prototype application

In this section, you will create a prototype application where the implemented rules are shown in
action. On the home screen, click on the “Applications" button to create a new prototype. After
giving it a name, add all classifiers by selecting them from the drop-down menu and clicking on
“Add". Then, click on “Add Category" and give it a name. Add pages to the prototype as shown in
figure 24. Since the further construction of these pages is a bit difficult and irrelevant to the added
rule functionality, I will do this for you.

Figure 24: Adding pages to the prototype

Check out the pages using the “Show" button. It will serve a simple page where you can create
class instances. For example, on the “announcements" page, you can create an announcement with
a value for “header" and “urgency". Check what happens when you break a rule. When testing the
application of a direct-relationship rule, first create a Lecturer instance and then link this instance
to the Lectures you create using the drop-down menu next to every Lecture instance. You will see
that the quantity constraint between the Lecturer-Lecture classes will be shown when you break it,
see figure 25 for an example.
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Figure 25: Adding Lectures to a Lecturer in the prototype

Survey

That concludes the workflow. Please follow this link to fill in the survey. Again, thank you for
participating!
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