
Master Computer Science

A Genetic Algorithm Parameter Control Method using
Deep Reinforcement Learning for Offshore Wind Farm
Maintenance Planning.

Name: Damian Domela Nieuwenhuis Nyegaard
Student ID: s1853767
Date: 16/02/2022
Specialisation: Artificial Intelligence
1st Supervisor: Dr. J.N. van Rijn & M. Huisman
2nd Reader: Prof.dr. A. Plaat

External Superv.: S. Mancini & K. Hermans

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract
The increasing demand for renewable energy sources has caused a growing interest in offshore
wind energy. Offshore wind farm managers face the NP-hard optimization challenge of schedul-
ing daily service operations, which is subject to constraints such as weather conditions, shifts,
vessel and technician capabilities, and availability. Stock-Williams and Swamy [1] proposed a
genetic algorithm that uses a wind farm simulator as the basis for its objective function to au-
tomate and solve daily maintenance planning for offshore wind farms. The performance of this
approach greatly depends on its parameter setting and the proposed default configuration po-
tentially limits the algorithm. The work presented here aims to improve the genetic algorithm in
this context by applying a reinforcement learning agent to dynamically control the key param-
eters at runtime based on the fitness of the population and features of the underlying problem.
We show that the reinforcement learning agent together with an improved re-insertion operator
increases the convergence speed of the genetic algorithm by 69,7% with only a 0,02% solution
quality decrease. This was illustrated using an experiment on the Princess Amalia Wind Park in
the Netherlands.

2

Contents

1 Introduction 4

2 Background 7
2.1 Despatch GUI Tool . 7
2.2 Traveling Merchant Problem . 8
2.3 Genetic algorithm . 10
2.4 Individual Representation . 11
2.5 Evolutionary operators . 12

2.5.1 Selection operator . 13
2.5.2 Crossover operator . 13
2.5.3 Mutation operators . 13

2.6 Re-insertion operator . 14
2.7 Evaluation of Transfer Plan . 15
2.8 Related Work . 15

3 Methodology 18
3.1 Despatch Bottleneck & Re-insertion Operator Switch 18
3.2 Reinforcement learning for parameter control 19

3.2.1 Q-Table parameter control Method . 20
3.2.1.1 State set . 21
3.2.1.2 Action set . 22
3.2.1.3 Reward functions . 23
3.2.1.4 Learning procedure . 23

3.2.2 Deep-Q Network parameter control method 25
3.2.2.1 State set . 25
3.2.2.2 Action set . 26
3.2.2.3 Learning procedure . 27

3.2.3 Distributional Deep-Q Network parameter control method 29
3.2.3.1 C51; The Distributional DQN 29
3.2.3.2 Quantile Regression Deep-Q Network 30
3.2.3.3 Learning procedure . 31

4 Experiment 32
4.1 Dataset . 32
4.2 Experiment setup . 35

4.2.1 Deep reinforcement learning model selection tournament 35
4.2.2 Training phase . 37
4.2.3 Hyperparameter settings . 37

4.3 Results . 38

5 Discussion 40

6 Conclusion and future work 42

3

1 Introduction
In the present-day scenario, the rate of global warming is harmful to the environment and the
human race. The non-renewable energy production sector contributes nearly 75% of the total
𝐶𝑂2 emission in the world [2]. As a result, the United Nations is urging every government in
the world to adopt more renewable energy sources in order to comply with the Sustainable De-
velopment Goals [3] to slow down the effects of climate change.

The increased need for renewable energy sources has caused a considerable rise in attention
towards offshore wind energy. In 2020, European countries owned 5.402 wind turbines that
are connected to the grid, with the Netherlands being the leading country in terms of newly
added capacity in 2020 [4]. With Dutch companies representing an estimated 25% of the off-
shore wind energy market share globally and the Dutch government planning to increase the
energy produced by offshore wind farms from 3,3% to 8,5% of the total energy production in
the Netherlands by 2030 [5], there is a valuable opportunity to develop the Dutch international
economic position. Alongside the Netherlands, offshore wind farms in Germany are considered
subsidy-free under any price scenario. With recent cost reductions indicating that offshore wind
power will become cheaper than conventional power generation [6]. This research suggests that
subsidy-free wind farms will be the norm in 2023 globally.

Given the practical constraints imposed by offshore operations, the selection of maintenance
strategies influences the overall efficiency, profit margin, safety, and sustainability of offshore
wind farms. Operation & Maintance (O&M) costs have typically accounted for 17% of an off-
shore wind farm’s levelized cost of energy [7]. These O&M activities range from preventive
to corrective turbine work, with individual O&M activities (such as the inspection of the wind
turbine blades or the repair of a power supply) being referred to as Service Orders. On a daily
basis, Service Orders need to be scheduled in order to manage and maintain the wind farm.
This creates a problem in which different schedules can result in varying O&M costs. Given
larger wind farms, creating these schedules by hand becomes infeasible, as a list of 10 Service
Orders has more than 3,6 million possible orderings in a schedule. The addition of choices be-
tween vessels, allocation of technicians, and uncertainties about the weather creates an even
more complex problem.

In Stock-Williams and Swamy [1], the authors proposed a method that automates the pro-
cess of scheduling daily Service Orders for offshore wind farms, in order to reach better schedul-
ing solutions and minimize the associated costs for offshore wind farms. Over a 5 month period,
this method managed to increase the net income by 302 kC relative to scheduling these Service
Orders by hand. This was illustrated by a case study on the Princess Amalia Wind Park in the
Netherlands (see Fig. 1a). This automatization is achieved by implementing a genetic algorithm
that allocates technicians to Service Orders while also determining an efficient work order. Each
individual in the genetic algorithm population represents a work schedule for a given workday.
A genetic algorithm is an algorithm inspired by Charles Darwin’s theory of natural evolution,
emulating the process of natural selection, reproduction, and mutation in order to produce off-
spring for the succeeding generation. By regulating the selection and re-insertion operators

4

according to a certain fitness function, generational selective pressure causes the population in
memory to converge towards a better selection of individuals.

(a)

(b)

Figure 1: Princess Amalia Wind Park. (a) Location in the North Sea of wind farm and O&M
port; (b) turbine layout and status (number of preventive P and corrective C Service Orders open
per turbine) on an example day. (Taken from [1])

Although genetic algorithms have reached significant performance in very large, high-dimensional
search spaces in terms of pattern recognition and clustering (Maulik and Bandyopadhyay [8]),
the performance of genetic algorithms greatly depends on the values of their key parameters.
In order to achieve good performance, parameter values should be carefully chosen. Manual
parameter adjustment can be difficult and tedious. Therefore, automating this task has received
a lot of attention [9]. Autonomous parameter adjustment approaches can be divided into two
categories based on the challenges that they attempt to solve [10]:

• Parameter tuning: The challenge to select a static parameter setting a priori which is
likely to result in good performance based on the performance of previous runs.

• Parameter control: The challenge to adjust the parameter setting during runtime, as the
optimal parameter values may change over time. Usually, a parameter setting is chosen and
applied for a given timeframe, based on the performance, the control method will know
how good that choice was and will adjust the parameter setting accordingly.

A recent line of research aims to improve the performance of genetic algorithms by applying
reinforcement learning. Reinforcement Learning [11] is an influential machine learning algo-
rithm that has had a considerable impact across many different fields and communities [12].
reinforcement learning utilizes an agent which interacts with a complex environment, mapping
actions to the said environment based on maximizing the associated rewards.

In Chen et al. [13], reinforcement learning is applied to control the key parameters during
the runtime of a genetic algorithm. Two key parameters for a genetic algorithm are the probabil-
ity of crossover (𝑃𝑐) and the probability of mutation (𝑃𝑚). These values indicate the probability

5

of applying the crossover or mutation operators for each generation of the genetic algorithm.
Too large values for 𝑃𝑐 and 𝑃𝑚 could result in promising individuals being lost; while too small
values for 𝑃𝑐 and 𝑃𝑚 could result in the test cases becoming similar after a certain amount of
iterations [14]. In addition to this, a dynamic key parameter configuration grants the genetic
algorithm the ability to search in big leaps in the beginning and fine-tune to the near-optimal
solution in small steps in the later stages of the search. By using a parameter control method, the
user has no need to select a parameter setting a priori, implicitly solving the parameter tuning
problem [10].

In this paper, we aim to answer the following research question:
To what extent does the addition of a (deep) reinforcement learning agent as a parameter con-
trol method improve the genetic algorithm developed by Stock-Williams and Swamy [1] in terms
of computation time and quality for offshore wind farm maintenance planning?

Our contributions are the following:

• An improved re-insertion operator which decreases the original genetic algorithm its com-
putation time by 51,6% at the cost of a 0,02% decrease in performance.

• A Q-Table parameter control method based on the work of Chen et al. [13] which adjusts
the key parameter setting for the genetic algorithm during runtime.

• A Deep-Q Network parameter control method which allows for an extended continuous
input state definition, while the Q-Table requires a discretized input state definition.

• A Quantile Regression Deep-Q Network parameter control method generates a quantile
function for each available action with the aim of better approximation of the stochastic
genetic algorithm environment.

6

2 Background
In this Section, we provide necessary background information to better understand the structure
of the genetic algorithm used in [1] as well, and outline related work concerning combining
reinforcement learning with genetic algorithms.

2.1 Despatch GUI Tool
To make the genetic algorithm accessible and easily usable, a GUI tool which was written in the
C# language and was developed by TNO [15] called Despatch. This API adds a visual frontend
to the genetic algorithm backend which requires the user to define preventive and corrective
Service Orders to be carried out on the wind turbines of a wind farm for that day by loading a
file into the API. In addition to this, the user must load the weather forecast for the day into the
API as well. During a workday simulation, the technician team is transported from the port to
the wind turbines using one or more vessels. These vessels, the technician teams, and Service
Orders together define a transfer list, in which the available work, transport, and workers are
independently listed. By assigning the technician teams to the vessels and Service Orders while
also including additional information such as the time of the simulation, the weather data and
the array of turbines to be worked on, a Transfer Plan is defined. Transfer plans are the input
for the simulator engine (UWiSE), which in turn simulates and evaluates the plan. The resulting
Transfer Plan can be investigated in the GUI. Fig. 2 shows an overview of the Despatch tool.

Figure 2: Screenshot of Despatch GUI frontend controlling the genetic algorithm in the backend
of the tool.

On a daily basis, O&M activities for wind farms are scheduled according to the structure
visible in Fig. 3, which is explained below:

1. At the start of each day, the wind farm manager is presented with a list of pending O&M
activities, which will be referred to as Service Orders. These range from preventive main-

7

Figure 3: A schematic of the offshore wind farm daily maintenance process. (Taken from [1])

tenance tasks to corrective repairs.

2. Given this list and that morning’s weather forecast for the day, a scheduler creates a Trans-
fer Plan which assigns technicians to vessels that travel to wind turbines associated with
pending Service Orders.

3. The Transfer Plan is executed, although inaccuracies in the weather forecast, mispredic-
tions in time required to complete Service Orders, and unforeseen health issues for the
technicians can cause deviations in the application of the Transfer Plan.

4. When a vessel returns to the port, the work done on the Service Orders is registered, which
possibly affects the scheduling done for future Transfer Plans.

5. Before the end of the day, a temporary Transfer Plan can be made for the following day,
which will be updated the next morning based on the new weather forecast.

The Despatch tool aims to automate step 2 of this cycle to create a quicker and more accessible
way to create Transfer Plans for the Wind Farm in question.

2.2 Traveling Merchant Problem
The abstract form of the problem to be solved by the genetic algorithm, i.e., Service Order
prioritization, is in the class of Vehicle Routing problems. More specifically, a variation of the
Traveling Salesman Problem (TSP) [16] denoted by the authors of Stock-Williams and Swamy
[1] as the Traveling Merchant Problem (TMP). TMP is a variation of TSP where the salesman
is allowed to spend time selling at each city, instead of just considering the distance between
cities.

In this problem, shown in Fig. 4, there are 𝑘 cities 𝑐1,𝑐2, ...,𝑐𝑘 , each located at 𝑙𝑖 = (𝑥𝑖,𝑦𝑖) for
𝑖 ∈ {1,2, ...,𝑘}, with the merchant his home city being denoted by 𝑐𝑏 . Each city has a population
size of 𝑝𝑘 , signifying the number of potential customers in that city. The merchant should choose
a route in which he spends time selling his wares in the visited cities. Each valid route is required
to start and end at 𝑐𝑏 . The distance between these cities is defined as 𝑑𝑖, 𝑗 = | |𝑙 𝑗 − 𝑙𝑖 | |, with 𝑖 and
𝑗 as city indices. Unlike the salesman in TSP, the merchant is not required to find the shortest
Hamiltonian cycle in which he visits every city, instead, he can choose what amount of cities 𝑟
to visit on his route:

𝑅 = {𝑐𝑏,𝑐𝑟1, ...,𝑐𝑟𝑛 ,𝑐𝑏}, 𝑖 ∈ {1,2, ...,𝑘}, 𝑟 ⊂ {1,2, ...,𝑘}

8

Figure 4: The Travelling Merchant Problem, an abstract problem equivalent to Service Order
resource allocation. (a) problem set-up; (b) an example solution. (Taken from [1])

where 𝑟 is an ordered list of the 𝑛 visited city indices excluding the home city. At each city,
the merchant can choose to spend a certain amount of time 𝑡𝑖 to sell his goods. Given that the
merchant sells at a steady rate of 𝑠 people per hour, receiving an income of 𝑞 per sale, the
merchant his income after 𝑡𝑖 hours in city 𝑖 is:

𝐼𝑖 =𝑚𝑖𝑛(𝑠 · 𝑡𝑖,𝑝𝑖) ·𝑞

The merchant is given the constraint to return home after a time period 𝜏 has elapsed. The
merchant’s transport travels with a certain speed 𝑣 , meaning that the time spent selling and
traveling must never exceed the allowed time, resulting in the following constraint:

1
𝑣
· ©«

𝑛∑︁
𝑗=2
(𝑑𝑟 𝑗−1,𝑟 𝑗) +𝑑𝑏,𝑟1 +𝑑𝑟𝑛,𝑏

ª®¬+
𝑟∑︁
𝑗=1

𝑡𝑟 𝑗 ≤ 𝜏

The merchant his objective in this problem is to choose a route which maximizes his income
given 𝜏 :

𝐼𝑜𝑝𝑡 = max

{
𝑛∑︁
𝑖=1

min(𝑠 · 𝑡𝑟𝑖 ,𝑝𝑟𝑖) ·𝑞
}

Since TSP is NP-hard, TMP is also at least NP-hard. A possible solution is to solve a TSP
for each possible subset of cities and allocate selling time by solving the Continuous Knapsack
Problem [17].

In this problem, the cities represent the Service Orders, while the time spent by the merchant
at each city represents the allocation of technician resources to that Service Order.

9

2.3 Genetic algorithm
The Despatch tool utilizes a genetic algorithm backend as its fundamental optimization algo-
rithm. genetic algorithms belong to the family of metaheuristic global optimization algorithms,
which consist of four main steps [18] as illustrated in Fig. 5:

1. Generation: For a genetic algorithm to propose new solutions to the problem, a pop-
ulation is stored in memory consisting of a set of solutions. Each possible solution, or
individual, is encoded into a decision vector: a vector of binary, integer, or real numbers.
During the initialization of the population, individuals are generated randomly. Once the
desired population size has been reached, new individuals are generated by a process mim-
icking natural evolution: through applying crossover and mutation operators on existing
individuals selected from the population. By carefully choosing the parameter settings for
the selection, crossover, and mutation operators, a good balance can be found for a given
problem between exploration across the search space and convergence towards the near-
optimal solution.

2. Conversion: The newly generated individuals their corresponding decision vectors need
to be converted into a representation that is applicable to the current problem context and
allows for evaluation in the next step. Often additional information needs to be added to
form this representation.

3. Evaluation: Each converted decision vector is evaluated according to some optimization
objective(s), generating a fitness value that can be associated with the respective individual.

4. Re-insertion: The fitness value(s) for the newly generated individual(s) are compared to
the fitness values of the individuals in the current population (based on rules, for example
that the new individual replaces the current worst individual if it has a better fitness value).
After this step, the genetic algorithm checks if convergence is reached, if not, it repeats the
loop, if so, it ends the computation.

These steps are also visualized in Fig. 5. Note that the selection of parents chronologically
precedes the crossover operator, after which the mutation operator is applied to the offspring
generated by the crossover operator. In addition to this, each genetic algorithm generation leads
to s a singular new individual, significantly decreasing the volume of executed simulations,
as the evaluation step is quite computationally heavy. This figure further details the Conversion
and Evaluation steps in the cycle, in which it is highlighted that a decision vector is transformed
from its vector presentation (see Section 2.4) into a Transfer Plan that allocates technicians to
available Service Orders. Given this Transfer Plan, a simulation is made of the current day con-
sidering the weather forecast in terms of wind speed and wave height. This simulation outputs
a fitness value according to a chosen optimization objective, with further intricacies detailed in
Section 2.7.

10

Figure 5: The process involved in completing one iteration of a genetic algorithm search, with
details specific to the offshore wind farm daily maintenance scheduling problem. (Taken from
[1])

2.4 Individual Representation
Each individual in the population is represented by a decision vector. The challenge is to rep-
resent not only the order in which the Service Orders will be worked on but also the technician
resource allocation. This is achieved by using a real-coded decision vector of a fixed length.
Each element consists of a real number which indicates both the priority and the position on a
cumulative distribution of resources (see Fig. 6, 7).

Converting a decision vector into a Transfer Plan is done in four main steps:

Figure 6: Example decision vector conversion for Service Order resource allocation (far left:
with one vessel and five technicians; middle: with one vessel and ten technicians; right: with
two vessels and ten technicians). The minimum number of technicians allowed to work on a
Service Order is 2. (Taken from [1])

1. As displayed in Fig. 6 on the far left, Service Orders are prioritized in ascending order
according to their value. Service Order B has the highest priority with a value of −0,6,
while Service Order C has the lowest priority with a value of 1,4.

2. The value for each Service Order is matched with a novel cumulative curve proposed by
Stock-Williams and Swamy [1] (see Fig. 7) to determine what portion of the available
technician resources is allocated to that specific Service Order. Service Order B receives

11

Figure 7: Decision vector conversion for Service Order resource allocation. See Fig. 6 for the
use of the values associated with the Service Orders denoted A-F. (Taken from [1])

0% of the available resources, as it has a value below 0. While Service Orders A, D, and
C receive 30%, 80% and 100% of the cumulative resources in that order based on their
decision value as is visible in Fig. 7 (e.g.: Service Order A has a decision value of 0,3,
which corresponds to 30% on the Cumulative Resource Allocation curve). This results in
a 30%, 50% and 20% split respectively.

3. The resource allocation percentages must be converted into integer values of technicians.
Given the fixed amount of technicians available, they are allocated in order of most re-
sources required (while respecting the skill demands, minimum and maximum technicians
requirements).

4. In order to enable multiple vessel compatibility, the resource conversion function is ex-
tended by mirroring the function, as shown by the dashed line in Fig. 7. Values between
−1 and 2 are associated with the first vessel, while values between 2 and 5, such as the De-
cision values of Service Orders F and E, are associated with the second vessel. Note that
the Service Orders C & F are assigned 10% of the resources each, but due to all Service
Orders requiring a minimum of 2 technicians, only 8 out of the 10 total technicians are
allocated.

2.5 Evolutionary operators
The fundamental elements of the genetic algorithm are chromosome representation (see Section
2.4), fitness selection (see Section 2.5.1) and the crossover and mutation operators (see Sections
2.5.2 & 2.5.3). Chromosomes are considered as points in the solution space, with a fitness
function assigning a fitness value to the chromosomes. The selection operator chooses what
chromosomes should be used for further processing based on their fitness values. The crossover
operator generates offspring by combining the genetic information of two or more parents. The
mutation operator receives the generated offspring from the crossover operator and alters the
chromosome to diversify the existing population.

12

2.5.1 Selection operator

In order to apply the crossover operator, a selection of parents needs to be made from the avail-
able population. In contrast to the widely used fitness-proportional selection strategy, Despatch
uses the tournament selection strategy as it improves the fitness of each succeeding generation
more efficiently while being less computationally costly [19]. As shown in Fig. 8, a random
selection is made from the population according to an arbitrary tournament size. Given this se-
lection, the best individual is chosen. Despatch uses a tournament size of 20 while selecting the
best 2 individuals in terms of fitness as parents for the crossover operator.

Figure 8: Tournament selection with a tournament size of 4, in a P-size population {𝑆1, . . . ,𝑆𝑃 }:
I—random selection of 4 individuals, II—selection of the best (most fit) individual. (Taken
from [20])

2.5.2 Crossover operator

With a clear definition for an individual its decision vector, it is important to explore the ap-
plied crossover operator. The crossover operator is responsible for generating new permuta-
tions which combine genetic information from all selected parents, without repetition of val-
ues. The crossover operator used in the original Despatch algorithm is the uniform crossover
operator [21]. As shown in Fig. 9, the uniform crossover produces new offspring by collec-
tively iterating over the parent vectors, with each parent element having an equal chance to be
redistributed to the offspring. This unbiased operator strikes a balance between initially per-
forming global search of the search space when the parents are distant in the genotype space
while eventually performing local search of the search space when the parents are close in the
genotype space [22]. While this operator was designed for binary vectors, it is applicable to
real-encoded vectors as well. Despatch handles a static crossover probability of 1,0, meaning
that the crossover operator will always be applied for every generation.

2.5.3 Mutation operators

Given the crossover operator, the second fundamental operation of the genetic algorithm is the
mutation operator. The original Despatch algorithm applies two mutation operators sequentially.
The first is the Replace with random number mutation operator. As shown in Fig. 10, one or
more random elements are selected in the decision vector, after which a legal random number

13

Figure 9: Uniform crossover operator in binary genetic algorithms. (Taken from [22])

replaces the associated values. Legal in this context indicates a random value within a lower-
and upper bound which corresponds to the number of available vessels. Despatch handles a
static mutation probability of 0,15 for this operator, with the number of replacements in the
decision vector 𝜎 being calculated as follows:

𝜎 =𝑚𝑎𝑥 (1, ⌈(amount of Service Orders)/15⌉)

Figure 10: Replace with random number mutation operator for real-encoded vectors.

The second sequential mutation operator is the Random swap operator. As shown in Fig. 11,
two different random elements of a decision vector are selected, after which their corresponding
values are switched. This simple operation interchanges the priority and resource allocation of
two Service Orders. Despatch handles a static mutation probability of 0,65 for this operator.

Figure 11: Random swap mutation operator for real-encoded vectors.

2.6 Re-insertion operator
After the selection, crossover, and mutation operators are applied in that order, the re-insertion
operator receives the newly evaluated individual and concludes the generational cycle of the
genetic algorithm by conditionally inserting it into the population. Despatch uses the Replace
random re-insertion operator, which simply selects a random individual from the current pop-
ulation and compares it to the newly evaluated individual. If the new individual has a superior

14

fitness value, it replaces the selected individual. This operator ensures that diversity is not hastily
decreased, as better individuals have a higher chance to be re-inserted, but do not necessarily
eliminate the worst individuals, which might hold useful information as well.

2.7 Evaluation of Transfer Plan
Given a decision vector which was converted into a Transfer Plan following the steps mentioned
in Section 2.4. The UWiSE simulator is run which considers the weather forecast in terms of
wave height and wind speed and must abide by the following logic:

• Comply with technician shift time constraints, accessibility given the weather, and the
number of technicians allowed per wind turbine.

• Realistic transit, work and break activities while respecting technician work times such
that they are returned to the port before the end of their shift.

• Calculate the fitness value in terms of the chosen objective function (for example Net
income) by computing the relevant physics formulas with respect to the objective function.
The assigned fitness value is the computed simulation result with respect to the objective
function without its associated unit (e.g.: A Transfer Plan with a net income of C3.000
corresponds to a fitness value of 3.000).

In order to achieve closure in this optimization, the future cost, or the consequence of choosing
not to do something today, needs to be determined. If the simulator were to assume that all
maintenance activities can be performed in the future without added cost, further degradation
of equipment could occur, causing simple maintenance activities to develop into major mainte-
nance activities. With all the work hours today being denoted by 𝑡1, the average cost of an hour
of work today being 𝑐1, the penalty cost of doing work after today’s forecast being 𝑐𝑥 and the
number of hours of work done today being denoted by 𝑑1, the following must hold:

𝑡1 ·𝑐1 < 𝑑1 ·𝑐1 + (𝑡1−𝑑1) ·𝑐𝑥

The left-hand side of the equation represents the cost of doing work today, while the right-hand
side shows the cost of the actual work done today summed with the cost of doing the leftover
work after today. Consequently, the cost of doing work today is lower than the cost of doing
work at a later date, as re-arranging the equation shows that 𝑐𝑥 > 𝑐1. Despatch implements this
by adding a small artificial amount to the objective in case of a minimization objective function
while subtracting a small amount in case of a maximization objective function. To ensure that
critical Service Orders are handled as quickly as possible, the issue date can be manually moved
forward or a small artificial penalty can be added to postponing it.

2.8 Related Work
In recent years, the integration of machine learning techniques into metaheuristics (algorithms
designed to solve approximately a wide range of hard optimization problems without having

15

to deeply adapt to each problem [23]) has been a growing research interest. This integration
aims to improve metaheuristics with regards to efficient and robust search and improve their
performance in terms of quality, convergence rate, and robustness [24].

The parameter control for genetic algorithms is one of the subfields of this machine learning
integration. This method can be performed in three manners [10]:

• In a deterministic manner in which the parameters are adjusted according to pre-defined
schedules without any feedback of the search process.

• In an adaptive manner in which the parameters are adjusted based on the feedback of
performance provided by the search process.

• In a self-adaptive manner in which the parameter values are encoded into the solution
genomes and evolve along with the problem solutions during the search process. This is a
subcategory of the adaptive approach.

This research belongs to the adaptive genetic algorithm parameter control category.
Aleti et al. [25] use a Linear regression model to predict the quality of parameter values

used for the genetic algorithm in the next generation. Adaptable parameter values for the linear
regression model are the mutation rate, crossover rate, the mutation and crossover operators,
the population and mating pool sizes. This work managed to outperform similar methods at the
time of its publication.

Leung et al. [26] use a parameter control system using the entire search history to condi-
tionally update the crossover and mutation rates. By recording a search history of evaluated
individuals and their associated fitness, an approximation is made of the fitness landscape. The
decrease in the slope of average fitness acts as a trigger to change the parameter configuration.
This is done by generating trial solutions and estimating their fitness, the parameter setting is
updated to the configuration which resulted in the best-estimated fitness.

The majority of research within the field of meta-heuristic machine learning integration uses
conventional machine learning techniques such as k-means clustering, k-nearest neighbors, lin-
ear regression, Support Vector Machines, etc. With the recent developments of machine learning
techniques, more advanced and modern machine learning techniques such as (deep) reinforce-
ment learning have been employed as a research direction towards genetic algorithm parameter
control.

Eiben et al. [27] implemented a Q-Table reinforcement learning agent which adjusted the
crossover rate, mutation rate, tournament size, and population size based on the improvement
of the best fitness value as a reward function. The states were defined as a vector of the previous
action vector concatenated to statistics such as the standard deviation of the fitness and the mean
fitness. In terms of fitness, this method was able to outperform the benchmark genetic algorithm,
while in terms of computation time and amount of generations, this method was outperformed
by the benchmark genetic algorithm due to the additional reinforcement learning overhead.

Karafotias et al. [28] developed a Q-Table reinforcement learning agent which adjusted a
dynamic set of numerical and categorical parameters based on the improvement in best fitness

16

normalized by the number of evaluations needed to achieve this improvement. The authors argue
that the absolute fitness value should be left out of the state definition as it is unlikely to occur
more than once during the execution of the genetic algorithm. Instead, the a priori discretized
state definition is based on diversity, fitness improvement, standard deviation, and stagnation.
Across 15 problems, the reinforcement learning controller showed an existing margin of im-
provement relative to the static parameter genetic algorithm.

Buzdalova et al. [29] and Sakurai et al. [30] construct a Q-Table reinforcement learning
agent which selects the crossover and mutation operators to be used during the runtime of a
genetic algorithm. This adaptive approach allows the agent to utilize the advantages that each
specific operator offers dynamically throughout the execution of the genetic algorithm. The re-
ward in this context was derived from the generational improvement of the best fitness.

All the related work regarding reinforcement learning mentioned so far, along with this
work, concerns value-based reinforcement learning. Value-based methods aim to find the opti-
mal policy for an agent by finding the best action-value of a state, after which the accompanying
actions are found. This functions well for discrete action spaces, but fails for continuous action
spaces. Given that this work utilizes probabilities in the actions space, policy-based reinforce-
ment learning could work better in this context. Schulman et al. [31] proposed Proximal Policy
Optimization algorithms. This method aims to find the optimal policy for the agent by starting
with a policy function and adjusting it with a policy gradient method which alternates between
data sampling through interactions with the environment, and optimizing a surrogate objective
function using stochastic gradient ascent.

This work aims to implement a Q-Table reinforcement learning agent based on [13], as well
as two more complex deep reinforcement learning agents which abolish the need for discretized
input state definitions, as parameter control methods. This agent adjusts the probabilities of
crossover and mutation during the execution of the genetic algorithm. This was done in the con-
text of a genetic algorithm solving the efficient allocation of technicians to wind farm Service
Orders as discussed by Stock-Williams and Swamy [1].

17

3 Methodology
As the TMP is an NP-hard problem, it cannot be deterministically solved in polynomial time.
The genetic algorithm is used as an approximation algorithm to find approximate solutions
for the problem instances. In order to improve the efficiency of this approximation algorithm,
several methods are introduced. An improved re-insertion operator is introduced in Section 3.1,
the usage of a reinforcement learning agent as a parameter control method is introduced in
Section 3.2 and its subsections.

3.1 Despatch Bottleneck & Re-insertion Operator Switch
The genetic algorithm in the Despatch backend was programmed to have a certain criterion
that must be met if the algorithm were to converge to a solution. This is the Absolute Fitness
Convergence (𝐴𝐹𝐶) condition, which is defined as follows:

𝐴𝐹𝐶 =

{
𝑇𝑟𝑢𝑒, if |𝑚𝑎𝑥 𝑓 (𝑥𝑖) −𝑚𝑖𝑛𝑓 (𝑥𝑖) | < 𝑐𝑇

𝐹𝑎𝑙𝑠𝑒, otherwise
(1)

With 𝑚𝑎𝑥 𝑓 (𝑥𝑖) and 𝑚𝑖𝑛𝑓 (𝑥𝑖) denoting the maximum and minimum individual fitness in the
population respectively and 𝑐𝑇 indicating the convergence tolerance. This constant is manually
defined before runtime, with the Despatch algorithm defining 𝑐𝑇 = 1. Empirically, we observe
that practically all runs of the genetic algorithm contains individuals with fitness values that are
far greater than 1, this convergence condition approximately requires the whole population to
consist of the best-found individual.

In Section 2.6, the operator used for re-insertion is outlined. Although this operator is useful
when it comes to quickly avoiding a reduction in diversity, the combination with the AFC con-
dition creates a profound problem. Towards the end of convergence, the population will almost
entirely consist of the best-found individual. The last few individuals that are inferior in terms
of fitness need to be replaced if the algorithm were to converge. Using the Replace random
re-insertion operator creates a bottleneck situation in which the last few inferior individuals are
very rarely selected to be replaced by a newly evaluated individual, making the final steps of
convergence very time-consuming due to the unnecessary repetition of the costly simulation
function.

We propose a modified re-insertion operator which eliminates this problem by switching to
a different operator if more than 70% of the population consists of the current best-found indi-
vidual. If this condition is met, the Replace worst re-insertion operator is applied. This operator
always compares the newly evaluated individual to the worst individual in the population in
terms of fitness. If the new individual is superior, it replaces this worst individual. This operator
is greedy in nature, as it significantly reduces the diversity in the population as the genetic algo-
rithm progresses. This is why this operator is only used after said threshold condition, meaning
it is only applied to finish converging towards a solution. The addition of this dynamic operator
will be reffered to as the No Bottleneck method (NB). A performance comparison between the

18

(a) End performance comparison. (b) Generational duration comparison.

Figure 12: Visual comparison between the NB method and the Original Despatch algorithm
across the validation set.

original Despatch algorithm and the NB method is shown in Fig. 12a and Fig. 12b.
In Fig. 12a, for a single run of both methods, the NB method approximately performs

equally well relative to the original Despatch algorithm across the validation dataset. While
in Fig. 12b, it is shown that the NB method considerably decreases the number of generations
used to reach the same solution.

3.2 Reinforcement learning for parameter control
A reinforcement learning agent aims to map actions to environmental states with the aim of
achieving the maximum cumulative reward. The agent continuously interacts with an envi-
ronment to optimize its value-based action selection according to the feedback signals of the
environment (Sutton and Barto [11]). The reinforcement learning model framework is shown in
Fig. 13, at time step 𝑡 , the agent receives a corresponding state 𝑠𝑡 and responds to it using action
𝑎𝑡 . The environment recognizes this action and proceeds to time step 𝑡 +1 and to the associated
state 𝑠𝑡+1. After executing action 𝑎𝑡 , the agent receives the associated reward 𝑟𝑡 from the envi-
ronment, which will give the agent feedback on how useful 𝑎𝑡 was and allow it to update its
action selection for the next time step. After the agent has experienced extended exposure to the
environment, it will find an optimal policy 𝜋∗ which will aim to achieve maximum long-term
rewards [32]. In this work, three value-based reinforcement learning agents are implemented
to control the discrete action space of crossover and mutation probabilities, inspired by the ac-
tion space definition in Chen et al. [13]. The value-based reinforcement learning agent attempts
to find the optimal policy by utilizing the value function 𝑉 (𝑠) and selecting the most valuable
action for all observed states. This policy is expressed as Eq. 2 (Plaat [33]).

𝜋∗(𝑎 |𝑠) = argmax
𝜋

𝑉 𝜋 (𝑠0) (2)

where 𝜋∗(𝑎 |𝑠) is the optimal policy which selects a certain action 𝑎 when in state 𝑠; where
𝑉 𝜋 (𝑠0) is the expected return when the agent follows policy 𝜋 starting in the initial state 𝑠0. The
argmax function is used to select the policy with the highest expected value.

We propose a reinforcement learning agent which controls the probabilities of crossover and

19

Figure 13: The reinforcement learning model framework. (Taken from [11])

mutation for each generation based on an assessment of the genetic algorithm population and
optionally also on features of the genetic algorithm. A reinforcement learning agent acting as
a parameter control method for the genetic algorithm is referred to as a Self-learning Genetic
Algorithm (SLGA). The SLGA execution flow is shown in Algorithm 1.

Algorithm 1 SLGA for Wind Farm Maintenance Planning Q-Table DQN QRDQN

1: Input: Service Order list, Weather forecast
2: Output: Population of Transfer Plans
3: Initialize Genetic Algorithm
4: - Set iteration 𝑡 = 0, calculate the fitness of initial population
5: Initialize RL, calculate initial population diversity 𝑑∗, best fitness𝑚∗ and fitness sum 𝑓 ∗

6: - Set initial 𝑃𝑐 = 1,0 and 𝑃𝑚 = {0,15,0,65}
7: while 𝐴𝐹𝐶 == 𝐹𝑎𝑙𝑠𝑒 do
8: Select parents using tournament selection
9: Calculate state 𝑠𝑡 of Genetic Algorithm according to Eq. 6 Table 1 Table 1 , 𝑠← 𝑠𝑡

10: Choose action 𝑎𝑡 with 𝜀 −𝑔𝑟𝑒𝑒𝑑𝑦, 𝑎← 𝑎𝑡
11: Execute action 𝑎 ⊲ action 𝑎 will set new values for 𝑃𝑐 and 𝑃𝑚
12: Apply crossover operator using 𝑃𝑐
13: Apply mutation operator using 𝑃𝑚
14: Compute fitness of newly generated individual by UWiSE simulator
15: Calculate the reward 𝑟𝑡 according to Eq. 7 and Eq. 8, 𝑟 ← 𝑟𝑡

16: Update 𝑄 value according to Eq. 9 Eq. 14 Eq. 17 using 𝑟

17: 𝑡 = 𝑡 +1
18: return Best-found Transfer Plan

The exact learning procedure for this policy depends on the structure of the reinforcement
learning algorithm. The respective learning procedures will be explained in the following sec-
tions for all applied methods.

3.2.1 Q-Table parameter control Method

Based on the method proposed by Chen et al. [13], this work implements a Q-Table reinforce-
ment learning agent as a parameter control method for genetic algorithms, previously also
defined as an SLGA. The SLGA is divided into the environment, the learning module, and
the reinforcement process. The continuous state acquisition, agent reaction, feedback retrieval,
and policy adjustment collectively form the reinforcement process. The reinforcement learning
agent combined with the Q value table functions as the learning module.

20

3.2.1.1 State set

The genetic algorithm is regarded as the environment, with the derived state being based on the
following aspects of the population fitness:

1. Average fitness of the population

2. Population diversity

3. The best individual fitness

𝑓 ∗ gives the current average fitness of the population, normalized by the average fitness of the
initial population (see Eq. 3).

𝑓 ∗ =

∑𝑁
𝑖=1 𝑓 (𝑥𝑡𝑖)∑𝑁
𝑖=1 𝑓 (𝑥1

𝑖
)

(3)

𝑑∗ gives the current population diversity normalized by the diversity of the initial population
(see Eq. 4).

𝑑∗ =

∑𝑁
𝑖=1

���𝑓 (𝑥𝑡𝑖) − ∑𝑁
𝑖=1 𝑓 (𝑥𝑡𝑖)
𝑁

���∑𝑁
𝑗=1

����𝑓 (𝑥1
𝑗
) −

∑𝑁
𝑗=1 𝑓 (𝑥1

𝑗
)

𝑁

���� (4)

𝑚∗ gives the best individual fitness of the current population normalized by the initial popula-
tion’s individual best fitness (see Eq. 5).

𝑚∗ =
𝑚𝑎𝑥 𝑓 (𝑥𝑡𝑖)
𝑚𝑎𝑥 𝑓 (𝑥1

𝑖
)

(5)

These assessments are normalized by the initial population to illustrate the changes in best
fitness, population diversity, and fitness average relative to the starting point of the algorithm.
Diversity and average fitness represent the whole population state, while the best fitness value
only reflects the best individual. Only an outstanding individual could change the state and
consequently the behavior of the agent.

The state value is calculated by weighting and summing these three assessments (Chen et al.
[13]), as is shown in Eq. 6.

𝑆∗ =𝑤1 ∗ 𝑓 ∗ +𝑤2 ∗𝑑∗ +𝑤3 ∗𝑚∗ (6)

Given a minimization problem, the state value is approximately between 0 and 1. As the re-
insertion operator only allows for improvements in the population in terms of fitness, 𝑓 ∗ and𝑚∗

start at 1,0 and progressively decrease towards 0,0. The same holds for a maximization problem
if Eq. 3 and Eq. 5 are inversed. Although Eq. 4 could theoretically be above 1,0 if a series of large
improvements are made and consequently the diversity is increased, the convergence condition
in Eq. 1 ensures that, as the genetic algorithm progresses, 𝑑∗ ≈ 0,0 as the whole population
consists of the best-found individual (with 𝑐𝑇 = 1).

The weights should sum to 1 such that𝑤1+𝑤2+𝑤3 = 1, meaning that each individual weight

21

represents the relative importance of the associated variable. In SLGA, 𝑤1, 𝑤2 and 𝑤3 are set to
0,35,0,35 and 0,3 respectively (Chen et al. [13]).

With 𝑆∗ being a continuous variable, the amount of possible states is enormous. A larger
state set leads to a more expressive policy for the reinforcement learning agent, but it requires
more exploration to learn the policy, which will affect the convergence of the genetic algorithm.
A smaller state set leads to a less expressive policy for the agent, but it requires less explo-
ration to learn the policy. In order to control the state set size, it is discretized based on the
implementation by Shahrabi et al. [34] to define 9 state ranges.

𝑆 = {[0,0,0,15), [0,15,0,25), [0,25,0,35), [0,35,0,45), [0,45,0,55),
[0,55,0,65), [0,65,0,75), [0,75,0,85), [0,85,1,0]}

If 𝑆∗ its value falls in between one of the above ranges, the current state is associated with its
index in 𝑆 = {𝑠0,𝑠1, ...,𝑠8}, such that 𝑠0 = [0,0,0,15). If 𝑆∗ > 1,0 then 𝑠 = 𝑠8.

3.2.1.2 Action set

Given the current state 𝑠𝑡 , the reinforcement learning agent will react by executing action 𝑎𝑡 .
In the SLGA, an action by the reinforcement learning agent represents both a probability of
crossover 𝑃𝑐 and a probability of mutation 𝑃𝑚. Each action corresponds to a range with a lower-
and upper bound. Executing this action will select a random value within this range and set
it as the probability for that operator. The action set for crossover 𝐴𝑐 features 10 actions for
probability ranges which were manually defined to cover a large range of values around the
static parameter 𝑃𝑐 used in the Despatch algorithm (see Section 2.5.2), as is shown below.

𝐴𝑐 = {[0,5,0,55), ..., [0,95,1,0]}

Similarly, the action set for mutation 𝐴𝑚 covers a wide range of probabilities around the
static parameters 𝑃𝑚 used in the Despatch algorithm (see Section 2.5.3). However, seeing as the
Despatch algorithm applies two mutation operators sequentially, the action set for mutation 𝐴𝑚

concatenates two sets of 10 probability ranges, one for each mutation operator, such that:

𝐴𝑚1 = {[0.01,0.06), ..., [0.46,0.51]}
𝐴𝑚2 = {[0.1,0.17), ..., [0.73,0.8]}

If the reinforcement learning agent would have both of these action sets at its disposal, the
action set for mutation would consist of the cartesian product between these two sets. This
action set would contain 100 actions. To limit the size of the Q-Table, a different approach was
chosen based on the contributions in Buzdalova et al. [29], in which reinforcement learning
was used to select the evolutionary operator to apply. This results in one of the probabilities for
either mutation operator being set to 0,0, while the other mutation probability is set to a specific
setting. The subsequent action set for mutation contains 20 actions in total.

22

3.2.1.3 Reward functions

In reinforcement learning, each action set should be associated with a reward function to define
the short-term value of the available actions in the environment. The reward function definitions
in this Section were taken from Chen et al. [13]. The reward for the crossover operator is defined
as the best individual fitness in the population resulting from the applied actions, relative to the
previous generation (see Eq. 7). The reward for the mutation operator(s) is defined as the total
fitness of the current population relative to the previous generation (see Eq. 8). Given that the
re-insertion operator only allows for improvements in terms of fitness, the rewards are strictly
subject to:
𝑟𝑐𝑚𝑎𝑥

≥ 0,𝑟𝑐𝑚𝑖𝑛
≥ 0,𝑟𝑚𝑚𝑎𝑥

≥ 0,𝑟𝑐𝑚𝑖𝑛
≥ 0.

𝑟𝑐𝑚𝑎𝑥
=
𝑚𝑎𝑥 𝑓 (𝑥𝑡𝑖) −𝑚𝑎𝑥 𝑓 (𝑥𝑡−1

𝑖)
𝑚𝑎𝑥 𝑓 (𝑥𝑡−1

𝑖
)

, 𝑟𝑐𝑚𝑖𝑛
=
𝑚𝑖𝑛𝑓 (𝑥𝑡𝑖) −𝑚𝑖𝑛𝑓 (𝑥𝑡−1

𝑖)
𝑚𝑖𝑛𝑓 (𝑥𝑡−1

𝑖
)

(7)

𝑟𝑚𝑚𝑎𝑥
=

∑𝑁
𝑖=1 𝑓 (𝑥𝑡𝑖) −

∑𝑁
𝑖=1 𝑓 (𝑥𝑡−1

𝑖)∑𝑁
𝑖=1 𝑓 (𝑥𝑡−1

𝑖
)

, 𝑟𝑚𝑚𝑖𝑛
=

∑𝑁
𝑖=1 𝑓 (𝑥𝑡−1

𝑖) −
∑𝑁

𝑖=1 𝑓 (𝑥𝑡𝑖)∑𝑁
𝑖=1 𝑓 (𝑥𝑡−1

𝑖
)

(8)

where 𝑓 (𝑥𝑡𝑖) represents the fitness of the 𝑖-th individual in the 𝑡-th generation. Note that the
reward functions are corrected for the nature of the objective function (minimization or maxi-
mization).

3.2.1.4 Learning procedure

The 𝑄 (𝑠𝑡 ,𝑎𝑡) value represents the estimated value of action 𝑎𝑡 in-state 𝑠𝑡 . Assuming there are
𝑛 states in the state set and 𝑚 actions in the action set, a 𝑚×𝑛 Q value table is used to record
the learning experience of the agent. The Q value table is initialized to a zero matrix with
the number of columns being equivalent to the action set size and the number of rows being
equivalent to the state set size, as is shown in Fig. 14.

Figure 14: Initial Q value table. This table is continuously updated with the aim of representing
the expected sum of discounted future rewards for each action in each state. (Taken from [13])

The calculation of the Q value is a combined consideration of the observed state, the se-
lected action, and the associated reward. The action selection strategy for the reinforcement
learning agent should offer a trade-off between exploration and exploitation. The environment

23

should be explored to acquire knowledge on the values of the available actions for all the states
in the state set. Once the environment has been sufficiently explored, the agent should exploit
the most valuable action. 𝜀-greedy is an action selection strategy in which the reinforcement
learning agent chooses a random action with probability 𝜀, which induces exploration of the
environment to improve the policy. With the probability of (1− 𝜀), the agent chooses an action
that has maximal estimated action value in the current state, which induces exploitation of the
policy in order to get the maximum reward from the environment.

To update the reinforcement learning agent’s policy, a learning algorithm is necessary. The
two well-known reinforcement learning learning methods are the Q-learning (Watkins and
Dayan [35]) and Sarsa (Sutton and Barto [11]) algorithms. Generally speaking, the Sarsa al-
gorithm has faster convergence characteristics, while the Q-learning algorithm has better final
performance [36]. Seeing as the SLGA spends a number of generations exploring the environ-
ment, a faster-converging learning algorithm would spend fewer generations executing subop-
timal actions and getting stuck in local optima. Due to this reasoning, the Sarsa algorithm (see
Eq. 9) was used to update the reinforcement learning policy.

𝑄 (𝑠𝑡 ,𝑎𝑡) ← (1−𝛼) ∗𝑄 (𝑠𝑡 ,𝑎𝑡) +𝛼 ∗ (𝑟𝑡+1 +𝛾 ∗𝑄 (𝑠𝑡+1,𝑎𝑡+1)) (9)

where 𝑄 (𝑠𝑡 ,𝑎𝑡) represents the Q value of taking action 𝑎𝑡 in the current state 𝑠𝑡 ; 𝛼 represents
the learning rate; 𝛾 is the discount rate, discounting future Q value. 𝑄 (𝑠𝑡+1,𝑎𝑡+1) represents
the expected Q value in state 𝑠𝑡+1 for action 𝑎𝑡+1 which is chosen by the 𝜀-greedy strategy. To
guarantee exploration in new unknown states and exploitation of the policy once the state has
been explored, an exponential 𝜀 decay schedule is used (see Eq. 10 and Fig. 15).

𝜀 = 𝜀𝑚𝑖𝑛 + (𝜀𝑚𝑎𝑥 − 𝜀𝑚𝑖𝑛) ∗𝑒−𝜆∗𝑖 (10)

Figure 15: 𝜀 decay schedule for the parameter control methods on an example day of the valida-
tion set. With 𝜀 representing the probability that the reinforcement learning agent acts randomly,
this schedule illustrates the balance between exploration and exploitation for the agent.

24

with 𝜀𝑚𝑎𝑥 indicating the maximal epsilon value and 𝜀𝑚𝑖𝑛 indicating the minimal epsilon
value. For the Q-Table implementation, 𝜀𝑚𝑎𝑥 is set to 1,0 and 𝜀𝑚𝑖𝑛 is set to 0,05. The 𝜆 decay
constant is set to 0,05 and 𝑖 represents the number of generations spent in the current state,
meaning that 𝜀 exponentially decreases to the asymptote of 0,05 until a new state is reached.
The DQN and QRDQN methods have undergone a preceding training procedure, consequently,
the decision has been made to only do a small portion of initial exploration for each specific
day by setting 𝜀𝑚𝑎𝑥 to 0,1 and 𝜀𝑚𝑖𝑛 to 0,01.

3.2.2 Deep-Q Network parameter control method

The application of the Q-Table reinforcement learning agent as a parameter control method to
the genetic algorithm in this context is unfortunately subject to several shortcomings, particu-
larly in the following aspects:

1. Having a discretized state set is a requirement for the Q-Table implementation, given that
there must be a finite amount of entries in the table. This discretization (see Eq. 3.2.1.1)
requires a definition of a lower- and upper bound for each respective state. Seeing as each
respective day has a different fitness landscape in the genetic algorithm, a static state dis-
cretization will work well for some days, while working poorly for other days.

2. The three population assessments (see Eq. 3, Eq. 4 & Eq. 5) are weighted and summed
to calculate the state value 𝑆∗ (see Eq. 6). The values of 𝑤1,𝑤2 and 𝑤3 are subject to
interpretation, as their value sets the relative importance regarding the state value.

3. The Q-Table reinforcement learning agent visits a state until enough progress has been
made, after which a new state is visited. A repeated increase for the 𝜀 value was necessary
for the agent to explore yet unknown states. Unfortunately, this also resulted in taking
suboptimal actions for numerous generations due to the agent exploring the environment
(often multiple times). These shortcomings can be overcome by using a Deep-Q Network.

In order to tackle these shortcomings, a Deep Q-Network (DQN) is implemented which uses a
neural network its weights to store the relation between the input state and the Q value for each
action.

3.2.2.1 State set

By using the unweighted continuous values of 𝑓 ∗,𝑚∗ and 𝑑∗ as the input state for the reinforce-
ment learning agent, the first two of these shortcomings can be mitigated. A DQN (Mnih et al.
[37]) can be used to handle continuous state spaces, in contrast to the Q-Table implementation,
but does require an extensive training phase to sufficiently learn the genetic algorithm envi-
ronment. The discretized state set definition for the Q-Table method only contains population
assessments for a single day, which causes a lack of general knowledge on the environment and
nullifies the possibility for a training phase. A successful training phase for the DQN mitigates
the third listed shortcoming, as the agent should do a small portion of initial exploration (see

25

Input Features Category
Amount of vessels available

Wind farm & work day features

Amount of turbines in wind farm
Amount of technicians available
Corrective Service Order hours today
Preventive Service Order hours today
Average wind speed at turbine hub height
Standard deviation of wind speed at turbine hub height
Hours of excessive wave height in the weather forecast
Workable hours w.r.t. excessive wind speed in the weather forecast
Diversity of population relative to initial population (𝑑∗)

Population featuresFitness sum of population relative to initial population (𝑓 ∗)
Best fitness in current population relative to initial population (𝑚∗)
Parent 1’s fitness relative to fitness sum of population

Selected parent featuresParent 2’s fitness relative to fitness sum of population
Parent 1’s fitness relative to the best fitness in the population
Parent 2’s fitness relative to the best fitness in the population

Table 1: All 16 (numerical) input features for the DQN and QRDQN models, divided into three
categories. This extended input feature set aids the Deep-Q Network agents in learning the
various fitness landscapes represented by the individual days in the dataset.

Eq. 15). The 𝑓 ∗,𝑚∗, and 𝑑∗ assessments are informative metrics with respect to the fitness land-
scape for that specific day, but it fails to approximate all genetic algorithm fitness landscapes.
For the DQN to approximate the environment for all days, an extension of the state is made (see
Table 1):

The first category of the input features are decimal metrics used to inform the (QR)DQN
of the inputs of the genetic algorithm. These describe settings for the wind farm, the available
list of Service Orders, and the weather forecast for that day. The second category contains the
three continuous unweighted population assessments which will vary during runtime. The third
category contains fitness-based features for both parents which were selected by the tournament
selection operator. The fitness value of a parent relative to the fitness sum of the population pro-
vides a diversity metric, while fitness relative to the best fitness in the population provides a
normalized elitist metric.

3.2.2.2 Action set

To facilitate the learning procedure of the (QR)DQN, the action set for the Q-Table implemen-
tation is used in a nonrandom manner, as the Q value of an action is easier to learn if there is no
variation in the action execution.

𝐴𝑐 = {0,55,0,6, ...,1,0}

The DQN crossover action set 𝐴𝑐 was constructed by copying the upper bound of each action
in the Q-Table’s crossover action set, consequently, the new crossover action set consists of 10
static crossover probabilities.

𝐴𝑚1 = {0,01,0,06, ...,0,46}
𝐴𝑚2 = {0,1,0,17, ...,0,73}

26

The DQN mutation action sets 𝐴𝑚1 and 𝐴𝑚2 were constructed by copying the lower bound of
each action in the Q-Table’s mutation action set, consequently, the new mutation action set
consists of 20 static mutation probabilities, 10 for each operator.

3.2.2.3 Learning procedure

Given the neural network of the DQN, each action is represented by a node in the output layer
which outputs a decimal value representing the expected Q value for that action in the current
input state. A representation of the DQN model is visible in Fig. 16.

Figure 16: Schematic of the DQN model architecture. The output layer features two output
heads, one for crossover and one for mutation. Weight sharing is used prior to the output layer.

Given a specific input state, the hidden layers of the neural network form an encoded rep-
resentation of its relation to each action its Q value. For the output layer, weight sharing of the
final hidden layer was used, after which the crossover and mutation output heads transform the
encoded representation into the expected Q values. By designating one output node per action in
the output layer, the DQN output head for crossover output contains 10 nodes, while the output
head for mutation contains 20 nodes.

The DQN approximates the optimal policy by training on a representative dataset. This
dataset consists of workdays and their associated Service Order list and weather forecast. The
(untrained) DQN was applied to all days in the training data portion of the dataset with a non-
repetitive exponential 𝜀 decay schedule with 𝜀𝑚𝑎𝑥 = 1,0 and 𝜀𝑚𝑖𝑛 = 0,05 (see Eq. 10). In practice,
the DQN agent chooses many suboptimal actions which lead to exploration due to it lacking a
prior training phase. The knowledge acquired during this application was stored in an experi-
ence replay buffer. Each tuple element in this buffer was structured as shown below (see Eq.
11).

(𝑠𝑡 ,𝑎𝑐𝑡 ,𝑟𝑐𝑡 ,𝑎𝑚𝑡
,𝑟𝑚𝑡

,𝑠𝑡+1) (11)

with 𝑡 denoting the current timestep; 𝑎𝑐𝑡 being the executed crossover action in timestep

27

𝑡 ; 𝑟𝑐𝑡 being the observed reward after this crossover action; 𝑎𝑚𝑡
being the executed mutation

action in timestep 𝑡 and 𝑟𝑚𝑡
being the observed reward after this mutation action. The respective

experience replay buffers for all days were concatenated and stored in a single data file which
will act as the training dataset for the DQN agent.

In this learning procedure, a Double Deep Q-Network (DDQN) is used in the interest of a
stable learning procedure. To illustrate this, take into consideration the target Q value equation
for ordinary Q-learning:

𝑄 (𝑠𝑡 ,𝑎𝑡) = (1−𝛼) ∗𝑄 (𝑠𝑡 ,𝑎𝑡) +𝛼 ∗ (𝑟𝑡 +𝛾 ∗𝑄 (𝑠𝑡+1,𝑎𝑡+1)) (12)

Every iteration in which the DQN is updated according to Eq. 12 so that its predictions get
closer to 𝑄 (𝑠𝑡 ,𝑎𝑡), the 𝑄 (𝑠𝑡+1,𝑎𝑡+1) output is changed. As a result, the next time the 𝑄 function
is updated, 𝑄 (𝑠𝑡 ,𝑎𝑡) will be different even for the same state. Training the DQN in this context
will cause its predictions to chase a moving target, leading to an unstable training procedure. To
mitigate this, a duplicate of the 𝑄 function is used which is denoted by 𝑄′(𝑠𝑡 ,𝑎𝑡). Substituting
this duplicate function as a target network relative to the main network into the update equation
results in the equation shown below (see Eq. 13).

𝑄 (𝑠𝑡 ,𝑎𝑡) = (1−𝛼) ∗𝑄 (𝑠𝑡 ,𝑎𝑡) +𝛼 ∗ (𝑟𝑡 +𝛾 ∗𝑄′(𝑠𝑡+1,𝑎𝑡+1)) (13)

By seperating the main network and the target network, the training procedure is more stable
as it is no longer shasing a constantly moving target. Every 100 iterations the main network
weights are copied to the target network in order to periodically transfer the learning progress.
For each training iteration of the DQN, a random batch of experience replay buffer elements
was sampled from the training dataset (with a batch size of 𝑁𝑏 = 32). The Deep-Q Networks
were trained for 200.000 iterations in total. In this context, the loss is calculated by (see Eq. 14):

𝐿 =

(
1
𝑁𝑏

∗
𝑁𝑏∑︁
𝑖=1
(𝑄 (𝑠𝑡𝑖 ,𝑎𝑐𝑡𝑖) − (𝑟𝑐𝑡𝑖 +𝛾 ∗𝑚𝑎𝑥 (𝑄′(𝑠𝑡+1𝑖))))2

)
+(

1
𝑁𝑏

∗
𝑁𝑏∑︁
𝑖=1
(𝑄 (𝑠𝑡𝑖 ,𝑎𝑚𝑡𝑖

) − (𝑟𝑚𝑡𝑖
+𝛾 ∗𝑚𝑎𝑥 (𝑄′(𝑠𝑡+1𝑖))))2

) (14)

where 𝑠𝑡𝑖 is the 𝑖-th input state for timestep 𝑡 in the sampled batch; 𝑎𝑐𝑡𝑖 is the executed crossover
action in timestep 𝑡 at index 𝑖 in the sampled batch and 𝑎𝑚𝑡𝑖

is the executed mutation action in
timestep 𝑡 at index 𝑖 in the sampled batch. The first line of the equation corresponds to the mean
squared error between the main network prediction of the Q value for the executed crossover
action in the input state, and the observed crossover reward added to the discounted max Q
value generated by the target network for the consecutive input state. The second line is similar
to the left-hand side, but applied to the mutation output head of the DQN.

28

3.2.3 Distributional Deep-Q Network parameter control method

Each action in the action set corresponds to a probability for crossover or mutation. These
probabilistic actions have stochastic behavior in the genetic algorithm environment, as a certain
input state might yield different rewards for multiple applications of the same action. Consider
the following probability distribution which represents the possible immediate rewards for a
certain input state in the genetic algorithm environment for a single action (see Fig. 17).

The DQN implementation would predict a Q value that takes into account an immediate re-

Figure 17: Example reward probability distribution for a hypothetical reinforcement learning
agent’s action on a genetic algorithm environment. (Adapted from Zai and Brown [38])

ward of approximately −14, which is incorrect for all the occurring rewards in this distribution.
A singular expected Q value in decimal form on the output layer of the DQN lacks the resolu-
tion to properly represent a stochastic genetic algorithm environment. A probability distribution
on the output layer of the reinforcement learning network is required to fully approximate this
context.

3.2.3.1 C51; The Distributional DQN

A reinforcement learning agent which alleviates this problem, the C51 Distributional DQN, was
proposed by Bellemare et al. [39]. This name was based on the changes made to the output layer
of the DQN, in which a probability distribution is formed by designating a separate output head
with 51 nodes to every action. These 51 outputs correspond to a support vector of the same size
which forms a range with a constant interval starting at the minimal observable reward in the
environment and ending at the maximal observable reward. The discrete probability distribution
is updated by binning the observed reward at the index of the element of the support vector
which is closest in value.

The C51 method was successful in picking up on stochasticity in the environments provided
by the experiment in its publication and was able to outperform a fully trained DQN in 45 out
of the 57 Atari games. Unfortunately, the C51 method requires a predefined support vector and
corresponding minimal and maximal observable rewards for a given environment. This poses
an obstacle in its application to Despatch, as every workday has a different fitness landscape

29

and consequently a different maximal observable reward (see Fig. 18).

Figure 18: Mutation reward probability distributions for a single run on two example days of
the validation dataset; the 21st and 22nd of July 2014. These probability distributions illustrate
that each day in the dataset has a different range of observable rewards and consequently should
not be represented by a single static support vector by the C51 method.

Not only do the mutation reward probability distributions differ for the two days, they also
have a significantly different maximal reward each: 0,00014 and 0,005. By using a single support
vector to form a probability distribution for each of these days, a lot of information is lost in
representing a corresponding reward probability distribution. The support vector is statically
defined ahead of the training procedure, therefore the C51 method is incompatible with the
genetic algorithm in this context.

3.2.3.2 Quantile Regression Deep-Q Network

A modified version of the C51 method alleviates the static support issue by using a fixed set of
probabilities and letting the reinforcement learning model learn the associated support values.
This modified method is called the Quantile Regression Deep-Q Network (QRDQN) (Dabney
et al. [40]). This name was based on the fact that the fixed probabilities end up representing
quantiles of the probability distribution. By representing the quantiles on the output layer, any
possible action value can theoretically be generated, abolishing the need for a statically defined
minimal and maximal reward. The only hyperparameter which needs to be set beforehand is the
number of quantiles the QRDQN will use to approximate the probability distribution (𝑁𝑞 = 32).
Quantile regression is the unbiased stochastic approximation of the quantile function (Koenker
[41]).

The quantile function is equivalent to the inverse cumulative distribution function (CDF).
For a random variable 𝑋 , the CDF 𝐹𝑋 (𝑥) gives the probability that 𝑋 ≤ 𝑥 . The quantile function
is given by 𝐹−1

𝑋
(𝑥), which, given a probability 𝑝, computes for what value of 𝑥 the following

comparison holds: 𝑋 ≤ 𝑥 . For 𝑁𝑞 = 32, the first of the output nodes on the designated output
head for this action will predict what reward is at least immediately observable after executing
this action with probability 𝑝 = 1

32 .

30

3.2.3.3 Learning procedure

Similar to the DDQN, the QRDQN implementation uses a main network and a target network to
stabilize the learning procedure. After every 100 learning iterations, the weights of the main net-
work are copied to the target network to transfer the learning progress. The loss of the QRDQN
method is calculated by using a modified version of the Huber Loss (Huber [42]):

L𝜅 (𝑢) =
{

1
2𝑢

2, if |𝑢 | ≤ 𝜅
𝜅 (|𝑢 | − 1

2𝜅), otherwise
(15)

𝑢 = (𝑟𝑡 +𝛾 ∗𝑄𝑅′(𝑠𝑡+1)) −𝑄𝑅(𝑠𝑡 ,𝑎𝑡) (16)

where 𝑢 is the difference between the predicted 𝑁𝑞 quantiles according to the main network 𝑄𝑅

and the observed reward 𝑟𝑡 summed with the target network 𝑄𝑅′ its 𝑁𝑞 quantiles for its greedy
action selection in 𝑠𝑡+1 (discounted by 𝛾); where 𝜅 is a constant value used to clip gradients.
Huber loss is less sensitive to outliers (when 𝑢 ≤ 𝜅) and more sensitive to small errors. For
outliers, the absolute value error is computed, while for small errors, the mean squared error is
computed. The learning process computes a batch of 𝑢 values, the loss is computed element-
wise, taking either the MSE or the MAE for each individual 𝑢 and returning the mean loss for
the entire batch. To apply the Huber Loss to the seperate crossover and mutation output heads,
the total loss is computed by Eq. 17.

𝐿𝜅 (𝑢𝑐,𝑢𝑚) = |𝜏 −𝛿{𝑢𝑐<0} | ∗L𝜅 (𝑢𝑐) + |𝜏 −𝛿{𝑢𝑚<0} | ∗L𝜅 (𝑢𝑚), 𝜏 =

{
1
𝑁𝑞

,
2
𝑁𝑞

, ...,
𝑁𝑞

𝑁𝑞

}
(17)

where 𝑢𝑐 is the difference between the main network 𝑄𝑅 its crossover prediction and the ob-
served crossover reward summed by the target network𝑄𝑅′ its crossover prediction (discounted
by 𝛾); where 𝑢𝑚 is similar but applied to the mutation reward and predictions; where 𝜏 is a list
representing the quantile weights for the output layer and where 𝛿{𝑢𝑥<0} is a vector of equal
length to 𝑢𝑥 , which contains 1’s at the indices where 𝑢𝑥 is negative and 0’s where it is not.

31

4 Experiment
The methods described in Section 3 were applied to the dataset specified in Section 4.1 and
compared based on the experiment setup outlined in Section 4.2. Finally, the results are com-
pared in Section 4.3.

4.1 Dataset
To train the Deep-Q Networks and assess the performance of all three reinforcement learning
parameter control methods, a dataset is required that accurately resembles the workdays which
the genetic algorithm backend in Despatch will receive as input. To this end, a dataset was pro-
vided by Eneco which covers the workdays for the period of January 30th to the September 2nd
for the Princess Amalia Wind Park [43] (PAWP) in 2014. This dataset was also previously used
to assess the performance of the Despatch algorithm [1]. The PAWP is located 23 kilometers off
the coast of IJmuiden in The Netherlands. The Wind Park was developed by Ecoconcern with
the help of investment from utility company Eneco and has been in operation since 2008. This
dataset is used to form realistic simulations which act as an environment for the reinforcement
learning agents to train on.

The PAWP uses only one crew transfer vessel to conduct day-to-day maintenance, creating
a scenario in which parallel transport is impossible for the technicians. For each of the 246 days
in the dataset, a weather forecast is provided for the coming 90 hours based on historical data,
to simulate the current workday but also to estimate the cost of delaying Service Orders to the
next days. In addition to the weather forecast, Service Orders are assigned to workdays based
on if the current date falls between the associated start date and end date. Service Orders are
divided into two categories: preventive or corrective. The resulting dataset’s daily Service Or-
der list can be expressed in terms of the number of Service Orders (see Fig. 19a) and amount of
hours in that category (see Fig. 19b). Note that the amount of corrective Service Order hours per
unit is significantly greater than the amount of preventive Service Order hours per unit. In this
dataset, corrective Service Orders are often larger in proportion due to them being reactionary
to immediate issues, while preventive Service Orders are precautionary maintenance activities
and thus often less severe.

Category Training set Validation set Test set
Ratio 70% 5% 25%
Duration (days) 172 12 62
Date range 01-30 to 07-20 07-21 to 08-01 08-02 to 10-02

Table 2: Statistics regarding the dataset split of Fig. 19

The used dataset split is visible in Table 2. The first 172 days (70% of the dataset) functions
as the training dataset and act as the foundation for the Deep-Q Networks their learning proce-
dures, as explained in Section 3.2.2.3. The following 12 days (5% of the dataset) function as
the validation dataset. These days are used to run a model architecture selection tournament for
the fully trained Deep-Q Networks, to assess the relative performance of the NB method (see

32

Section 3.1) beforehand, to generate insightful mutation and crossover reward probability dis-
tributions and to generate the (repeated) exponential 𝜀 decay schedule (see Fig. 15). The final 62
days (25% of the dataset) function as the test dataset and are used the compare the performance
of the original Despatch algorithm, Despatch using the NB operator, and all three reinforce-
ment learning methods combined with the NB operator. Note that the training, validation and
test sets are structured differently in terms of amount and duration of corrective/preventive Ser-
vice Orders. The class imbalance between the training and test set can cause inaccurate initial
predictions for the trained Deep-Q Networks. This is countered by unfreezing the neural net-
work weights and allowing for some intitial exploration of the environment to optimize the
policy.

33

(a) The amount of Corrective and Preventive Service Orders across the dataset.

(b) The duration (hours) of Corrective and Preventive Service Orders across the dataset.

Figure 19: Histogram statistics for the 2014 dataset describing the work days for the Princess
Amalia Wind Park ranging from the 30th of January to the 2nd of September. Comparing fig-
ures (a) and (b) illustrates the relation between the amount of Service Orders and how many
work hours are associated with those Service Orders. Generally speaking, corrective Service
Orders are more time-consuming relative to preventive Service Orders in this dataset. To the
left of the first vertical green line is the the training dataset, between the two green lines is the
validation dataset and to the right of the second green line is the test dataset. There is a slight
class imbalance between the training and test set, which can negatively affect the performance
on the test set.

34

4.2 Experiment setup
All 5 methods were applied to the test set sequentially, each starting on the 2nd of August and
ending after the 2nd of October. Once the method has converged and settled on the best-found
Transfer Plan for that day, the Transfer Plan and relevant statistics are saved. Afterwards, the
genetic algorithm environment is re-initialized to represent the next consecutive day, after which
it once again attempts to find a suitable Transfer Plan. The performance assessments on the test
set were all run on a computer cluster owned by TNO, with the random seed set to the same
value for each individual day for all 5 methods.

4.2.1 Deep reinforcement learning model selection tournament

Before all 5 methods can be applied to the test set, the network architectures should be de-
termined for both Deep-Q Networks. The input layer size is 16 for both deep reinforcement
learning methods, based on the input features listed in Table 1. The output layer size is deter-
mined by the respective method and the crossover and mutation action set sizes. The DQN has
a singular output for each available action, resulting in an output layer size of 30. The QRDQN
has 𝑁𝑞 outputs per available action, resulting in an output layer size of 960. The size of the
hidden layers is not as easily determined and should be treated like a tunable hyperparameter
as it significantly impacts the model’s accuracy and time complexity [44]. The setting for this
hyperparameter is determined by a model selection tournament. The preference is given to run-
ning a model selection tournament for each day twice over averaging the performance over all
days due to the lengthy associated computation time.

After training all featured models for 200.000 iterations, they were applied to the first four
days of the validation dataset twice. For the DQN implementation, one to four uniform hidden
layers were tested with 16, 32, 64, 128, and 256 hidden nodes per layer. For the QRDQN im-
plementation, one to four uniform hidden layers were tested with 64, 128, 256, and 512 hidden
nodes per layer. The performance of the models was measured in terms of energy loss and in
computation time (ms). Of the two runs, the average was taken to give a more reliable insight.
After each day of the validation dataset, half of the best-performing models proceed to the next
day. The first objective is to achieve the relatively lowest energy loss, in case of a tie, the short-
est computation time is used to determine the winner.

The results for the tournament are visible in Fig. 20, note that all models who proceed to
the next day are displayed in bold. For the 21st of July, all models were able to converge to
the global optimum and as a result, the winners for that day were determined by the shortest
computation time. The tournament winner for the DQN implementation was the model contain-
ing two hidden layers of 64 hidden nodes. In contrast, the tournament winner for the QRDQN
implementation was the model containing four hidden layers of 256 hidden nodes. The greater
amount of hidden layers and hidden nodes for the QRDQN model represents the need to com-
pute the relatively more complex output layer.

35

Figure 20: Model selection tournament for the DQN and QRDQN models, all featured models
were applied twice to that day of the validation dataset. The red bar plots correspond to the
computation time for that model, while the blue bar plots correspond to the energy loss perfor-
mance for that model. The first four bar plots illustrate that two hidden layers of 64 nodes were
selected as the DQN architecture. The last four bar plots illustrate that four hidden layers of 256
nodes were selected as the QRDQN architecture.

36

4.2.2 Training phase

As each day is subject to different work day features such as wind speed and amount of Service
Order hours, each day in the dataset is associated with a different fitness landscape from the
perspective of the genetic algorithm. These different fitness landscapes represent distinct prob-
lem instances for the reinforcement learning agents to learn. The training phase for the Deep-Q
Networks aims to learn the different fitness landscapes based on the input features for each day.

The loss of the Deep-Q Networks is pipelined to the Adam optimizer (Kingma and Ba [45]),
which iteratively adjusts the weights of the main network to minimize the loss function. For the
two selected models, the progression of the respective loss functions during the training phase
gives insight into the complexity of the problem the model is attempting to learn (see Fig. 21).

Figure 21: Loss function output during the 200.000 iterations long training phase for the DQN
and QRDQN models (with moving average smoothing using a window size of 20). This graph
illustrates that both the DQN and the QRDQN methods converge to a loss of nearly 0, even
though the QRDQN experiences some forgetting around 104 iterations.

Note that both the x- and y-axis are plotted using a logarithmic scale to highlight the signif-
icant changes in loss during the early phases of training. While experiencing some fluctuation
after around 103 training iterations, the DQN successfully and consistently converges with re-
spect to the loss function. The QRDQN seemingly successfully learns the problem after around
103 training iterations but performs worse after around 104 training iterations. The erasure of a
successful representation is often referred to as ’catastrophic forgetting’ [46] and is caused by
learning new input patterns which overwrite existing patterns. After 105 training iterations, the
QRDQN consistently forms a successful representation and converges with respect to the loss
function.

4.2.3 Hyperparameter settings

All featured reinforcement learning methods utilize a 𝛾 value, which determines the present
value of future rewards. If 𝛾 = 0, the reinforcement learning agent becomes nearsighted, as it is
only concerned about maximizing the immediate rewards. If 𝛾 = 1, the reinforcement learning
agent becomes farsighted, as it is only concerned with future rewards. In the context of this
work, 𝛾 was set to 0,98, highly valuing future rewards. This was done to motivate the parameter

37

control methods to assist the genetic algorithm in converging towards a global optimum over a
local optimum, requiring heavy consideration of future rewards.
The 𝛼 value represents the learning rate, which determines the ratio to which new information
is accepted relative to old information. As the Adam optimizer’s default learning rate is set to
0,001, this is applied here as well.

4.3 Results
We compare our results to the original Despatch algorithm with respect to three performance
measurements:

• Total computation time: The total cumulative time taken to converge to the respective
solutions for the test dataset.

• Energy loss sum: The sum of the total energy loss across the entire test dataset. This metric
gives insight into the quality of the solutions found by each respective method since the
energy loss was chosen as the objective function to minimize.

• Generations sum: The cumulative number of generations that the genetic algorithm took
to converge to the respective solutions for the test dataset.

Although there is a correlation between the total computation time and the generations sum, the
time needed to compute matrix operations for various neural network architectures prohibits a
linear relationship between the two metrics. The results are visible in Table 3.

Model Time sum (hours) EnergyLoss sum (kWh) Generations sum
Original 43,44 [0,0,4,36] 12,326∗1010 [1,0] 133639
NB 21,03 [0,0,1,46] 12,329∗1010 [1,0002] 97217
Q-Table + NB 2,44 [0,0,0,13] 12,985∗1010 [1,05] 23599
DQN + NB 13,18 [0,0,1,13] 12,329∗1010 [1,0002] 59732
QRDQN + NB 3,11 [0,0,0,27] 13,110∗1010 [1,06] 23128

Table 3: Results of the featured models on the test set in terms of computation time, energy loss
and amount of generations. The minimal and maximal runtime per day are also provided in the
time sum column. The ’Original’, ’NB’ and ’DQN + NB’ models were run twice to make the
resuls more informative.

The original Despatch algorithm slightly outperforms the other methods with respect to the
objective function but takes a significantly longer time to do so. The Despatch algorithm was
able 43,44 hours, the addition of the NB operator speeds up the computation time to 21,03 hours
while decreasing the cumulative solution quality by only 0,02%. The Q-Table method is very
fast in comparison but reaches significantly lesser quality solutions. The same holds for the
QRDQN method. The DQN method shortens the computation time to 13,18 hours relative to
the NB method while reaching the same quality solutions.

Fig. 22 shows a visual comparison, illustrating that the original Despatch algorithm, the NB
method, and the DQN method consistently find nearly equivalent solutions in terms of energy
loss. While Fig. 23 shows a visual comparison between all methods in terms of cumulative
computation time. Although the Q-Table and QRDQN methods overall converge the fastest, the
convergence to lesser quality solutions makes these methods inferior to the other three.

38

Figure 22: Visual cumulative energy loss comparison between the original Despatch algorithm,
the NB method and the DQN + NB method, all applied sequentially to the 62 days in the test
dataset. Each data point represents the end performance which was found by that method upon
convergence. The y-axis was logarithmically scaled to encapsulate all end performance results
despite their major differences. This graph illustrates that these three methods converge to nearly
equivalent quality solutions across the entire test set.

Figure 23: Visual cumulative computation time comparison between all 5 methods applied se-
quentially to the 62 days of the test dataset. The computation time monitoring for a single day
starts when the target population size has been reached and ends when the method converges to
a solution. The average computation time was taken for 2 runs of the Original, NB and DQN +
NB methods, while the other 2 methods were run only once. This graph illustrates that the DQN
+ NB method consistently outspeeds the NB method, which in turn consistently outspeeds the
original Despatch algorithm.

39

5 Discussion
The Despatch algorithm’s computation time adds up to 43,44 hours across the entire test set.
The average runtime per day was 0,70 hours, with the maximal runtime per day being 4,36
hours. The minimal runtime per day for all methods was 0,0 hours, as it is possible for a day
to be solved during the population initialization as there is only one suitable Transfer Plan for
that workday. While the NB operator was able to improve the cumulative computation time to
21,03 hours, the average runtime per day to 0,34 hours and the maximal runtime per day to 1,46
hours, illustrating the redundant time spent in the final convergence stage by the Despatch al-
gorithm. The DQN agent was able to further improve the cumulative computation time to 13,18
hours, the average runtime per day to 0,21 hours and the maximal runtime per day to 1,13 hours,
demonstrating the benefit of an adaptive parameter control method for the genetic algorithm.

First, we showed that the addition of the NB operator mitigated the redundant time spent
fully converging by utilizing a threshold in which the population consists of the best-found in-
dividual for at least 70%. If this threshold was passed, the newly generated individual would
be compared to the current worst individual by the re-insertion operator, instead of randomly
selecting individuals from the population to compare to. This adjustment achieved its speedup
at the cost of a very minor decrease in cumulative solution quality, which is the result of a rare
scenario in which the genetic algorithm passes this threshold prior to eventually finding better
solutions, causing early convergence.

The faster convergence of the genetic algorithm is valuable despite the mild decrease in cu-
mulative solution quality as the wind farm managers use Despatch to generate a Transfer Plan
for that day in the morning. This is done in order to use the most recent weather forecast and to
address possible events occurring on the wind farm overnight. This creates a scenario in which
the genetic algorithm is given only a short time budget, during which a faster computation time
results in a superior solution given that the original Despatch algoritm did not fully converge.
Although the NB operator solves the bottleneck of the original Despatch algorithm, it does not
influence the gradient of the decrease in overall fitness of the population and simply causes a
better Despatch user experience. Intermediate solutions are expected to have nearly equivalent
quality between the NB method and the original Despatch algorithm. The DQN parameter con-
trol method also utilizes the NB operator but achieves an even faster convergence speed relative
to the NB method. This indicates that the reinforcement learning agent causes superior interme-
diate solutions due to the steeper gradient of the decrease in overall fitness of the population.

Second, we see that Q-Table reinforcement learning agent performs relatively poorly as it
is limited by its manual discretized state set definition. Consequently, the agent will greedily
select one promising action until enough progress is made to progress to the next state. Often,
this will result in one action being selected repeatedly for long periods of time even though it
might be suboptimal for the genetic algorithm.
Furthermore, the QRDQN relatively performs the worst out of all the applied methods. Al-
though it is difficult to analyze the behavior of neural networks, the convergence of the loss
function during its training phase indicates that it was moderately successful in learning the

40

characteristics of the environment. A possible explanation for its poor performance would be
that it exploited the imperfect reward functions due to its complex output layer and greedily
decreased the population’s diversity, causing early convergence.

Fortunately, the DQN agent achieves an equivalent cumulative solution quality relative to
the NB addition while also causing a significant speedup. This equivalent cumulative solution
quality indicates that the DQN does not introduce an additional decrease in performance. In
contrast to the QRDQN, the DQN improves upon the convergence speed of the genetic algo-
rithm. A singular expected return value for each action allowed for an expressive policy without
greedily decreasing diversity.

The improvement that the DQN agent has brought to the Despatch algorithm illustrates that
a deep reinforcement learning agent can successfully be applied as a dynamic parameter control
method for a genetic algorithm by speeding up its converge process.

Although the final performance assessment was based on a relatively small time period (62
days) for a single wind farm, this research offers a valuable insight into the potential benefits in
improving the convergence of genetic algorithms by applying a reinforcement learning agent as
a parameter control method. Ideally, this DQN parameter control method should be trained and
tested on a wider range of wind farms as the Princess Amalia Wind Park is dated and relatively
small, suggesting that more recent wind farms could experience an even greater payback.

41

6 Conclusion and future work
In the interest of solving the NP-hard problem of scheduling daily service operations for off-
shore wind farms, a genetic algorithm was proposed by Stock-Williams and Swamy [1]. Given
that the performance of genetic algorithms greatly depends on its parameter setting, the stat-
ically defined parameter configuration utilized in this approach allows for potential improve-
ments. In this work, we investigate to what extent the addition of a (deep) reinforcement learn-
ing agent as a parameter control method improves this approach in terms of computation time
and quality.

A review of the literature on this subject has shown that previous reinforcement learning
agents acting as parameter control methods were tabular structured, posing constraints on the
input state set. Additionally, to the knowledge of the authors, no (deep) reinforcement learning
parameter control methods for genetic algorithms were previously implemented in the context
of solving daily maintenance planning for offshore wind farms.

Three reinforcement learning agent structures were implemented and compared in terms
of performance and computation time. Firstly, a Q-Table agent based on Chen et al. [13]. This
method introduced several constraints in order to apply it to the genetic algorithm in this context,
including the discretization of the input state and the introduction of a repeated learning phase
during the reinforcement learning agent’s application to the environment. Secondly, a Deep-Q
Network agent which allowed for a continuous input state, abolished the need for a repeated
learning phase during runtime and, due to a prior learning phase, mitigated the need for an ex-
tensive amount of explorative actions. Finally, a Quantile Regression Deep-Q Network agent
which allowed for the more complex output layer relative to the Deep-Q Network to represent a
probability distribution that can more accurately approximate the stochastic environment of the
genetic algorithm. Given that all the applied reinforcement learning methods were value-based,
a limitation of the scope of this work was that no policy-based method was implemented, which
could theoretically utilize the complete continuous range of the probabilities used in the actions
of the agent in this context. Value-based methods lack this characteristic as they require dis-
cretization of the action space.

In combination with an improved re-insertion operator, the addition of a deep reinforcement
learning agent, specifically using a Deep-Q Network, as a parameter control method for the
genetic algorithm was able to achieve a speedup from 43,44 hours to 13,18 hours. This speedup
came at the cost of a mild decrease (0,02%) in cumulative energy loss across the test set.

Future work
The reward function definitions in Section 3.2.1.3 assume that the crossover operator is exclu-
sively responsible for the improvement in the best fitness of the population and that the mutation
operator is exclusively responsible for the improvement in the total fitness of the population. In
reality, both operators have the ability to affect both metrics and as a result, these reward func-
tions are flawed. The genetic algorithm’s cycle computes the fitness function after the crossover

42

and mutation operators have been applied sequentially, making it difficult to distinguish the in-
dependent effect of both operators. Still, better reward function definitions should be explored
in further work.

All three reinforcement learning methods that were implemented in this work are value-
based agents, which generally perform well on discrete action spaces. Another line of work
implements policy-based reinforcement learning agents, which allow for the use of continuous
action spaces. This methodology would be interesting to apply in this context as it removes
the need for the discrete action spaces as defined in Section 3.2.1.2 and might improve upon
the achieved results as it leads to a more expressive reinforcement learning policy. Examples of
such methods which could prove a good fit in this context include Proximal Policy Optimization
algorithms (Schulman et al. [31]) and Soft Actor-Critic algorithms (Haarnoja et al. [47]).

The extended feature set (see Table 1) was manually constructed in accordance with an
Aerodynamics employee working for TNO, but it is far from optimal. For instance, the future
weather forecast, the number of turbines to be visited on the workday and the amount of cor-
rective/preventive Service Orders are underrepresented in the feature set. Further extensions of
this feature set could lead to better results.

Although the DQN agent showed positive results, the Q-Table and QRDQN agents showed
negative results. The Q-Table implementation showed a less expressive policy due to the dis-
crete input state set but the behavior of the Deep-Q Networks is more difficult to generalize.
Further research is required to analyze the policies applied by the DQN and the QRDQN in this
context.

43

References
[1] Clym Stock-Williams and Siddharth Krishna Swamy. Automated daily maintenance

planning for offshore wind farms. Renewable Energy, pages 1393–1403, 2019. doi:
https://doi.org/10.1016/j.renene.2018.08.112.

[2] Manish Shakdwipee, Indu Pillai, and Rangan Banerjee. Sustainability analysis of
renewables for climate change mitigation. Energy for Sustainable Development, pages
25–36, 12 2006. doi: 10.1016/S0973-0826(08)60553-0.

[3] United Nations. Sustainable development goals (sdgs). https:
//www.un.org/sustainabledevelopment/sustainable-development-goals/,
2022.

[4] Wind Europe. Offshore wind in europe – key trends and statistics 2020.
https://windeurope.org/intelligence-platform/product/
offshore-wind-in-europe-key-trends-and-statistics-2020/#findings,
2020.

[5] Rijksoverheid. Windenergie op zee. https://www.rijksoverheid.nl/onderwerpen/
duurzame-energie/windenergie-op-zee, 2021.

[6] Malte Jansen, Iain Staffell, Lena Kitzing, Sylvain Quoilin, Edwin Wiggelinkhuizen,
B. Bulder, Iegor Riepin, and Felix Müsgens. Offshore wind competitiveness in mature
markets without subsidy. Nature Energy, pages 1–9, 2020. doi:
10.1038/s41560-020-0661-2.

[7] Gavin Smart, Aaron Smith, Ethan Warner, Iver Bakken Sperstad, Bob Prinsen, and
Roberto Lacal-Arantegui. Iea wind task 26: offshore wind farm baseline documentation.
Technical report, National Renewable Energy Lab.(NREL), Golden, CO (United States),
2016.

[8] Ujjwal Maulik and Sanghamitra Bandyopadhyay. Genetic algorithm-based clustering
technique. Pattern recognition, pages 1455–1465, 2000. doi:
10.1016/S0031-3203(99)00137-5.

[9] A.E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary
algorithms. IEEE Transactions on Evolutionary Computation, pages 124–141, 1999. doi:
10.1109/4235.771166.

[10] Giorgos Karafotias, Mark Hoogendoorn, and A. E. Eiben. Parameter control in
evolutionary algorithms: Trends and challenges. IEEE Transactions on Evolutionary
Computation, pages 167–187, 2015. doi: 10.1109/TEVC.2014.2308294.

[11] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The
MIT Press, second edition, 2018.

44

https://www.un.org/ sustainabledevelopment/sustainable-development-goals/
https://www.un.org/ sustainabledevelopment/sustainable-development-goals/
https://windeurope.org/intelligence-platform/product/offshore-wind-in-europe-key-trends-and-statistics-2020/#findings
https://windeurope.org/intelligence-platform/product/offshore-wind-in-europe-key-trends-and-statistics-2020/#findings
https://www.rijksoverheid.nl/onderwerpen/duurzame-energie/windenergie-op-zee
https://www.rijksoverheid.nl/onderwerpen/duurzame-energie/windenergie-op-zee

[12] Jess Whittlestone, Kai Arulkumaran, and Matthew Crosby. The societal implications of
deep reinforcement learning. J. Artif. Int. Res., page 1003–1030, 2021. doi:
10.1613/jair.1.12360.

[13] Ronghua Chen, Bo Yang, Shi Li, and Shilong Wang. A self-learning genetic algorithm
based on reinforcement learning for flexible job-shop scheduling problem. Computers
Industrial Engineering, page 106778, 2020. doi: 10.1016/j.cie.2020.106778.

[14] M.B. Bashir and A. Nadeem. Improved genetic algorithm to reduce mutation testing cost.
IEEE Access, pages 3657–3674, 2017. doi: 10.1109/ACCESS.2017.2678200.

[15] TNO. Tno uwise: Cutting-edge simulation software tools for offshore energy operations.
https://www.tno.nl/en/focus-areas/energy-transition/roadmaps/
renewable-electricity/wind-energy/innovative-logistics/
simulation-software-tools/, 2018.

[16] G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-salesman
problem. Journal of the Operations Research Society of America, pages 393–410, 1954.

[17] Michael T Goodrich and Roberto Tamassia. Algorithm design and applications. chapter
10.1, pages 286–288. Wiley Hoboken, 2015.

[18] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., first edition, 1989. ISBN 0201157675.

[19] Jiaping Yang and Chee Kiong Soh. Structural optimization by genetic algorithms with
tournament selection. Journal of Computing in Civil Engineering, pages 195–200, 1997.
doi: 10.1061/(ASCE)0887-3801(1997)11:3(195).

[20] Przemysław Ignaciuk and Łukasz Wieczorek. Continuous genetic algorithms in the
optimization of logistic networks: Applicability assessment and tuning. Applied Sciences,
2020. doi: 10.3390/app10217851.

[21] Gilbert Syswerda. Uniform crossover in genetic algorithms. 1989.

[22] Riccardo Poli and William B Langdon. On the search properties of different crossover
operators in genetic programming. Genetic Programming, pages 293–301, 1998.

[23] Ilhem Boussaïd, Julien Lepagnot, and Patrick Siarry. A survey on optimization
metaheuristics. Information Sciences, pages 82–117, 2013. doi:
10.1016/j.ins.2013.02.041.

[24] Maryam Karimi-Mamaghan, Mehrdad Mohammadi, Patrick Meyer, Amir Mohammad
Karimi-Mamaghan, and El-Ghazali Talbi. Machine learning at the service of
meta-heuristics for solving combinatorial optimization problems: A state-of-the-art.
European Journal of Operational Research, pages 393–422, 2022. doi:
https://doi.org/10.1016/j.ejor.2021.04.032.

45

https://www.tno.nl/en/focus-areas/energy-transition/roadmaps/renewable-electricity/wind-energy/innovative-logistics/simulation-software-tools/
https://www.tno.nl/en/focus-areas/energy-transition/roadmaps/renewable-electricity/wind-energy/innovative-logistics/simulation-software-tools/
https://www.tno.nl/en/focus-areas/energy-transition/roadmaps/renewable-electricity/wind-energy/innovative-logistics/simulation-software-tools/

[25] A. Aleti, I. Moser, I. Meedeniya, and L. Grunske. Choosing the appropriate forecasting
model for predictive parameter control. Evolutionary computation, pages 319–349, 2014.
doi: 10.1162/EVCO_a_00113.

[26] Shing Wa Leung, Shiu Yin Yuen, and Chi Kin Chow. Parameter control system of
evolutionary algorithm that is aided by the entire search history. Applied Soft Computing,
pages 3063–3078, 2012. doi: https://doi.org/10.1016/j.asoc.2012.05.008.

[27] A. E. Eiben, Mark Horvath, Wojtek Kowalczyk, and Martijn C. Schut. Reinforcement
learning for online control of evolutionary algorithms. In Sven A. Brueckner, Salima
Hassas, Márk Jelasity, and Daniel Yamins, editors, Engineering Self-Organising Systems,
pages 151–160. Springer Berlin Heidelberg, 2007.

[28] Giorgos Karafotias, Agoston Endre Eiben, and Mark Hoogendoorn. Generic parameter
control with reinforcement learning. page 1319–1326. Association for Computing
Machinery, 2014. ISBN 9781450326629. doi: 10.1145/2576768.2598360.

[29] Arina Buzdalova, Vladislav Kononov, and Maxim Buzdalov. Selecting evolutionary
operators using reinforcement learning: Initial explorations. page 1033–1036.
Association for Computing Machinery, 2014. ISBN 9781450328814. doi:
10.1145/2598394.2605681.

[30] Yoshitaka Sakurai, Kouhei Takada, Takashi Kawabe, and Setsuo Tsuruta. A method to
control parameters of evolutionary algorithms by using reinforcement learning. In 2010
Sixth International Conference on Signal-Image Technology and Internet Based Systems,
pages 74–79, 2010. doi: 10.1109/SITIS.2010.22.

[31] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms, 2017.

[32] Jiahu Qin, Man Li, Yang Shi, Qichao Ma, and Wei Xing Zheng. Optimal synchronization
control of multiagent systems with input saturation via off-policy reinforcement learning.
IEEE Transactions on Neural Networks and Learning Systems, pages 85–96, 2019. doi:
10.1109/TNNLS.2018.2832025.

[33] Aske Plaat. Deep reinforcement learning, 2022.

[34] Jamal Shahrabi, Mohammad Amin Adibi, and Masoud Mahootchi. A reinforcement
learning approach to parameter estimation in dynamic job shop scheduling. Computers
Industrial Engineering, pages 75–82, 2017. doi: 10.1016/j.cie.2017.05.026.

[35] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, pages
279–292, 1992. doi: 10.1007/BF00992698.

[36] Yin-Hao Wang, Tzuu-Hseng S Li, and Chih-Jui Lin. Backward q-learning: The
combination of sarsa algorithm and q-learning. Engineering Applications of Artificial
Intelligence, pages 2184–2193, 2013. doi: 10.1016/j.engappai.2013.06.016.

46

[37] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[38] Alexander Zai and Brandon Brown. Deep reinforcement learning in action. Manning
Publications, 2020.

[39] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on
reinforcement learning. In International Conference on Machine Learning, pages
449–458, 2017.

[40] Will Dabney, Mark Rowland, Marc G. Bellemare, and Rémi Munos. Distributional
reinforcement learning with quantile regression, 2017.

[41] Roger Koenker. Quantile Regression. Econometric Society Monographs. Cambridge
University Press, 2005. doi: 10.1017/CBO9780511754098.

[42] Peter J. Huber. Robust estimation of a location parameter. The Annals of Mathematical
Statistics, pages 73–101, 1964.

[43] Power Technology. The princess amalia offshore wind farm project, netherlands.
https://www.power-technology.com/projects/princess-amalia/, 2021.

[44] Muhammad Uzair and Noreen Jamil. Effects of hidden layers on the efficiency of neural
networks. In 2020 IEEE 23rd International Multitopic Conference (INMIC), pages 1–6,
2020. doi: 10.1109/INMIC50486.2020.9318195.

[45] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[46] Robert M. French. Catastrophic forgetting in connectionist networks. Trends in Cognitive
Sciences, pages 128–135, 1999. doi: 10.1016/S1364-6613(99)01294-2.

[47] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie
Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft
actor-critic algorithms and applications, 2019.

47

https://www.power-technology.com/projects/princess-amalia/

	Introduction
	Background
	Despatch GUI Tool
	Traveling Merchant Problem
	Genetic algorithm
	Individual Representation
	Evolutionary operators
	Selection operator
	Crossover operator
	Mutation operators

	Re-insertion operator
	Evaluation of Transfer Plan
	Related Work

	Methodology
	Despatch Bottleneck & Re-insertion Operator Switch
	Reinforcement learning for parameter control
	Q-Table parameter control Method
	State set
	Action set
	Reward functions
	Learning procedure

	Deep-Q Network parameter control method
	State set
	Action set
	Learning procedure

	Distributional Deep-Q Network parameter control method
	C51; The Distributional DQN
	Quantile Regression Deep-Q Network
	Learning procedure

	Experiment
	Dataset
	Experiment setup
	Deep reinforcement learning model selection tournament
	Training phase
	Hyperparameter settings

	Results

	Discussion
	Conclusion and future work

