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Abstract
The increasing demand for renewable energy sources has caused a growing interest in offshore
wind energy. Offshore wind farm managers face the NP-hard optimization challenge of schedul-
ing daily service operations, which is subject to constraints such as weather conditions, shifts,
vessel and technician capabilities, and availability. Stock-Williams and Swamy [1] proposed a
genetic algorithm that uses a wind farm simulator as the basis for its objective function to au-
tomate and solve daily maintenance planning for offshore wind farms. The performance of this
approach greatly depends on its parameter setting and the proposed default configuration po-
tentially limits the algorithm. The work presented here aims to improve the genetic algorithm in
this context by applying a reinforcement learning agent to dynamically control the key param-
eters at runtime based on the fitness of the population and features of the underlying problem.
We show that the reinforcement learning agent together with an improved re-insertion operator
increases the convergence speed of the genetic algorithm by 69�7% with only a 0�02% solution
quality decrease. This was illustrated using an experiment on the Princess Amalia Wind Park in
the Netherlands.
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1 Introduction

In the present-day scenario, the rate of global warming is harmful to the environment and the
human race. The non-renewable energy production sector contributes nearly75% of the total
�$ 2 emission in the world [2]. As a result, the United Nations is urging every government in
the world to adopt more renewable energy sources in order to comply with the Sustainable De-
velopment Goals [3] to slow down the effects of climate change.

The increased need for renewable energy sources has caused a considerable rise in attention
towards offshore wind energy. In 2020, European countries owned5”402 wind turbines that
are connected to the grid, with the Netherlands being the leading country in terms of newly
added capacity in 2020 [4]. With Dutch companies representing an estimated25%of the off-
shore wind energy market share globally and the Dutch government planning to increase the
energy produced by offshore wind farms from3•3% to 8•5% of the total energy production in
the Netherlands by 2030 [5], there is a valuable opportunity to develop the Dutch international
economic position. Alongside the Netherlands, offshore wind farms in Germany are considered
subsidy-free under any price scenario. With recent cost reductions indicating that offshore wind
power will become cheaper than conventional power generation [6]. This research suggests that
subsidy-free wind farms will be the norm in 2023 globally.

Given the practical constraints imposed by offshore operations, the selection of maintenance
strategies in�uences the overall ef�ciency, pro�t margin, safety, and sustainability of offshore
wind farms.Operation & Maintance(O&M) costs have typically accounted for17%of an off-
shore wind farm's levelized cost of energy [7]. These O&M activities range from preventive
to corrective turbine work, with individual O&M activities (such as the inspection of the wind
turbine blades or the repair of a power supply) being referred to asService Orders. On a daily
basis, Service Orders need to be scheduled in order to manage and maintain the wind farm.
This creates a problem in which different schedules can result in varying O&M costs. Given
larger wind farms, creating these schedules by hand becomes infeasible, as a list of 10 Service
Orders has more than3•6 million possible orderings in a schedule. The addition of choices be-
tween vessels, allocation of technicians, and uncertainties about the weather creates an even
more complex problem.

In Stock-Williams and Swamy [1], the authors proposed a method that automates the pro-
cess of scheduling daily Service Orders for offshore wind farms, in order to reach better schedul-
ing solutions and minimize the associated costs for offshore wind farms. Over a 5 month period,
this method managed to increase the net income by302kC relative to scheduling these Service
Orders by hand. This was illustrated by a case study on the Princess Amalia Wind Park in the
Netherlands (see Fig. 1a). This automatization is achieved by implementing a genetic algorithm
that allocates technicians to Service Orders while also determining an ef�cient work order. Each
individual in the genetic algorithm population represents a work schedule for a given workday.
A genetic algorithmis an algorithm inspired by Charles Darwin's theory of natural evolution,
emulating the process of natural selection, reproduction, and mutation in order to produce off-
spring for the succeeding generation. By regulating the selection and re-insertion operators
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according to a certain �tness function, generational selective pressure causes the population in
memory to converge towards a better selection of individuals.

(a)

(b)

Figure 1: Princess Amalia Wind Park. (a) Location in the North Sea of wind farm and O&M
port; (b) turbine layout and status (number of preventive P and corrective C Service Orders open
per turbine) on an example day. (Taken from [1])

Although genetic algorithms have reached signi�cant performance in very large, high-dimensional
search spaces in terms of pattern recognition and clustering (Maulik and Bandyopadhyay [8]),
the performance of genetic algorithms greatly depends on the values of their key parameters.
In order to achieve good performance, parameter values should be carefully chosen. Manual
parameter adjustment can be dif�cult and tedious. Therefore, automating this task has received
a lot of attention [9]. Autonomous parameter adjustment approaches can be divided into two
categories based on the challenges that they attempt to solve [10]:

• Parameter tuning: The challenge to select a static parameter setting a priori which is
likely to result in good performance based on the performance of previous runs.

• Parameter control: The challenge to adjust the parameter setting during runtime, as the
optimal parameter values may change over time. Usually, a parameter setting is chosen and
applied for a given timeframe, based on the performance, the control method will know
how good that choice was and will adjust the parameter setting accordingly.

A recent line of research aims to improve the performance of genetic algorithms by applying
reinforcement learning.Reinforcement Learning[11] is an in�uential machine learning algo-
rithm that has had a considerable impact across many different �elds and communities [12].
reinforcement learning utilizes an agent which interacts with a complex environment, mapping
actions to the said environment based on maximizing the associated rewards.

In Chen et al. [13], reinforcement learning is applied to control the key parameters during
the runtime of a genetic algorithm. Two key parameters for a genetic algorithm are the probabil-
ity of crossover (%2) and the probability of mutation (%< ). These values indicate the probability
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of applying the crossover or mutation operators for each generation of the genetic algorithm.
Too large values for%2 and%< could result in promising individuals being lost; while too small
values for%2 and%< could result in the test cases becoming similar after a certain amount of
iterations [14]. In addition to this, a dynamic key parameter con�guration grants the genetic
algorithm the ability to search in big leaps in the beginning and �ne-tune to the near-optimal
solution in small steps in the later stages of the search. By using a parameter control method, the
user has no need to select a parameter setting a priori, implicitly solving the parameter tuning
problem [10].

In this paper, we aim to answer the following research question:
To what extent does the addition of a (deep) reinforcement learning agent as a parameter con-
trol method improve the genetic algorithm developed by Stock-Williams and Swamy [1] in terms
of computation time and quality for offshore wind farm maintenance planning?

Our contributions are the following:

• An improved re-insertion operator which decreases the original genetic algorithm its com-
putation time by51•6%at the cost of a0•02%decrease in performance.

• A Q-Table parameter control method based on the work of Chen et al. [13] which adjusts
the key parameter setting for the genetic algorithm during runtime.

• A Deep-Q Network parameter control method which allows for an extended continuous
input state de�nition, while the Q-Table requires a discretized input state de�nition.

• A Quantile Regression Deep-Q Network parameter control method generates a quantile
function for each available action with the aim of better approximation of the stochastic
genetic algorithm environment.
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