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Abstract

Adaptive Reinforcement Learning for Human-AI collaboration

Reinforcement learning has shown above human results in competitive settings. However,
it can be argued that implementing reinforcement learning in collaborative settings is
more valuable to the general public.

While collaborative self-play algorithms achieve high results when paired together,
they fail when paired with humans due to mutual lack of understanding of the others
intentions and tactics. In this thesis, I build upon a study done by Caroll et al. who argue
that training a collaborative algorithm on human data, instead of a self-play algorithm,
improves its ability to collaborate with humans. This study is done in the collaborative
AI benchmarking environment overcooked-ai, which implements a simplified version of
the restaurant game Overcooked.

By defining player style specific features, it is made possible to analyze and categorise
player styles. The created features are used as the basis for a k-means clustering. These
clusters are used to train behavior cloning models to represent different types of human
behavior. Additionally, different skill levels are represented by model checkpoints at dif-
ferent stages during training. These human-like models are alternated between during
the training of the reinforcement learning model, specifically a Proximal Policy Optimiza-
tion (PPO). The hypothesis is that varying the training data in this way improves the
performance of the collaborative reinforcement learning model.

Comparing a Proximal Policy optimization with self-play to a PPO using a behavior
cloning model as ’training-mate’, my results are consistent with the findings of Caroll et
al. that the performance of the model improves when using human data. However, the
suggested approach for alternating between player styles does not lead to a higher reward
in the current setup. This is also the case when the pool of behavior cloning models is
supplemented with different skill levels. While these results do not improve upon the
baseline, this is potentially due to a small sample size. Additionally, further investigation
could be done on the approach of alternating between the behavior cloning ’teammates’.
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Abbreviations

NPC Non-Player Character
RL Reinforcement Learning

BHC Behavior Cloning
PPO Proximal Policy Optimization

AI Artificial Intelligence
HPO Hyper Parameter Optimization
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Introduction

With the rise of artificial intelligence (AI) and reinforcement learning (RL) as a large
research area, it has now also caught the attention of the general public. One question
that is often asked is how useful these methods are in the day to day life. This question
related to RL partially stems from the fact that most machine learning algorithms applied
in games are designed with the aim of outperforming or beating a human, for example
at games like chess. While this illustrates the potential use of AI models for replacing
humans, many situations more useful to the general public will require the input of a
human in some way or another. In these cases, it is of great importance that the model
and the human can interact and collaborate together.

Collaborative settings are a relatively new and difficult problem to tackle. Many agents
are currently trained with self-play[25] of population-based algorithms [12]. While these
algorithms perform well when paired with other AI-models, they are often considered as
a black box by humans. In practice two problems arise: when paired with a human, the
model does not understand the human and is unable to read its intentions. Similarly, the
human does not understand the model’s behavior. This means that although the models
have high performance in an environment when paired with other reinforcement learning
agents, they fail when paired with a human and therefore are regarded less useful by the
general public.

In this thesis, I will focus on techniques to increase the agent’s performance when
paired with humans. This is an extension of the work by Caroll et al. who have created
an environment based on the collaborative computer game Overcooked [6]. In this envi-
ronment, multiple players work together in a restaurant setting where the players have
to collaborate in order to complete orders and thereby score points. Multiple layouts are
provided, each with their own challenges. Caroll et al. show that RL models trained on
human-like behavior outperform those that are trained through self-play.

As an extension of this work, the aim is to develop an RL agent able to identify the
type of player it is collaborating with in the course of an interaction and adapt its own
play to further improve the collaboration and therefore the resulting game score. This
will be done by training multiple behavior cloning models on clusters of player-style and
using the trajectories generated to train the RL agent. This thesis will first go into current
research done in the field of human-AI collaboration, hereafter describing the data and
methods used in this project. Finally, we will interpret the results and conclude if the
training on a pool of behavior cloning models representing different player styles improves
the performance of the reinforcement learning algorithm.
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Chapter 1

Problem Statement

Currently, many multi-agent reinforcement learning methods make use of training meth-
ods that combine a set of AI agents, often previous versions of the agent itself [25]. While
this has resulted in a strong performance on two-player zero-sum games like IBM´s Deep-
Blue for chess [5] and AlphaStar for Starcraft [17], these are all games with a competitive
nature. Only few real-world problems are characterized by pure conflict or competition.
As touched upon by Dafoe et al., the hard problems of co-operations have not been tackled
to the same extent [7]. They divide co-operation into three sections: AI-AI, AI-Human,
AI for improving Human-Human co-operation. For all these categories, it is important
for machine learning algorithms to have social understanding and cooperative intelligence
in order to integrate fluently into society. The research done in this thesis focuses on
Human-AI collaboration. Although real-world relationships almost always involve a mix-
ture of common and conflicting interests, Dafoe et al. state that games of pure common
interest can be a step in the right direction. In games where the AI and the human
share the same goal, collaboration is essential to being successful in the task. Suggested
research avenues include building AI models that can understand what their teammates
are thinking and planning, communicate plans and even cooperate with varying types of
teammates (ad-hoc teamwork).

This thesis focuses on the latter. In order to improve the performance of cooperative
reinforcement learning, the aim is to train an agent to adapt to different play styles. The
approach taken is to expose the reinforcement learning algorithm to varying player styles
during training.
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Chapter 2

Related Work

In this chapter, I will outline the current work done in the fields that this thesis will cover:
multi-agent reinforcement learning, adaptive algorithms, and player style categorization.
For the each study, I will identify its contribution to the research field and its relevance
to this thesis.

2.1 Competitive Multi-agent Reinforcement Learning
Multi-agent reinforcement learning can be divided into three subcategories: fully compet-
itive, fully cooperative, and mixed cooperative-competitive[4]. Competitive algorithms
have a famous success history in being able to solve boards games like chess and Go. A
paper by Google Deepmind describes a highly successful self-play approach used for the
latter named AlphaGo Zero [26]. This algorithm receives only the current board state
as input, along with the general rules of the game and learns to play the game by play-
ing many games, without further instruction by a human. While earlier versions of the
AlphaGo algorithms used professional players as an opponent, Alpha Zero plays against
itself and earlier versions of itself. After playing many iterations of the game, the neural
network learns to evaluate the current board state as well as predict the next moves.
After three days of self-play training, the algorithm was able to defeat earlier versions of
AlphaGo, as well as the worlds best human players.

As the field of reinforcement learning became more advanced, the area of interest
began to shift from board games to video games. This type of environment is more
closely related to real-life situations but drastically scales up the complexity. Some of the
challenges this type of environment entail but are not limited to: processing the frames,
setting a more extensive reward scheme, and requiring a shorter reaction time[24]. A
study done by Jagerberg et al. found a population based training scheme to extend to
reinforcement learning algorithms [12]. Here, multiple networks are optimized individually
and will learn different policies. The knowledge learned by the separate networks will be
shared with the population at a fixed interval. Jagerberg et al. found this technique to
be successful in building reliable and robust agents quickly and found them to generalize
across reinforcement learning frameworks as Atari and Starcraft II.

One of the most well-known state-of-the-art models in multi-agent reinforcement learn-
ing that has achieved above-human performance is Alpha-star [17] applied to the game
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Related Work 4

Starcraft. Its great success is attributed to the league-like training scheme where a pop-
ulation of self-play agents battle against each other and previous versions of themselves
resulting in an agents capable of combining and adapting multiple tactics. Alhpa-star
intuitively combines the techniques of the two papers described above.

While these algorithms utilising self-play yield great success on competitive multi-
agent settings, they do not extend to collaborative settings with a human. Agents trained
through self-play assume their partner to act optimal, and therefore fail to understand
sub-optimal human behavior. On the other hand, agents that are allowed to train simul-
taneously with other agents often converge to opaque strategies and therefore fail to be
understood by humans [10]. While these strategies do not directly generalize to collabo-
rative settings, we will still take inspiration from the population-based scheme by training
multiple models that learn directly from human behavior instead of self-play. The aim is
to train a population that represents a set of players with different skill-level and player
style.

2.2 Collaborative Multi-Agent Reinforcement Learning
In previous research conducted on collaboration between multiple agents, the focus has
been on AI-AI communication. This has many applications such as in robotics and
healthcare. This is illustrated in a paper by Spaan et al. where multiple robots have
to coordinate their task in a dynamic environment[14]. They show that using coordina-
tion graphs, the robots are able to coordinate their assigned role and, using additional
assumptions, to predict the actions of the other robots.

While these techniques are successful in allowing non-humans to coordinate, many
real-life applications will require the input of a human. Many of the techniques that
work on AI-AI communication fail when the human and AI explicitly have to cooperate
due to many deep reinforcement learning algorithms developing an opaque strategy[29].
This results in them being a black box, making it difficult for humans to understand the
behavior of these algorithms [10]. Similarly, the agent assumes the human acts according
to the same strategy and when it does not, it fails. In order to bridge this gap to real-life
applications, research has been experimenting with human-AI collaboration.

A study conducted by DeepMind on the game Capture the Flag focuses on this col-
laboration with an AI. In this game, two teams consisting of AI-AI or human-AI battle
against each other to capture the flag at the other team’s camp [13]. The researchers
implement a new method they call For The Win (FTW) which makes use of a population
of agents. Each of these agents also optimises an internal reward, in contrast to most pol-
icy optimization techniques which use only rewards from the environment. Additionally,
a crucial part of the algorithms is that it has a cell for long-term and short-term mem-
ory, greatly improving their use of memory to adapt to the current state of the game.
This study finds that the performance of the human-AI teams is higher than the human-
human teams. While the AI-human teams trained with these expanded self-play methods
yield great performance, Caroll et al argue that this might be due to the AI’s individual
capability, rather than it having the ability to coordinate with the humans[6].

The approach taken by Caroll et al. for an agent capable of collaboration is to ex-
pose the reinforcement learning model to human behavior at training time[6]. To test
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the explicit collaboration between the AI and the human, they created an environment
consisting of a simplified version of the collaborative game OverCooked. By running ex-
periments in which humans participate together in the game, human trajectory data is
collected. The human data is used to train behavior cloning models (BHC), which is a
supervised learning method that learns the policy from expert demonstrations [20]. Be-
havior cloning models are in turn used to function as the teammate for the reinforcement
learning model at training time. The behavior cloning model is embedded in the envi-
ronment in order to consider it as a single-player environment. Subsequently, a Proximal
Policy Optimization (PPO)[22] model and a planning model are trained. When being
paired with a human-proxy model at testing time, the performance of the collaborative
reinforcement learning algorithms being trained with these human-like models outper-
form methods trained via self-play or population-based techniques. While this technique
showed improved performance, Caroll et al. speculate that this increase is partially due
to increased interaction flexibility when using deep reinforcement learning. Interaction
flexibility can be described as a measure of how deterministic a models is: if the agents
finds it self in the same state multiple times, how often will it choose the same reaction?

2.3 Adaptive algorithms
The research on adaptive algorithms is largely inspired by the way humans can adapt to a
situation. Human players often form a good team when they complement each other. For
example, a player that is strong at keeping overview over a game might take on a leader
role, where a player with good fine motor skills is quick in the field and will take the role
of carrying out the instructions. In the case of OverCooked, the players would come to
an understanding that the first player keeps an eye on which orders come in and does the
final plating while the other moves around, collects and cooks the ingredients. In order for
the artificial agent to reach its full potential in a collaborative task, it needs to be able to
adapt to the player it is working with. Nelapka et al. explore the interaction flexibility in
human-AI teams and study the effect of the artificial agent’s design on this measure[19]. In
order to quantify the functioning of a team, recurrence quantification analysis as proposed
by Marwan et al. is conducted whereby recurrence plots are constructed for each player
[18]. The patterns in these plots allow the researchers to gain insight in the stability of
the system. Additionally, joint recurrence plots allow for the studying of the interactions
between the players. An informative statistic that can be obtained from these plots is the
percentage of determinism (%Det), which can be interpreted as the extent to which the
interaction between team members follows stable, repeatable patterns. This is a measure
to quantify the interaction flexibility mentioned earlier. During their experiments in the
OverCooked environment, their findings are consistent with the conclusion by Caroll et
al.: higher performance is achieved when the human is paired with a human-aware model,
compared to a model trained through self-play. Additionally, the interactions within the
team with the human-aware models showed significantly more flexibility than that of the
self-player model, 65.98 %Det and 73.28 %Det respectively.

In an attempt to increase the performance of the collaborative model, DeepMind
configured a model that is simple and yet effective in representing players of different
player styles and levels they introduce as Fictitious Co-Play (FCO)[21]. This technique
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combines both the strengths of self-play and population based techniques. The first
step is to create a pool of self-play agents. In order to represent different play-styles,
these agents are initialised in different ways. In order to represent different skill levels,
checkpoints at different stages in the training phase are taken and added to the agent pool,
where a model in the early stages of training would represent a low-skill levels players,
and a fully trained model would represent a highly-skilled player. During testing, this
method significantly outperforms the PPO with BHC model used by Caroll. et al and
self-play algorithms. It has the additional advantage of not needing human trajectory
data to train the models. While this is a great advantage for easy of training, I believe
there is information in human-play that goes beyond substituting this with initialisations.
Therefore, while taking inspiration from the pooling of agents, I will include the human
data for the training of these agents.

2.4 Player style categorization
The presence of non-player characters (NPC) in video games has been around since the
late 1950’s. At this time, the research focused on adjusting the NPC in a way that
improves the experience for the player. To keep players engaged while playing a game,
it is of importance to have an opponent or teammate that matches the skill level of the
player: when the opponent is too skilled a player becomes demotivated and gives up,
whereas if the opponent is not good at all, the player does not feel challenged, both
resulting in loss of motivation and engagement[30]. Therefore, many computer games,
think of Mario Kart or Call of Duty, make use of an adaptive algorithm. To cater to
a player’s specific needs, it is useful to gather information about its play-style and skill
level. The earlier ’game-AI’ algorithms made less use of modern techniques like machine
learning and reinforcement learning, but were more based on rules of heuristics.

To learn more about how a human adapts, Lerer et al. conducted a study on the way
humans adapt to a sequential learning task[15]. The participants were asked to take part
in a serial reaction time experiment, where player had to click on a block that lights up
on a computer screen. The players had to learn the required action through rewards and
penalties; a reinforcement learning task. Players could be categorized into low and high-
performing players, where the reaction time for the high performing players got lower over
time while for the lower performing players it did not improve. In the learning curve of
the high-performing players, they develop a mouse trajectory indicating they get better
at predicting the next block to light up. While distinguishing players into high and low-
performing might not add enough value to our algorithm alone, a combination of skill
level categorization and player style does have potential.

Bartle et. al. developed a theory on taxonomy of players-types based of the text-
based adventure game Multi-User Dungeon[3]. From the compilation of the game and
observations made on the forum discussion, Bartle et al. theorized that players can be
divided into four main player-characteristics: killers, achievers, explorers and socializers.
Killers are the player who likes to provoke other players and cause drama. Trolls, hackers
and cheaters and examples of players that would fit in this category. Achievers are com-
petitive players and play the game with the intention of beating the challenges set by the
game. Explorers like to find out all the mechanics, short-cuts and tricks the game offers
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and thrive off discovering more of the world as they progress. Lastly, socializers and the
players who care less about the game itself and more about the relationship towards the
other players and the community surrounding the game. While this taxonomy can aid
game designers in creating a game that is interesting for many different type of players,
Bartle himself also mentions that these player-types are found on the Multi-User Dungeon
and cannot necessarily be extrapolated to ever other game.

Ben Cowley et al. take inspiration from Bartle’s taxonomy, mentioning the four player-
styles described in the literature they define as Conqueror, Manager, Participant, and
Wanderer. Within each of these types, they also make a distinction between hardcore
and casual. To categorize players by player-style, Ben Cowley et al make use of the
rule-based approach decision trees [15]. Due to a lack of data, they choose to focus
on classifying the player into conqueror/non-conqueror. After setting a large number of
features, they narrow down the selection to high-level behavior traits: Aggression, speed,
caution, planning, decisiveness, thoroughness, control skill, and resource hoarding. This
results in a feature vector for each of the players containing the normalized features. They
then apply various machine learning techniques such as Feed Forward Neural Network,
K-means clustering and decision trees on the feature vector. They found decision trees
to have the highest accuracy. A drawback of this approach is the need to predetermine
the different possible players. Additionally, when the algorithms encounters a player type
not seen before, it might result in unusual behavior.

A more flexible solution is proposed by Aiolli et al. who use the non-collaborative
game Ghosts to illustrate how categorizing a player’s style can lead to more stimulant
and challenging gameplay [2]. In this study, they aim to construct a profile of the player
during an interaction in the form of a feature vector. This feature vector is constructed
using simple machine learning techniques on eight features.

Taking inspiration from the methods described in this section, I will aim to distinguish
different players types and skill levels. However, instead of predetermining the number
of player types, I will perform clustering on aggregated data describing the player to
distinguish players from one and another. By eliminating the need for predetermining the
categories, the experiment pipeline can be translated to other games and environments.



Chapter 3

Data and Environment

In this chapter, the environment and dataset used for the experiments are described.
Additionally, a description of the features present in the data is given. Finally, exploratory
data analysis is done in order to explore the underlying patterns in the data.

3.1 Environment
The environment used in this thesis is a simplified version of the popular restaurant game
Overcooked adjusted for reinforcement learning experiments. This environment is created
by the team at Berkeley in order to set a benchmark for the level of cooperation between
two agents.

The game can be played on multiple layouts. On all layouts, the players have the
common goal of serving onion soup. The players both take on the role of chef and must
retrieve the onions and put them in the pot to cook. Once cooked, a bowl must be held
to collect the soup, and subsequently delivered to the serving station. In Figure 3.1 the
original layouts used in the 2019 experiment are displayed. The layouts all have their own
challenges, e.g. the most left layout in Figure 3.1 gives all players access to all stations,
but it is so small that the players might collide as a result of inefficient routing. On the
other hand, the fourth layout completely separates the players, forcing them explicitly to
divide tasks since they both have access to a different set of stations. A more descriptive
overview of the characteristics and challenges for each layout is given in Table 3.1.

The environment offers the functionality to combine agents of different algorithms.
During the course of a game, the environment keeps track of all features in the layout
including but non limited to: time, location of objects and players, collected points.

3.2 Data description
This section describes the features the environment records at each time step. As part
of the experiment, additional features will be constructed to supply the clustering model
with more information about the player. This will be described in section 4.1.1.

8



Data and Environment 9

Figure 3.1: The layouts used during the experiments conducted in 2019. For left to
right: Cramped room, Asymmetric advantages, Coordination ring, Forced Coordination,
Counter circuit

Layout Characteristics Challenges
Cramped Room All players have access to each sta-

tion
Collisions are probable due to lim-
ited walk space

Asymmetric
advantages

Players have their own space, access
to all stations

Coordination
Ring

The path is only one block wide Players are forced to coordinate
their walking direction

Forced Coordina-
tion

The players have access to different
stations

The players are forced to pass on the
ingredients

Counter Circuit Path is only one block wide, compa-
rable to Coordination Ring

Players have to coordinate their
walking direction but have more
time to do so

Table 3.1: Description of the layouts for the 2019 experiment.
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3.2.1 Original Dataset

This thesis uses a dataset collected and made public by Caroll et al.[6], available at
https://github.com/HumanCompatibleAI/overcooked_ai.

The dataset contains the records of two periods: 2019 and 2020. During the experiment
in 2019, human-to-human trajectory data was collected on five layouts, all played for 180
time steps. In the experiments conducted in 2020, multiple layouts were added to the
experiment that required more high-level actions and planning ahead. These layouts were
only played for 60 time steps. In the original paper by Caroll et all., only the 2019 data
was used. Similarly, for this thesis, the main focus will be on the data collected in 2019
to supply the model with more time steps to determine the play style of their partner.

In the processed dataset used, we find features supplied in the raw output of the
environment and some basic additional features constructed by Caroll et al. during pre-
processing. An concise overview of these features can be found in Table 3.2 and Table
3.3.

The first features are used to identify the trial. Trial ID is the specific game between
the two players Player 0 ID and Player 1 ID on layout Layout Name.

Secondly, the variables relating to time are defined. Current Gameloop states the
current time step in the integer range [0, 180] whereas Time Elapsed tell us the number
of seconds passed in real time.

The current state of the game is encoded in State. This vector includes information
about the location of the players, their view direction, a boolean value indicating whether
they are holding an object and the orders in line. Additionally, an encoded state of the
grid layout is recorded to show the current location of objects, stations.

To keep track of the actions taken during the game, the Joint Action is logged. This
includes walking moves across the layout and interacting with the stations. Additionally,
the number of button presses within a time step is logged.

When actions are taken, this can result in receiving a Reward from the environment.
Where taking a step might result in a relatively low reward, interacting with a station
or delivering an order will yield a higher reward. In addition to the reward from the
environment, the players also receive a Score for each order they fulfill.

The numerical features described above are recorded per timestamp and are later
supplemented by the total achieved, and average per time step when the game is finished.

A full overview of the data can be found in A.1
Caroll et al. composed several basic features from the underlying data during pre-

processing to supply the user with easy access.

https://github.com/HumanCompatibleAI/overcooked_ai
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Variable Description format

state
A JSON serialized version of a OvercookedState instance.
Support for converting JSON into an OvercookedState python object is
found in the Overcooked-ai repp

JSON

joint_action A JSON serialized version of a joint overcooked action. Player 0 action is at index 0,
similarly for player 1. JSON

reward The sparse reward achieved in this particular transition int
time_left The wall-clock time remaining in the trial float
score Cumulative sparse reward achieved by both players at this point in the game float
time_elapsed Wall clock time since begining of the trial int
cur_gameloop Number of discrete MDP time steps since beginning of trialcur_gameloop string

layout The ’terrain’, or all static parts (pots, ingredients, counters, etc) of the layout,
serialized in a string encoding string

layout_name Human readable name given to the specific layout string

trial_id Unique identifier given to the trial (again, note this is a single Overcooked game;
a single player pair could experience many trials). string

player_0_id
Anonymized ID given to this particular Psiturk worker. Note, these were independently
generated by us on the backend so there is no relation to Turk ID.
If player is AI, the the the player ID is a hardcoded AI_ID constant

string

player_1_id Symmetric to player_0_id string
player_0_is_human Indicates whether player_0 is controlled by human or AI Data bool
player_1_is_human Symmetric to player_0_is_human bool

Table 3.2: The overcooked environment returns a set amount of features per timestep,
shown in this table. These features relate to the state of the environment, trial and
players.

Variable Description format

cur_gameloop_total Total number of MDP time steps in this trial.
Note that this is a constant across all rows with equivalent trial_id int

score_total Final score of the trial int

button_press Whether a keyboard stroke was performed by a human at this time step.
Each non-wait action counts as one button press int

button_press_total Total number of (human) button presses performed in entire trial int
button_presses_per_time step button_press_total / cur_gameloop_total float
time steps_since_interact Number of MDP time steps since the last human-input ’INTERACT’ action int

Table 3.3: Caroll et al. computed several additional columns from the underlying raw
data and these are added for convenience. These were added during their pre-processing
and will be included in the original dataset for this thesis.

3.3 Exploratory Data Analysis
Now that the features in the raw dataset have been defined, we start our exploratory
data analysis. The purpose of this is to get an overview of the amount and quality of the
data, along with some insight in the underlying distributions, outliers and errors. While
performing this analysis, we also hope to gain insight on the differences between layouts
and players.
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3.3.1 General findings

First, an overview of the general statistics will be given. This contains information about
the amount of data available.

In Table 3.4 the number of trials and unique players per layout is shown. When
looking at the number of trials, we see that each layout is played on average 18 times
by a different player pair. While most players play all layouts, some only play on a sub-
selection. The order in which players play different layouts is always the same. All trials
are played until the total time of 180 seconds has passed. Every 0.150 seconds, a record of
the environment is saved, resulting in 1200 rows per trial. The dataset does not contain
any missing values.

Layout #trials #unique players

Cramped Room 19 38
Assymetric Advantages 19 38
Coordination Ring 18 36
Forced Coordination 18 36
Counter Circuit 12 24

Table 3.4: General statistics of the gathered trajectories: The number of trials completed
per layout and the number of players that have played each layout. Note that each player
only plays a layout once.

Action Number of occurances

[0, 0] 123290
[-1, 0] 18685
[1, 0] 16667
[0, -1] 16505
[0, 1] 13745
INTERACT 17390

Table 3.5: Number of times an action is taken. The format of the directions is [step
in x direction, step in y direction]. The INTERACT action occurs every time a player
interacts with one of the stations being the onion, pot, plate and delivery stations

In Table 3.5 an overview of the possible actions is given: a step to the left/right, a
step up/down, an interaction with one of the stations or object, or nothing. This table
shows us that during approximately 40 percent of the time steps, an action is taken.

In Figure 3.2 we see a scatter plot of the button presses versus the number of button
presses. This leads to the suspicion that more button presses lead to higher rewards.
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Figure 3.3: Histogram of the scores gained in all layouts. The peak lies between 50 and
100, but goes as high as 200.

Figure 3.2: Scatterplot of the relation between button presses and gained scores. The
regression line indicates a positive relation.

In Fig 3.3 a histogram of the total scores is shown. Scores are gained by handing in
soup. A histogram plots the frequency at which a certain value range is found in the data.
Here we see that the biggest peak is seen within the range of 50 - 100 points. However,
this does not provide all information since it might be easier on particular layouts to gain



Data and Environment 14

a high score than others. For example, a layout with two cooking plots, e.g. asymmetric
advantages, makes it easier to produce more soup, and thus has a higher potential score.

3.3.2 Exploring Layouts

To gain some understanding of the effect of the different layouts on the distributions of
features, we visualize the distributions of multiple features per layout. To show multiple
metrics simultaneously, we make use of boxplots. A boxplot shows us the range of the
values in a variable, the median, the quantiles and the outliers[28].

In Fig 3.4 the number of button presses during a trial and the total score is displayed
per layout. We see that the distributions of these variables vary greatly between layouts.
In order to create a model that can be applied to all layouts, I argue normalization is
needed to make the player styles comparable across different layouts.

(a)

(b)

Figure 3.4: Boxplots visualising the number of button presses and score distribution for
all layouts before normalization. The difference in distribution across layout indicates the
need for normalization.

From Fig 3.4a we gain the information that while the right most layouts are similar
in the score distribution, Asymmetric Advantage seem to have a higher average score and
more variation in the scores. It is possible that asymmetric advantage allows for more to
apply different player styles.

In Fig 3.5 we see the average score per layout. This plot confirms the Asymmetric
Advantage yields a higher average score at the end of a trial. Note that asymmetric
advantages is a layout where both players have access to all stations and are therefore
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Figure 3.5: Score over time per Layout. This emphasizes the difference in layouts,
showing that asymmetric advantages yields the highest rewards, most likely due to the
fact that it has two pots and two hand in stations, making it possible to cook to soup
simultaneously.

not explicitly forced to divide tasks. We also see that it takes around 100 time steps (15
seconds) for the first points to be gained. This has to do with the cooking time of the
soup.

3.3.3 Exploring player-types

Now that the effect of layouts on features are apparent, and the need for normalization
is discussed, the potential differentiation between players is visualized.

In Fig 3.6 we see the distributions of the total scores for each player combination,
aggregated over the five layouts. This also shows us that each player only plays with the
same opponent.

Here we see that while many duos gain an average score between 50 to 100 points on
average, as also seen in the score histogram, there are a few outliers. Duos (14, 15) and
(20, 21) have a lower average score than the other duos, which indicates a different, lower,
skill level. Duo (6, 7) have a broad range with scores going as high as 200 points.

Also in the button presses we see a great variation between players, as shown in Fig
3.7. This feature is aggregated over all layouts. This shows that some players inherently
perform more button presses than others, which points towards different player styles. In
the experiment in this thesis, more features in order to categorize the type of action to
further specify a player style.
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Figure 3.6: Distribution of the total score per Player duo. While many duos have
comparable scores, (14, 15) amd (21, 21) perform worse. This is interpreted to show a
difference in skill level.

Figure 3.7: Button presses per player, aggregated over all layouts. Similarly to Figure
3.6, it shows the varying in players and the potential in distinguishing them.
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Experiments

In this chapter, the techniques used in this thesis are described. The general approach
taken is to use the available data to separate the players into different play style clusters.
On each cluster, a behavior cloning is trained in order to learn a specific play style which
will consequently be fed to the final reinforcement learning algorithm.

4.1 Player Style Clustering
To prepare for the clustering, we construct additional features describing player styles and
identify features that hold most explanatory power. Secondly, the clustering algorithm
is explained. In order to let our algorithm work as optimally as possible, a feature and
parameter selection will be performed, which will conclude this section.

4.1.1 Feature Construction

The features described in Section 3.2.1 consist of generic high-level features extracted
directly from the environment. In order to supply our model with more information about
the individual players, we construct additional features. These features are described
below.

To indicate the activity level of a player, we calculate the ratio of the number of button
presses to the total number of time steps. Per time step, only one button press can occur.

Activity =

∑
buttonpresses∑
timesteps

(4.1)

To specify this measure further, we look specifically at interactions with stations. An
interactivity feature is constructed to indicate the frequency at which the player interacts
with the stations for picking up ingredients, cooking them, and delivering them. This
feature gives us an understanding of how often the player actually works, instead of e.g.
roaming around.

Interactivity =

∑
Interactions∑
timesteps

(4.2)

Combining these features, we construct a stress feature. Stress could be indicated by
how much work the player tries to get done within a limited time frame. This usually

17



Experiments 18

does not result in efficient work, but pressing buttons in the hope to do something right,
so called ’button-smashing’. The number of button presses within a window of a variable
amount of time steps gives an quantified indication of how much stress the player is feeling.

Stress =
Activity

Interactivity
=

∑
buttonpresses∑
interactions

(4.3)

While some players resort to button-smashing, other plays might simply start working
faster. To measure this characteristic we construct the efficiency feature, defined as

Efficiency =
Score

Activity
(4.4)

The features described above are based on the button presses and interactions. These
statistics on the activity of the player are supplemented with features related to game
state, game play and approach.

Firstly, features based on the players holding object are constructed. For each time
step, it is determined if the player is holding an object, and which type of object it is:
ingredient, empty dish or soup. This can later be aggregated into a features describing how
much time a player spends holding these objects. Additionally, it can now be extracted
how many times a player grabbed and put down these objects.

To aid in constructing more informative features indicating if the human understand
the environment, some object states are recorded. This includes the current state of the
soup: empty, cooking of ready. Furthermore, the time elapsed and the current total score
are included.

The simple features describing player action and station states can now be aggregated
in more meaningful features.

Time next to a human counts the consecutive time steps a player is next to the other
player. This indicates if the player tries to "push" a player away when it is in its way as
well as giving us information whether the model is smart enough to go around a player
when it is blocking its path.

Grabbed plate while cooking is a feature that describes if the player gets the plate only
when the soup is cooking/ready or also at random moments.

Hand in points is the points allocated specifically to the human handing in the or-
der. Players might divide tasks and one player will be assigned the role to hand in the
completed orders.

Put down ingredient in soup measures the amount of times a player puts the ingredients
it is holding in the pot versus a random spot in the environment.

Holding ingredients measures the time steps a player keeps holding the ingredient.
This gives an indication on whether or not the player knows what to do with it.

Empty pot measures how much of the time the pot is empty. Do the players prioritise
keeping ingredients in the pot.

Now that all the features are constructed, they can be analyzed and used for our
clustering method.
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4.1.2 K-means Clustering

A clustering algorithm is applied to the features to find clusters of players with a similar
player-style. The outcome is used in order to get an understanding of the differences
between groups of players, and later to train behavior cloning models representing these
groups.

For the clustering of player styles, the widely used clustering technique K-means is
applied[11]. This is a vector-based clustering technique relying only on one parameter,
being the total number of clusters k. The algorithm start by selection k points to represent
a cluster center. The algorithm then continues to repeat a two step update until the
algorithm has converged.

The first step consists of calculation the euclidean distance for each point to the cluster
centers and assigning it to the cluster closest.

S
(t)
i =

{
xp :

∥∥∥xp −m(t)
i

∥∥∥2 ≤ ∥∥∥xp −m(t)
j

∥∥∥2 ∀j, 1 ≤ j ≤ k

}
(4.5)

When all points are assigned to a cluster, the mean centroids of each cluster are
recalculated.

m
(t+1)
i =

1∣∣∣S(t)
i

∣∣∣
∑

xj∈S
(t)
i

xj (4.6)

When the assignment of the points to the clusters no longer changes, the algorithm is
considered converged.

4.1.3 Feature and Parameter Selection

When working with high dimensional data, we must always be aware of the curse of
dimensionality. Distance based clustering methods are specifically sensitive due to the
euclidean shrinkage phenomenon under high dimensions[9]. This relates to the fact that
in high dimensional data, the ratio between the nearest and farthest points approaches
1, meaning all points become uniformly distant from one and another[1]. For this reason,
we must perform feature selection and dimensionality reduction. This process consists of
multiple steps.

For feature selection, we want to drop features with low explanatory power. A first
indication can be given by analyzing a correlation plot, which visualizes correlation co-
efficients between all features. Correlations close to 1 indicate that two features move
in coordination with each other. Likewise, correlations close to -1 indicate two features
move directly opposite to one another. This entails that including both features in the
dataset will not provide the model with more information. Therefore, highly positive or
negative features are dropped or aggregated into one feature.

Principle component analysis (PCA) is performed in order to further reduce the di-
mensionality of our data. PCA transforms the data to a new coordination system where
the new uncorrelated components explain the direction of greatest variance in descend-
ing order. In other words, the first component shows the greatest variance, the second
component the second greatest variance and so forth.
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When it comes to choosing which features will be included in the dataset, and the
settings for PCA and K-means, an exhaustive search is performed. For a range of feature
size nfeat ∈ 3, ..., 10, all possible feature combinations are used as input to the clustering
model. The quality of the clusters will be measured with the Davies Bouldin (DB) index[8].
This index is a ratio of the distances within clusters and separation between the clusters,
for which a lower value is considered better. All resulting model outcomes are sorted by
this value. For each setting of nfeat, the clusters with the best DB-score will be analyzed
in further detail. The final setting will be chosen by visualizing the results using the high
dimensional visualization technique, as well as analyzing their main components. Below,
an overview of the clustering process is given in pseudocode.

Algorithm 1 Exhaustive Search
1: Construct additional features
2: Inital feature selection by analyzing correlation coefficients
3: for npca_components = 2, 3 do
4: for k = 3, 4, . . . , 7 do
5: for nfeatures = 4, 5, . . . , 10 do
6: Compute PCA components
7: Run K-means clustering
8: Calculate Davies Boulding index on the K-means results
9: end for

10: end for
11: end for
12: Sort all K-means results by Davies Bouldin index
13: Visualize the best 2 K-means results per value for nfeatures

4.2 Behavior Cloning for Training
In order to supply the reinforcement learning model with different player-styles, our ap-
proach is to train behavior cloning models representing different player-styles and skill
levels. To gather enough human trajectories on the game is expensive. Instead, we train
behaviour cloning models on a smaller amount of trajectories the data, which can then
represent human behavior and provide a great amount of data for the RL model. To
introduce variety in the behavior cloning models, a model is trained on each player style
found during clustering. Variety in skill level is introduced by saving the behavior cloning
models at different stages during training.

Behaviour cloning is the simplest form of imitation learning. This is inspired by the
way humans learn as well, a elder person performs a task, and the child can reproduce
the action without explicit instructions[20]. In computer science, this is framed as a
supervised learning problem where the network tries to learn the expert’s policy from
demonstrations[20]. The input provided to the network is gathered from demonstrative
trajectories by the expert and will be processed as the set of independent and identically
distributed (i.i.d.) state-action pairs (s0, a0), (s1, a1), .., (sn, an). The state s contains a
grid overview of the current game, where the action a contains the action taken by the
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expert in that state. The goal of the algorithms is to learn the policy πθ so that the loss
function (a∗, πθ(s)) is minimized. To stay consistent with the study done by Caroll et
al. a multi-layer perceptron is used. Its architecture and parameters will be determined
during hyper-parameter optimization.

It should be noted that since this algorithm assumes the state-actions pairs to be i.i.d.,
it can fail quickly in states that have not been encountered before. However, since the
overcooked game does not need a lot of long term planning, and small mistakes are not
necessarily catastrophic, the efficiency and simplicity of this algorithm outweighs the risk
of failure.

In the setting of this thesis, we train multiple behavior cloning models. For each cluster
found in Section 4.1 we train an behavior cloning model. Additionally, in order to improve
the generalization further, we take inspiration from Deepmind’s fictitious co-play [21] by
bootstrapping from the players within these clusters and using the hold-one-out method.
Here, one player is excluded from the subset. Using these techniques we create multiple
behavior cloning models per cluster, varying slightly in player-style and skill-level.

4.3 Proximal Policy Optimization
Now that we have trained the models that will be used for generating training data,
we start developing our collaborative model. For this task we will use Proximal Policy
Optimization. This algorithm is developed by OpenAI and is one of the current state-
of-the-art algorithms within reinforcement learning[22]. It provides an improvement on
other policy gradient methods.

Traditional policy gradient methods have a loss function defined as

LPG(Θ) = Ê[logπΘ(at|st)Ât] (4.7)

describing the policy loss as the log probabilities of the output of the value network
multiplied by the estimated advantage of the action. A problem that arises with this
method is that the value estimate made by the network is noisy due to variance. Addition-
ally, the multiplication with the advantage function can lead to very big and detrimental
policy updates.

Proposed solutions as Trust Region Policy Optimization (TRPO) work by constricting
the size of the policy update. This is done by restricting the difference between the old
policy and the new policy. However, this method has shown to be hard to implement and
does not extend to all applications.

Proximal Policy Optimisation (PPO) is a recent advancement in the field of Reinforce-
ment Learning, which utilises some of the advantages of TRPO, but is more simpler to
implement. PPO uses a clipped loss function instead:

LCLIP(Θ) = Ê[min(rt(θ)Ât, clip(rt(θ),1− ε,1 + ε)Ât] (4.8)

This clipped loss function imposes a clip interval on the probability ratio term, which
is clipped into a range [1¯ε, 1 + ε], where ε is a hyper-parameter. This function takes the
minimum between the original ratio and the clipped ratio.
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Another advantage of PPO is that it enables multiple epochs of minibatches using
a surrogate objective, whereas standard policy gradient methods perform one gradient
update per data sample. As seen in Figure 4.3, the method alternates between the actor,
sampling from the environment and thereby collecting data and calculating the advantage
estimates, and the critic, running Stochastic Gradient Descent on the clipped loss function.

Algorithm 2 PPO algorithm (Schulman et al. 2017[22])
1: for iteration = 1, 2, . . . do
2: for actor = 1, 2, . . . , N do
3: Run policy πθold in environment for T time steps
4: Compute advantage estimates Â1, . . . , ÂT
5: end for
6: Optimize surrogate L wrt. θ, with K epochs and minibatch size M ≤ NT
7: θold ← θ
8: end for

The PPO agent in our experiment will be provided the environment layout with the
BHC model embedded. During training it will encounter a population of BHC mod-
els, hopefully improving the generalization towards different player-styles and therefore
yielding a greater amount of points on average.

4.4 Hyper-parameter Optimization
A well-known drawback of many machine learning models, especially reinforcement learn-
ing algorithms, is their sensitivity towards hyperparameter settings. For this reason, it
is important to explore a range of settings to determine which parameters influence the
models performance the most and what a beneficial setting is. When performing an ex-
haustive search, where all models are trained to completion on a large range of possible
parameter settings, this process quickly becomes extremely time consuming. A novel
approach suggested by Li et al. is a method called HyperBand [16]. This algorithm
focuses on greatly speeding up the hyper parameter optimization by relying heavily on
efficient resource allocation and early stopping. Hyperband is an extension of the Suc-
cessive Halving algorithms. The intuition goes as follows: for a set amount of epochs,
train many different settings. Evaluate their performance at a set amount of epochs and
discard the worst half. This is repeated until only one setting is left. It is built on the
assumption that the first section of a learning curve indicates whether a parameter setting
is going to outperform the most optimal setting yet. When the algorithm runs a new set-
ting and after a small amount of epochs it does not outperform the current best setting,
the parameter combination is dropped and the exploration of other settings continues.
While this seems harsh, it often results in close to optimal results while speeding up the
search considerably compared to Bayesian techniques[23][27].
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Results

In this chapter, the results of the experiments described in Chapter 4 are presented.

5.1 Clustering

5.1.1 Correlations and feature construction

In Figure 5.1, the correlation coefficients between all features in our dataset are visualized.
Darker colors mean higher positive or negative correlation. To keep the most information
in the dataset with the smallest amount of features, features are dropped and aggregated
into one.

Soup Delivery =

∑
Hand in Soup∑
Put Down Soup

(5.1)

Put Down efficiency =

∑
Hand in Soup+

∑
Put down Ingredient in Soup∑

Put Down Object
(5.2)

Multitaskingwhilecooking = 0.3∗
∑

Actionswhilecooking+0.7∗
∑

Grabbedplatewhilecooking

(5.3)

Insecure =
∑

Next to opponent+
∑

Holding Object (5.4)

Efficient P late Grabbing =

∑
Grabbed P late while cooking∑

Grabbed P late total
(5.5)

The single features used in these aggregated metrics are dropped, along with fea-
tures describing the state and performance of the team rather than the individual. This
includes:

• cur_gameloop_total_resc
• button_press_total_resc
• score_total_resc

23
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Figure 5.1: Correlation matrix of all features before features selection. Dark green and
red squares mean high positive of negative reward. Keeping all these features in the
dataset will not result in more information.
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• sum_opp_holding_bool_resc
• sum_grabbed_object_resc
• avg_timesteps_since_interact_resc
• sum_empty_pot_resc
• sum_grabbed_ingredient_resc
• sum_grabbed_soup_resc
• sum_put_down_ingredient_resc
• sum_pot_ready_resc
• sum_pot_cooking_resc

When dropping and aggregating the highly correlated features and aggregated some
features into ratios of averages, it results in the correlation plot in Figure 5.2.

Figure 5.2: Correlation matrix after feature selection. The previously dark red and green
values features are dropped of aggregated. The dataset now contains a similar amount of
information while having a smaller dimension.
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5.1.2 Final clustering model

The exhaustive search resulted in 150 models with a Davies Bouldin value ranging from
0.084 to 0.189. Using visualization of the clusters, the setting chosen for our final model
is:

Number of PCA components Number of Clusters (k) Number of Features Combination of Features

2 6 7

’sum_buttonpress’, ’sum_interaction’,
’sum_player_holding_plate’, ’sum_player_holding_ingredient’,
’avg_dist_to_object, ’soup_delivery’,
’eff_plate_grabbing’

Table 5.1: The final setting for the K-means clustering algorithm

The result of K-means using the setting found during the exhaustive search is shown
in Figure 5.3.
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(a) Final Clustering visualized using PCA

(b) Final Clustering visualized using TSNE

Figure 5.3: The resulting clusters, visualized using dimension reduction techniques PCA
and TSNE. Both methods are used in order to confirm that the clusters are visible from
different perspective and thereby reducing the risk of interpreting false findings.

5.2 Player Style Analysis
Now that the clusters are formed and visualized through dimensional reduction, the cluster
labels can be related back to the original data to get a deeper understanding of what these
clusters represent.
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(a) Cluster 0 (b) Cluster 1

(c) Cluster 2 (d) Cluster 3

(e) Cluster 4 (f) Cluster 5

Figure 5.4: The mean over the chosen characteristics in the k-means exhaustive search
per cluster (blue), compared to the mean over all players (red)

For each of the cluster, we analyse the characteristics describing the players. In the
starplots in Figure 5.4, the mean values per cluster (blue) are plotted against the mean
over the entire dataset (orange). For example, the players in cluster 2 hand in more soups
than the average player.
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Figure 5.5: The total scores achieved by the different clusters. This shows that cluster
1 has the lowest average reward, where clusters 0 and 2 have the highest maximum score.

In Figure 5.5 the average score obtained for each cluster. Cluster 1 had the lowest
average score, where cluster 0 and 2 have the highest average along with the highest
maximum score.
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5.3 Behavior Cloning Models

(a) (b)

(c) (d)

(e) (f)

Figure 5.6: The loss (left) and accuracy (right) curves for the different implementations
of behavior cloning models.

In Figure 5.6 the learning curves for the different implementations of the behavior cloning
models are shown. Starting at the top, this learning curve of the behavior cloning model
baseline. This is a Multi Layer Perceptron trained on all available trajectories. Secondly,
the learning curve for the behavior cloning models each representing a play style based
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on the clusters from the result in 5.1 and lastly, the learning curves for the behavior
cloning models representing both different player styles as different skill levels. Note that
some curves end in an earlier stage, belonging to the models that are terminated early to
represent a lower skill level.

5.3.1 Results Hyperband

The hyperband algorithm explored a total of 250 parameter configurations. The hyperpa-
rameter search is complete. The setting leading to the highest validation sparse categorical
accuracy for the baseline behavior cloning model with MLP architecure is:

Number of Densely Connected Layers Units per Layer Type of Activation Function Learning rate
4 192 relu 0.001

Table 5.2: Best found hyper parameter setting for BHC

The graphs showing the learning curves of all configurations can be found in Appendix
A.3 and A.2.

5.4 Reinforcement Learning

Figure 5.7: The resulting mean episode rewards for the different a PPO using a self-play
teammate, compared to a PPO teamed up with an embedded BHC

First, as a sanity check, a PPO using self-play is compared against the PPO with the
baseline BHC implementation in Figure 5.7. Here, the mean episode rewars is higher for
the implementation using BHC, which is inline with the findings by Caroll et al.
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Figure 5.8: The resulting mean episode rewards for the different PPO-BHC implemen-
tations

Figure 5.8 show the mean episode reward during training for the PPO implementations
using a BHC for each cluster, and the implementation also supplying the agent pool with
different model checkpoints representing the skill-level. The reward these curves seem
to converge to are similar. However, the curve of with the larger pool of agents is less
smooth. Both implementations converge to a lower result than the PPO with the baseline
BHC.
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Discussion

In this chapter, the results presented in the Chapter 5 are interpreted.

6.1 Clustering
The exploratory data analysis showed variation in number of button presses per player,
indicating a difference in activity between players. To support the idea of training vari-
ation using behavior cloning models trained on different player styles, it is important to
confirm that there are not only different activity levels, but also multiple player styles
present in the data. By analyzing the clusters visualized in Figures 5.3a and 5.3b, the
distance between the clusters indicate that there is the possibility to differentiate between
players. This belief is confirmed when plotting the feature values using star plots, as
shown in Fig 5.4. These plots clearly show that the average feature values between clus-
ters differ. The features that were selected by the exhaustive search are a combination of
activity related features, as well as holding and efficiency related features. This confirms
the need for features beyond naive activity, established during exploratory data analysis.

The starplots give us the opportunity to interpret the player styles to a higher degree
than on the reduced dimensions. For example, Cluster 2 shows higher than average plate
holding and hand in rewards. This player possibly takes on the roll of waiter, thereby
responsible for picking up the plate and delivering the soup. Some clusters might be
considered outliers or bad players. An example of this can be seen in cluster 1, which
has a high button press value and distance to any object, but scores below average on
the other features. I argue that this is also a player style that will be common to occur
in real life. During clustering, all layouts are taken into consideration in order to supply
the clustering with as much data as possible, taking into account our limited number of
players. Here, for each trial, the player is treated as an individual person. Hereby I also
cover the possibility for a player to adapt its player style to the layout and the teammate.

This approach of clustering has a main limitation being that the clusters are defined
based on historic data. If the dataset would be supplied with new trajectories, or simula-
tions of the BHC, the centroids of these clusters may shift and a solution should be found
for this. This also limits the possible analysis of the PPO player styles after training.

Referring back to Bartles taxonomy, there does not seem to be a direct translation from
the player types defined to the player types found in these clusters using these features.

33
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Bartles taxonomy relates to a competitive game, where overcooked is collaborative. Using
similar method as applied during this thesis, there is potential for a new taxonomy tailored
to the unique challenges provided in identifying player styles in a collaborative setting.

6.2 Behavior Cloning
Using the clusters found, the different implementations of behavior cloning models are
trained. While all layouts are included in the clustering, the behavior cloning is only
trained on the layout ’cramped room’. This is due to sample size restrictions and to stay
consistent with the setup used by Caroll et al.. In order to ensure enough training data
for the behavior cloning models, only the clusters with two or more players in ’cramped
room’ are included. This leaves us with four out of the six clusters. The results of the
behavior cloning are shown in Figure 5.6. The top figure shows the result of the baseline
model, where all players are included. It can be seen that the best validation score lies
around 0.76. When the models train for many iterations, the training loss and validation
loss start to deviate, indicating overfitting.

The amount of training data available to each model decreases when only taking the
subset of players present in a cluster, resulting in a bigger loss, as seen in Figure 5.6c and
5.6e. This effect would be negligible as the dataset gets bigger. While a higher loss will
likely have a negative impact on the performance of the reinforcement learning model,
the advantage of variation in player style of the BHC is hypothesised to increase this
performance. This is a trade-off between training diversity and sample size.

6.3 PPO
Figure 5.7 shows the baseline considered for this thesis compared to the PPO with a
self-play algorithm, where the PPO with the BHC outperforms the former. This is inline
with the findings by Caroll et al.

When comparing the three BHC implementations paired with a Proximal Policy Op-
timization, we use the metric mean episode reward. The reward for the baseline imple-
mentation goes to 250 within 4000 iterations. However, for the versions where the PPO is
trained with alternating behavior cloning models, this reward converges to a value lower
than 200.

One possible explanation of this could be the quality of the behavior cloning models.
These models are trained on a much smaller set of trajectories and have a higher loss.
Just as a human team with one player that is not skilled will result in a lower reward than
a team with two highly skilled players, a team of worse performing BHC model and a
PPO is likely to perform worse than a team consisting of a better BHC and a PPO. This
indicates that with the current sample size, the loss occurring due to lower quality of the
BHC models outweighs the gain by training diversification. Another possible cause could
be the method of alternating between the behavior cloning models. Currently, each BHC
model is used in a consecutive number of iterations, and will not be revisited again. It
is possible the model would benefit from revisiting each model multiple times. This way
the model can learn with a certain BHC model using knowledge it has gained along the
way. Lastly, some of the models can represent less skilled behavior. Ending the training
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with one of these models will register a lower loss than using a high skilled model as the
final teammate.



Conclusion and Future Work

This thesis focused on two main goals: categorizing player styles in the game overcooked,
and measuring the effect of varying the player styles that the reinforcement learning
algorithm encounters during training.

When analyzing the human trajectories using dimensionality reduction, clustering and
visualisation, it shows that different types of player styles are present, even in a simple
environment as Overcooked. The clusters distinguish between different player styles, as
well as different skill levels. I establish a method of characterizing player styles by using
starplots. This offers the possibility for a standardized taxonomy for collaborative player
styles.

The behavior cloning models trained on a subset of the human trajectories have a
higher loss. Supplying these models to the PPO by alternating between BHC agents
every x epochs results in a lower reward than the baseline. This is likely to be a result
of the small sample size of player trajectories, or the technique used to alternate between
these models.

The general experiment pipeline of clustering - behavior cloning - proximal policy
optimization can be transferred to other environments.

For future work, there are multiple avenues that can be followed on the basis of this
thesis. The avenues relate to the amount of data, definition of a taxonomy, and further
adaption of the model.

With regards to the sample size, collecting more human trajectories could help improve
the clustering accuracy and thereby the performance of the BHC and PPO models. Mak-
ing these clusters more precise could also aid the ease of defining standard player types
for collaborative play. Since the pipeline of the experiment can be transferred to other
environments, it is a possibility to apply this to an environment with a larger dataset.

While this thesis focused on improving the model by supplying more variation in
training data, future work could focus on a explicit adaption of the model by appending
a categorization network in front of the PPO to distinguish players during an interaction.
Additionally, different methods of training with a pool of behavior cloning models can be
explored. In the current implementation, each model is only visited once for a certain
amount of consecutive iterations. When looking for potential improvements, models could
be revisited more often, or a sampling technique could be used to sample from a pool of
actions supplied by the various behavior cloning models.

36



Bibliography

[1] C. Aggarwal, A. Hinneburg, and D. Keim. On the surprising behavior of distance
metric in high-dimensional space. First publ. in: Database theory, ICDT 200, 8th
International Conference, London, UK, January 4 - 6, 2001 / Jan Van den Bussche
... (eds.). Berlin: Springer, 2001, pp. 420-434 (=Lecture notes in computer science
; 1973), 02 2002.

[2] F. Aiolli and C. Palazzi. Enhancing artificial intelligence in games by learning
the opponent’s playing style. International Federation for Information Processing
Digital Library; First IFIP Entertainment Computing Symposium on "New Fron-
tiers for Entertainment Computing" (ECS-2008);, 279, 01 2008. doi: 10.1007/
978-0-387-09701-5_1.

[3] R. Bartle. Hearts, clubs, diamonds, spades: Players who suit muds. Journal of MUD
research, 1(1):19, 1996.

[4] L. Buşoniu, R. Babuška, and B. De Schutter. A comprehensive survey of multi-agent
reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, 38(2):156–172, Mar. 2008. doi: 10.1109/TSMCC.2007.
913919.

[5] M. Campbell, A. Hoane, and F. hsiung Hsu. Deep blue. Artificial In-
telligence, 134(1):57–83, 2002. ISSN 0004-3702. doi: https://doi.org/10.
1016/S0004-3702(01)00129-1. URL https://www.sciencedirect.com/science/
article/pii/S0004370201001291.

[6] M. Carroll, R. Shah, M. K. Ho, T. L. Griffiths, S. A. Seshia, P. Abbeel, and A. D.
Dragan. On the utility of learning about humans for human-ai coordination. CoRR,
abs/1910.05789, 2019. URL http://arxiv.org/abs/1910.05789.

[7] A. Dafoe, Y. Bachrach, G. Hadfield, E. Horvitz, K. Larson, and T. Graepel. Coop-
erative AI: machines must learn to find common ground. Nature, 593(7857):33–36,
May 2021. doi: 10.1038/d41586-021-01170-. URL https://ideas.repec.org/a/
nat/nature/v593y2021i7857d10.1038_d41586-021-01170-0.html.

[8] D. L. Davies and D. W. Bouldin. A cluster separation measure. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-1(2):224–227, 1979. doi: 10.
1109/TPAMI.1979.4766909.

[9] P. Domingos. A few useful things to know about machine learning. Commun. ACM,
55:78–87, 10 2012. doi: 10.1145/2347736.2347755.

37

https://www.sciencedirect.com/science/article/pii/S0004370201001291
https://www.sciencedirect.com/science/article/pii/S0004370201001291
http://arxiv.org/abs/1910.05789
https://ideas.repec.org/a/nat/nature/v593y2021i7857d10.1038_d41586-021-01170-0.html
https://ideas.repec.org/a/nat/nature/v593y2021i7857d10.1038_d41586-021-01170-0.html


Bibliography 38

[10] J. N. Foerster, H. F. Song, E. Hughes, N. Burch, I. Dunning, S. Whiteson, M. M.
Botvinick, and M. Bowling. Bayesian action decoder for deep multi-agent reinforce-
ment learning. CoRR, abs/1811.01458, 2018. URL http://arxiv.org/abs/1811.
01458.

[11] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering algorithm.
Journal of the royal statistical society. series c (applied statistics), 28(1):100–108,
1979.

[12] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue, A. Razavi,
O. Vinyals, T. Green, I. Dunning, K. Simonyan, C. Fernando, and K. Kavukcuoglu.
Population based training of neural networks. CoRR, abs/1711.09846, 2017. URL
http://arxiv.org/abs/1711.09846.

[13] M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. G. Castañeda,
C. Beattie, N. C. Rabinowitz, A. S. Morcos, A. Ruderman, N. Sonnerat, T. Green,
L. Deason, J. Z. Leibo, D. Silver, D. Hassabis, K. Kavukcuoglu, and T. Graepel.
Human-level performance in 3d multiplayer games with population-based reinforce-
ment learning. Science, 364(6443):859–865, 2019. doi: 10.1126/science.aau6249. URL
https://www.science.org/doi/abs/10.1126/science.aau6249.

[14] J. R. Kok, M. T. J. Spaan, and N. Vlassis. Non-communicative multi-robot coordina-
tion in dynamic environments. Robotics and Autonomous Systems, 50(2-3):99–114,
Feb. 2005.

[15] A. Lerer, H. Hu, J. Foerster, and N. Brown. Improving policies via search in coop-
erative partially observable games, 2019.

[16] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. Journal of Ma-
chine Learning Research, 18(185):1–52, 2018. URL http://jmlr.org/papers/v18/
16-558.html.

[17] R.-Z. Liu, W. Wang, Y. Shen, Z. Li, Y. Yu, and T. Lu. An introduction of mini-
alphastar, 2021.

[18] N. Marwan, M. Carmen Romano, M. Thiel, and J. Kurths. Recurrence plots for
the analysis of complex systems. Physics Reports, 438(5):237–329, 2007. ISSN
0370-1573. doi: https://doi.org/10.1016/j.physrep.2006.11.001. URL https://www.
sciencedirect.com/science/article/pii/S0370157306004066.

[19] P. Nalepka, J. Gregory-Dunsmore, J. Simpson, G. Patil, and M. Richardson. Inter-
action flexibility in artificial agents teaming with humans. In CogSci 2021: program
for the 43rd Annual Meeting of the Cognitive Science Society, pages 112–118. Cogni-
tive Science Society, 2021. Annual Meeting of the Cognitive Science Society (43rd :
2021), CogSci 2021 ; Conference date: 26-07-2021 Through 29-07-2021.

[20] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters. An
algorithmic perspective on imitation learning. Foundations and Trends in Robotics,

http://arxiv.org/abs/1811.01458
http://arxiv.org/abs/1811.01458
http://arxiv.org/abs/1711.09846
https://www.science.org/doi/abs/10.1126/science.aau6249
http://jmlr.org/papers/v18/16-558.html
http://jmlr.org/papers/v18/16-558.html
https://www.sciencedirect.com/science/article/pii/S0370157306004066
https://www.sciencedirect.com/science/article/pii/S0370157306004066


Bibliography 39

7(1-2):46–117, 2018. doi: 10.1561/2300000053. URL https://doi.org/10.1561%
2F2300000053.

[21] S. Perrin, J. Perolat, M. Laurière, M. Geist, R. Elie, and O. Pietquin. Fictitious play
for mean field games: Continuous time analysis and applications, 2020.

[22] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/
abs/1707.06347.

[23] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE,
104(1):148–175, 2016. doi: 10.1109/JPROC.2015.2494218.

[24] K. Shao, Z. Tang, Y. Zhu, N. Li, and D. Zhao. A survey of deep reinforcement
learning in video games. CoRR, abs/1912.10944, 2019. URL http://arxiv.org/
abs/1912.10944.

[25] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, T. P. Lillicrap, K. Simonyan, and D. Hassabis.
Mastering chess and shogi by self-play with a general reinforcement learning algo-
rithm. CoRR, abs/1712.01815, 2017. URL http://arxiv.org/abs/1712.01815.

[26] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-
bert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den
Driessche, T. Graepel, and D. Hassabis. Mastering the game of go without hu-
man knowledge. Nature, 550(7676):354–359, Oct 2017. ISSN 1476-4687. doi:
10.1038/nature24270. URL https://doi.org/10.1038/nature24270.

[27] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. M. A.
Patwary, Prabhat, and R. P. Adams. Scalable bayesian optimization using deep
neural networks, 2015. URL https://arxiv.org/abs/1502.05700.

[28] D. F. Williamson, R. A. Parker, and J. S. Kendrick. The box plot: a simple visual
method to interpret data. Annals of internal medicine, 110(11):916–921, 1989.

[29] H. J. Wilson and P. R. Daugherty. Collaborative intelligence: Humans and ai are
joining forces. Harvard Business Review, 96(4):114–123, 2018.

[30] R. Wilson, A. Shenhav, M. Straccia, and J. Cohen. The eighty five percent rule
for optimal learning. Nature Communications, 10:4646, 11 2019. doi: 10.1038/
s41467-019-12552-4.

https://doi.org/10.1561%2F2300000053
https://doi.org/10.1561%2F2300000053
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1912.10944
http://arxiv.org/abs/1912.10944
http://arxiv.org/abs/1712.01815
https://doi.org/10.1038/nature24270
https://arxiv.org/abs/1502.05700


Appendix A

Appendices

Figure A.2: Sparse categorical accuracy per parameter initialisation

Figure A.3: Sparse categorical loss per parameter initialisation
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Table A.1: Full overview of the features available in the dataset by Caroll et al.
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Figure A.1: The comparison of feature values over all clusters
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