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Abstract
This report presents a study of uncertainty quantification of deep neural networks on clas-

sification tasks. The main contribution is the introduction of an empirical Bayesian method to
compute credible intervals for a deep neural network. We tested the method on a binary clas-
sification task and compared the results with an ensemble learning approach for uncertainty
quantification. We showed that the Empirical Bayesian Neural Network (EBNN) performed
comparatively well to a bootstrapping method using significantly less running time. An at-
tractive feature of Empirical Bayesian Neural Network is the scalability with an increasing
number of training points, which is precisely the main weakness of ensemble learning methods.
The motivation to develop an Empirical Bayesian Neural Network was to take advantage of
the Bayesian framework for uncertainty quantification and apply it to deep neural networks.
Unlike fully Bayesian networks, only the last layer of the network is built with Bayesian
weights while the other weights are regular point estimators. This significantly addresses the
issue of computing the complex true posterior distribution of the whole neural network while
providing correct credible intervals guaranteed by theory.

1 Introduction
Given a trained neural network estimator on a classification task, which statistical tools can be
used to quantify the uncertainty of the predictions? Although neural networks have proved to be
efficient for numerous predictions tasks, their behavior has yet to be fully understood. We observe
that building and optimizing neural networks is usually done by exploring hypotheses rather than
following theoretical motivations. This strategy of trial and error is the most practical and is
justified by the lack of theoretical results on how to build optimal neural networks. Inexperienced
practitioners most often use design patterns [16] to guarantee good behaviors on the approxima-
tion. However, it comes at the cost of additional computational expenses and a lack of theoretical
guarantees. For example the practice of tuning hyperparameters by trying many configurations [21]
is computationally expensive and doesn’t provide any guarantees to converge to the global minima.

As of today, it is out of the question to ask for theory-driven results on all aspects of neural
networks. However, it is quite engaging to work in these directions. This project presents a simu-
lation study built upon theoretical guarantees of a method for uncertainty quantification in deep
neural networks. Most results are based on Johannes Schmidt-Hieber’s work [14] on nonparamet-
ric regression, and we explore the theoretical guarantees on classification tasks. To do so, we set
up a binary classification task with controlled complexity and challenge 3 methods of calculating
uncertainty quantification of neural networks. The questions we aim to answer in this study are
the following:

• How do theory driven methods perform in comparison to other standard methods of uncer-
tainty quantification?

• Do theoretical guarantees come at the cost of performance?

We start by introducing the relevant notions of uncertainty quantification, then present a thor-
ough justification of the Bayesian framework, which our method is based on. We summarize
Johannes Schmidt-Hieber’s [14] results on neural network and their ability to approximate func-
tions, and finally present the simulation study on uncertainty quantification. The experiments
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were performed with the help of ALICE High-Performance Computing joint facility of Leiden
University and Leiden University Medical Center.

1.1 Uncertainty quantification
Uncertainty quantification regroups the methods of evaluating the uncertainty of predictions in
statistical inference problems. In a most straightforward approach, uncertainty quantification
statements can be made by calculating the variance and the standard deviation error of a prob-
ability distribution. However, these parameters are not always easy to recover in practice. As
more and more critical applications use deep neural networks for high-risk decisions like medical
imaging [12] and image recognition for self-driving cars [3], there has been an increase of interest in
uncertainty quantification in deep neural networks. Moloud Abdar et al. [1] reviewed two classical
methods for uncertainty quantification: ensemble learning and Bayesian methods. More recently
(July 2021) a survey [7] also reviewed these two methods as well as test-time augmentation meth-
ods and single network deterministic methods. In the context of our project, we will be interested
in Bayesian and ensemble learning techniques.

In Bayesian methods, we evaluate the credible intervals of the predictions of the deep neural
network. Credible intervals are statements on the density of the posterior distribution. For exam-
ple, a 95% credible interval on a parameter’s distribution is an interval that contains 95% of the
density of the distribution. The interpretations of these objects are not always evident, because
for example, they depend on the choice of prior.

Without characterizing uncertainty, we would trust the neural network to have found a coher-
ent representation to approximate the true function. While the prediction can be accurate, we
have to assess how likely we can trust the network to produce predictions when we introduce
variations in the sample space. An assumption when using machine learning methods is that the
sampling space is not too far from the true sample space. We generally assume that we sampled
the data from the true underlying generating process, and therefore, any estimator trained on
the data with satisfying accuracy would carry over well on newly generated data. In the words
of [11], these learned hypotheses derived from the data give an optimistic estimate of hypothesis
accuracy over future examples. It is referred to as bias in the estimate and is not countered by
using validation and testing sets.

1.2 Bayesian paradigm
It is quite pragmatic to use Bayesian methods to study uncertainty quantification in that they
provide built-in uncertainty quantification statements. However, they do so in the form of credible
intervals which are not always fit for interpretation. In uncertainty quantification, we are interested
in more regular statements such as confidence intervals, which are provided by frequentist methods
and not Bayesian methods. It is of interest to evaluate how credible intervals compare to confidence
intervals. To do so, we introduce in the following sections the notions at stake.

1.2.1 Bayes Theorem

The general idea behind Bayesian statistics is to give estimates in form of distributions. To illus-
trate this, let X0, ..., Xn be observations from a distribution of parameter θ0. We refer to X0, ..., Xn
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as the realizations of a random variable X that follows a distribution of parameter θ0. Now let’s
consider θ0 to be itself the realization of a random variable θ from a distribution Π0. We could in
principle continue the same treatment and define Π0 as the realization of another random variable
Π, but let’s first examine the role of the distribution Π0 over the observations X0, ..., Xn. By the
law of total probability and under some assumptions, we can express the marginal distribution
of X as the sum over all θ0, ..., θn of the product of the probability of X given θ0, ..., θn with the
probability of realization of θ0, ..., θn. Let’s derive this result from topology as in [8]:

Let (Θ,B) be a measurable space and Π a probability measure on (Θ,B). Let Pθ be a regu-
lar conditional distribution on the sample space (X,X ) of the data i.e.:

• the map A 7→ Pθ(A) is a probability measure for every θ ∈ Θ,

• the map θ 7→ Pθ(A) is measurable for every A ∈ X .

Then, the pair (X, θ) has a well-defined joint distribution on the product space (X ∗Θ,X ⊗ B):

P (X ∈ A, θ ∈ B) =
∫
B

Pθ(A)dΠ(θ).

The marginal distribution of X is then defined by:

P (X ∈ A) =
∫
Pθ(A)dΠ(θ), A ∈ X ,

where Π(θ) is referred to as the prior distribution. The posterior distribution is the conditional
distribution:

Π(B|X) = P (θ ∈ B|X), B ∈ B,

which can be expressed by Bayes formula as:

Π(B|X) =
∫
B
pθ(X)dΠ(θ)∫
pθ(X)dΠ(θ)

(Bayes Formula).

The posterior distribution can be seen as the probability for each parameter θ to have generated
the observations X. Choosing the parameter θ with the highest probability as the hypothesis is
referred as the Maximum a posteriori (MAP) estimation:

θ̂MAP(x) = argmax
θ

Π(θ|X).

1.2.2 Bayesian and frequentist inference

There are different ways to approach a statistical problem. One option is to decide whether the
analyst can make subjective statements to address the problem. However, subjective methods in
science would not be considered the most formal approaches. In statistical inference, the tradi-
tional approach and in a sense formal is referred to as the frequentist approach. It is practical to

5



draw conclusions solely on what is observed so that another person would reach the same result
given the same data. Yet, in the school of Bayesian statistics, its partisans advocate for the use of
subjective statements in the form of a prior distribution. It comes naturally that any evidence as
observed by humans, be it any statistical parameter on a controlled population, already is depen-
dent on arbitrary choices and methods of measurements. Bayesian statistics merely extend this
notion further and allow the observer to make assumptions on how the data is generated. Freedom
to challenge the origin of the data with initial beliefs and to accept the one that is considered for
some as the most reasonable approach when facing statistical problems. To give justification for
Bayesian methods, the subjective statements are sometimes said to be coming from expertise and
knowledge about the problem.

Let’s illustrate both approaches on the coin toss example and compare the resulting confidence
interval and credible interval. Suppose we have a cheated coin that has probability p to produce
head and 1− p to produce tail. The goal is to approximate the parameter p from the observation
of n tosses. Each toss is the realization of a random variable Xi which takes value 1 for head
and 0 for tail. An observation is then referred as the realization of (X0, ..., Xn). The frequentist
approach, as the name suggests, will consider the value of p to be the frequency of heads, and
subsequently 1− p to be the frequency of tails. The uncertainty about the value is determined by
the confidence interval:

Ic =
[
p− z∗ s√

n
; p+ z∗

s√
n

]
,

where s is the observed standard deviation and z∗ the z-score of the confidence level. As the number
of observations grows, the width of the confidence interval diminishes. An observation and a model
are all that is needed for a frequentist to make uncertainty statements in our example. The Bayesian
approach is conceptually different: we start by saying that for p ∈]0, 1[, an observation of n tosses
could be generated by any value of p. Then we calculate how likely each value is of generating
the observation, which will represent the posterior distribution of the parameter p. In addition,
the Bayesian model introduces a prior belief in the form of a prior distribution. It represents how
likely we believe the value of the parameter p to be. For example, if our cheated coin comes from
a batch of coins we know to be of parameter p = 0.8, we can choose a prior distribution that puts
more weight around 0.8 before any observation has been made, so that our hypothesis is initially
skewed towards that value. In practice, one can omit prior belief by choosing an uninformative
prior such as the uniform distribution. It is interesting to note that in this setup, a MAP estimator
becomes a Maximum Likelihood (ML) estimator. In our example, the model of the likelihood is a
binomial distribution of the form:

L(X|p) =
(
n

h

)
ph(1− p)n−h.

We choose the prior as a beta distribution Π ∼ Beta(α, β):

Beta(x, α, β) = xα−1(1− x)β−1

B(α, β) ,
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where B is the Beta function:

B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt.

We can now calculate the posterior distribution. The choice of this particular prior here allows us
to have an analytically defined posterior. We can prove that the beta distribution is a Bayesian
conjugate prior of the binomial likelihood. To do so, we prove that the posterior distribution
follows a beta distribution. By Bayes formula, we write:

Π(p|X) = L(X|p)Π(p)∫
L(X|y)Π(y)dy

.

Which in our example can be written as:

Π(p|X) =
(
n
h

)
ph(1− p)n−hpα−1(1− p)β−1

B(α, β)
∫ 1

0

( (nh)yh(1−y)n−hyα−1(1−y)β−1

B(α,β)

)
dy
,

and reduced to:
Π(p|X) = ph+α−1(1− p)n−h+β−1∫ 1

0 y
h+α−1(1− y)n−h+β−1dy

.

The denominator is the Beta function of parameter (h+ α, n− h+ β). Thus we have:

Π(p|X) = ph+α−1(1− p)n−h+β−1

B(h+ α, n− h+ β) .

This concludes:
Π(p|X) = Beta(p, h+ α, n− h+ β).

This result allows us to plot the posterior distribution of the experiment with an algebraic form.
Figure 1 shows the plot of the posterior distribution for an observation of 100 tosses and 20 heads,
and with a prior distribution Beta(1, 1) (uniform distribution).

The cumulative distribution function (CDF) of the posterior is the regularized incomplete beta
function Ix:

Ix = B(x; a, b)
B(a, b) ,

where B(x; a, b) is the incomplete beta function:

B(x; a, b) =
∫ x

0
ta−1(1− t)b−1dt.

We can compute a 95% credible interval by finding the values p for which the CDF is below 2.5%
and above 97.5%. Figure 2 shows the width of the credible interval [p2.5%, p97.5%]. In our example,
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Figure 1: Posterior distribution of the coin toss example of parameter p for n=100 tosses and h=20
heads. The distribution is approximately centered at p = 0.2.

we find [p2.5%, p97.5%]to be equal to [0.1336, 0.2896]. For comparison we can calculate the 95%
confidence interval with the frequentist approach:

p2.5% = p̂− z∗95

√
p̂(1− p̂)√

n
,

p97.5% = p̂+ z∗95

√
p̂(1− p̂)√

n
,

where p̂ = 20/100, z∗95 = 1.96 and n = 100. We find Ic = [0.1216, 0.2784].
We can increase the number of tosses to analyze the convergence of both approaches. Figure 3
shows the bounds of the confidence and credible intervals as the number of tosses increases. The
credible interval here follows the same behavior as the confidence interval, which could give justi-
fication to interpret this object from a frequentist point of view. Note that the confidence interval
is generally ill-defined for a low number of tosses.

We showed in this simple example the motivation of using the Bayesian approach to compute
a credible interval. It returns a very close approximation of the confidence interval calculated with
a frequentist method.

1.2.3 Parametric and nonparametric inference

In parametric inference, pre-existing models are used to bound the hypothesis space of the data
generating process. In this setup, the parameters have a fixed finite number components. When
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Figure 2: Width of the 95% credible interval. p2.5% is the value for which Ix is below 2.5% and
p97.5% is the value for which Ix is below 97.5%. Note that at p = 0.2 the plot is not symmetrical
due to the choice of prior and p being closer to the lower bound 0.

the number of components is extended to infinity, we enter the framework of nonparametric in-
ference, which could be seen as more flexible and adaptive frameworks. One illustrative example
of an application of nonparametric inference is neural networks, also known as universal function
approximators [10].

1.2.4 Bernstein-von Mises theorem

The Bernstein-von Mises theorem gives a frequentist justification of Bayesian credible intervals.
Under some assumptions and in a parametric setup, the Bernstein-von Mises theorem states that
a posterior distribution derived from Bayesian methods will converge to a Gaussian distribution
centered around the true parameter of interest and with proper variance, given enough data. It
furthermore implies that posterior distributions can provide asymptotically correct uncertainty
statements with respect to the frequentist point of view.

1.2.5 Posterior consistency and Contraction rate

We qualify a posterior distribution that converges to the true parameter as data grows as consis-
tent at this parameter. It is a useful guarantee that our model will provide a sensible estimate and
uncertainty statements as we collect more and more data. We give here the definition of posterior
consistency from [8]:

Definition 1.1 (Posterior consistency) The posterior distribution Πn(·|X(n)) is said to be (weakly)
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(b) p = 0.2 and 10000 tosses. Bayesian approximation (left), frequentist approximation (right)

Figure 3: Upper bound and lower bound of the 95% frequentist confidence interval and 95%
credible Bayesian interval as n grows.

consistent at θ0 ∈ Θ if Πn(Uc|X(n)) → 0 in P (n)
θ0

-probability, as n → ∞, for every neighborhood
U of θ0. The posterior distribution is said to be strongly consistent at θ0 ∈ Θ if this convergence
is in the almost-sure sense.

Schwartz [15] theorem gives conditions that guarantee posterior consistency for the distributions
of i.i.d. random variables. Notably, it is required for the support of the prior to have a non-zero
density around the true parameter we need to estimate. We state here Schwartz theorem as for-
mulated by [4]:

Theorem (Schwartz) Let Π be a prior on a metric space P, p0 ∈ P the true density and U
the neighborhood of p0. If:

Condition 1 (prior support): p0 is in the KL support of prior Π i.e., for all ε,

Π({p : K(p0, p) 6 ε}) > 0,
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Where K(p0, p) :=
∫
p0 log(p0

p )dµ is the Kullback-Leibler divergence between p0 and p.

Condition 2 (testing): There exists a uniformly consistent sequence of tests for testing H0 : p =
p0 vs H1 : p ∈ U c: that is, there exist φn such that:

P
(n)
0 (φn) :=

∫
φndP

(n)
0

n→∞−−−−→ 0,

sup
p∈Uc

P (n)(1− φn) = sup
p∈Uc

∫
(1− φn)dP (n) n→∞−−−−→ 0,

where φn : Xn → [0, 1] is a test function.
Then the posterior is consistent at p0, i.e., for every neighborhood U of p0,

Π(U |X1, ..., Xn) n→∞−−−−→ 1, P
(∞)
0 − a.s.

This theorem has been subject to many extensions allowing broader applicability, such as for non-
identically distributed random variables in nonparametric regression setup [5]. While an important
guarantee, posterior consistency is not always the most sought after by Bayesian methods. We
are also interested in the speed at which our estimator approaches the neighborhood of the true
parameter of the distribution of the data, referred to as the contraction rate. We will refer to
the contraction rate per its definition given by [8]. Let Πn(·|X(n)) be versions of the posterior
distributions relative a prior Πn.

Definition 1.2 (Contraction rate) A sequence εn is a posterior contraction rate at the parameter
θ0 with respect to the semimetric d if Πn(θ : d(θ, θ0) ≥ Mnεn|X(n)) → 0 in P (n)

θ0
-probability, for

every Mn → ∞. If all experiments share the same probability space and the convergence to zero
takes place almost surely [P (∞)

θ0
], then εn is said to be a posterior contraction rate in the strong

sense.

The notion of contraction rate in the Bayesian framework is similar to the notion of the con-
vergence rate of frequentist methods. In deep neural networks, it corresponds to the speed at
which the predictions estimate the true function as the number of data points increases. It has
theoretical interest and has been studied for example by Sanjeev Arora et. al [2] for linear acti-
vation functions. In the paper, they proved the convergence of gradient descent to global minima
at a linear rate, only under some assumptions on initialization. Nicholas Polson and Veronika
Rockova [13] showed minimax contraction rate of deep Bayesian ReLU networks for α − Hölder
functions in regression setup.

To summarize, given training examples, a learner and a true parameter θ0 we want to estimate,
we are now interested in the consistency of the learner’s posterior distribution at θ0 and the pos-
terior contraction rate at θ0. We remind that having a contraction rate without consistency has
no purpose. Therefore, we imply consistency when making statements on a Bayesian learner’s
contraction rate. Results on these properties will be presented in Section 2.1.

1.2.6 Priors

A prior distribution represents our beliefs on a given statistical problem, in terms of a distribution
of the parameters of the data. The choice of prior can influence the behavior of the model, notably
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the posterior consistency and the contraction rate. It also bounds the hypothesis space. As
seen in Schwartz’s theorem, for a learner’s posterior distribution to be consistent with the true
hypothesis, it is required that the prior has at least some density around the neighborhoods of the
true parameter value. Usually, in Bayesian frameworks, we try to choose a prior that is a conjugate
of the likelihood distribution, like in the coin toss example in Section 1.2.2. This simplifies the
computation of the posterior, which will inherit the algebraic form of the prior and likelihood.
Unfortunately in the classification setup, no conjugate prior is readily available.

1.3 Related Work & Motivation
The authors of [19] inspect the peculiar misclassifications of deep neural networks for image clas-
sification. They introduce the confusion error, which happens when two classes are close to each
other, and the bias error which is the regular classification errors of a network’s wrong inferences.
In practice, uncertainty quantification allows us to assess the quality of a network’s inferences, and
therefore the quality of a network’s predictions.

Moloud Abdar et al. [1] review two of the most conventional techniques of calculating uncer-
tainty quantification: Bayesian approximation and ensemble learning. Their study also includes a
wide overview of the current (June 2020) uncertainty quantification motivations, applications, and
scientific discussions. The main challenges listed were "the absence of theory, absence of causal
models, sensitivity to imperfect data and computational expense".

Nicolas Ståhl et al. [17] study the uncertainty quantification in neural networks when the in-
puts diverge greatly from the training data. They argue that Artificial Intelligence programs in
real-world applications must be consistent even in critical settings, and a way to measure this
consistency is to calculate its uncertainty on predictions. They want to show that the errors on
prediction are high in uncertainty. While the Bayesian network proved to be the most efficient, it
did not capture any difference in uncertainty between misclassified data and irrelevant data. Thus,
they deemed the method insufficient.

Lior Hirschfeld et al. [9] show that none of their methods to calculate uncertainty quantifica-
tion for regression task on molecular property prediction performed sufficiently well. In line with
[17] and [1] they argue that there is exist no baseline model to calculate uncertainty quantification
accurately, but only task-specific methods.

In [20], Matias Valdenegro-Toro advocates the use of Bayesian networks for computer vision ap-
plications because of their good approximations of uncertainty quantification.

All in all, most related works worry about one thing: the untrustworthiness of neural networks.
This constitutes a problem as more and more critical applications rely on deep neural networks.
It comes obvious that it is difficult to trust a program operating in a black box. However, when
a solution is a successful predictor, we rather praise its results than question its methods. In this
project, we carry out a simulation study based on theory-driven results from [6] and [14], which
motivate the creation of the Empirical Bayesian Network to perform uncertainty quantification
statements.
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2 Model
2.1 Neural network
In this section, we consider neural networks as mathematical functions. We summarize Johannes
Schmidt-Hieber’s results [14] on nonparametric regression using deep neural networks, which shows
how good neural networks are at approximating functions from a theoretical point of view.

2.1.1 Definitions and hyperparameters

As in [14], given a nonparametric regression model of the form:

Yi = f0(Xi) + εi, i = 1, ..., n.

Where Xi ∈ [0, 1]d are independent and identically distributed random variables (i.i.d.), εi are
i.i.d. noise variables following a normal distribution with mean zero and variance one, and Yi ∈ R
are the responses of the model. The goal is to describe the characteristics of a deep neural network
estimator that recovers the function f0 using the data (Xi, Yi).

To give a mathematical definition of a neural network, we must formalize its architecture. We
define neural network of architecture (L, p) the networks which have L number of hidden layer(s)
and a width vector p of size L+ 2, where p0, ..., pL+1 are the width of the layers L0, ..., L+ 1.

Figure 4: (L=2,p=(1,3,2,1)) Neural Network

The mathematical definition of a neural network with v-shifted ReLU activation functions is
given by:

f : Rp0 → RpL+1 , x 7→ f(x) = WLσvLWL−1σvL−1 , ...,W1σv1W0x.

where Wi is the weight vector that connect the layer i to the layer i + 1 and σvi the activation
function of the layer i. Given a network structure (L, p), we define the network sparsity class as:

F(L, p, s, F ) :=
{
f ∈ F(L, p) :

L∑
j=0
‖Wj‖0 + ‖vj‖0 6 s, ‖|f |∞‖∞ 6 F

}
.

13



We recall the results by Johannes Schmidt-Hieber which show how these neural networks can
approximate smooth enough functions. The proof of each following lemma can be found the Ap-
pendix A and B of [14]. First, given an input x and y, we can construct a neural network to
approximate xy. The evaluation of the approximation is given by the following result.

Lemma 1. For any positive integer m, there exist a network Multm ∈ F(m+ 4, (2, 6, 6, ..., 6, 1)),
such that Multm(x, y) ∈ [0, 1],

|Multm(x, y)− xy| 6 2−m, for all x, y ∈ [0, 1],

and Multm(0, y) = Multm(x, 0) = 0.

The next lemma extends the result on the product of r integers.

Lemma 2. For any positive integerm, there exist a network Multrm ∈ F((m+5)dlog2 re, (r, 6r, 6r, ..., 6r, 1)),
such that Multrm ∈ [0, 1] and

|Multrm −
r∏
i=1

xi| 6 r22−m, for all x = (x1, ..., xr) ∈ [0, 1]r.

Multrm = 0 if one or more of the components of x is 0.

Then, we show that there exist neural networks that can approximate all monomials xα :=
xα1

1 ∗ ... ∗ xαrr . We note |α| :=
∑
l |αl| the degree of the monomial and Cr,γ the number of

monomial with degree |α| < γ. We state here the result on the approximation of monomials by
neural network.

Lemma 3. For γ > 0 and any positive integer m, there exists a network
Monrm,γ ∈ F(1+(m+5)dlog2 γ ∨ 1e, (r, 6dγeCr,γ , ..., 6dγeCr,γ , Cr,γ)), such that Monrm,γ ∈ [0, 1]Cr,γ
and ∣∣∣Monrm,γ(x)− (xα)|α|<γ

∣∣∣
∞

6 γ22−m, for all x ∈ [0, 1]r.

Finally, we show that there exist neural networks that approximate the Taylor expansion of a
function.

Lemma 4. For any positive integers M,m, there exists a network
Hatr ∈ F

(
2 + (m+ 5)dlog2 re, (r, 6r(M + 1)r, ..., 6r(M + 1)r, (M + 1)r), s, 1

)
with s 6 49r2(M + 1)r(1 + (m+ 5)dlog2 re), such that Hatr ∈ [0, 1](M+1)r and for any
x = (x1, ..., xr) ∈ [0, 1]r,∣∣∣Hatr(x)−

( r∏
j=1

(1/M − |xj − xlj |)+
)

xl∈D(M)

∣∣∣
∞

6 r22−m,
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where D(M) := {xl = (lj/M)j=1,..,r : l = (l1, ..., lr) ∈ {0, 1, ...,M}r} is a set of grid points.
For any xl ∈ D(M), the support of the function x 7→ (Hatr(x))xl is moreover contained in the
support of the function x 7→

∏r
j=1(1/M − |xj − xlj |)+.

These results show how deep neural networks can approximate smooth enough functions. They give
theoretical guarantees on the neural networks accuracy, depending on the network architecture.

2.1.2 Convergence rate

Next, we are interested in how accurate are empirical measures at approximating the true under-
lying function and their convergence rate. To get the main results of the paper, we present from
[14] the relative empirical error measure with respect to the network sparsity class F(L, p, s, F ),
regression function f0 and estimator f̂ :

∆n(f̂n, f0) := Ef0

[
1
n

n∑
i=1

(Yi − f̂n(Xi))2 − inf
f∈F(L,p,s)

1
n

n∑
i=1

(Yi − f(Xi))2

]
.

The relative empirical error measure is the expected difference in performance between an estimator
and the best possible empirical estimator from the network sparsity class F . We then define the
prediction error bound with respect to the regression function f0 and estimator f̂ as in [14]:

R(f̂n, f0) := Ef0

[
(f̂n(X)− f0(X))2

]
.

Unlike the relative empirical error measure, the prediction error bound takes into consideration
the true regression function and measures the expected squared difference between an estimator
and the underlying true function. The idea is to find a relationship between the relative empirical
measure and the prediction error bound. One condition on the regression function f0 is to assume
that f0 is a composition of functions gi of Hölder smoothness βi and belong to the function space:

G(q, d, t, β,K) :=
{
f = gq ◦ ... ◦ g0 : gi = (gij)j : [ai, bi]di → [ai+1, bi+1]di+1 ,

gij ∈ Cβiti ([ai, bi]ti ,K), for some |ai|, |bi| 6 K

}
,

where q is the number of functions, d a vector of dimension, β the smoothness, K an interval
dominator and where each gi is a ti-variate function.

The main result of the paper states that, under some assumptions, if our estimator approaches the
best empirical estimator at some rate, the prediction error also approaches at some rate the true
underlying regression function. Given the effective smoothness indices:

βi := βi

q∏
l=i+1

(βl ∧ 1)
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and the rate:
φn := max

i=0,...,q
n
−

2β
i

2β
i

+ti .

Theorem (Johannes Schmidt-Hieber [14]) Consider the d-variate nonparametric regression
model for composite regression function in the class G(q, d, t, β,K). Let f̂n be an estimator taking
values in the network class F(L, (pi)i=0,...,L+1, s, F ) satisfying:

(i) F > max(K, 1),

(ii)
∑q
i=0 log2(4ti ∨ 4βi) log2 n 6 L / nφn,

(iii) nφn / mini=1,...,Lpi,

(iv) s � nφn logn.

There exist constants C,C’ only depending on q, d, t, β, F , such that if ∆n(f̂n, f0) 6 CφnL log2 n,
then

R(f̂n, f0) 6 C ′φnL log2 n

In other words, a network estimator is minimax rate optimal up to log factors if and only if the
method almost minimizes the empirical risk. Stefan Franssen’s Empirical Bayesian Neural Network
[6], which will be presented further in Section 3.2.2, is based on these results.

The choice to refer to the minimax is purely subjective, but appears in literature as the most
rational estimator.

Definition 1.3 (minimax) An estimator δM : X → Θ is called minimax with respect to a risk
function R(θ, δ) if it achieves the smallest maximum risk among all estimators:

sup
θ∈Θ

R(θ, δM ) = inf
δ

sup
θ∈Θ

R(θ, δ).

It is the estimator that minimizes the loss in the worst-case scenario.

2.2 Binary classification task
This technique allows us to create classification tasks with arbitrary complexity. Given a continuous
function f : R→ [0, 1], we draw uniformly at random n points x1, x2, ..., xn and create for each a
random variable Xi defined as:

Xi =
{

1 with probability pi = f(xi),
0 with probability 1− pi.

Each random variable Xi follows a Bernoulli distribution of parameter f(xi). The goal is to first
estimate the underlying f function given the observations Xi. To do so, we train a fully connected
neural network with ReLU activation function on each couple (xi, Xi). The output of the network
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will be an estimate of (pi, 1− pi) for a given data point xi.

The purpose of using a generated task and not an existing dataset is to have the information
on the true function f . In a practical setup, we have no information on the true generating func-
tion, and therefore could only arbitrarily evaluate the accuracy of the methods. With the binary
classification task, we can measure the distance between the predictions and the true function,
which will be useful for our evaluation of uncertainty quantification.

3 Methods
We are going to study 3 different models to compute uncertainty quantification statements. The
first two come from Bayesian methods and the third one stems from ensemble learning, which will
be considered as baseline.

3.1 Ensemble learning
Bootstrap methods are simple solutions to implement that take advantage of the stochastic prop-
erties of learning algorithms. The idea is to approximate a model through repeated independent
learning, each time on a resample of the original sample space and then aggregating the results. It
is an attractive method for uncertainty quantification as it repetitively explores the sample space
thus gives an approximation of the variance of the estimator. The weakness of the methods is their
scalability as data grows. Even though the tasks can be performed in parallel and take advantage
of distributed computing, their computational expenses still remain the main challenge.

3.2 Bayesian methods
3.2.1 Variational Bayesian inference

Variational Bayes methods aim to approximate the posterior distribution with an analytical ex-
pression. It alleviates the expensive task of computing the true posterior distribution. However,
approximating the posterior distribution of a deep neural network remains too expensive, there-
fore we choose here to use variational inference on only the last layer of the neural network. This
method will be referred to further as ADVI, which stands for Automatic Differentiation Variational
Inference from the Pymc3 library.

3.2.2 Empirical Bayesian Neural Network

We introduce here the Empirical Bayesian Neural Network (EBNN) from [6] and their guarantees
on credible interval coverage. Let Cα = B(cα, Rα) be the credible ball of at least α a-posteriori
probability with centering point cα and radius Rα. The blown-up credible ball by a factor L is the
ball B(cα, LRα). Given the regression model introduced in Section 2.1.1:

Theorem (Empirical Bayesian Neural Network [6])

Let β,M > 0. Let Π be a prior. Let Dn = ((X1, Y1), . . . , (Xn, Yn)) and εn = n
−α

2α+d . Under
some regularity assumptions:
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• The posterior contracts at near minimax rate:

lim sup
n→∞

sup
f0∈Wα

M

Ef0

(
Π
(
f : ‖f − f0‖2 ≥Mnε log(n)3∣∣Dn)) = 0,

for all Mn →∞.

• The credible balls have uniform near optimal coverage: There exists Lε,α such that if
B(cα, Rα) is an α-credible ball, the ball B = B(cα, Lε,α log(n)3Rα) satisfies

lim inf
n

inf
f0∈Wβ

M
([0,1]d)

P(n)
f0

(f0 ∈ B) ≥ 1− ε

• The credible balls have uniform near optimal size:

lim inf
n

inf
f0∈Wβ

M
([0,1]d)

P(n)
f0

(Rα ≤ Cεn) ≥ 1− ε

for some large enough C > 0.

The principle of the technique is to build Bayesian weights on the last layer of a fully connected
neural network. To do so, we train a neural network and remove its last layer and its weights.
We then draw new data points from Dn and feed them to the network. For each data point, we
use their point estimates of the last hidden layer and perform Bayesian linear regression to link
them to their target values. The Bayesian linear regression calculates Bayesian weights and their
posterior distribution. Contrary to regular linear regression where the calculated parameters are
point estimates, Bayesian linear regression assign a prior to each parameter and then optimizes
their posterior distribution. By drawing points from these distributions, we effectively assemble a
neural network with new weights on the last layer. The results from Stefan Franssen [6] guarantee
the contraction rate of the posterior distributions to be at near minimax rate and to have uniform
optimal coverage.

Figure 5: Description of the Empirical Bayesian Neural Network from [6]. φ̂1, ..., φ̂K are the
outputs of the last hidden layer of the least square estimator.
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3.2.3 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a sampling technique that draws data points from a
posterior distribution. It is a useful method when the form of the posterior cannot be analytically
defined and is expensive to compute, for example in deep neural networks. This is why we choose
the Empirical Bayesian Neural Network to only compute the posterior distribution on the last layer
of the network. Then we draw from the distributions with an MCMC sampler. One example of an
MCMC sampler is the Metropolis-Hastings algorithm, which uses random walk with acceptance
threshold to generate draws from a given posterior distribution. We use this standard algorithm
in our experiments for the Bayesian methods.

4 Experiments
4.1 Setup
4.1.1 True functions

The true functions we use to generate the binary classification task lie in the Sobolev space of
smoothness 1. We give here the definition the Sobolev space from [18]:

Let Ω = [0, 1]d. For f : Ω → R, let ‖f‖p := (
∫

Ω |f |
pdx)

1
p . Let |α| =

∑d
j=1 |αj | and Dαf(x) =

∂|α|f
∂α1x1...∂

αdxd
(x).

Definition 1.4 (Sobolev space (W k
p (Ω))). Sobolev space W k

p (Ω) with a regularity parame-
ter k ∈ N and a parameter 1 6 p 6 ∞ is a set of functions such that the Sobolev norm
‖f‖Wk

p
:= (

∑
|α|6k‖Dαf‖pp)

1
p is finite.

They correspond to smooth enough functions, for which the results from Section 2.1 holds. We
squeezed their image through a sigmoid function to get probabilities between 0 and 1. We recall
that we are generating an observation X0, ..., Xn where each Xi takes the value 1 with probability
f(xi), and 0 with probability 1− f(xi), where xi is the x-axis point corresponding to the random
variable Xi. Figure 6 shows the plot of the true functions g0, g1, g2 and g3.
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Figure 6: True functions of the binary classification task. The image of each function is passed
through a sigmoid function to return probabilities between 0 and 1.

Each function is defined as follow:

g0(x) = sin(10x2),

g1(x) =
20000∑
i=1

sin(i)
i(s+0.5) cos(πx(i− 0.5)),

g2(x) =
20000∑
i=1

sin(i2) + cos(i2)
i(s+0.5) cos(πx(i− 0.5)),

g3(x) =
20000∑
i=1

sin(i) + cos(i)
i(s+0.5) cos(πx(i− 0.5)).

4.1.2 Nonparametric setup

We showed in Section 2.1 the theoretical guarantees that these functions can be approximated by
our neural network. We recall that the network is fully connected with ReLU activation functions.
We choose the following depth and width which guarantees the results from [14]:

Depth(n, s) = bs ∗ blogncc,

Width(n, s) = bn
1

(1+2s) c.
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Having the structure of the neural network as a variable makes the model nonparametric, as
introduced in Section 1.2.3. In the experiments, we will evaluate our method on 15000 and
100000 training points on functions of smoothness 1, which correspond to the network struc-
tures (Width,Depth) : (24, 9) and (46, 11) respectively.

For all experiments we fix the number of epochs to 100 and the batch size between 36 and 60.
The loss function is the binary cross-entropy and is minimized by Adam optimization. The binary
classification setup does not allow for ReLU activation function on the last layer, therefore we use
the sigmoid function.

4.2 Evaluation
We are interested in the quality of the uncertainty quantification statements on the predictions
of a neural network trained on the binary classification task. To do so we evaluate how often the
credible intervals generated by the methods cover the true function. We define 3 metrics which are
the L-2 distance, L-2 zero distance, and running time to evaluate the results of the experiments

4.2.1 L-2 norm

The L-2 norm of a function is defined by the quantity:

‖f‖2 =
√∑n

i=1(f(xi))2

n
.

The L-2 distance between 2 functions is then:

d2(f, g) = ‖f − g‖2 =
√∑n

i=1(f(xi)− g(xi))2

n
.

The metric we use to build credible intervals is d2(f, f̄), where f̄ is the average prediction:

f̄(x) =
nf∑
k=1

fk(x)
nf

For the bootstrap method, we resample and train neural networks 50 times (nf = 50), while for
Bayesian methods we draw 200 vectors from the posterior distribution (nf = 200). We define the
95% credible interval as the interval that contains 95% of the L-2 distances. Its radius is the upper
bound of the interval, which is equal to the 95th percentile of the L-2 distances.

We define the L-2 zero distance as the L-2 distance between the true function f0 and the mean
f̄ : d2(f0, f̄). The L-2 zero distance is an estimate of the accuracy of the network, while the 95%
credible interval is an estimate of how much the predictions deviate from the mean. For each ex-
periment, we are interested in how often the L-2 zero distance is inside the 95% credible interval.
In the Empirical Bayesian Neural Network setup, theory motivates a credible ball B(cα, Rα) blown
up by a factor L = logn to achieve 95% coverage rate.
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4.2.2 Number of training points and running time

Comparing the credible intervals on two different sizes of dataset will give information on the
behavior of these objects. We can measure for example the contraction rate introduced in Section
1.2.5. We generate 2 different tasks: first, a small task of 15000 training points and then, a large
task of 100000 points. We will compare the running time of each method on both tasks. As
explained in Section 3.1, we expect the bootstrap method to scale poorly.

5 Results
5.1 Simulation on 15000 training points

Blowup g0 g1 g2 g3
None 0% 31.9% 0% 24.7%√
logn 95.9% 100% 98.9% 100%

logn 100% 100% 100% 100%
(logn)3 100% 100% 100% 100%

Table 1: EBNN 95% credible interval coverage rate of the true function for n = 15000 training
points (average on 100 experiments).

Table 1 shows the coverage rate of the credible interval generated by the Empirical Bayesian Neural
Network for n = 15000 training points for 100 experiments. A blow-up of factor L = logn covers
the true function 100% of the time, which is what theory hints for. Table 2 and Table 3 show
the coverage rate for the Variational Bayes (ADVI) and bootstrap methods respectively. We see
on Table 5 that these two methods have average L2 distances twice as large as for the Empirical
Bayesian Neural Network. This explains their better coverage rate. The average running time is
sensibly larger for the bootstrap method, 15-fold and 7-fold compared to the Empirical Bayesian
Neural Network and the Variational Bayes method respectively. However, Table 4 shows that the
bootstrap method has more accuracy than the two others. It comes from the fact that Bayesian
methods only train the neural network on half the data, the other half being used for linear
regression.

Blowup g0 g1 g2 g3
None 80.4% 100% 97.6% 91.9%√
logn 100% 100% 98.9% 100%

logn 100% 100% 100% 100%
(logn)3 100% 100% 100% 100%

Table 2: ADVI 95% credible interval coverage rate of the true function for n = 15000 training
points (average on 100 experiments).
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Blowup g0 g1 g2 g3
None 100% 100% 100% 100%

Table 3: Bootstrap 95% min/max interval coverage rate of the true function for n = 15000 training
points (average on 100 experiments).

Function g0 g1 g2 g3 Avg time
EBNN 44.1 25.4 32.6 25.6 4 min
ADVI 46.4 21.7 25.4 34.7 7 min

Bootstrap 21.4 11.3 17.7 12.2 67 min

Table 4: Average L2-zero distance (10−3) on 100 experiments for n = 15000 training points. The
L-2 zero distance d2(f0, f̄) is a measure of the accuracy of the network.

Function g0 g1 g2 g3 Avg time
EBNN 25.9 22.2 19.3 20.8 4 min
ADVI 59.0 50.2 50.5 53.1 9 min

Bootstrap 55.8 27.9 34.5 32.7 67 min

Table 5: Average L2-distances (10−3) on 100 experiments for n = 15000 training points.
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Figure 7: Example of one experiment. Credible mean and max/min interval of the EBNN for
n = 15000 training points. We see that the 95% credible interval requires a blow-up for coverage,
as even the max/min interval does not cover correctly the true function.
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Figure 8: Example of one experiment. Credible mean and max/min interval of the ADVI method
for n = 15000 training points. The bands generated by ADVI are larger than those generated by
the EBNN. The coverage rate is better, but the uncertainty quantification statement might be an
overestimate.
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Figure 9: Example of one experiment. Network mean and max/min interval for the bootstrap
method for n = 15000 training points. The bands are smoother than for the other two methods.
They cover the true function in a seemingly accurate way.
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Figure 10: Example of one experiment. Credible mean, max/min interval and logn blow-up
interval of the EBNN for n = 15000 training points. The blow-up is equal to a factor 9.6. Theory
motivates a coverage rate of 95% of the true function given this value of blow-up.

5.2 Simulation on 100000 training points

Blowup g0 g1 g2 g3
None 0% 22% 0% 0%√
logn 82% 100% 96% 100%

logn 100% 100% 100% 100%
(logn)3 100% 100% 100% 100%

Table 6: EBNN 95% credible interval coverage rate of the true function for n = 100000 training
points (average on 50 experiments).

Table 6 shows that again a blow-up factor of logn guarantees coverage of the true function. Table
7 follows the earlier ADVI results. Not shown is the coverage rate of the bootstrap method, which
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happens to be similar to Table 3. Table 8 shows that Bayesian methods are less accurate in
approximating the true function than the bootstrap method, which is mostly due to the fact they
don’t train on the full dataset. Nevertheless, the Empirical Bayesian Neural Network seems to
perform better than the Variational Bayes method in accuracy. Again we see from Table 9 that the
Empirical Bayesian Neural Network generates small average L2-distances compared to the other
two methods. The scaling for bootstrapping did not go as well as for the Bayesian methods, as it
ran on average 20 times longer.

Blowup g0 g1 g2 g3
None 46.2% 100% 82.1% 89.2%√
logn 94.9% 100% 100% 100%

logn 100% 100% 100% 100%
(logn)3 100% 100% 100% 100%

Table 7: ADVI 95% credible interval coverage rate of the true function for n = 100000 training
points (average on 50 experiments).

Function g0 g1 g2 g3 Avg time
EBNN 28.4 11.2 18.5 13.4 14 min
ADVI 65.5 54.9 31.4 18.6 13 min

Bootstrap 10.5 4.8 9.5 6.3 307 min

Table 8: Average L2-zero distance (10−3) on 50 experiments for n = 100000 training points.

Function g0 g1 g2 g3 Avg time
EBNN 10.8 8.9 8.5 8.6 14 min
ADVI 43.2 133.4 50.1 39.6 13 min

Bootstrap 39.9 18.6 23.0 21.3 307 min

Table 9: Average L2-distances (10−3) on 50 experiments for n = 100000 training points.
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Figure 11: Example of one experiment. Credible mean and max/min interval of the EBNN for
n = 100000 training points. The interval generated is very narrow compared to the 15000 training
points setup. A blow-up is required to cover the true function more consistently.
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Figure 12: Example of one experiment. Credible mean and max/min interval of the ADVI method
for n = 100000 training points. Increasing the number of training points has only slightly narrowed
the average L2-distances for the ADVI method.
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Figure 13: Example of one experiment. Network mean and max/min interval for the bootstrap
method for n = 100000 training points. Again the bootstrap method generated smoother bands
which cover the true function in seemingly optimal way.
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Figure 14: Example of one experiment. Credible mean, max/min interval and logn blow-up
interval of the EBNN for n = 100000 training points. The blow-up is equal to a factor 11.5.
The bands are not as uniform as for the bootstrap method. It seems to highlight zones of higher
uncertainty, which might be a feature of more accurate uncertainty statements.

5.3 Summary
We evaluated 3 methods to compute uncertainty quantification statements on a binary classifi-
cation task. The bootstrap method, which corresponds to training repeatedly neural networks
on resample of the data, consistently generated bands that cover the true functions (Figures 9,
13 and Table 3). The width of the bands, evaluated by the average L-2 distances (Tables 5, 9),
do not seem to be overestimated and appear more uniformly around the true function than the
Bayesian methods. The downside of the method is the running times which are the worst of the
three methods by a large margin.

The Empirical Bayesian Neural Network (EBNN), which corresponds to the theory-driven method,
generated blown-up credible balls with a 100% coverage rate of the true functions (Tables 1, 6).
The bands are uneven around the true functions and appear to highlight zones of higher uncer-
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tainty (Figures 10, 14). The scaling is better than the bootstrap method.

The Automatic Differentiation Variational Inference (ADVI) method tends to overestimate the
width of the credible bands (Figures 8, 12). There exists no theoretical results that guarantees the
uncertainty quantification statements generated by this method.

6 Conclusion
The most straightforward method of uncertainty quantification in neural networks is bootstrap-
ping, which takes advantage of their stochastic nature of learning to explore their variance by
training over and over again on a resample of the data. It corresponds quite interestingly to a
frequentist approach, in which we draw conclusions using repetition of events. We showed that this
method performs well on the binary classification task and generates intervals that cover nicely
the true function. However, whether these intervals can be considered uncertainty quantification
statements is hard to justify. In essence, they represent variations of the neural network predictions
using misrepresentations of the data. And in practice, bootstrapping is meant to be used on linear
predictors, which neural networks are not. It means that there are no theoretical guarantees that
bootstrapping generates confidence intervals, and therefore uncertainty quantification statements.

How good are uncertainty statements if they cannot be trusted? This problem motivated the
creation of the Empirical Bayesian Neural Network which possesses theoretical guarantees. Using
the Bayesian framework, this method generates the joint posterior distribution of the weights of
the last layer of a neural network, which is then used to calculate the credible intervals with respect
to the L2 norm. We are interested in how often these credible intervals cover the true function,
and the coverage rate corresponds to our uncertainty quantification statements. We showed that
blowing up the intervals by a log factor allows for full coverage of the true function in all our
experiments. However, it comes first at a cost of accuracy, because the training data is split in half
so the network only trains on a limited sample space, and at a cost of an architecture restriction,
which ensures that theoretical guarantees hold.

It is important to note that in practice, we don’t know in advance the smoothness of the true
function to approximate, and therefore, whether neural networks are effective solutions.

This work highlights the current theoretical understandings of neural networks, and in an ef-
fort to make the deep neural networks trustworthy solutions, a simulation study on a theory
driven-method to measure the uncertainty of their predictions.
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