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Abstract

With the rise of big data it becomes more and more interesting to recognize patterns of interest
in data. For finding patterns in geographically coherent datasets, the spatial information of an
instance is crucial. This thesis introduces the problem of finding the optimal list of subgroups
that together explain the most relevant deviations in the data with respect to a given target
variable and that adhere to the imposed spatial constraint. An algorithm is proposed that
combines the concepts of subgroup discovery and spatial data mining. The spatial subgroup
discovery algorithm finds a list of subgroups of which the instances in a subgroup are not more
than a defined distance away from each other. It makes use of three hyperparameters: the
beam width, the maximum search depth, and the radius. The algorithm has been tested on
one dataset varying the three hyperparameters and evaluated on the quality measure: the sum
of Weighted Kullback-Leibler divergences. The algorithm was able to find spatial subgroups,
in which most of the subgroup lists had a quality between 0.0025 and 0.0035. The results
show that the larger the beam width and the radius, the higher the quality and the higher
the runtime. Varying the maximum search depth did not cause an effect on the quality of
the subgroup list, only the runtime did increase whilst increasing this hyperparameter. In
comparison with clustering, the results of this thesis show that due to the use of subgroup
discovery in combination with spatial constraints, the algorithm is not only able to find
patterns, but is also able to explain the patterns because of the subgroup description.
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1 Introduction

Due to the upswing of available data, recognizing patterns in data becomes more and more inter-
esting. Data mining makes that possible. It aims at generating new information by examining a
large pre-existing database [15]. Common data mining techniques are classification, association,
regression, and clustering.

A distinction between data mining techniques can be made by looking at the occurrence of
a target. In unsupervised data mining there is no target variable. It tries to turn the data into
relevant information. Clustering is an example of an unsupervised data mining technique. It tries
to partition the dataset into clusters. The objects in the same cluster should share similarities,
but should not be homogeneous with objects of other clusters. Wang et al. [24] used clustering to
group transactions. A transaction consists of a set of items. A basket of items purchased during a
shopping trip is an example of a transaction. A cluster contains similar transactions, dissimilar
transactions are in different clusters.

In contrast to unsupervised analysis, supervised data mining uses a target variable. The goal
is to predict or forecast the target value of new data. Subgroup discovery is a supervised data min-
ing task. It tries to extract interesting rules with respect to a target variable [6]. An example could be
in the commercial domain. In this case the target variable is whether the customer buys the product
or not. Subgroup discovery tries to find rules that show a significant deviation in the distribution
of the target variable [7]. A subgroup could be the people that have an age of more than 50 and
live in the Netherlands. The target variable whether they bought an electric bike is here mostly "yes’.

The features of the dataset define the found patterns. Information about the location of the instances
could also be considered as a feature. For example, companies can adjust their marketing strategy
based on the found patterns of the customers behaviour and actions on their website. Apart from
that, also the country and region of the customers could be taken into consideration when trying
to find interesting patterns. Special marketing campaigns could therefore be performed to the
specific regions that show interesting patterns. Besides the commercial sector, we are also able to
gain knowledge by finding patterns in the ecological world. For example, by taking the location
of the recorded animals into account, targeted actions could be performed to the regions where
animals show a different behaviour. This thesis tries to find regions in which the target variable,
e.g., animal species, shows an interesting pattern. These patterns could be seen as groups with
similar characteristics, thus subgroups.

Van Leeuwen et al. proposed a clustering method based on the Minimum Description Length
(MDL) principle [22] to group the European mammals, see Figure 1. The MDL principle ensures
that the total compressed size of the components is minimized. The figure shows the best found
decomposition where 6 groups (clusters) are distinguished. The used dataset consists of 2670
instances, which represent each grid cell (dot in the figure) in Europe. The presence/absence of 194
mammals is specified per cell. Within a cluster you can find the cells that show the same patterns;
cells that have similar presence/absence records should belong to the same cluster.
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Figure 1: Clustering the mammals dataset. Source: ‘Identifying the components’ (M.van Leeuwen,
J. Vreeken, A. Siebes, 2009) [22]

However, this decomposition was made without exploiting any prior knowledge or geographical
constraints of the cells. It can therefore be observed that not all cells within a decomposition are
near each other. For example, if we zoom in to one of them (Figure 2), we can identify three
different regions within one group. Besides that, there are also some cells visible that are not even
in one of these regions.



Figure 2: One cluster of the decomposition of the mammals dataset. Source: ‘Identifying the
components’ (M.van Leeuwen, J. Vreeken, A. Siebes, 2009) [22]

Heikinheimo et al. clustered the same mammals dataset [5]. The k-means clustering method was
used here instead. The 6 found clusters are visible in Figure 3. Again can be observed that not all
the cells within a cluster are near each other. For example, the cluster that covers most of Italy
and Greece (yellow), has also some cells in Germany, France and the UK.

Figure 3: The 6 found clusters of the mammals dataset using k-means. Each color represents a
cluster. Source: ‘Biogeography of European land mammals shows environmentally distinct and
spatially coherent clusters’ (H. Heikinheimo, M. Fortelius, J. Eronen and H. Mannila, 2007) [5]



In order to test the relation between the environment in a specific zone and the recorded mammal
species there, the decomposition in Figure 3 was compared by looking whether the generated
clusters differ significantly in the values of environmental variables [5]. The more similar the
environmental variables in one cluster, the more the coherence. Instead of comparing the results
with the environmental variables, this thesis will use the environmental variables as features and
the mammal species as target. That allows to decide which environmental features are related to
the different mammal species. This thesis differentiates therefore from the aforementioned paper
and article because we do not apply a clustering technique but rather a spatial subgroup discovery
method. Subgroup discovery allows the use of a target variable that is needed to find groups that
stand out with respect to a target variable. Therefore, subgroup discovery will be used instead of
clustering. Besides that, the goal is not to make a complete decomposition as is done in Figure 1.
In order to add the constraint, this thesis combines subgroup discovery with another data mining
concept: spatial data mining. Spatial data mining explores possibly unknown and useful patterns
from spatial datasets. Spatial data mining has already been applied to the well-known data mining
techniques classification [16], clustering [9] and association rule mining [2].

We try to find interesting groups in a dataset with the constraint that the instances within
a group should not be more than an acceptable radius away from each other. An ’acceptable’
radius could for example be the length of an average country in Europe. An example of this thesis
algorithm performed on the same mammoals dataset in combination with climate data can be seen
in Figure 4. The red surface represents a found subgroup. It can be observed that all the instances
within one group are near each other.

Figure 4: Example of spatial subgroup discovery algorithm performed on the mammals dataset in
combination with climate data. In total 6 different subgroups are identified. The mammal species is
the target and the features are the locations of the mammals and the climate variables. The used
dataset will be further explained in Section 5.1



To the best of our knowledge we are the first to investigate a subgroup discovery task given spatial
constraints. With finding subgroups that follow (geo-)spatial thresholds, we aim to learn possibly
better subgroups with more interpretable explanations.

The aim of this project is to adapt standard subgroup discovery methods such that spatial
constraints can be imposed in order to find subgroups that share similar locations. After modifying
the subgroup discovery problem statement, an algorithm will be developed and empirically tested
on a dataset containing spatial information.

The problem can be informally stated as follows:

Find the optimal set of subgroups that 1) together explain the most relevant deviations in the data
with respect to a given target variable and 2) that adhere to the imposed spatial constraint.

This problem statement is formalised in Section 2.

1.1 Thesis overview

This bachelor thesis is written in cooperation with LIACS and is supervised by dr. Matthijs van
Leeuwen and M.Sc. loanna Papagianni.

In order to clarify this thesis project first standard subgroup discovery and spatial constraints
are thoroughly explained in Chapter 2. Then, Chapter 3 reviews related work. Furthermore, the
spatial subgroup discovery algorithm will be explained in Chapter 4 by mentioning the modified
separate and conquer algorithm and beam search using spatial information. Chapter 5 describes
the experiments and their outcome and finally, Chapter 6 concludes the thesis with directions for
future work.



2 Preliminaries

This chapter describes the information that is needed to understand the methodology. Firstly,
the relevant definitions of subgroup discovery needed for the formal problem statement will be
mentioned (Section 2.1). Subsequently, the spatial terms and intuition will be explained (Section 2.2).
A summary of the notation of the previous sections can then be found in Table 5. With that
information the formal problem statement can be defined in Section 2.3.

2.1 Subgroup discovery

Subgroup discovery aims to discover meaningful descriptions of subsets of a dataset among different
variables with respect to a target of interest [17]. A description is a conjunction of conditions
on X, each specifying a specific value or interval on a variable [18]. For example, given two
features X,nau(temp(Nov)) and X (temp(Jun)), @ candidate condition of a subgroup, denoted by s, is
Xonaz(temp(Nov)) > 17.16. A description a is then for example ‘maximum temperature in November
more than 17.16 and mean temperature in June less than 21.22". It has |a| = 2 conditions. A
formalisation of this description a is:

Xmax(temp(Nov)) > 17.16 A Xu(temp(Jun)) < 21.22

Subgroup discovery can also be described as the data mining method that aims to find all subgroups
within the inductive constraints that reveal a significant deviation in the distribution of the target
attribute. The common constraints are the minimum coverage, which states that each subgroup
should have at least a certain number of objects, and the minimum quality, which states that
each subgroup should have at least a certain quality. Due to the fact that this thesis is about
spatial subgroup discovery, we introduce also a spatial constraint. This will be further explained
in Section 2.2. An ordered set of subgroups that describe different parts of the data, is called a
subgroup list (M) [18]. An example of a subgroup list is given in Table 1.

Pr(mammal_species = ...| s ) in %
S description ns acomys minous alces alces alopex lagopus rattus norvegicus mus domesticus
1 maz(temp(Nov)) > 17.16 30 40 10 0 10 40
2 bioclim4 < 682.74 15 20 40 0 0 40
3 min(temp(Jun)) > 816 50 0 100 0 0 0
4 prec(Nov) > 67.83 5 40 30 0 20 10
dataset distribution 0 30 40 10 15 5

Table 1: This table contains a subgroup list derived from a toy example dataset of the mammals
dataset. The dataset has 10 numeric features and one nominal target consisting of 5 different
mammal species. Each of the 4 subgroups s are covered by ng instances and are defined by
‘description’. The rest of the numbers are denoted by Pr(mammal_species = ...|s), which indicates
the estimated probability (in %) of each class label (mammal species) occurring within the subgroup.

For each subgroup the probability distribution can be defined. If for example, we take the first
subgroup in Table 1 with the description max_temp_nov_utm > 17.16 given, the statistics can be
defined as

0% = {p; = 40; p; = 0.10; p3 = 0; p4 = 0.10; p5 = 0.40}.



©% is the vector of all parameter values of the rule 7. The a; represents the description of subgroup
i. Here i has a range of 1 to 4. The classes 1 to 5 represent the mammals species. The p, is
the marginal probability for that class [18]. The target variable follows the following categorical
distribution:

mammals_species ~ Cat(py, ps = 40; po, ps = 10;p3 = 0)

In order to decide the quality of a subgroup the distribution of the subgroups target attribute is
compared with the distribution of the datasets target attribute. The distribution of the target
attribute of the dataset is denoted by:

O = {p; = 30; p, = 0.40; ps = 10; p4 = 0.15; p5 = 0.5}.

The bigger the deviation and the larger the subgroup, the better the subgroup is. In order to
calculate how interesting a subgroup is, a quality measure is used. In general, a quality measure
for subgroup discovery consists of two components. The coverage (n,) of the subgroup should be

represented in the formula, and a function of the difference between the subgroups and datasets
target distribution (f(0¢,©%)) [18].

As the dataset in this thesis has a multinominal target, the Weighted Kullback-Leibler divergence
will be used. This quality measure supports a multinominal target. It is defined as the Kullback-
Leibler divergence between a subgroup’s and dataset’s target distribution linearly weighted by its
coverage [18]. The formula is given by:

WK L(©% 6%) = n,KL(6% 6%) [23]

The formula for the Kullback-Leibler for categorical distributions is given by:

K Lea(©% 6) = Tocy palog(%22) [23]
The p,|, is the maximum likelihood estimate of the conditional probability of the target ¢ (element
of ) given the subgroup a. The intuition behind this formula is that it compares the probability
distribution of the subgroup with the probability distribution of the dataset. The target variable is
given and therefore the different labels of the target variable can be counted. The count of each
category of the subgroup can be compared with the count of each category of the whole dataset
by looking at their distributions (©* and ©%). If the distributions differ significantly from each
other, it means that their distributions of the target variable also differ. Due to the fact that
subgroup discovery aims at finding subgroups that stand out with respect to a given target variable,
comparing the probability distributions of the target variable of the subgroup and of the whole
dataset is therefore a good option. That is what the Weighted Kullback-Leibler divergence does.
The bigger the difference of the distributions, the bigger the WKL will be. This concludes to a
better subgroup in comparison to a subgroup with a lower WKL.

We can for example compare s; and sy from Table 1 on their quality using the WKL. With-
out even calculating the WKL of both subgroups, we can know by looking at numbers that the
WKL of s; will be bigger. Not only is the coverage of s; bigger (n; > ny4), but also the ©% differs



more from ©7 than ©% does. Therefore, the K Lcat((:)‘“; @d) will be bigger and because the n; is
also bigger, the WKL of s; will subsequently also be bigger.

In order to measure the quality of different subgroup lists, the Sum of Weighted Kullback-Leibler
divergences (SWKL) is introduced. This can be defined as the sum of weighted KL divergences for
the individual subgroups [18]:

b U at A@;Ad
SWKL(M) = LK lca(©50)

In order to normalise the sum of the individual weigted Kullback-Leibler divergence of the subgroups,
it is divided by |D|, the number of instances in dataset D. The bigger the SWKL, the better the
quality of the subgroup list. Figure 4 represents the plots of the subgroup list performed by the in
this thesis proposed algorithm. The WKL of each of the green surfaces was calculated. Subsequently,
the SWKL of the subgroup can be calculated.

2.2 Spatial constraints

In this thesis we work with data that contains spatial objects. This is an attribute that captures
location in 2D or 3D space. This could be in the form of points or as geometrical spatial objects.
In order to only allow subgroups that are geographically connected with each other, a spatial
constraint should be imposed. It is important that only areas that are closely and geographically
linked are being considered.

The data that is used for the spatial subgroup discovery algorithm has three spatial features:
the latitude (), the longitude (\) and the identification (I D) of the cell, utm_I D, which will be
explained in Section 5.1. For now it is sufficient to know that the dataset makes use of a grid that
consists of cells. Each cell is defined by an unique ID. An example of such a dataset is given in
Table 2 and the corresponding grid of the data is given in Figure 5.

index mammal_species A ¢ utm_ID features
0 rattus norvegicus 1.8 5.1 2F
1 alopex lagopus 21 34 3D
2 rattus norvegicus 2.3 7.1 3H
3 mus domesticus 3.1 6.2 4G
4 alopex lagopus 3.4 3.7 4D
5 mus domesticus 4.1 5.7 5F
6 alopex lagopus 42 48 5BE
7 alopex lagopus 5.1 6.4 6G
8 mus domesticus 5.4 3.6 6D
9 rattus norvegicus 6.2 6.0 7G
10 mus domesticus 6.6 0.9 TA

Table 2: Toy example dataset of the mammals dataset. Each row represents a recorded mammal.
The features columns are all the climate features, such as max(tem(Nov)), that are merged with
the mammals dataset.
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Figure 5: Toy example grid of the mammals dataset. The values within the cells (eg. ‘2B’) represent
the cell ID. Each orange dot corresponds to a recorded mammal from the toy example dataset 2.

In order to introduce the spatial constraint a circle with the predefined radius (r) is made around a
sampled instance. The ¢ and the A form the centroid of the constraint. A centroid will be formally
written down as a coordinate (x¢, ), in which xf, gives the latitude value of the instance ¢ and
the x§ the longitude value of the instance c. If we have sampled for example the instance with the
index of 3 from Table 2, the centroid (3.1, 5.2) will be formed. If the predefined radius is 1.5, the
circle visible in Figure 6 around the centroid will be made.
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Figure 6: Toy example grid of the mammals dataset. The blue dot represents the sampled instance
and forms the centroid of the constraint.

The centroid defines the constraint. Now we are going to define which instances belong to the
formed constraint. All the instances within the circle could for example be in the formed subgroup,
thus all the instances j that adhere to:

(2 =) + (w3 —25)* <0

The .icfo and xf\ refer here respectively to the latitude and longitude value of the instance j. Excluding
the instance that forms the centroid, the instances with indices 2 and 5 will then be part of the
subgroup:

index mammal_species N @  utm_ID features

2 rattus norvegicus 2.3 7.1 3H
3 mus domesticus 3.1 6.2 4G
5 mus domesticus 4.1 5.7 5HF

Table 3: Subgroup formed by the constraint (m{o —z8)% + (:Ef\ —x5)? <r?

This will however not be the constraint. In order to find interesting subgroups, each instance has not
only the three spatial objects as features, but also the environmental information about the location
of the instance are features. Making use of the cells in a grid makes this possible. Lakshmanan et
al. [11] used the cell ID as spatial object and researched that ‘the most straightforward approach
to automated analysis would be to look within a small neighborhood (say 10 km) of an event of
interest (say occurrence of a lightning flash) and see if certain values of a spatial gridded field
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(say the maximum radar reflectivity observed at 6 km or higher) are associated with the event’.
Features about a specific cell, such as the maximum temperature in March, can easily be linked
with the cell in which the instance has been recorded. Therefore, we will not only use the latitude
and longitude value, but also the cell ID (utm_ID) as part of the constraint. The instances that
are allowed in the subgroup are all the instances that are in the covered or partly covered cells by
the circle. If we apply this to Figure 6, we get Figure 7.
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Figure 7: Toy example grid of the mammals dataset. The blue dot represents the sampled instance.
Around the longitude and latitude coordinate (A, ) the circle with the predefined radius r is made.
The blue surface covers the allowed cells of the formed subgroup. All the instances within the blue
surface are in the subgroup.

In order to decide whether an instance is allowed in the subgroup, we make a set of the allowed
cells. The allowed cells form a new grid, defined by the centroid(s) and denoted by grid(C'). In
Section 4.5 will be explained that a subgroup can have multiple centroids. Therefore, C' is a set of
centroids. All the cells that are (partly) covered by the circles made arounds the centroids, defined
by the (A, ¢) coordinate of the instance, are added to the set. A cell is defined by the coordinates of
its corners, corners(¢). Here, ¢ refers to the ID of a cell (utm_I D) and corners(¢) is a set of the
corners of that cell. For example, if we take the cell with utm_I D =2B’ in Figure 7, corners(‘2B’)
is defined by {(1.0,1.0),(1.0,2.0),(2.0,1.0) and (2.0,2.0)}. The length of a cell is the same for every
cell in the grid and denoted by dist. We can now define the list of allowed cells grid(C'):

Viecorners(e) Jeec (T — 26)? + (2§ — 25)? < (r + dist)* = ¢ € grid(C) (1)

The x’; and ¥ refer respectively to the value of the latitude and longitude value of the kth corner.
The dist is added to the radius to make sure that also the cells that are partly covered by the circle
are added to grid(C). The cell with the ID ¢ is an element of grid(C) if all the corners of the cell

11



¢ are in at least the surface made by one of the centroids in C.

Now that we have the set of all the allowed cells, the next step is adding the instances that
are covered by these cells to the subgroup. We therefore compare the ¢’s of the instances with the
¢’s of the set. If the ¢ (utm_ID) of an instance is in the set of allowed cells, the instance 27 is
allowed in the subgroup:

vl € grid(C) =27 €s;  (2)

For example, if we take the instance with the index 3 as centroid, C' = {3.1,5,2}. If we then apply
(1) to all the cells (¢) in the grid, we get grid(C) = {‘3E’, “4E’, ‘5E’, 2F’, ‘3F”, ‘4F’, ‘5F’, 2G’,
3G, 4@, ‘5@, ‘2H, ‘3H’, ‘4H’, ‘5H’}. By subsequently performing (2) to all the instances 27 in
the dataset, we get the subgroup with the instances visible in Table 4.

index mammal_species N ¢  utm_ID features
rattus norvegicus 1.8 5.1 2F
rattus norvegicus 2.3 7.1 3H
mus domesticus 3.1 6.2 4G
mus domesticus 4.1 5.7 5F
alopex lagopus 4.2 48 5E

S OtWwWw N O

Table 4: All the instances in the subgroup with C' = {(3.1,5.2)}.

As mentioned in Section 2.1 the spatial constraint will be considered as an inductive constraint
of the subgroup discovery task. The spatial constraint decides which instances are allowed in the
subgroup. Therefore, the spatial constraint should be a part of the subgroup description. For that
reason, the description contains not only the conditions but also the centroids of the constraint.
Due to the fact that the subgroup keeps expanding each iteration by a maximum of the radius, the
description can have multiple centroids. The algorithm will be further explained in Chapter 4. A
definition of a spatial subgroup description a could be:

Xma:p(temp(Nov)) > 17.16 A X,u(temp(]un)) <2122 N C = {(2, 3), (3, 5), (4, 5)}

12



Definition
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Dataset.

Dataset of explanatory variables.

An explanatory variable of X.

The value of sample x for variable X.

Number of elements in a set.

Number of examples in dataset D.

Number of explanatory variables.

Subgroup list model.

Subgroup list model.

Number of subgroups in M.

A subgroup.

Description of a subgroup.

Probability of category y given description a, i.e., Pr(y|a).
Maximum likelihood estimation of parameter ©.
f(6*,6%)  Function of differences between distribution ©¢ and ©°<.
KLgg Kullback-Leibler divergence for categorical distributions.
WKL Weighted Kullback-Leibler divergence general form.
SWKL Sum of Weighted Kullback-Leibler divergences.

r radius.

S LRI U MKD

OF & v
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A x-coordinate (longitude) feature of dataset.
@ y-coordinate (latitude) feature of dataset.
[0) ID of cell.

corners(¢) set of corners of cell ¢.

C; set of centroids of subgroup 1.

dist length of a cell.

grid(Cy) set of allowed cells of subgroup .

Table 5: Notation table
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2.3 Formal problem statement

Remember the problem statement defined in Chapter 1:

Find the optimal list of subgroups that 1) together explain the most relevant deviations in the data
with respect to a given target variable and 2) that cohere to the imposed spatial constraint.

It consists of two components and therefore the formal problem statement will also consist of two
components.

The first component of the problem statement refers to the definition of subgroup discovery.
The deviation in the data with respect to a given target variable is calculated by a quality measure.
This thesis makes use of the Weighted Kullback-Leibler divergence. The bigger this number, the
more the subgroup deviates from the dataset and therefore the better the quality of the subgroup.
The quality of a subgroup list is given by the SWKL. The goal is to find the model M with the
highest SWKL out of all the possible models M, because that implies the optimal list of subgroups.
Therefore the first component of the problem statement can be formalised as:

1) arg-maxpyre m[SWKL(M)]

The second component of the problem statement refers to the spatial constraint. In Section 2.2 we
defined when an instance is allowed to the formed subgroup. For all the instances in the subgroup ¢
should hold that its utm_I D is in the set of allowed cells of that subgroup. This can be formalised
to:

2) Vs,emVaies, xé € grid(C;)

It says that for every subgroup i in the model M and for all the instances 27 in subgroup i the
utm_I D value of the instance 27 should exist in the set of allowed cells (grid(C;)).

Now that we have the two components we can define the formal problem statement as:

arg-max e m[SWKL(M)],
8.t VeemVaies, o T, € grid(C)

The objective is thus to return the subgroup list M that maximizes the combined quality of the
subgroups and that adheres to the spatial constraint.

14



3 Related Work

In this section the most relevant related work will be mentioned. Firstly, the most relevant papers
about subgroup discovery will be mentioned. Then, some papers about spatial data mining and
clustering will be shortly described. Finally, a paper in which classification is used for subgroup
discovery will be mentioned

3.1 Subgroup discovery

The spatial subgroup discovery algorithm in this thesis will be based on subgroup discovery, also
known as top-k subgroup mining. Atzmueller describes it as top-k subgroup mining because the
applied subgroup discovery algorithm can return a result set containing those subgroups above
a certain minimal quality threshold or only the top-k subgroups [13]. These top-k subgroups are
decided by a quality measure. The top-k mining algorithm beam search will be used for the spatial
subgroup discovery algorithm and will be further explained in Section 4.1.

Proenca et al. uses the Minimum Description Length (MDL) principle to find the best sub-
group list [18]. Besides that, the paper mentions that when the subgroup list only contains one
subgroup, it corresponds to top-1 subgroup discovery with the Weighted Kullback-Leibler diver-
gence as a quality measure. In this thesis we decided to work with the Kullback-Leibler divergence.
Furthermore, Proenca et al. is the first one to address two subgroup discovery challenges at the
same time; subgroups should not only stand out with respect to the target attribute, but should also
be statistically robust and non-redundant [18]. The paper tackles the problem of finding interesting
subgroups arising out of coincidences. The subgroups should therefore be against multiple hypothesis
testing and be statistically robust by themselves.

Van Leeuwen and Knobbe already researched the problem of the redundancy of subgroup sets
mined; the fact that subsets with the highest deviation according to a certain quality measure
tend to cover the same region of the dataset with slight variations in their description of the
subset [21]. As a solution, subgroup set mining is proposed in which not individual subgroups are
considered, but only sets of subgroups. This thesis compares the performance therefore on the
quality of subgroup sets instead of on individual subgroups. Furthermore, in Section 4.3 a manner
to reduce the redundancy in the spatial subgroup discovery algorithm is explained.

3.2 Spatial data mining

Anuradha et al. names the importance of spatial clustering towards the decision making process [3].
For example, in the public safety measures spatial clustering is able to identify urban activity
centers in a dataset of a city that contains spatial information, etc.

Kolatch used an unsupervised data mining task to cluster spatial datasets [9]. Regular data
mining differs from spatial data mining due to the existence of spatial data. This spatial data gives
information about the space occupied by objects. In the case of this thesis we work with spatial
data that consists of geometric discrete information. The paper says that “the attributes of a spatial
object stored in a database may be affected by the attributes of the spatial neighbors of that object.

15



In addition, spatial location, and implicit information about the location of an object, may be
exactly the information that can be extracted through spatial data mining” [9]. It would therefore

be interesting to add spatial constraints to subgroup discovery to find out if better subgroups can
be found.

The paper describes the different spatial clustering algorithms and compares them on six fac-
tors which are necessary for effective clustering of large spatial datasets. Identifying irregular shapes
and handling data with higher dimensionality are examples of factors. Clustering tries to create
a group of objects that is organized on some similarity among the members. In the perspective
of spatial datasets, “clustering permits a generalization of the spatial component that allows for
successful data mining” [9]. The best performing method according to the 6 factors is the bottom-up
hierarchical clustering algorithm CURE.

3.3 Clustering

Van Leeuwen et al. introduces two algorithms for identifying the different distributions in a trans-
action database [22]. These different distributions can be defined as components. The paper shows
that highly characteristic components are identified by using two MDL-based algorithms that follow
orthogonal approaches [22].

The main reason why this paper is interesting for this thesis is due to the experiment with
the mammals dataset. In Figure 1 the best found decomposition is visible. No spatial information
was used for the decomposition. The instances of the mammals dataset represent the cell loca-
tion of 50 x 50 km. Each instance has been assigned to one of the six components based on the
mammals that are recorded at that location. As mentioned in Chapter 1 this thesis introduces
spatial information to only allow cells in the subgroup that are geographically linked. Therefore,
the unsupervised algorithm that is used in the paper is transformed to a supervised algorithm with
spatial constraints.

3.4 Classification & subgroup discovery

Similarly to subgroup discovery, classification is a supervised data mining task. The goal is to
“build a concise model of the distribution of class labels in terms of predictor features. The resulting
classifier is then used to assign class labels to the testing instances where the values of the predictor
features are known, but the value of the class label is unknown” [10]. In this thesis classification will
be used but with a different purpose. The goal of the use of classification in this thesis is not to
predict the target value of new instances, but to know which features are the most important ones
to classify the instances.

A subgroup description contains conditions. Due to the fact that there will be worked with
a dataset that has approximately 80 features, it is useful to know which features are important.
That way more logical conditions can be defined. A measure for the importance of the features is
the entropy. It measures the disorder of a feature and it is a number between 0 and 1 [1]. A high
entropy (1) means a high level of disorder. In Figure 8 the proportion of data points belonging to
the positive class versus the relative entropy is visible.
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Figure 8: Proportion target variable versus entropy. The least amount of disorder can be found
bottom left and bottom right of the figure. That corresponds to an entropy nearby 0 [19].

We want the feature to split the data with the least amount of disorder, or as ‘pure’ as possible.
This results in the highest information gain; the additional information that the feature provides [1].
A decision tree is an example of a classifier and will be used as classifier in this thesis. Each node
of the tree represents a feature. A decision tree is made by calculating the information gain of
each feature. The feature with the highest information gain is chosen as node. Some features will
have an higher information gain than others. This can differ each node. A way to express the
combined relative information gain of the features is by the feature weights. This provides a ranking
of the features that contribute most to the classification model [12]. The spatial subgroup discovery
algorithm uses the features with the highest feature weights to set the conditions. This idea is based
on the paper ‘Maximal exceptions with minimal descriptions’ [20] in which classification is used for
description minimisation. In order to find subgroups that are both exceptional and interesting, the
paper proposes two information-theoretic measures: one based on the Kullback—Leibler divergence
(also used in this thesis), and the other on Krimp. The paper focuses on exception maximisation
and description minimisation. The reason why this paper is relevant for this thesis is due to the use
of classification for the description minimisation.

The model described in the paper starts with a candidate subgroup and improves it each it-
eration. One of the two steps that is done each iteration is a step for the description minimisation.
In this step the subgroup descriptions need to be specified, how to find and minimise them. The
paper explains that the mapping from the description data and a subgroup to {0,1}, can be regarded
as a binary classification task. The classification model RIPPER is used in the paper.
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4 Spatial Subgroup Discovery Algorithm

In this section the algorithm of the spatial subgroup discovery will be explained. The algorithm
returns the subgroup list that maximizes the SWKL and adheres to the spatial constraint. The
algorithm makes use of the idea behind beam search combined with separate and conquer. Therefore,
beam search in the context of subgroup discovery will be firstly explained. Subsequently, the spatial
subgroup discovery algorithm will be explained as in the steps mentioned in Section 4.1.

4.1 Beam search

In comparison with the best-first search algorithm, the beam search algorithm reduces the space
complexity by expanding the most promising nodes in a limited set [14]. Beam search is therefore a
heuristic algorithm and the limited set is decided by the beam width. When applied to subgroup
discovery, the algorithm starts with candidate subgroups of size one and iteratively refine a subset
by adding one more condition per iteration of those to subgroups to a larger length [18]. The
refinements are decided by a quality measure. In our case it is the Weighted Kullback-Leibler
divergence.

The spatial subgroup discovery algorithm makes use of three hyperparameters:

e Beam width: decides how many subgroups are allowed for further refinements and how many
conditions are set.

e Maximum search depth: decides how many conditions are allowed as maximum to a subgroup.
e Radius: the dist plus the radius decides the cells that are allowed in grid(C).

A visualization of the beam search algorithm can be seen in Figure 9:
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Figure 9: Visualization of the beam search algorithm. The best condition is selected based on
quality. The beam width and maximum search depth are both set to 2.
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The top level of Figure 9 represents the whole dataset. The first step (Section 4.2) is then defining
the conditions. In the figure it is visible that two conditions are defined. A condition is for example:
p(temp(March)) < 10 where u(temp(March)) is the average temperature recorded in March.

The second step (Section 4.3) is adding the spatial constraints on each one of the refinements.
As mentioned in Section 2.2 a constraint consists of a centroid and a predefined radius. A ran-
dom instance out of the data which covers the condition is chosen as centroid. All the instances
that are in the cells, which are covered or partly covered by the radius, belong then to that sub-
group. In Figure 9 two centroids are chosen and thus two subgroups are made out of each refinement.

The third step (Section 4.4) is measuring the quality of all the acquired subgroups. These subgroups
will subsequently be ranked according to their quality. The predefined hyperparameter beam width
decides how many of these subgroups are allowed for further refinements. The beam width in Fig-
ure 9 is two and therefore the first two subgroups in the ranked list are allowed for further refinements.

Then, a new iteration can start (Section 4.5) with the two subgroups found after the just mentioned
step three. The algorithm keeps iterating until the max search depth is reached or the quality
does not improve. In the figure the max search depth is two and therefore only two conditions are
allowed. If the dark green subgroup has the best quality, it is returned.

4.2 Step 1: Feature selection & conditions

The first step of the spatial subgroup discovery algorithm is defining the conditions. Each condition
is based on a feature. In order to make a division of the dataset we will use a classification algorithm
to measure the importance of each feature.

As classifier the decision tree will be used. The features that contain spatial information are
not considered for the classification. Instead of using the decision tree to make a model to predict
the target variable on a new dataset, we are going to calculate the importance of each feature.
This can be expressed by the weight of the feature. The higher the weight, the more important
the feature is. After measuring the weight of each feature, they are ranked from highest weight to
lowest weight. We have chosen that the parameter that decides how many conditions are made,
has the same value as the beam width. Therefore, the beam width does not only decide the beam
selection (Section 4.4), but also the number of conditions. If the beam width equals 5, the top 5
features of the ranking are taken for the conditions.

Now the features are decided on which the conditions will be set. The next step is deciding
on which value of the feature the dataset will be split. In order to split the dataset in half of the
instances the median value of the feature is calculated. The conditions are then alternately higher
and lower than the median value of the feature. For example, if the beam width equals 5, there
will be made 5 subgroups with 5 different conditions which are specified by alternately higher and
lower than the mean value of the feature.
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In Figure 10 an example of this step is visible. The dots represent the instances. The right figure is
the made subgroup and is the result of adding a condition.

Add Condition

. p— 0

Figure 10: Example of Step 1. Assume that the green instances have a maximum temperature
above 20 and the orange instances below 20 in November. If the condition maz(temp(Nov)) < 20
is set, the orange dots are the resulting subgroup.

4.3 Step 2: Spatial constraints

The second step is imposing the spatial constraints on the just made subgroups. In order to reduce
the runtime , the parameter n_samples decides how many instances will be sampled to impose the
spatial constraint on. The sampling of the instances has one restriction: in order to prevent instances
that are close to each other, and therefore create almost the same subgroups, only instances are
allowed that have at least a distance of the predefined radius from the already chosen instances.
This holds only for the first iteration, because after the first iteration the made subgroup is much
smaller than the whole dataset. Finding instances that have at least a distance of the radius from
each other in the made subgroup is impossible. Therefore, the distance is defined by a fraction of
the radius.

Now that we have the sampled instances, it is time to impose the spatial constraint on them. A
circle with the predefined radius is made around all the sampled instances. All the instances that are
in the covered or partly covered cells by the circle are allowed in the subgroup. The subgroup has
as description the condition and the centroid of the used instance. It is allowed that one instance

belongs to multiple subgroups if it is covered by multiple radii. Figure 11 gives an example of Step
2.
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Figure 11: Example of Step 2. The three purple dots of the left figure are the three sampled
instances. The figure on the right is the result of imposing the spatial constraint with a radius of
1.5. You can observe the three made subgroups. Remember that all the instances are allowed in the
subgroup even if the circle only partly covers the grid. To make this clear all the grids belonging to
the subgroup with their corresponding centroid are marked with the same colour. For example, all
the instances that are in the pink marked grids belong to the subgroup with centroid (2,2.5). The
description of a subgroup now contains one condition and one centroid.

4.4 Step 3: Quality measure

The third step is measuring the quality of the subgroups. This will be done with the Weighted
Kullback-Leibler divergence. With the Weighted Kullback-Leibler divergence the distribution of the
subgroup is compared with the distribution of the whole dataset and the quality of the subgroup is
returned. The subgroups are subsequently ranked by their quality. The beam width hyperparameter
decides how many subgroups are allowed for further refinements, which are explained in Section 4.5.
Figure 12 illustrates this step with a beam width of 2.
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Figure 12: Example of Step 3. The left figure represents the three made subgroups after performing
Step 2. Subsequently, the quality of these three subgroups is calculated. Assuming that the blue
and pink subgroups have the highest quality, they are allowed for further refinements. The result of
performing Step 3 is the right figure.

4.5 Top-k subgroup selection

After performing steps 1, 2 and 3 of the algorithm, the top-k subgroups are returned. The top-k
subgroups are allowed for further refinements. There exist two different refinements; performing
steps 2 and 3, or performing steps 1, 2 and 3.

If the quality of a subgroup can be improved by only performing Step 2 and 3, this will be
done. If that is not possible anymore, Step 1 will be performed again. This implies that the number
of centroids of a subgroup can be bigger than the number of conditions. After each refinement a
centroid or a centroid and a condition are added to the subgroup description. Remember that only
performing Step 1 has influence on the maximum search depth.

Performing Step 2 again requires an extra explanation. Instead of having one big dataset to

set the conditions on as described in Section 4.2, there are now multiple smaller subgroups consist-
ing of different conditions. An example of performing Step I again is given in Figure 13.
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Add Condition a

Figure 13: Example of Step I in second iteration. A subgroup with a condition and centroid is seen
on the left figure. Assume that the green instances have a mean temperature below 10 and the
orange instances above 10 in June. If the condition u(temp(Jun)) > 10 is set, the blue marked dots

in the right figure is the resulting subgroup.

After performing Step 1 from the second refinement we are left with subgroups whose descriptions
consist of two conditions and one centroid. To these subgroups we are adding a centroid by sampling
an instance within that already existing subgroup. The sampled centroid has the same predefined
radius. All the instances that are within the cells that are (partly) covered by the circle of the
new centroid are added to the subgroup. Therefore, the subgroup is expanded. Figure 14 gives an

example.

Add {Zonstrainta

Figure 14: Example of Step 2 in second iteration. The left figure represents the subgroup with two
conditions and one centroid. To this subgroup another centroid is added (the other blue dot). The
subgroup gets expanded due to this added centroid. This is visible by the added blue surface on

the right figure.
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Repeating Step & of the refinement is the same as explained in Section 4.4. The top-k subgroups
are returned after which another iteration can be done. If the maximum search depth is reached
or the quality does not improve anymore the algorithm stops and it returns the subgroup with
the best quality. This subgroup is subsequently added to the subgroup list M and separated from
the dataset. Then, the spatial subgroup discovery algorithm can be repeated with the rest of the
dataset. The result is that the subgroup list keeps expanding with the best found subgroups.
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5 Experiments

In this section we analyze the pre-processing of the dataset and the setup of the experiments.
In addition, we evaluate the performance of the spatial subgroup discovery method proposed in
Chapter 4. The spatial subgroup discovery algorithm has three hyperparameters; the beam width,
maximum search depth and the radius. On these three hyperparameters will be experimented.
Furthermore, an anecdotal evidence and interpretation will be given. In order to understand the
experiments, the dataset will be explained firstly in Section 5.1.

5.1 Dataset and pre-processing

The dataset that will be used for the experiments is the atlas of European mammals dataset [4]. It
contains the presence of 194 mammal species within Europe. Each row of the dataset represents a
grid cell. The feature of a grid cell is the utm_I D. The cell resolution of a grid is approximately 50
times 50 km, and the grid system is based on the Universal Transverse Mercator (UTM) projection
and the Military Grid Reference System (MGRS). For each grid the latitude (¢) and longitude
(M) are defined. The 194 remaining attributes represent the different species. If the value is 1, it
indicates presence of the mammal, 0 is absence. An example of the dataset is given in Table 6:

© A utm_ID acomys minous alces alces alopex lagopus
39.52 -31.55 25SFD1 O 0 1
38.61 -29.01 26SLH1 1 1 0

Table 6: Mammals dataset

Due to the fact that we will make use of subgroup discovery, we need a target variable. The target
variable of the mammals dataset is the mammals species. As you can observe in Table 6 there are
multiple columns that define which mammals are in the cell. In order to have only one column
as target attribute, the dataset is reorganized. Now each recorded mammal represents a row, see
Table 7 for an example of this reorganization.

mammal % A utm_ID
rattus norvegicus 38.61 -29.01 26SLH1
rattus rattus 38.61 -29.01 26SLH1
erinaceus europaeus 38.61 -28.44 26SLH3
mus domesticus 38.61 -28.44 26SLH3

Table 7: Mammals dataset with one target attribute

The spatial dataset that will be combined with the mammals dataset is the Worldclim® global
climate dataset [8]. This dataset contains climate information about each cell. The attributes are

‘http://www.worldclim.org/
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therefore again the latitude, longitude and the utm_I D. The remaining attributes are the average
monthly mean temperature, average monthly minimum temperature, average monthly maximum
temperature, average monthly precipitation and the bioclimatic variables derived from the tmean,
tmin, tmax and precipitation. The dataset gives the worldclim value and the utm value of each
feature. For example, a column gives the worldclim mean temperature of March and another column
gives the utm mean temperature of March. The utm value represents the average of the values
of the worldclim squares that coincide within the UTM square. The worldclim value is the exact
worldclim square value. Therefore, we only use the columns that give the utm value. To combine
the mammals dataset with the worldclim dataset, we merge the datasets on the utm_ID. See an
example of the new dataset in Table 8:

Descriptive Spatial Target
u(temp(Jan)) p(temp(Feb)) .. ® A utm_ID mammal

12.6 12.1 38.61 -29.01 26SLH1 rattus norvegicus
12.6 12.1 38.61 -29.01 26SLH1 rattus rattus

12.88 12.36 38.61 -28.44 26SLH3 erinaceus europaeus
12.88 12.36 38.61  -28.44 26SLH3 mus domesticus

Table 8: Mammals dataset merged with Worldclim dataset

However, for some of the utm_ID’s in the mammals dataset there was no climate information
available. The utm_I D’s that have no climate information are therefore given the mean value of
the utm_I D’s in which the first five characters of that utm_I D occur. This applies to 159 out of
83586 recorded mammals. The first five characters are taken because these grids are near each
other and have therefore similar climate information. Unfortunately, this rule doesn’t cover all the
grids that have no climate information. Of some of the grids there is also no climate information
available if we only take the first five characters. For these grids the mean values of the first four
characters are taken. This rule applies to 31 out of the 83586 recorded mammals. The grids that
still have no climate information are from the dataset, this applies to 9 out of the 83586 recorded
mammals. The map of all the instances is given in Figure 15.
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Figure 15: Map of Europe with the coordinate of each instance of the used dataset in blue.

This dataset has a limitation. In Section 4.3 we described that we want to sample the instances by
selecting only the instances that are at least a fraction of the radius apart from each other. When
trying this on the mammals dataset, it is not able to find instances. This is because a lot of the
instances share the exact same location. Therefore, for this dataset the number of samples taken
has a maximum of the different locations within the subgroup. If for example a subgroup has only
three different locations, the maximum of taken samples is three.

5.2 Experimental evaluation

In this section the experiments will be shown. The effect of the spatial subgroup discovery hy-
perparameters on the discovered subgroup lists will be studied. The results will be evaluated by
looking at the sum of Weighted Kullback-Leibler divergences (SWKL) of each subgroup list and
the runtime. The hyperparameters of the algorithm are the beam width, maximum depth and the
radius. We change the parameter of interest whilst two of the parameters stay fixed. The fixed
values of the hyperparameters are:

e beam_width =5  This parameter decides the number of made subgroups in Step 1 (see
Section 4.2) and the number of subgroups that are allowed for further refinements in Step 3
(see Section 4.4). Proenca et al. [18] has set this parameter to 100. However, this algorithm
has at least the number of conditions times the number of taken samples more subgroups
each iteration. It is “at least” because after a condition is set, multiple centroids can be added
in step 2 (Section 4.3) to the subgroup. In order to reduce the runtime, this parameter is
therefore set to 5.
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e mar_depth = 4  The maximum depth decides the maximum amount of conditions that
can be set on a subgroup. Proenca et al. [18] has set this parameter to 5, but mentions that
an average number of conditions above 4 barely occurs. Besides that, setting more than 4
conditions on a subgroup with a spatial constraint does not allow enough instances in a
subgroup. Therefore, the maximum depth is set to 4.

e radius =5  The radius defines the spatial constraint. If we want to find subgroups that are
approximately the size of Spain, the radius should be 5. The radius should not be too big,
because then the constraint does not make sense. The radius should also not be too small.
The number of allowed instances in the subgroup is then not enough to allow a good quality.

The spatial subgroup discovery algorithm uses two more parameters. The first one is the number of
samples taken. This parameter is used in Step 2 (Section 4.3) of the algorithm. The higher the
value of this parameter, the more subgroups will be found. However, increasing the value of this
parameter does not work for this dataset. The result will be that the samples taken share exact the
same location, which consequently results in the same found subgroups. Therefore, the number of
samples taken is fixed at 3. The second parameter is the number of subgroups in the final list. In
order to make a comparison possible with the clustering algorithm [22] visible in Figure 1 which
was performed on the same dataset, the parameter is fixed at 6.

The next sections show the results of the experiments varying one hyperparameter each time. Each

combination is run 5 times. The dots in the figures of the SWKL represent one run. Subsequently,
in Section 5.2.4 we will look at individual subgroups found and give interpretation to them.
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5.2.1 Beam width

The first hyperparameter that will be experimented on is the beam width. For the experiments we
used beam_width = [1,2,3,4,5,6,7]. The result of varying the beam width against the SWKL is
shown in Figure 16 and against the runtime in Figure 17.
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Figure 16: Experiment on beam width (SWKL). It can be observed that the quality of the subgroup
list improves as the beam width increases. As a higher beam width provides more candidate
subgroups, the chance of finding subgroups with a better quality is higher when compared to
the chance of finding subgroups with a lower beam width. However, it can be observed that at a
beam width of three the increase of the quality of the subgroup lists slows down. In Step I of the
algorithm the conditions are decided on the most important features. If the beam width increases,
on more less important features candidate subgroups will be formed. The chance that the subgroups
with a more important feature belong to the top-k subgroups of that iteration is bigger than the
subgroups with a less important feature. Therefore, the increase of the quality of the subgroup list
due to the increase in beam width slows down.
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Figure 17: Experiment on beam width (average runtime). It can be observed that the increase
in runtime is linear to the increase in beam width. If the value of the beam width increases by
one, it means that one extra condition and one extra candidate subgroup will be formed which
consequently leads to an higher runtime.

5.2.2 Maximum search depth

The second hyperparameter that will be experimented on is the maximum search depth. For the
experiments we used d_max = [1,2,3,4]. The result of varying the maximum depth against the
SWKL is shown in Figure 18 and against the runtime in Figure 19.
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Figure 18: Experiment on maximum depth (SWKL). It can be noticed that as the maximum depth
increases, the quality of the subgroup list does not increase.
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Figure 19: Experiment on maximum depth (average runtime). It can be observed that as the
maximum depth increases, the runtime increases. However, the increment of the runtime from the
maximum depth of 3 to 4 is less than the previous increments. The quality of some subgroups
cannot be increased by adding a fourth condition, which results in a lower runtime

In Figure 18 it is remarkable that as the maximum depth increases the quality stays the same. You
could think that the best quality is found when each subgroup has only one condition, and that
therefore the quality stays the same after the value of the maximum depth is above 1. It is however
not the case that each subgroup in the subgroup list has only one condition for each value of the
maximum depth. An example of the subgroups in the subgroup list with a maximum depth of 4 is
given in Table 9:
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description

max(temp(Nov)) > 17.16 A prec(Aug) < 10.58

A prec(Jul) < 26.33 A bioclim4 < 682.74

N C ={(41.77,—-4.5), (41.33, —8.7), (40.39, —6.32), (39.51, —6.96), (37.27, —8.72) }
2 | prec(Nov) > 67.83 A min(temp(Jul)) > 14.77

A prec(Aug) < 34.75 A bioclim4 < 685.32

A C = {(43.1,-6.27), (42.2, —6.29), (42.23, —3.3), (37.27, —3.85), (39.07, —9.29)}
3 | bioclim1b > 57.85 A prec(Jun) < 28.44

A prec(Aug) < 50.5 A bioclim4 < 687.92

A C = {(43.56,17.17), (39.51, 17.04), (38.17, 15.86), (35.92, 14.72), (35.92, 14.17)}
4 | prec(Aug) < 38.22 A prec(Oct) > 74.0)

A broclim7 < 27.06

A C = {(37.69,23.63), (35.45, 25.07), (36.81, 22.4)}

5| prec(Jul) > 68.5 A C = {(42.65,0.28)}

6 | max(temp(Jan)) > 8.23 A pu(temp(Feb)) > 1.12

A maz(temp(Sep)) > 18.66

A O = {(42.22,27.91), (43.57, 28.55), (37.72, 26.15), (39.97, 22.46), (40.39, 23.68)}

Table 9: This table shows the descriptions of the found subgroups after performing the spatial
subgroup discovery algorithm.

Multiple subgroups have more than one condition. As the maximum depth increases the number
of conditions increases too. The reason that the quality stays the same is therefore not that each
subgroup only consists of one condition. It also depends on the number of centroids. Some subgroups
are not able to reach an higher quality by adding another centroid, but other subgroups are and
therefore have multiple centroids. This can be observed in Figure 20. The subgroup in the bottom
center has for instance only one centroid, whilst the subgroup in the top right has multiple centroids.
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Figure 20: Maps of the subgroups found with d_max = 4. In contrast to the maps in Figure 1, in
which the cells are marked, the maps of this figure mark (in red) the coordinate of the mammals
belonging to that subgroup. Although it looks like the subgroups are not spatially connected, they
actually are. Within the grid(C;) of a subgroup there will also be cells of which no mammal belongs
to the subgroup due to the set condition(s). These cells will not be marked, because only the
mammals belonging to the subgroup are marked in the map. Therefore, it can happen that there
are multiple red areas but that they are still spatially connected.

5.2.3 Radius

The last hyperparameter that will be experimented on is the radius. For the experiments we used
radius = [1,2,3,4,5,6,7,8]. The result of varying the maximum depth against the SWKL is shown
in Figure 21 and against the runtime in Figure 22.
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Figure 21: Experiment on radius (SWKL). It is visible that until the radius reaches 5 the quality
increases slightly as the radius increases. The radius decides the instances that are allowed in the
subgroup. If the radius is higher, more instances are allowed in the subgroup. Due to the fact that
the coverage of the subgroup positively influences the quality measure, the quality of the subgroup
increases as the radius increases. However, increasing the radius above 5 does not influence the
quality as it did below 5. The quality measure also depends on the difference between the target
variable distribution of the dataset and the subgroup. Having more instances in a subgroup makes it
difficult to differentiate more from the target distribution of the dataset than having less instances.
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Figure 22: Experiment on radius (average runtime). It can be observed that the runtime increases
slightly as the radius increases. A bigger radius corresponds with more instances and thus a bigger
runtime.
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In Figure 23 the maps of a subgroup list with a radius of 1 can be seen.

Figure 23: Subgroup list with radius = 1. Due to the small radius the subgroups aren’t able to
expand in further iterations because they are not able to find instances within the radius.

In Figure 24 the maps of a subgroup list with a radius of 8 can be seen.

Figure 24: Subgroup list with radius = 8. As expected, most subgroups are bigger than the
subgroups found in Figure 23. The subgroup in the top left shows for instance that a too big radius
results in a subgroup that allows instances that are not near to each other.

36




5.2.4 Anecdotal evidence

Varying the hyperparameters has an effect on the quality of the found subgroup list and the runtime.
However, all the found subgroups still have in common that they adhere to the spatial constraint. In
contrast to the clustering methods used for Figure 1 and Figure 3, this thesis only allows spatially
connected subgroups. This difference can also be observed in Figure 25.
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Figure 25: The left figure is one of the clusters found by a clustering algorithm [22]. The right figure
is a subgroup found by the spatial subgroup discovery algorithm. The description of the subgroup
is: biocliml > 14.81 A prec(Oct) > 61.5 A C' = {(15.86, 38.62), (17.06,40.41) }. It can be observed
that the yellow marked instances in the left figure are not spatially connected to the cluster. Such
instances are not visible in the right figure due to the imposed spatial constraint.

Unlike the clustering methods discussed in Chapter 1, the approach in this thesis does not only
find patterns, but is also able to explain why these patterns exist. For example, the found subgroup
with centroids (15.86,38.62) and (17.06,40.41) of Figure 25 can be explained by biocliml >
14.81 A prec(Oct) > 61.5. Furthermore, because we do not want to make a complete decomposition
of the dataset, we can decide what the size of the found subgroups approximately should be. If we
want to find smaller subgroups, we give the radius a low value and vice versa. See Figure 26 for
two subgroups with different radii.
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Figure 26: The left figure is the subgroup found with a radius of 1 and the right figure with a radius
of 8. If we would like to know interesting patterns of small regions, the radius should be set to a
relatively low value. However, if we would like to find interesting patterns of parts of Europe, the
radius should be set to a relatively high value.
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6 Conclusions & Further Research

We discover interesting subgroups in a spatial dataset with the constraint that the instances
within a group should not be more than an acceptable radius away from each other. We therefore
introduced the problem of finding the optimal set of subgroups that 1) together explain the most
relevant deviations in the data with respect to a given target variable and 2) that adhere to the
imposed spatial constraint. Two data mining concepts are combined; subgroup discovery and
spatial data mining. In order to ensure the first component of the problem statement, the weighted
Kullback-Leibler divergence is used. This calculates the average quality of each set of subgroups.
The second component of the problem statement refers to the spatial constraint; all the instances
within a subgroup should be in the set of allowed cells, defined by the centroids of the subgroup. All
the cells that fall entirely in the surface created by the centroids and the radius plus the distance
of a cell, are allowed to the set of allowed cells of a subgroup.

The proposed spatial subgroup discovery algorithm is a combination of beam search and sep-
arate and conquer method. After finding a subgroup with beam search, this subgroup is separated
and the algorithm is performed again on the rest of the dataset. The algorithm has three hyperpa-
rameters: the beam width, the maximum search depth and the radius. Experiments on the mammals
dataset have shown that the larger the beam width, the better the quality of the subgroup. That is
also the case for the radius. However, making the radius too big will result in subgroups in which
the instances are not near each other. The quality of the subgroup list, whilst varying the maximum
depth, stays the same. In comparison with clustering, the results of this thesis show that due to the
use of subgroup discovery in combination with spatial constraints, the algorithm is not only able to
find patterns, but is also able to explain the patterns because of the subgroup description. This
algorithm requires the dataset to be divided into cells, in which the recorded instances should have
a variety of different locations. The algorithm had difficulties with imposing spatial constraints to
subgroups in which the instances have the exact same location.

The spatial subgroup discovery algorithm has only been experimented on one dataset. For further
research, the algorithm will be tested on multiple datasets containing spatial information. Further-
more, the step of setting the conditions should be refined. Instead of constantly using the median,
cut points could be used. Besides that, the algorithm should also be able to allow nominal features.
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