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Abstract

Colorectal cancer (CRC) has been identified as one of the most common cancers in the world,
in America more than 150,000 new cases are expected in 2022. Since prevention is difficult,
patients often undergo harsher treatments such as CAPOX (capacitabine and oxaliplatin).
The treatment works well, but 15% of the patients still relapse after 2 years. This study
will therefore be focusing on identifying key genes in CRC patients to predict efficacy of the
CAPOX treatment. Two RNA-sequencing data sets from patients diagnosed with CRC and
treated with CAPOX have been analyzed. A R-pipeline has been constructed to perform a
Differential Expression (DE) and Gene Ontology (GO) analysis. The pipeline identified 234
significant DEG’s (232 down-regulated, 2 up-regulated) in the first data set, and 3 up-regulated
significant DEG’s in the second data set. A total of 15 genes were identified as having a
potential relationship with cancer, where a singular gene (DRAXIN) was directly related to
CRC. Two of the identified genes (MYTLIL and EML6) are suggested to be down-regulated
due to the CAPOX treatment, inviting further research. The lower quality and quantity of
samples in the first data set, and group imbalance in the second data set might have caused
biased results. Improvement of the pipeline is crucial for finding more definitive results.
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1 Introduction

RNA-sequencing (RNA-seq), a technique for accurately measuring gene expression levels, has
replaced the previously used micro-arrays to examine cell tissue expression with high accuracy,
providing new insights. This new technique makes it possible to examine cell tissue expression
with high accuracy, providing new insights. Identifying which genes are expressed enables the
identification of genes may cause, or at least involved are in, the growth of cancer cells.

Colorectal cancer (CRC) is one of the most common malignant diseases in the world, and its
incidence increased with age. According to estimates by the American Cancer Society, the number
of new colorectal cancer cases in America for 2022 is 151.030 (106.180 colon cancers, 44.850 rectal
cancers) [3]. Most CRC cases were related to old age and lifestyle factors, with only a fraction of
cases caused by underlying genetic disorders [10]. Although multiple attempts have been made to
grasp the underlying genetic mechanism for initiation and progression of CRC, the prevention of
early on-set CRC is still not in sight [21]. Since prevention is not always a possibility, different
treatments such as CAPOX have been used to treat stage II and III patients [I1]. These later
staged patients are harder to treat since the cancer has invaded the healthy tissue.

This paper focuses on the gene expression of cells in CRC tissue, from patients that were diagnosed
with CRC and subjected to the CAPOX treatment. The name CAPOX is derived from the
combination of drugs provided during treatment;Capecitabine and Oxaliplatin. After three years of
follow up, patients reported on the success of the treatment; they had either relapsed or stayed
cancer-free. The patients data, including a tissue sample and treatment outcome were collected and
used for further research. Two different data sets are used, the first data set contains 85 samples,
and the second data set 62.

The RNA-seq data can be used as input for a differential expression (DE) analysis. The DE analysis
ultimately outputs differential expressed genes (DEG’s), which can be identified as either up or
down-regulated when compared to normal gene expression levels. The DEG’s give a rough idea
on the biological pathways affected in the cancerous tissue. Some of the more explored canonical
pathways include; cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-, Kinase/Akt, RTK-RAS, TGFb
signaling, p53 and b-catenin/Wnt [21]. The biological purpose of the DEG’s can be elucidated
by executing a gene ontology (GO) analysis, consisting of gene enrichment and KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathway exploration.

The results from executing the DE and GO analysis should be reproducible when repeated at a
later point in time. Both analyses require many small decisions, each affecting the final results. The
results of the experiment cannot be reproduced if the same detailed structure is not applied. To
streamline the processing of the data set and thus improve reproducibility, a pipeline has been
created using Rstudio [7]. This pipeline takes in a variety of data from patients for pre-processing.
During this phase the lower quality samples were identified and removed. The remaining samples
were subjected to DE and GO analysis.

Besides reproducibility, it would be interesting is to identify a transcriptional profile that may predict
the efficacy of the CAPOX treatment beforehand. There are many side effects when undergoing the
CAPOX treatment which can become increasingly distressing when combined with other treatments
such as radiotherapy [1]. If a predictive transcriptional profile can be identified, it may allow the
selection of patients with the highest chance to respond to CAPOX. This would decrease the
number of patients that relapse after going through intensive therapy. Therefore, the aim of this



study is to construct a three-phase R-pipeline to identify genes possible of determining the efficacy
of the CAPOX treatment on stage III CRC-patients beforehand.

To identify the genes of interest and construct a biological overview from the acquired data set
multiple steps were performed. First a RNA-seq analysis is performed, the resulting data is then
is put through pre-processing; in order to remove samples with low gene counts or low tumor
cell content. After the pre-processing the differential expression analysis is ran using the DESeq2
package [18]. This package estimates variance-mean dependence in count data and can be used to
test for differential expression based on a model using the negative binomial distribution. From these
estimates a selection of differentiated genes is generated. Using the derived DEG’s a gene ontology
analysis is done to biologically interpret the results. The GO analysis is performed utilizing the
ClusterProfiler package [33]. This package is designed to facilitate semi-automated gene enrichment
and KEGG analysis, working together with the DESeq2 package.

This paper will first provide background information on important topics in the context of already
published research knowledge. Then the methods; pre-processing, DE, GO and the different phases
of the pipeline will be fully explained in order to get a better grasp on the design of the pipeline.
Subsequently, the results from executing the pipeline will be shown. These results are from two
different data sets each going through, a slightly personalized, pipeline. The pipeline had to be
slightly adapted, correcting for difference in input data. Finally, the acquired results are discussed
at the end of the paper.

1.1 Thesis overview

Chapter 2, background information;

Chapter 3, methods description;

Chapter 4, results from executing the pipeline;
Chapter 5, conclusion;

Chapter 6, discussion and future outlook;
Chapter 7, description of definitions;

2 Background information

CAPOX is now a standard treatment for CRC patients, and has been proven to be highly effective
for two years after administration [16]. Although the study lasts for 2 years, a year shorter than
the data set currently used, it has shown the promising results of the CAPOX treatment.

In a recent study from, 2019 designed to identify potential key protein interaction networks and
genes in early-onset CRC, 12 patients with CRC were included as well as 10 healthy control
tissues [35]. A total of 131 DEG’s were identified (108 up- and 23 down-regulated). These DEG’s
were subjected to a gene ontology functional enrichment analysis and KEGG pathways analysis.
This functional enrichment analysis showed the classes of the genes or proteins that were over-
represented and belong to a group with similar biological function. A KEGG pathway analysis is
applied to determine the pathways the DEG’s in the over represented group has effect on. They
identified several genes which were suggested to be strongly implicated in CRC (ACTA2, ACTG2,



MYH11, CALD1, MYL9, TPM2 and LMODT1). These genes were involved in muscle contraction,
vascular smooth muscle contraction and cGMP-PKG signalling pathway.

Another RNA-seq study on patients whom received oxaliplatin-based chemotherapy, called FOLFOX
,;revealed several other important biomarkers. The analysis suggested that the expression of 58 genes
correlated, negatively or positively, to oxaliplatin response. These genes were found to be mainly
enriched in Wnt/ f-catenin signaling and EMT pathways [17]. It is known that Wnt/ f-catenin
activation and malignant transformation of inflammatory bowel disease are the two major causes
of colorectal cancer [13]. Moreover, the induced EMT pathway has an important role in chemo
resistance of different types of cancer cells. The study suggested that high gene expression of the
FZD5 and HNF1A (TCF1) genes may be a predictor of the activation of upstream [-catenin.
Furthermore, it suggested that a high expression of the NOTCHI1 gene causes increased activation
of the EMT pathway.

3 Methods description

The construction of the pipeline starts with the collection of the data. From each patient a singular
tissue sample is taken during surgery on the CRC tissue. Each sample is analyzed and the sequence
is saved as a FASTQ file [31]. The FASTQ files are then used for the nf-core pipeline [5]. Specifically,
the nf-core/RNA-seq pipeline [6] is used to calculate the transcription counts of each expressed
gene in the tissue for all of the patients. This step is not included in the R pipeline, but rather
outsourced to the services of the nf-core pipeline. In the nf-core pipeline the FASTQ files are to be
processed in multiple stages; pre-processing, genome alignment & quantification, pseudo alignment
& quantification, post-processing and Multi-QC. The pipeline outputs a report where transcription
counts of all the expressed genes can be found. The Multi-QC tool uses the Salmon method to
quantify the expression of transcripts using the RNA-seq data. The nf-core pipeline provides a
preliminary report with the Multi-QC tool [1], which supplies the user with a check to see if the
RNA-seq went well and if further analysis is possible.

The transcription counts of 60,000 genes for all of the patients is needed for the DE analysis. The
annotation table, containing the names of the samples corresponding to the transcription files, is
also required. The annotation table matches the response to the treatment amongst various other
details of each of the patients. Some of these details include information such as the minimum
and maximum tumor cell content in the sample, or the gender of each patient. The response is
needed to create biological replicates. Since each of the patients only has one sample taken and this
sample has been tested once no technical replicates can be used. These replicates are necessary to
achieve statistical power [2]. Since RNA-seq has been more reliable than the micro-assay, technical
replicates are less of an issue. Biological replicates are needed for statistical power, as only one
sample was taken, natural biological variation could not be assessed. Therefore 2 different response
types (relapse, no relapse) have been used to provide this variation. A minimum of 10 patients
in each group provides enough biological replicates for the analysis. With the correct input files
for the pipeline ready, the data is processed in three different steps: quality control, differential
analysis and gene ontology analysis.



3.1 Quality Control

The first phase is the quality control check. This first stage is implemented to remove samples that
do not meet the set standards, and thus remove noise from the results. The set standards are based
on a balance of quality and quantity. Samples in the first data set were removed when transcription
counts were lower than 200,000 and the tumor cell content had not reached a minimum of 50%. The
final filtering step is the selection of columns which hold important information. Quality control
can be left out, however, is recommended to ensure better results.

To get a better understanding of the data we are working with three different plots are made; total
count bar plot, response bar plot and a Principal Component Analysis (PCA) plot. The bar plots
the samples that passed the standards from high to low, based on the total gene transcription
counts in said sample. The response plot shows the different responses (relapse or no relapse) for
each of the samples. The samples are ordered from the highest minimal tumor cell content to the
lowest. Finally the PCA plot is generated [26]. Where different principal components (PC) can
be plotted against each other. For example, the different responses or genders to discover whether
certain components influence the clustering of data points.

Data preparation Quality Control

| counts bar plot ”tumor cell % bar plot” PCA plot
nf-core 1 0 T
RNASeq transcription —
> counts
removing low counts table
quality samples filtered
] Input >
data
annotation
table annotation
table

Figure 1: Workflow Quality Control

3.2 Differential Expression Analysis

Once finished with the quality control the second phase begins: differential expression analysis.
The function of this part in the pipeline is to create a DEseq object for different plotting (PCA,
Heatmap, Dispersion, Volcano & MA). If possible, analyze if there are significant DEG’s present.
DESeq2 is seen as one of the most reliable packages for RNA-seq data processing [22], making it
one of the most popular packages.

The DE analysis begins with the DEseq object for two reasons; this object is used for visualization
but also the processing of data. The input for the DESeq statistical model is non-normalized counts,
because only the count values will allow the assessment of the measurement precision correctly.
The DEseq2 model handles the normalization of the values internally, therefore, scaling the library
beforehand will disturb the assessing capabilities of the model. The normalization is needed to
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cover deviances from sequencing depth and RNA composition. DESeq2 applies the median of
ratios method to cover this. On the user-end, one line is needed to activate multiple steps on the
back-end [27]. To create a DESeqDataSet (dds) object a design needs to be supplied. The design of
the experiment will express the variables that are used for the modelling. Considering the objective
is to find a difference between the two response groups (relapse, no relapse), the response variable
design is chosen. By pre-filtering samples that do not meet the requirements memory usage by the
dds object is lowered. Lower memory usage translates directly into increased speed and performance,
for calculations and plotting.

With the dds object PCA plotting is also performed to observe possible changes. A heat-map is
provided for the exploration of the count matrix. Here the samples are divided into two response
groups. It will show whether there is a similar expression between the samples in the same group.
Similar samples will have the same shade of coloring.

After examining the normalized data an adjusted p-value filter is added as a multiple testing
correction is required. Each DEG is treated as a separate experiment, correcting for occurrences of
false positives. The DESeq2 object provides the adjusted p-values by using the Wald test [¢]. These
attained values are corrected for multiple testing using the Benjamini and Hochberg method, to
lower the false discovery rate (FDR) [11]. Then, a package called IHW is used to implement the
method of Independent Hypothesis Weighting. This provides more power detecting genes, whilst
controlling the FDR [15]. After the filter, a log fold shrinkage is applied. The shrunken log fold
changes are used for ranking and visualization, without needing the arbitrary filters for the low
count genes. A dispersion plot as well as MA plots are made to visualize the ranking and the
differences between measurements taken in two samples, respectively.

Separating the significantly DEG’s from the normally expressed ones is based on a pre-determined
cut-off. This cut-off is based on the adjusted p-value and the log2FoldChange of the gene. Thus
any gene where the adjusted p-value is under the set a = (0.05) and has a higher or lower
log2FoldChange of 1 or -1 is either a up or down regulated DEG respectively. The selection is made
and saved to the designated folder whilst running the pipeline. To visualize the DEG’s a volcano
plot with the same cut-off is made.

Differential Expression

Analysis
| PCA pIotI |dispersion p\ot” heatmap I Iresulls (unshrunken, IHW)I
counts table < |unshrunken
DESeq *l results MA plot
pre-check .
”| Object | Independent | (DEG's) volcano plo
i Hypothesis shrunken
annotation ; > N \ |
table Testing log fold results > significant DEG's
_| , change
shrinkage
normalized
counts up-regulated | . | down-regulated
genes B g genes

Figure 2: Workflow Differential Expression Analysis



3.3 Gene Ontology

The DE analysis delivers the DEG’s needed for the last phase of the pipeline; the Gene Ontology
analysis. The GO analysis, is used to derive groups with similar functionality from the DE analysis
results. These DEG’s tell us nothing just by name and individual function. Therefore, two different
parts of the GO analysis are used for interpreting gene expression data; gene set enrichment and
KEGG pathway analysis. Gene set enrichment derives its power from focusing on gene sets. In
particular, groups of genes that share a common biological function, chromosomal location, or
regulation. The enrichment score is the weighted Kolmogorov-Smirnov statistic, comparing the
ranks of genes in the data set with the uniform distribution. These gene sets have been grouped a
priori, based on their treatment response. KEGG pathway analysis uses a collection of manually
hand drawn pathway maps which represent our knowledge of the molecular interaction, reaction
and relation networks on multiple processes and systems. Some of these include; metabolism,
genetic/environmental information processing, cellular processes, organismal systems, human
diseases and drug development.

For both of the different analysis approaches different plots are made to visualize the results from
the DEG’s; dot plot, cnet plot, ridge plot and an emap plot. The dot plot shows the activated and
suppressed pathways. It does this for the top ranking pathways, based on the adjusted p-value.
Whilst the dot plot is used to display the most significant or selected enriched terms, we still want to
know which genes are involved. The cnet plot is used to depict the linkages of genes and biological
concepts known as a network, capable of considering the potentially biological complexities to
which a gene may belong. In addition, an enrichment plot is created utilizing the emap plot module.
A ridge plot is also provided to visualize the changes in distribution over time and space. Plotting
is done by using the gseGO (gene enrichment) and gseKEGG (KEGG pathway) objects. Input
preparation is needed to line up the encoded genes names into ENSEMBL gene names. Further
transformation of ENSEMBL type to ENTEZID type is needed for KEGG analysis.

Gene Ontology
Analysis
inputl » ridge plot
_| Gene set | Preparation gseGO
) > .
ub-requlated enrichment object
p gegnes —> dot plot
chet plot
down-regulated duplicate lot
emap plo
genes N pzicv;v(jy removal > gseKEGG
, entrezid object
analysis .
adaption

Figure 3: Workflow Gene Ontology Analysis



4 Results from executing the pipeline

4.1 Quality control

The first phase of the pipeline is to check the usability of the data set. This only applies to the first
data set, the quality of the second data set was sufficient. To have statistical power enough samples
(;=10) need to be provided for each group (relapse, no-relapse). The total transcription counts bar
plot (Figure 4) is a visualization of the samples and their corresponding transcription counts over

all of the expressed genes. From a total of 85 samples 43 were left.
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Figure 4: Total gene transcription count per sample, ranked highest to lowest

Since 20 of the samples had low tumor cell content, they had to be removed. As seen in the bar
plot (Figure 5), the total number of samples left are from 15 patients whom relapsed and 8 patients
whom did not.

The PCA plot (Figure 6) supplies an early indication of division of the groups based on their
response to the treatment. Here PC1 is plotted against PC2, where grouping of the patients with
no relapse is detected, surrounded by a formation of relapse samples. The less explaining principal

components (PC3 - PC8) showed no different results.
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4.2 Differential analysis

The second phase is designed to retrieve the differentially expressed genes. The DESeq 2 object,
mentioned in methods (3.2), is used to initially visualize 3 different plots; PCA, heatmap, and a
dispersion plot.

PCA plotting has been done in the Quality Control phase, but since the DESeq2 object performs
internal normalization and processing it is interesting to see if this has changed anything. Instead
of separating the groups based only on their response (Figure 7), other variables such as gender
(Figure 8) or the minimal tumor quality (Figure 9) of the sample, were also tested.
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The heatmap (Figure 10) utilizes normalized gene expression counts but transforms these using
variance stabilizing transformation (VST) to visualize the data. The r-log matrix is extracted from
the transformed data to calculate the pairwise correlation between samples based on their response.
A red color indicates a high correlation and blue a low correlation. The response of each sample is
also denoted to show potential grouping. Some similar expression is seen in samples residing in the
lower right corner, but no distinction between the two groups can be created, some relapse samples
are included in the larger no relapse group.

Pairwise correlation values
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Figure 10: Heatmap based on pairwise correlation between samples.

To see the variance in gene expression a dispersion plot is created. The DESeq2 dispersion estimates
are inversely related to the mean and directly related to variance. Based on these calculations
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the dispersion will be higher for smaller mean counts and lower for higher mean counts. If the
mean count is identical, the dispersion will only differ based on their variance. Thus, the dispersion
estimates reflect the variance in gene expression for a given mean value. The dispersion plot
corresponding to the first data is shown below (Figure 11). Here a general scatter of genes around
the curve (fitted line) is observed. A decrease in dispersion is seen with increasing expression levels,
indicating that this particular data set neither contains contamination nor includes outlier samples
anymore.
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Figure 11: Dispersion plot

After extracting the results using IHW a MA plot is used. The plot shows the log fold-change against
the mean expression based on treatment response. Each data point represents the gene and gives
an indication of the up and down regulated genes. A comparison is made between the shrunken (13)
and unshrunken (12) results, where the shrunken results had log fold change shrinkage applied. The
shrinkage is applied to better select the differentially expressed genes. Large fold changes with high
statistical power are not shrunk, whereas imprecise fold changes are shrunk. The unshrunken MA
plot shows a lot of genes having a log fold change above and below 2 or -2 respectively, indicating
that these are all significant DEG’s. After applying shrinkage the genes are better fitted, creating a
better distinction between non-significant and significant DEG’s.
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LFC MA plot

T T ey

I I I I I I
1e-01 1e+00 1e+01 1e+02 1e+03 1e+04

mean of normalized counts

Figure 13: MA plot - shrunk by logfoldchange

12




The MA and dispersion plots have demonstrated that the data can be used for further analysis.
Thus, significant DEG’s can now be extracted. Using the pre-determined cut-offs (o = 0.05,
log2foldchange = > 1 or < —1) a selection has been made. This selection is better visualized in the
Volcano plot (14). The cut-offs are illustrated by the dotted lines, the y-axis represents the p-value
and the x-axis the log2foldchange for each gene. In total there are 28,973 genes plotted, where the
significant DEG’s are labelled red. Genes labelled green made the log2foldchange cut-off, but not
the p-value. The genes labelled grey made neither cut-off. Thus, genes appearing in the upper left
section represent the down-regulates genes, whereas genes in the upper right section represent the
up-regulated genes.

Volcano plot
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Figure 14: Volcano plot showing down and up-regulated genes in red, which can be seen in the
upper left and right corner respectively. Genes in green or grey are not significant enough.

After extracting the significant DEG’s, a heatmap (Figure 15) can be constructed using the
normalized counts of their expressions. The expression is shown as a Z-score value, where a red
cell represents an above average expression across all of the samples, and a blue cell an under
average expression of genes. The top annotation shows the response of each patient. A very similar
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Figure 15: Heatmap - Pairwise correlation values

expression can be seen in the relapse group, however, since a part of the no-relapse group has
comparable expression no distinction can be made.

4.3 Gene ontology analysis

4.3.1 Gene Set Enrichment

As mentioned before, gene set enrichment is one of the possible ways to analyze the significant
DEG’s. They gather their power from focusing on groups of genes that share a common biological
function, location or regulation. A dot plot (Figure 16) is applied to gather the processes that are
either activated or suppressed the most. Where the size of each dot represents the amount of genes
involved and the color the adjusted p-value.

The ridge plot (17) visualizes the same processes as the dot plot, and focuses on the enrichment
distribution specifically. The height of each wave represent the number of genes involved with that
process at a certain logfoldchange.

The dot plot and ridge plot have presented some of the more important processes involved. To
establish which genes and processes interact with each other an emap plot (Figure 18) and a cnet
plot (Figure 19) are created. The emap plot uses the most involved processes and shows the relation
between each of them. Where size and color represent the number of genes involved and adjusted
p-value respectively. From these important processes the most represented are chosen, and their
genes are made visible. Where the size of the processes represents the amount of connected genes,
and each individual gene is colored by their logfoldchange.
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From the GO enrichment analysis, a few interconnected genes have been identified. These genes
were related to two processes: the negative regulation of cellular processes (NRCP) and processes
in the (intracellular) non-membrane-bounded organelle (NMBO). In the table below (Table 1) the
identified genes are displayed together with their function and connected process.

Gene Function Process
TNIP3 Supression in NF-kB signaling and sustained NF-kB activity. NRCP
CLNK Positive regulation of immunoreceptor signaling. NRCP

DRAXIN Negative regulation ‘of canonical Wnt signaling pathway NRCP
and neuron apoptotic process.
KANK4  Regulation actin polymerization + cell motility (PI3k / Akt pathway). NRCP + NMBO

MYTIL  Repress expression YAP1 (proliferation / glioblastoma growth). NRCP + NMBO

AICDA Chronic inflammation and skin cancer. NRCP + NMBO

LIN2JA Deviated regulation of this gene is reportedly involved in NRCP + NMBO
cancer development.

MYLK3 Phosphorylatlon card%ac myosin heavy .chams. As:somated with NMBO
improved overall survival in patients with low residual disease.

KIF5C Transport of cargo within central nervous system. NMBO

EMLG6 Part of EML family, control of oocyte meiotic division. NMBO

MYOI5A Codgs for unconventional myosin. Associated with hearing NMBO
Impailrment.

MYLS Codes for myosin light chains, overexpression promotes metastasis NMBO
in cervical cancer models.

MYOZ3  Important role in modulation of calcineurin signaling. NMBO

MTUS2 Breast cancer tumor suppressor gene. NMBO

CFAP251 Formation protein-protein complexes. Cause morphological NMBO

abnormalities of the flagella.

Table 1: Down-regulated genes identified by the cnet plot during Gene Enrichment Analysis

4.3.2 KEGG Pathway

KEGG pathway analysis represent our knowledge of the molecular interaction, reaction and relation
networks on multiple processes and systems. Analyzing the data via KEGG is relatively similar to
the Gene Enrichment Analysis (GEA), as demonstrated in the GO phase of the pipeline. A dot
plot (Figure 20) showing activated and suppressed pathways. An emap plot (Figure 21) and a cnet
plot (Figure 22) are displayed to show the connected pathways.
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Figure 20: Dot plot, using the gseKEGG object.
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4.4 Analysis of second data set

The results presented originate from the first data set. The second data set, which had no sample
loss during the quality control, identified 3 DEG’s; CCDCS88B, RNU2-63P, HMGB1P21. The
leading gene codes for a protein hook, linking organelles to micro-tubules. The latter two are
pseudogenes, which are non-functional segments of DNA. No pathways could be identified because
only 1 functional DEG has been identified, which is not related to a cancerous activity or pathway.

4.5 Pipeline performance

The final pipeline consists of approximately 500 lines in Rstudio, producing reliable and reproducible
results when performed on multiple occasions. The speed depends mostly on the size of the data set
and hardware. Performing a single run on the first data set (23 samples, 62,000 involved genes) has
a maximum duration of 5 minutes, making it a quick tool to use. The second data set, containing
almost tree times more samples than data set 1, has a duration increase of 15%. There were less
DEG’s to process, thus the GO analysis was performed quicker. The pipeline provides multiple
checkpoints for the user to detect whether there are mistakes in the data causing it to be noisy. It
can be used interchangeably with other data sets, with small changes needed in the early processing
(data preparation, quality control). These changes are mostly due to the difference in data input,
where one data set might require a quality control check, and others having different informative
annotations (gender, age, pre/post-treatment). Further customization for plotting is possible where
needed, having the fundamental processes already put in place (DESeq2, gseGO, gseKEGG).
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5 Conclusion

The pipeline was provided with two different data sets. Data set 1 contained a total of 85 samples (27
relapse, 58 no-relapse) and data set 2 a total of 62 samples (10 relapse, 52 no-relapse). Since a part
of the samples in the first data set were of a low quality, the data was subjected to pre-processing,
leaving 23 samples (8 relapse, 15 no-relapse). After running the pipeline a total of 234 significant
DEG’s (232 down-regulated, 2 up-regulated) were identified in the first data set. The data set
2 provided a total of 3 up-regulated DEG’s. After the inspection of their potential relationship
with cancer, no DEG’s remained. Therefore, only results from data set 1 have been displayed and
discussed.

The GO analysis showed a high suppression of pathways concerning the (intracellular) non-
membrane-bounded organelle and the establishment of localization in the cell. Some metabolic
processes (nucleobase-contraining compound, cellular aromatic compound, heterocycle, nucleic acid,
organic cyclic) were also suppressed, but the number of genes involved was lower. Furthermore,
pathways concerning protein processing, cAMP signalling, glycerolipid metabolism and glycerophos-
pholipid metabolism were activated. These pathways are crucial for intracellular signalling processes
and protein regulation. Pathways concerning muscle control (amyotrophic lateral sclerosis, actin
regulation), the nervous system (glutamatergic synapse) and the phospholipase D signaling pathway
(intracellular protein trafficking, cell proliferation, cell survival) were all suppressed. Related work
indicated that certain genes involved with muscle contraction are implicated in CRC, but these
genes differ from the genes found in this data set.

Genes found in the gene set enrichment (Table 1) were not related directly to the genes reported by
others in CRC ( [35], [13]). Related work demonstrates that genes involved with the Wnt signalling
activation can be a major cause of CRC. DRAXIN, a gene found in the analysis, is involved in the
negative regulation of Wnt signaling [9]. Genes such as LIN28A [30], TNIP3 [23], KANK/ [20],
CLNK [29], MYTIL [19], MYL5 [31] and MTUS2 [12] are, to some extent, involved with other
cancers or pathways involved with these types of cancers, but do not come up in literature as CRC
involved genes.

Patients underwent a CAPOX treatment, thus it is of importance to inspect the possible resulting
disruptions. Capecitabine and Oxaliplatin, the main working ingredients of this treatment, both
affect the tumor cells processes. In particular, it disrupts cells repairing their DNA and interferes with
the development of DNA in the cell, stopping cell division [17] [28]. MYTIL [19] and EML6 [32]are
involved with proliferation and oocyte meotic division, respectively. Both of these genes are
down-regulated, suggesting that these processes are suppressed.

6 Discussion & Future outlook

Although the constructed pipeline works well, improvements can be made. To start, being able
to increase the size of the data sets without running out of memory. The current set-up uses a
significant amount of memory, which is not a problem when running a single data set of 60 samples.
But when raising this to 100 samples the pipeline requires too much memory from Rstudio and
the hardware, causing it to terminate the pipeline. Increasing the available memory for Rstudio
is a great theoretical solution, but this is not practical since this needs to be done individually,
making it less user-friendly. The better approach is to increase the pre-processing to a degree where
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samples that do not provide enough information can be excluded. Genes where there is none or
almost no expression could also be excluded to reduce memory needs.

The second improvement is to further streamline the process. Some calculations are done twice and
steps could be left out if shown not to be of importance earlier on. Further improved streamlining
is to regulate the importing and exporting of files more structured. There is no easy toggle or
code chunk that can be run to save or import files. This is equally true for the input and output
pathways, which are not strictly defined in the beginning, decreasing user-friendliness.

The last improvement is to expand the functionality of the pipeline and explore other options.
There are many packages for R to view and process the data, each with their own advantages
and disadvantages. Increasing the number of plots generated in the pipeline can provide the
user with more information, making use of the pipeline more generally. An option is to explore
immunotherapy pathways. A package that has been developed, called RImmPort, enables ready-
for-analysis immunology research data. This package is designed for immunological data, thus a
similar package could be designed for this analysis.

As seen in the results, some DEG’s have been identified to be associated with cancer, and fewer
directly with CRC. The same can be stated for the identified pathways, where even fewer examples
could be retrieved. The division of samples could be part of the reason why many non-cancer
related genes have been found. DESeq2 uses between sample normalization to identify significantly
expressed genes, and prefers to have at least 10 biological replicates per group. The first data set
was split into a group of 15 and 8, slightly unbalanced, but possibly enough to still have some noise
in the data. Because the relapse group contained less than 10 samples, it might have prevented us
from seeing which other genes are actually expressed differently. The second data set had an bigger
difference (10 vs 52), which might be the cause for finding almost no DEG’s. A solution could be
to run a 10 v 10 on the second data set, keeping the groups balanced.

Not only was the imbalance a problem, but the quality of the first data set was also sub-optimal. A
minimum of 50% of the contents were actually tumor cells in some of the samples. This leaves room
for error, but increasing the quality would decrease the quantity too much. Having a setup where
both data sets could be run together would produce enough samples to get results. The related
work identified genes 2 years after the treatment, whereas the data used in this study identified
them after 3 years. This difference could cause the dissimilarity in results.

It was not possible to identify key genes in CRC patients that would help understand when the
CAPOX treatment would be effective. The pipeline being able to process the data and produce
informative visuals was given the highest priority, therefor further research was beyond the scope of
this paper. Genes and important pathways have been identified that are related to other published
work, inviting further research. The next step is to trace back the genes found, to the samples that
highly expressed them differently. If a difference in expression is seen between the two groups, some
indication of a transcriptional profile can be constructed. Since these genes do not explain much or
relate to other work, priority should be given to upgrading the existing pipeline to handle bigger
data sets.
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7 Description of definitions

CAPOX - CAPOX (which also goes under the name XELOX) is used to treat bowel cancer and
thus CRC. The name originates from the combination of therapy drugs which is given. The CAPOX
treatment is made up of capecitabine (CAP) and oxaliplatin (POX).

Technical replicates - Technical replicates are repeated measurements of the same sample that
represent independent measures of the random noise associated with protocols or equipment.
Biological replicate - Samples that have been obtained from biologically separate samples. This
can mean different individual organisms (e.g., tissue samples from different mice), different samplings
of the same tumour. i.e., if there are triplicate non-relapse samples, a biological replicate would be
testing samples 1, 2 and 3 of the non-relapse group

IHW testing - Hypothesis weighting improves the power of large-scale multiple testing. We
describe independent hypothesis weighting (IHW), a method that assigns weights using covariates
independent of the P-values under the null hypothesis but informative of each test’s power or prior
probability of the null hypothesis. IHW increases power while controlling the false discovery rate
and is a practical approach to discovering associations in genomics, high-throughput biology and
other large data sets.

RNA-sequencing - RNA-sequencing is a relatively new method to detect and quantify transcriptome-
wide gene expression. Where micro-arrays were first used, this new replacement proved to be easier
and cheaper to implement. Furthermore, the quality off the new sequencing method was significantly
better. [25]
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