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Abstract

Explaining the emergence of human communication poses a problem because how do individuals
come to an agreement on the relationship between a symbol and its meaning when this
relationship is not innate? Previous work provides some insights on how this emergence occurs
in humans with the use of the Embodied Communication Game (ECG). This study focuses
on the emergence of communication between humans and machines. We investigate the ability
of a neural network with LSTM layers to map the meaning of signals produced by humans
playing the ECG. We use the sequences of movements of 23 duo’s playing the game, after
each game each player reported if communication had been established. The network needs
to predict the color signaled by a player using the sequences of movements performed by a
player in a round of the game. The accuracy of our model is significantly higher on data from
players that established communication compared to players that did not (t=6.00, p=3.35e-07).
The accuracy of our model depends on the percentage of successful rounds played in a game
(r=0.90, p=1.95e-17). Furthermore, we can see a correlation between the model’s accuracy and
the similarity of the player’s and model’s color distribution. In general, a more accurate model
produces a color distribution similar to the color distribution in the target labels (r=-0.83,
p=6.99e-13). Less accurate models have a bias toward the color with the highest frequency in
the target labels r=-0.69, p=9.48e-08). To conclude, our model is successful in mapping the
meaning of signals produced in an emergent symbolic communication system in the ECG.
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1 Introduction

The question of how human communicative behavior has emerged is a difficult question to answer
and widely debated. This is because human language is both learned and symbolic (symbols are
used to represent concepts)[5]. This poses a problem; how do individuals come to an agreement on
what the relationship is between a symbol and its meaning when this relationship is not innate
[16]? Furthermore, before the receiver of a communicative signal can even make a connection
between a signaled symbol and its meaning, he first must understand that the signal is indeed
communicative. The symbolism in human communication consists of body language like gestures
and facial expressions, as well as words or vocal moans. The symbol signals the meaning, you can
for example explain to someone that you feel angry by telling them. The word “angry” now signals
your emotional state to that person, and this person is now able to understand how you feel. A
dog can also signal that it is angry but only using non-verbal signals like showing its teeth and
growling. The second property of human language is that this symbolism can be learned [5]. These
two properties of the human communication system have contributed to the human language that
is used today. The communicative processes that interleaved the cognitive abilities and experiences
of many individuals over time have resulted in today’s shared set of communicative behaviors and
conventions [24, 11]. Tomasello [24] argues that the set of cognitive capacities, of which some are
unique to humans has resulted in a symbol-based culture. Examples of these are the human ability
to recognize that others have consciousness of their own and understand someone’s intentions and
emotions. These capacities resulted in the ability to learn from others by imitating their actions
and to inform others by teaching. This caused cultural artifacts to emerge and be passed along
with each new generation. A common approach to come to an understanding of human language
evolution and emergence apart from experiments on humans is the use of computer modeling and
simulation. The use of agent-based simulation models can potentially help explore the question of
how communicative behavior has originated. Quinn [17] developed such a model where the transition
from non-communicative to communicative behavior between agents is modeled. In his model
robots are equipped with proximity sensors and controlled by a neural network that controls the
movement of the agent to perform a coordinated task. The agent has no predefined communication
channel, so the behaviors are initially random. However, these random behaviors evolve to become a
coordinated signaling system with a leader and follower role. The model of Quinn [17] shows that the
emergence of cooperative signals between computational agents without a dedicated communication
channel is possible. Scott-Phillips et al. (2009) [20] did a comparable investigation where two
individuals needed to communicate their intentions without a pre-defined communication channel.
Thus, the researchers could in both cases investigate how communicative behavior emerged de novo.
While the human [4][6][7][8][21] and agent-based [10][14][15][22] emergence of communication is well
researched, only Steel’s Talking Heads experiment investigated the emergence of vocabulary between
humans and embodied agents [23]. The agents had no prior categorization of the word and no
programmed language, instead, it emerges. By interacting with humans in the real world and each
other they construct this by themselves. A novel language-like system emerges through interaction
with humans. The agents however are pre-programmed with a basic cognitive architecture, based
on plausible biological theories. We propose to revisit the emergence of communication between
humans and machines with the use of a literature study on how this can be achieved as well as
an experiment using the Embodied Communication Game (ECG) designed by Scott-Phillips et al.
(2009) [20]. We use data gathered by Tom Kouwenhoven et al. (2022) [13] of participants playing
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the ECG. The ECG is interesting since the participants have no pre-defined communication channel
and they need to solve the problem of recognizing a signal and mapping its meaning by themselves
since the space of possible signals is not defined. However, designing an algorithm that can recognize
a signal is out of scope for this project and will only be discussed in a literature study. We focus
on defining a communication channel between humans and machines using a neural network. The
goal of the network is to learn the mapping between a sequence of different movements and their
meaning. Therefore, the research question is; Is it possible for a neural network to map the meaning
of signals in an emergent symbolic communication system between two humans in ECG? In the
upcoming sections, background information including the necessary algorithms and theory that we
use for our experiments are discussed. Furthermore, we discuss related work on the emergence of
communication between humans, agents, and humans and embodied agents. Then, the methods we
use to perform our experiments as well as their results are described and discussed.

2 Background

This section discusses the necessary research, algorithms, and theory. This background information
includes the Embodied Communication Game (ECG), neural networks, RNNs and LSTMs. Elements
discussed in this section will be used in our neural network model and the experiments.

2.1 Embodied Communication Game

The Embodied Communication Game (ECG) [20] created by Scott-Phillips et al. (2009) is a simple
cooperative game in which two players have a common goal. The two players are separated and
thus, unable to communicate using the normal communication channels. Instead, players need to
learn to communicate through movements in a 2D game. Each player is represented as a stickman
in his own 2x2 box. Within this 2x2 box, the player can move freely, but only to the center of each
quadrant. Each quadrant of the box is randomly colored either blue, red, green, or blue. Each player
can see both 2x2 boxes and the movements within them but can only see the colors of the quadrants
in his own box, see figure 1. The game consists of multiple rounds, after each round the players can
see both boxes in color, the location of both players in the box, and their score. Only if both players
end up on a quadrant with the same color, do they receive a point. There is always one mutual
color between the two boxes, so the players are always able to score a point. The final score of the
pair of participants is not the total points received, but instead the longest run of consecutive wins.
This prevents a pair of players to perform well just by playing a lot of games and instead focuses on
the reliability of the communication between the players. Using this setup, ECG ensures that there
is no pre-defined communication channel. While there is only one possible channel to communicate
through (movement), this channel is not pre-defined since the communicative behavior still must be
embodied within this channel. The participants need to solve the problem of signaling signalhood
by themselves since the space of possible signals is not defined. Scott-Phillips et al. found that
there is an importance of common ground in language emergence. These assumptions are made
since successful pairs typically establish a default color strategy. At some point the pairs will end
up on a same-colored quadrant and score a point, moving to this color for the next rounds then
becomes the default strategy. When this default color is not available for a player in an upcoming
round, particular movements emerge to signal this absence. These movements are then later linked
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to a different color. This way a mapping emerges of movement sequences to color. This process
can be seen in figure 2. Most players report that the emergence of communication in ECG is not
dedicated to one player, instead, it follows a process of communication between the two players
that form the mapping of signals to color. An important conclusion that Scott-Phillips et al. make
is that the systems that emerge between two players do not resemble a system that would have
emerged from a single player. The process of emergence fundamentally affects the form of the final
communicative system. A system that is created by a single player typically has quite a different
form where for example, the number of movements is associated with a color. The findings suggest
that the constraint on the embodiment of the communication system shapes its final form.

Figure 1: Screen-shots of the two players for one round of the ECG (image from Scott-Phillips et al.
[20]). Each row shows the view of one player during a game (left-hand side) and after a round is
finished (right-hand side).

Figure 2: Typical process of communication emergence between two successful players in the ECG.
(image from Scott-Phillips et al. [20]).
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2.2 Neural Networks

A neural network [18] can be categorized as a machine learning algorithm, in which the computer
learns to perform a task by training on data. This training data is usually hand-labeled. For example,
if you would want to train an image classifier that can classify images of animals into the correct
species. You would train the system on a set of labeled images of animals. During training, the
system learns what pixel compositions and patterns correlate to what label. A neural network does
this in a way that is modeled after the way neurons work in our brains. It uses simple nodes that
are connected through weights. The exact composition of the neural network differs per application,
but most are set up in a feed-forward manner and consist of multiple layers. A layer consists of
nodes, see figure 3.

Figure 3: Layer types in a neural network.

A node assigns a weight (w) to each of its inputs, each input is then multiplied by its assigned
weight, these products are then added together to a single number as well as a bias (b). This sum
is then inserted into an activation function, for example a sigmoid function σ() as we can see in
equation 1.

a0(1) = σ(w0,0 ∗ a0(0) + w0,1 ∗ a1(0) + w0,2 ∗ a2(0) + b0(1)) (1)

Thus, each neuron can be seen as a function that takes in the outputs of all neurons in the previous
layer and calculates a number between 0 and 1 as its output. This function is called the activation
function. In the training phase of a neural network, the weights are initialized with random values.
The training data is then fed into the input layer, from here it passes through all nodes in the
hidden layers and eventually generates an output in the output layer. While training, the weights
and biases are adjusted so input data with the same labels create similar outputs. This is done
through backpropagation [12], for each training example the output of the network is compared to
the desired output. The squares of the differences of each of the components of the output are then
added up to calculate a cost. Averaging out the costs for all the training examples gives the total
cost of the network. The goal is to minimize this cost by adjusting the weights and biases.
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2.3 Recurrent Neural Networks

Feed-forward neural networks don’t have any memory for the inputs they received. It only considers
the current input when calculating an output since they do not allow information of previous inputs
to persist in the network. Recurrent Neural Networks (RNNs) [19] address this issue. Humans also
have some form of persistence of information in their memory. When for example reading an article,
you understand each word you read based upon the understanding of the previous read words. You
keep track of the information you already processed based on their importance to construct an
understanding of the words that still need to be read, and eventually the entire article. Recurrent
networks work similarly, they consist of multiple recurrent layers, each layer stores information in
the weighted connections between the previous and next layers as well as a shared hidden layer.
For example, if we would consider a phrase like “Wrapping your head around something”. The
order in which these words are placed is important for their meaning. Therefore, an RNN needs
to keep track of the specific order of them. Figure 4 shows an example of an RNN, the “rolled”
visualization shows the entire RNN. The “unrolled” visualization shows all the layers within the
RNN. Each layer maps to a single timestep and a single word of that phrase. When the inputs
have been “wrapping your head around”, each of these words represents a layer. Predicting the
next word “something” is aided by the propagation of information in the hidden layers to predict
the output.

Figure 4: Rolled and unrolled visualisation of an RNN.
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2.4 Long Short-Term Memory Networks

Long short-term memory networks (LSTMs) [9] expand upon recurrent neural networks. It is a
special kind of RNN that is capable of long-term memory as well as the ability to regulate the
addition or removal of information from the network. LSTMs add a state to the RNN, this state is
made up of the LSTM cell. The LSTM cell uses three gates that control the flow of information in
a sequence in the network. The forget gate controls what information in the state can be forgotten
since it is no longer relevant. The input gate controls what information should be added to the
state information. The output gate controls what part of the information stored in the state is
outputted. How these gates are formed can be seen in figure 5. The managing of information by
the gates depends on the importance that is assigned to the information through weights, which
are also learned by the algorithm. The benefit of using an LSTM over a normal RNN is that it can
capture potential long-distance dependencies in the data due to the introduced gates.

Figure 5: LSTM state cell.
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2.5 K-fold cross-validation

A good machine learning model should not only give accurate predictions on the data it is trained
on but also on new data and thus avoids overfitting. Overfitting occurs when the model is fitted to
the training data too well. This causes the model to have high accuracy on the training dataset but
perform poorly on new data. Testing if a model is overfitting can be done by splitting the dataset
into two parts: a train set and a test set. The train set is used for training the model, and the test
set for validating the model. The model is not overfitting when the loss on the train set is similar
to that on the test set. However, this way of validating a model is not very robust. Since the split
is done only once and the data in the test and train set can have a big effect on the results. A more
robust way of validating the model is by using K-fold cross-validation. In K-fold cross-validation, K
is a parameter that represents the number of equal-sized groups the dataset is split into. The value
of K also represents the number of evaluation folds. In each fold the following procedure occurs
with a different group:

1. Take this group as the test set

2. Take the remaining groups as the train set

3. Train a new model on the train set and evaluate it on the test set

4. Store the evaluation score

After this procedure has been performed on each of the K groups, the evaluation scores are averaged.
This averaged score gives a more robust insight into the performance of the model and if it is
overfitting.
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3 Related Work

In this section, various findings in research into language emergence are discussed. We will discuss
research on human-based and agent-based language emergence as well as the emergence of vocabulary
between humans and machines in Steel’s Talking Heads experiment [23].

3.1 Galantucci’s communication game

Galantucci [7] developed a game to investigate how human communication systems emerge in the
context of joint human activities. For his research, he did not want to rely on any pre-established
language such as a natural language or a designed artificial language. Therefore, the general idea
behind his method was the following. In the game, two participants share a two-dimensional virtual
environment that consists of four connected rooms. The experimental setup can be seen in figure 6.

Figure 6: Overview of Galantucci’s communication [7] game. (A) Experimental setup. (B) The four
connected rooms in the virtual environment, each room is marked with its own icon. (C) Player
A’s view, showing player A’s current location in the virtual environment, its own communication
pad, the pad of player B, and the score. (D) Player B’s view, showing player B’s current location in
the virtual environment, its own communication pad, the pad of player A, and the score. (image
from Galantucci [7]).

Each of the rooms is connected to two other rooms and marked by a different icon. Participants
can freely move in and between the rooms but can only see the room in which they are located
and can see the other player if they are in the same room. The only way for the two participants
to communicate with each other is by using a stylus on a small digitizing pad. Both players can
see what was being written on these pads, however, writing on the pad is subjected to a constant
downwards drift as well as a quick fading of what is written. This mostly prevents the participants
from the use of common graphical symbols. The common goal of the two participants for each
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round is to end up in the same room while just changing rooms once. Thus, the participants need
to signal to which room to go. The method showed that such communication systems emerged
quickly and reliably. The participants use the writing pad to create a sign system for signaling
each room. These sign systems can, however, depending on the pair, originate from a very different
mapping of environment properties to the properties of the communicative signals. For example,
some pairs used a numeration-based system while others used an icon or map-based system. While
Galantucci’s experimental setup is comparable to the ECG created by Scott-Phillips et al. [20] in
many aspects, one key difference is that in the ECG there is no dedicated pre-defined communication
channel. In Galantucci’s experiment, there also emerges a new communication system between
participants since they need to signal their intent. However, in the ECG, the channel through
which this communication has to emerge needs to be discovered and defined by the participants
themselves. While in Galantucci’s experiment the communication channel is pre-defined by the
researcher since there is a writing pad.

3.2 The Talking Heads experiment

As mentioned in the introduction, the Talking Heads (TH) experiment investigates the emergence
of vocabulary between humans and embodied agents [23]. It was the first large-scale experiment
where embodied agents created a shared vocabulary. The agents’ shared environment consisted of a
whiteboard in which various colored shapes were placed, as can be seen in figure 7. The agents
play the ”guessing game”, one of the agents perceives an object in the scene, gives meaning to
it, and verbalizes it into speech. The other agent hears these utterances and conceptualizes them
into meaning, then picks out an object in its scene. The goal is to pick out the correct object. The
agents could teleport through the internet to various physical sites around the world. Besides the
agent’s interaction with each other, humans could also interact with them, influencing the evolving
vocabulary and understanding of the agents. The agents are pre-programmed with a basic cognitive
architecture based on plausible biological theories. However, agents had no prior categorization of
the world and no pre-programmed language. Instead, it emerges. In the experiments, the agents
were able to learn all of the categories and linguistic structures in a usage-based way, by interacting
with humans and each other. This shows that computers can learn linguistic meaning if this is
constructed from the ground up. The agents can map the meaning of an object and even verbalize it.
However, the agents are pre-programmed with basic cognitive architecture and the communication
channel is pre-defined. While in the ECG there is no pre-defined communication channel, the
Talking Heads experiment shows that it is possible for computers to map human signals to meaning
and signal information by themselves. Furthermore, the experiment shows that it is possible for a
novel communication system to emerge between humans and machines.

Figure 7: Talking Heads setup. (image from Steels [23])
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3.3 Evolving communication with simulated Khepera robots

Similar to the experiment of Scott-Phillips et al. (2009) using the ECG, Quinn [17] presents a model
to investigate how communicative behavior can evolve from initially non-communicative behavior
that also ensures there are no dedicated pre-defined communication channels. However, while the
experiment of Scott-Phillips et al. (2009) is performed on humans, Quinn’s model uses computer
agents (simulated Khepera robots). These agents are equipped with distance sensors and motorized
wheels as can be seen in figure 8. Thus, they do not have a dedicated communication channel.

Figure 8: Khepera robot, consisting of 8 IR-sensors (numbered 0-7) and 2 driven wheels. (image
from Quinn [17])

The agents are controlled by a neural network that turns the sensory input of the distance sensors
into motor outputs. With these motor outputs, the agent is able to move through the environment.
The agents are given a task in pairs. Their task is to move at least 25cm from their starting position
within the given ten seconds. However, the agents are not allowed to leave each other’s sensory
range, nor collide with one other. The agents’ performance is evaluated each round in pairs, thus
the performance of the pair determines the performance of each agent. After each round, the agents
received the same score. However, the fitness of an agent was determined by the average score
received throughout its rounds played. Furthermore, each agent forms its own population. In total
there are 180 populations with initially random genotypes, a generational evolutionary algorithm is
used to evolve each population for a total of 2000 generations. Each pair is placed in an empty
environment such that they are in sensor range of each other. In successful pairs, it is observed that
in the early stages of the evolution a behavior emerged, which was still non-communicative. This
non-communicative behavior forms the basis and later evolves toward communicative behavior in
which leader and follower roles are allocated. However, this role allocation is not set in the agents’
genotype. Instead, the allocation of roles happens during a round, and communicative signals
are exchanged to coordinate this allocation. This interaction occurs due to a timing difference in
when the agents would get aligned with each other as can be seen in figure 9. The agent that gets
aligned first will oscillate, when the second agent also gets aligned it will interpret this oscillation
as a signal and adopt the leader role. Without this signal, the agent would start oscillating itself.
After both agents are aligned the leader will start moving backward while being followed by the
other agent. The model has not set out to solve any particular hypothesis, it is only intended as a
proof of concept. However, it shows that agent-based models can evolve communication without
dedicated communication channels. Thus, this shows it might be possible for two simulated agents
to evolve behavioral sequences that function as signal and response in the ECG as well. Since
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in the ECG there are also no pre-defined communication channels. If interaction with humans
would be introduced in the evolution of behavior, it might also be possible to create a common
communication channel between humans and computers. This would be similar to the Talking
Heads experiment [23] but without the pre-defined communication channel and pre-programmed
basic cognitive architecture.

Figure 9: An example interaction between two successful Khepera agents. (i) Agents A and B are
moving without being aligned (ii) Agent B aligns with agent A and stops. (iii) Agent B starts
oscillating at this position. (iv) Agent A aligns with B and reverses, and agent B follows. (image
from Quinn [17])
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4 Methods

In this chapter, we describe the implementation of our neural network, the data, and the methods
we use for our experiments.

4.1 Data

The current study investigates the possibility of learning Signal-Meaning of different movement
sequences performed by a participant in the ECG using a neural network. The dataset we use is
gathered by Tom Kouwenhoven et al. (2022) [13]. In their research into the relationship between a
participant’s Personal Need for Structure (PNS) and the emergence of a communicative system
while playing the ECG is investigated. The dataset contains information on the games played by
46 participants (36 females, 10 males; Mage = 22.39, SDage = 3.52). The experiment took place
in a similar setup used by Scott-Phillips et al. (2009) [20]. For each game, two participants took
seat in different rooms. The participants played the ECG together in separate rooms using a web
application on two connected computers. They were informed about how the game mechanics work
and that the goal is to score as many consecutive points as possible in 40 minutes. After 40 minutes
the game stopped, and the participants had to report if they thought any communication had
emerged. The data we use to train our neural network consists of the keyboard inputs performed by
the participants. The participants used the arrow keys to move between the quadrants and finalized
their movements with the spacebar. Furthermore, we use the participants’ different locations on
the 2x2 grid for each round, and the color they ended up on.

4.2 Implementation

For the implementation of our neural network we use LSTM layers, since unlike a feed forward layer,
an LSTM layer can process entire sequences of data. However, a standard recurrent layer is also
capable of processing sequences of data. The benefit of using a LSTM is that it can capture potential
long-distance dependencies in the data due to the introduced gates as mentioned in the background
section. This can cause the performance of the neural network to increase and convergence to
go faster [3]. To implement our neural network, there are several platforms available. We use
TensorFlow [1] which is an open source and easy-to-use library that can be used to create machine
learning models. Keras [2] is also a python based library and can be integrated into TensorFlow.
Keras provides a more user-friendly interface and expands TensorFlows’ functionality. Keras which
is a high-level API has become fully integrated into the low-level TensorFlow API and is no longer
a separate library. Therefore, we use both TensorFlow and Keras for creating our model. For every
participant in the dataset, a new model is trained using the input data or set of samples. Each
sample represents a round in the 40-minute game the participant has played. A sample consists
of the sequence of actions and corresponding locations of the player in that round. There are 5
actions the player can perform; “left”, “right”, “up”, “down”, and “finish” which finalized the
round. Furthermore, there are 4 different locations the player can move to, these are the centers of
each quadrant. The target data or set of labels that are used to train the model consists of the color
the player ends up on. The goal of the model is to predict the color on which the player ends up
using the sequence of actions and locations the player used to get there. We chose to use this data
since this is the same information a human player would get. Each player can see the movements,
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locations, and end color of the other player. Our model will act as a player guessing the color that
a human player is signaling with its movements, these movements are the input it is receiving.
The model should learn the mapping between the movements and the color the player tries to
signal with those movements. However, not all pairs of participants were successful in establishing
communication. Therefore, we do not expect the model to be accurate for all participants since they
may not have tried to signal any color with their movements. Furthermore, if communication has
been established between a pair, not all rounds of a player in that game contain a signal mapping
to a color. For example, when a player is only receiving information from the other player, and
then moving to the signaled color. Then the sequences of movements of the receiving player won’t
contain any information about the chosen color. Furthermore, in the first rounds of the game, when
communication is not yet established, there may also not be any information contained in the
movements.

4.3 Pre-processing of the data

As mentioned above, the input of the model consists of the movement and location sequences of
the player. With this input, the model needs to predict the color that the player has ended up
on. However, this data needs an embedding before the model can process it. Therefore, we use
multi-hot encoding for encoding the input and one-hot encoding for the output. For each action
in the sequence the move is encoded with 5 bits and the location with 4 bits, both using one-hot
encoding. These one-hot encodings are concatenated to form a 9-bit multi-hot encoding of the
action. The label or target data for each color is encoded with 4 bits using one-hot encoding. The
specific encoding for each movement and location can be found in table 1.

Movement\Index: 0 1 2 3 4
Left 1 0 0 0 0
Right 0 1 0 0 0
Up 0 0 1 0 0
Down 0 0 0 1 0
Finish 0 0 0 0 1

Location\Index: 5 6 7 8
Top left 1 0 0 0
Top right 0 1 0 0
Bottom left 0 0 1 0
Bottom right 0 0 0 1

Table 1: The one-hot encodings for movement and location.

Each sample contains a sequence of states; however, the length of this sequence is not the same
for each round. Some rounds of a game contain only the “finish” move while others contain many
consecutive states. However, the model expects each sample to have the same number of sequences.
Therefore, for each game, we take the length of the longest sequence and then pad all samples with
value ’9’ to have this length. The model is instructed to “ignore” these padded values.
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4.4 The Model

We use the sequential Keras model, which is a straightforward to use model that uses a list or stack
of single-input, single-output layers. The loss function we use is the Categorical Cross Entropy Loss
Function from Keras. We use Categorical Cross Entropy since our model has to perform multi-class
classification. A representation of the model can be seen in table 2.

Layer Input Shape Output shape Activation
Masking (N,9) (N,9) -
LSTM (N,9) (N,16) ReLu
Dropout (N,16) (N,16) -
LSTM (N,16) (N,32) ReLu
Dropout (N,32) (N,32) -
TimeDistributed(Dense) (N,32) (N,4) Tanh
Flatten (N,4) (NX4) -
Dropout (NX4) (NX4) -
Dense (NX4) (64) ReLu
Dropout (64) (64) -
Dense (64) (32) ReLu
Dense (32) (4) SoftMax

Table 2: The input and output shapes for the layers in our model.

Masking Layer:
The masking layer takes the input sequence of the model and masks all padded sequences containing
9 bits of value 9. This ensures that the following layers “ignore” the padded sequences.

LSTM layers:
The LSTM layers are used to learn long term dependencies in a sequence. The layer proccesses the
sequence in chronological order. For each input, A new LSTM cell is created. The hidden state of
this LSTM cell depends on the hidden state of the previous LSTM cell and the input. The LSTM
layer outputs the hidden state of all LSTM cell’s.

Time Distributed layer:
The Time Distributed layer takes the input sequence of hidden states as its input. It applies a
dense layer to each of the unit sets in the sequence. The previous LSTM layer outputs a set of
hidden states for each element in the sequence. The dense layer cosists of 4 units that are fully
connected to the set of hidden states.

Flatten layer:
The flatten layer takes the rows of the two-dimensional shaped input and concatenates them to
form a one-dimensional shaped output. This is done as preparation for the dense layers since they
only allow for one-dimensional inputs.
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Dense layers:
In total there are three dense layers, the first two were added to extract more detail from the LSTM
layers. While the last layer gives a probability for each of the four colors. Before this final dense
layer, only two dense layers were used since adding more did not improve the model’s performance
and only increased complexity.The first dense layer consists of 64 units with RELU activation
functions that are fully connected to the 1D output of the flattened layer. The second dense layer
consists of 32 units with RELU activation functions that are fully connected to the 64 units of the
first dense layer.The final dense layer has a unit size of 4 with SoftMax activation. This layer gives
a probability for each of the 4 colors, ranging from 0 to 1. The 4 probabilities together sum up
to 1. The model predicts the color the player ended up on by choosing the color with the highest
probability, given the input sequence.

4.4.1 Fitting the model

The model.fit function of Keras fits the model with the train data for 20 epochs. For each epoch,
the entire train data is fed into the model, and the loss and accuracy are calculated. The weights
are then adjusted to decrease the loss. Additionally, the model.fit function also calculates the loss
and accuracy on the test set. This is not used for training the model, but for validating it. The
loss and accuracy of the train set should be similar between the train and test set. Otherwise, the
model is over- or under-fitting on the train set.

5 Experiments and Results

In our experiments, we try to demonstrate if our model can map the meaning of signals produced
by participants in the ECG. We create and train a new model for each of the 46 participants
to collect and compare their results. In this section, we describe what our experimental setup is
and what results were obtained. The accuracy, loss, and historical data that is produced by our
model is averaged for each player using 4-fold cross-validation. The samples of each player are
first shuffled and then split into four equal-sized groups. Each group is used once for validation,
the remaining three are then used for training. Thus, the model is trained and validated 4 times
per player, generating 4 results. These results are then averaged for each player to be used in our
experiments.

5.1 Experiment 1

With our second experiment, we investigate the ability of our neural network to learn signal-meaning
mapping. Our neural network had to predict the signaled color using a sequence of movements. We
discuss the average performance of the model over all players and the difference in the performance of
the model on players that reported successful communication versus players that were unsuccessful.
The model should perform worse on sequences of a pair that is unsuccessful in building a novel
system of signals since these sequences will probably not contain any communicative signals the
model can interpret. We expect that the neural network is more accurate in mapping the meaning
of actions from participants that reported they were successful in creating a communication system
in the ECG game. Since in an established communication system, the players can communicate
with each other about what the end color should be. Thus, the action sequences in such a game
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should map to a specific color. However, we do not expect the model to be completely accurate for
all of the sequences in an established communication system for 2 reasons:

1. No complete information

The model is trained on the action sequences of only one player in a two-player communicative
game, the information the model receives is not complete. The sequences of actions in each
round contain the communication of one player interacting with another player. Therefore,
the communication is not complete. For example, in a round where player 1 “leads” the action
sequences of this player signal a specific color. The other player may just react by moving to
this color and finalizing the game. This player is following the instructions of the other player
and thus not creating any signaling movements itself. The model does not have a complete
overview of the interaction and may thus misinterpret an action sequence.

2. Shuffled dataset

The model does not learn the sequences in the same order the player created them in.
Instead, the order of the sequences in the dataset is shuffled before training and testing.
Therefore, there may be action sequences from rounds early in the game. While after the
40-minute game the participant reports that successful communication has been established
with the other player, this may not be true in the early rounds of the game. In these early
rounds, communication is not yet established. Thus, the sequences in these rounds may not
contain any signaling information. Shuffling the data is common practice since it prevents the
model from learning a pattern from the order in which the game is played instead of basing
the prediction on solely a round’s sequence.
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5.1.1 Result

The model has a mean accuracy of 60.07% with a standard deviation of 21.82% (M=60.07%,
SD=21.82%). The boxplot in figure 10 shows that the model has higher median accuracy on
players that reported they were successful (72%) compared to the players that reported there
was no communication or were not sure (28%). The mean accuracy of the model on the players
that reported unsuccessful communication or were not sure is 30.39% with a standard deviation
of 6.14% (M=30.39%, SD=6.14%). The mean accuracy of the model on players that reported
they were successful at establishing communication is 67.29% with a standard deviation of 17.78%
(M=67.29%, SD=17.78%). The accuracy of our model is significantly higher on data from players
that established communication compared to players that did not (t=6.00, p=3.35e-07). This shows
that the model is better at predicting the end color with sequences of players that reported they
were successful. However, there is a wide range of accuracies for successful players.

Figure 10: A boxplot visualizing the accuracy for players reporting successful and unsuccessful
communication .
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5.2 Experiment 2

With our second experiment, we investigate why the distribution of the model’s accuracy is so wide
for the successful players. We try to understand why for some successful players the model is more
than 90 percent accurate while for others it can be less than 30 percent accurate. We investigate
three explanations for this wide range of accuracy.

5.2.1 Experiment 2.1

An explanation for the models’ low accuracy on some successful players can be that the model is
not generalizable. The architecture of the model and its hyperparameters might be unsuited for
application on some players. This could cause the model to overfit on the train data, causing low
accuracy on the test data. If the validation loss is much higher than the training loss, the model is
overfitting. We visualize for each player if such overfitting occurs by plotting the validation and
train loss during training averaged over all folds. We also visualize this by plotting the validation
and train accuracy during training averaged over all players.

5.2.2 Result Experiment 2.1

Figure 11: average accuracy (left) and validation(right) plot of our model during training on the
data of 46 the participants.

The line plots in figure 11 show no significant overfitting on the averaged data. However, we also
produce two line plots for every player, these results of our experiment are located in appendix
A. From these plots, we can see that the model overfits on data from players that reported no
communication was established or were not sure. For this data, the validation loss starts increasing
early in training while the loss on the training set keeps decreasing. This indicates overfitting,
which we expected. Since the data contains almost no information or patterns, the model starts
learning the data, resulting in overfitting. In general, the model does not overfit on data from
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players that reported communication was successful. For this data, the validation loss decreases in
a similar manner as the training loss. However, there are some exceptions. While to a lesser extent
as compared to players that reported no communication was established or were not sure. For some
successful players, the validation loss increases slightly or stagnates, while the loss on the training
set keeps decreasing. The general pattern for such successful players is that the accuracy is low
and its increase stagnates early in training, causing a horizontal line in the accuracy plot. Why
this happens is not obvious, but since the model overfits on this data almost similairly to data
from non-successful players, it might indicate that this data also contains almost no information
or patterns. Causing the model to learn the data, resulting in overfitting. This data probably
causes the wide range of accuracy for the successful players. We further investigate this in the next
experiments.

5.2.3 Experiment 2.2

A second explanation for the wide range of accuracy for the successful players could be that one
player in a pair is a leader while the other is a follower. With such a role allocation we expect the
action sequences of the leader to contain much more information and thus signal a color better.
While the other player is following and thus probably not creating many signaling movements
itself. If the model has a low accuracy on a successful player we will compare it with the model’s
accuracy on the paired player. If the models’ accuracy is much higher for the paired player, this
might indicate such a leader-follower role allocation between the players. This could explain why
the model’s accuracy for some successful players is so low. We will investigate this explanation by
comparing the model’s accuracy scores for each pair. If there is a significant difference in accuracy
between a pair we will investigate further by looking at the average number of movements of each
player. Under the assumption that a player with a lead role will have a higher average number of
movements, since this player has to signal, and the follower only has to follow. Finally, we will
compare the participants’ descriptions of how communication emerged to see if any role allocation
is described.

5.2.4 Result Experiment 2.2

While comparing the players in each successful pair we can only find one pair with a significant
difference in model accuracy. The model had an accuracy for player 1 of 41% while having an
accuracy of 95% for player 2. By looking at the average number of movements of each player we
can see that player 1 has on average 3,03 moves per round while player 2 has 13,19. Under the
assumption that a player with a leading role has a much higher average number of movements
compared to the follower, it could be that there is an allocation of leader and follower roles in this
pair. Finally, we will compare the participants’ descriptions of how communication emerged to see
if any role allocation is described. Player 2 tries to signal the end color from the beginning of the
game using movements. Later in the game (according to player 2 after about 30 minutes), player
1 realized that player 2 was trying to signal color with its movements. After communication had
emerged between the pair, no clear role allocation is described. While both players report that
communication has been established, this was late in the game. Player 2 was signaling a color
with its movements from the start of the game while player 1 did only after communication was
established. This late establishment of communication can explain the low accuracy for player
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1 since only a small portion of its rounds may contain a signal for a color. Thus, the model’s
prediction will be wrong for most rounds where the movements don’t signal a color.

Table 3: Description of how communication emerged, model’s accuracy, and average number of
moves for participant 1 and 2 of game 2.
Player Accuracy Average

number
of moves

Discription of communication

1 41% 3.03 At first not really any. I made a hierarchy in which I
would choose the colours and that is how I realised that
the other person used the code of moving the curser into
all corners when talking about green. So we would always
first test if the person had green. Then I realised that
when they moved the courser side to side that meant
blue, up and down on the left meant red and up and
down on the right meant yellow. My partner was an
absolute genius, coming up with this system and after
my slow brain caught up the excersise became fun.

2 95% 13,19 From round three onwards tried to communicate green
(clockwise round with dot), blue (bottom left-rigth-left-
right-etc), red (left side up-down-up-down-etc), and yel-
low (right side up-down-up-down-etc). In the end there
was communication (after like 30 min). In the end we
also had winning streak due to communication.
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5.2.5 Experiment 2.3

The phenomenon found in the previous experiment can also explain the models’ wide range of
accuracy. Players only report if communication was established but not when. If communication is
established later in the game, there is a higher number of samples in the dataset that don’t contain
any signals. This causes more noise when training the model, but also reduces the accuracy when
testing the model. Our final experiment will investigate this hypothesis by plotting the players’
percentage of successful games against the accuracy of the model on that player. If a player has
a higher percentage of successful games, we expect that a higher percentage of sequences of this
player contain signal information. Thus, our model will be trained on data with less noise and the
test data contains less noise which increases the accuracy when testing the model. Therefore, we
expect our model to have a higher accuracy on games with a higher percentage of successful rounds.

5.2.6 Result Experiment 2.3

Each data point in the regression plot in figure 12 represents a player in the ECG game. We can
see a correlation between the accuracy of the model on a player and the percentage of successful
rounds played by that player. Furthermore, we can see an outlier in the top-left corner of the plot.
This data point represents player 2 from the pair we discussed in experiment 2.2.

Figure 12: Regression plot of the accuracy of our model on a player and the percentage of successful
rounds played by that player (r=0.90, p=1.95e-17).
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5.3 Experiment 3

In the research of Scott-Phillips et al. (2009) [20] into the emergence of communication in the ECG,
the general procedure of establishing communication was described. In general, a pair would start
with a standard color to go to and then agree on signals for other colors when this standard color
is not available. If the participants in Tom Kouwenhoven et al. (2022) [13] research also follow such
a path in the communication emergence, we expect the frequency of the player ending up on the
standard color to be higher than all other colors. Because this would be the players’ “first choice”,
only if the color is not available another color would be chosen. In this experiment, we investigate
if our model learns the same distribution of colors for its predictions.

We will make a barplot for each player containing the color distribution of all target labels.
We compare this distribution with the distribution of the models’ color predictions on the test
set over all folds. For an accurate model, we expect the color distribution of the predictions to
be similar to the distribution of colors in the target labels. Because, if the model is accurate,
the predictions of the target values are accurate, and thus the distributions should be similar.
We make a regression plot to visualize if there is a correlation. We measure the similarity of the
distributions for each player by calculating the frequency for each color in the target labels and the
test predictions. We then calculate the absolute difference for each color in terms of percentage
in the test predictions compared to the target labels. For example, if red has a frequency of 100
in the target labels and 150 in the test predictions, there is a 50 percent difference for red. We
calculated the distribution difference by summing the differences for each color, the higher this
difference, the lower the distribution similarity. Inaccurate models are not that good at predicting
the target value with the action sequences. These models have not “learned” the mapping between
a signal and its meaning. Therefore, we expect these models to be biased towards predicting the
color with the highest frequency in the train set. Because this maximizes the accuracy since it has
the highest probability of occurring. Therefore, the color prediction distribution on the test set
should be biased towards this color. We make a second regression plot to visualize if there is a
correlation between the accuracy and the bias. The bias is calculated for each player by taking the
color with the highest frequency in the target labels. We then compare the percentual difference in
the frequency of this color in the test distribution compared to the frequency of this color in the
target distribution.
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5.3.1 Result Experiment 3

Figure 13: Regression plot of the accuracy of our model on a player and the model’s bias on the
left(r=-0.69, p=9.48e-08) and distribution difference on the right (r=-0.83, p=6.99e-13).

Each data point in the regression plots in figure 13 represents a player in the ECG game. We can
see a correlation between the accuracy of the model on a player and the similarity of the color
distributions. In general, a more accurate model produces a color distribution in its predictions
similar to the color distribution in the target labels. Furthermore, we can see that less accurate
models have a significant bias toward the color with the highest frequency in the target labels.
It is possible for the bias to be negative since the color with the highest frequency in the target
distribution can have a lower frequency in the test distribution. Since we produce a bar plot for
every game, these results of our experiment are located in appendix B.

6 Discussion

In this paper, we describe research into the emergence of communication between humans, computers,
and both. We further investigate the ability of a neural network with LSTM layers to map the
meaning of signals produced by participants in the Embodied Communication Game from Scott-
Phillips et al. (2009) [20]. For this, we use data gathered by Tom Kouwenhoven et al. [13] that
replicated the findings of Scott Phillips et al. From our experiments we can find that our network has
a significantly higher mean accuracy on data from players that established communication compared
to players that did not (t=6.00, p=3.35e-07). This shows that the model is better at predicting the
end color with sequences of players that reported they were successful. The models’ wide range of
accuracies on players that report communication was established suggests that there is a gradient
in the quality of this data. This gradient can come from players reporting communication was
established while there is no complete mapping from signal to color. For example, some successful
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players reported only an agreement on a standard color to move to and a secondary color if the
standard color was unavailable while having no mapping for the other colors. Another explanation
for the gradient is that while players reported that communication was established, they did
not report when. If communication is established later in the game, there is a higher number of
samples in the dataset from losing rounds. If a pair establishes communication when most of the
game has been played the data from the entire game contains a lot of noise from rounds where
no communication was present. We therefore measure how successful a pair was in establishing
communication by calculating the percentage of successful rounds in their game. We can see a
correlation between the accuracy of our model on a player and the percentage of successful rounds
played by that player. However, since the sequences in the dataset are shuffled before splitting them
into a train and validation set. While validating the model this results in the prediction of sequences
that can be noise from early rounds. These sequences do not contain a signal to color mapping and
thus even if the model can separate signals from noise is likely to make an incorrect prediction.
We have to take into account the decrease in model accuracy when the noise increases. Thus, the
strong correlation and the high accuracy for players with a high percentage of successful rounds
show that the neural network performs well in mapping the meaning of signals in an emergent
symbolic communication system in the ECG.

7 Conclusion

To conclude, our neural network can map the meaning of signals produced in an emergent symbolic
communication system in the ECG. However, the accuracy of our model depends on the amount of
noise in the data. If no communication has been established between two players, the data from
each player in this game likely only contains noise instead of signals. And even if players report
successful communication if a pair establishes communication when most of the game has been
played the data from the entire game can still contain noise from rounds where no communication
was present. We can see a strong correlation between the accuracy of our model and the percentage
of successful rounds. The percentage of successful rounds also indicates the rate of samples in the
dataset that don’t contain any signals. This causes more noise when training the model, but also
reduces the accuracy when testing the model. Since this noisy data can also be found in the test
set due to shuffling, we have to take into account a decrease in model accuracy when the noise
increases. Thus, the strong correlation and the high accuracy for players with a high percentage of
successful rounds show that the neural network performs well in mapping the meaning of signals in
an emergent symbolic communication system in the ECG. Furthermore, we can see a correlation
between the model’s accuracy and the similarity of the player’s and model’s color distribution. In
general, a more accurate model produces a color distribution similar to the color distribution in
the target labels. Less accurate models have a bias toward the color with the highest frequency in
the target labels. Relating our findings in the literature and our experiment back to the question
of whether a machine could learn to play the game of the ECG with a human. We can conclude
from our experiments that a machine can learn the signal-meaning mappings of players in the
ECG. And from Steels Talking Heads experiment that machines can recognize human signals
and map their meaning if this system is constructed together with humans from the ground up.
However, one problem with combing these two findings and concluding that a machine could learn
to play the game of the ECG with a human is that the agents in the Talking Heads Experiment are
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pre-programmed with basic cognitive architecture and have a pre-defined communication channel.

8 Future Work

From our findings in literature and experiments, we can not conclude if a machine can play the
Embodied Communication Game with a human. In future work, this possibility could be further
investigated. Inspiration of how this can be achieved can be found by looking at the successful setup
of the Talking Heads experiment and Khepera agents. The Talking Heads experiment shows the
possibility for a novel communication system between humans and machines to emerge if it is built
from the ground up. A first step should obviously be to actually enable our model to play together
with a human player. The model should receive its own 2x2 with random colors and be able to
perform sequences of movements with a human player. The model then needs to learn how to
actually play the ECG. This is a difficult task since emerging a novel communication system depends
on an interaction between the two players. Players need to recognize communicative signals and
cooperate through dialogue to establish their goals. This could maybe be established by combining
methods from the talking heads experiment and Khepera agents. By not only training the model
by playing with a human, but the model should also train with other agents. The Khepera robots
show that an agent can adopt a leader or follower role, depending on an incoming signal. This
could be useful in an ECG agent as well since interaction and dialogue happen through turn-taking.
The agent could understand that a certain incoming signal means to follow the other player. For
example, if the other player moves from left to right, the model can predict to what color this maps
and the agent can then check if this color is available. If it is the agent would move to this color. If
it is not, this signals the agent would take on the leading role by performing a movement sequence
of its own to convince the human player to move towards a certain color. It would be interesting
to investigate the precise problems and pitfalls in designing an agent that plays the ECG with a
human player.
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