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Abstract

Explaining the emergence of human communication poses a problem because how do individuals
come to an agreement on the relationship between a symbol and its meaning when this
relationship is not innate? Previous work provides some insights on how this emergence occurs
in humans with the use of the Embodied Communication Game (ECG). This study focuses
on the emergence of communication between humans and machines. We investigate the ability
of a neural network with LSTM layers to map the meaning of signals produced by humans
playing the ECG. We use the sequences of movements of 23 duo’s playing the game, after
each game each player reported if communication had been established. The network needs
to predict the color signaled by a player using the sequences of movements performed by a
player in a round of the game. The accuracy of our model is significantly higher on data from
players that established communication compared to players that did not (t=6.00, p=3.35e-07).
The accuracy of our model depends on the percentage of successful rounds played in a game
(r=0.90, p=1.95e-17). Furthermore, we can see a correlation between the model’s accuracy and
the similarity of the player’s and model’s color distribution. In general, a more accurate model
produces a color distribution similar to the color distribution in the target labels (r=-0.83,
p=6.99e-13). Less accurate models have a bias toward the color with the highest frequency in
the target labels r=-0.69, p=9.48e-08). To conclude, our model is successful in mapping the
meaning of signals produced in an emergent symbolic communication system in the ECG.
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1 Introduction

The question of how human communicative behavior has emerged is a di�cult question to answer
and widely debated. This is because human language is both learned and symbolic (symbols are
used to represent concepts)[5]. This poses a problem; how do individuals come to an agreement on
what the relationship is between a symbol and its meaning when this relationship is not innate
[16]? Furthermore, before the receiver of a communicative signal can even make a connection
between a signaled symbol and its meaning, he �rst must understand that the signal is indeed
communicative. The symbolism in human communication consists of body language like gestures
and facial expressions, as well as words or vocal moans. The symbol signals the meaning, you can
for example explain to someone that you feel angry by telling them. The word \angry" now signals
your emotional state to that person, and this person is now able to understand how you feel. A
dog can also signal that it is angry but only using non-verbal signals like showing its teeth and
growling. The second property of human language is that this symbolism can be learned [5]. These
two properties of the human communication system have contributed to the human language that
is used today. The communicative processes that interleaved the cognitive abilities and experiences
of many individuals over time have resulted in today's shared set of communicative behaviors and
conventions [24, 11]. Tomasello [24] argues that the set of cognitive capacities, of which some are
unique to humans has resulted in a symbol-based culture. Examples of these are the human ability
to recognize that others have consciousness of their own and understand someone's intentions and
emotions. These capacities resulted in the ability to learn from others by imitating their actions
and to inform others by teaching. This caused cultural artifacts to emerge and be passed along
with each new generation. A common approach to come to an understanding of human language
evolution and emergence apart from experiments on humans is the use of computer modeling and
simulation. The use of agent-based simulation models can potentially help explore the question of
how communicative behavior has originated. Quinn [17] developed such a model where the transition
from non-communicative to communicative behavior between agents is modeled. In his model
robots are equipped with proximity sensors and controlled by a neural network that controls the
movement of the agent to perform a coordinated task. The agent has no prede�ned communication
channel, so the behaviors are initially random. However, these random behaviors evolve to become a
coordinated signaling system with a leader and follower role. The model of Quinn [17] shows that the
emergence of cooperative signals between computational agents without a dedicated communication
channel is possible. Scott-Phillips et al. (2009) [20] did a comparable investigation where two
individuals needed to communicate their intentions without a pre-de�ned communication channel.
Thus, the researchers could in both cases investigate how communicative behavior emerged de novo.
While the human [4][6][7][8][21] and agent-based [10][14][15][22] emergence of communication is well
researched, only Steel's Talking Heads experiment investigated the emergence of vocabulary between
humans and embodied agents [23]. The agents had no prior categorization of the word and no
programmed language, instead, it emerges. By interacting with humans in the real world and each
other they construct this by themselves. A novel language-like system emerges through interaction
with humans. The agents however are pre-programmed with a basic cognitive architecture, based
on plausible biological theories. We propose to revisit the emergence of communication between
humans and machines with the use of a literature study on how this can be achieved as well as
an experiment using the Embodied Communication Game (ECG) designed by Scott-Phillips et al.
(2009) [20]. We use data gathered by Tom Kouwenhoven et al. (2022) [13] of participants playing
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the ECG. The ECG is interesting since the participants have no pre-de�ned communication channel
and they need to solve the problem of recognizing a signal and mapping its meaning by themselves
since the space of possible signals is not de�ned. However, designing an algorithm that can recognize
a signal is out of scope for this project and will only be discussed in a literature study. We focus
on de�ning a communication channel between humans and machines using a neural network. The
goal of the network is to learn the mapping between a sequence of di�erent movements and their
meaning. Therefore, the research question is; Is it possible for a neural network to map the meaning
of signals in an emergent symbolic communication system between two humans in ECG? In the
upcoming sections, background information including the necessary algorithms and theory that we
use for our experiments are discussed. Furthermore, we discuss related work on the emergence of
communication between humans, agents, and humans and embodied agents. Then, the methods we
use to perform our experiments as well as their results are described and discussed.

2 Background

This section discusses the necessary research, algorithms, and theory. This background information
includes the Embodied Communication Game (ECG), neural networks, RNNs and LSTMs. Elements
discussed in this section will be used in our neural network model and the experiments.

2.1 Embodied Communication Game

The Embodied Communication Game (ECG) [20] created by Scott-Phillips et al. (2009) is a simple
cooperative game in which two players have a common goal. The two players are separated and
thus, unable to communicate using the normal communication channels. Instead, players need to
learn to communicate through movements in a 2D game. Each player is represented as a stickman
in his own 2x2 box. Within this 2x2 box, the player can move freely, but only to the center of each
quadrant. Each quadrant of the box is randomly colored either blue, red, green, or blue. Each player
can see both 2x2 boxes and the movements within them but can only see the colors of the quadrants
in his own box, see �gure 1. The game consists of multiple rounds, after each round the players can
see both boxes in color, the location of both players in the box, and their score. Only if both players
end up on a quadrant with the same color, do they receive a point. There is always one mutual
color between the two boxes, so the players are always able to score a point. The �nal score of the
pair of participants is not the total points received, but instead the longest run of consecutive wins.
This prevents a pair of players to perform well just by playing a lot of games and instead focuses on
the reliability of the communication between the players. Using this setup, ECG ensures that there
is no pre-de�ned communication channel. While there is only one possible channel to communicate
through (movement), this channel is not pre-de�ned since the communicative behavior still must be
embodied within this channel. The participants need to solve the problem of signaling signalhood
by themselves since the space of possible signals is not de�ned. Scott-Phillips et al. found that
there is an importance of common ground in language emergence. These assumptions are made
since successful pairs typically establish a default color strategy. At some point the pairs will end
up on a same-colored quadrant and score a point, moving to this color for the next rounds then
becomes the default strategy. When this default color is not available for a player in an upcoming
round, particular movements emerge to signal this absence. These movements are then later linked
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to a di�erent color. This way a mapping emerges of movement sequences to color. This process
can be seen in �gure 2. Most players report that the emergence of communication in ECG is not
dedicated to one player, instead, it follows a process of communication between the two players
that form the mapping of signals to color. An important conclusion that Scott-Phillips et al. make
is that the systems that emerge between two players do not resemble a system that would have
emerged from a single player. The process of emergence fundamentally a�ects the form of the �nal
communicative system. A system that is created by a single player typically has quite a di�erent
form where for example, the number of movements is associated with a color. The �ndings suggest
that the constraint on the embodiment of the communication system shapes its �nal form.

Figure 1: Screen-shots of the two players for one round of the ECG (image from Scott-Phillips et al.
[20]). Each row shows the view of one player during a game (left-hand side) and after a round is
�nished (right-hand side).

Figure 2: Typical process of communication emergence between two successful players in the ECG.
(image from Scott-Phillips et al. [20]).
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2.2 Neural Networks

A neural network [18] can be categorized as a machine learning algorithm, in which the computer
learns to perform a task by training on data. This training data is usually hand-labeled. For example,
if you would want to train an image classi�er that can classify images of animals into the correct
species. You would train the system on a set of labeled images of animals. During training, the
system learns what pixel compositions and patterns correlate to what label. A neural network does
this in a way that is modeled after the way neurons work in our brains. It uses simple nodes that
are connected through weights. The exact composition of the neural network di�ers per application,
but most are set up in a feed-forward manner and consist of multiple layers. A layer consists of
nodes, see �gure 3.

Figure 3: Layer types in a neural network.

A node assigns a weight (w) to each of its inputs, each input is then multiplied by its assigned
weight, these products are then added together to a single number as well as a bias (b). This sum
is then inserted into an activation function, for example a sigmoid function� () as we can see in
equation 1.

a0(1) = � (w0;0 � a0(0) + w0;1 � a1(0) + w0;2 � a2(0) + b0(1)) (1)

Thus, each neuron can be seen as a function that takes in the outputs of all neurons in the previous
layer and calculates a number between 0 and 1 as its output. This function is called the activation
function. In the training phase of a neural network, the weights are initialized with random values.
The training data is then fed into the input layer, from here it passes through all nodes in the
hidden layers and eventually generates an output in the output layer. While training, the weights
and biases are adjusted so input data with the same labels create similar outputs. This is done
through backpropagation [12], for each training example the output of the network is compared to
the desired output. The squares of the di�erences of each of the components of the output are then
added up to calculate a cost. Averaging out the costs for all the training examples gives the total
cost of the network. The goal is to minimize this cost by adjusting the weights and biases.
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2.3 Recurrent Neural Networks

Feed-forward neural networks don't have any memory for the inputs they received. It only considers
the current input when calculating an output since they do not allow information of previous inputs
to persist in the network. Recurrent Neural Networks (RNNs) [19] address this issue. Humans also
have some form of persistence of information in their memory. When for example reading an article,
you understand each word you read based upon the understanding of the previous read words. You
keep track of the information you already processed based on their importance to construct an
understanding of the words that still need to be read, and eventually the entire article. Recurrent
networks work similarly, they consist of multiple recurrent layers, each layer stores information in
the weighted connections between the previous and next layers as well as a shared hidden layer.
For example, if we would consider a phrase like \Wrapping your head around something". The
order in which these words are placed is important for their meaning. Therefore, an RNN needs
to keep track of the speci�c order of them. Figure 4 shows an example of an RNN, the \rolled"
visualization shows the entire RNN. The \unrolled" visualization shows all the layers within the
RNN. Each layer maps to a single timestep and a single word of that phrase. When the inputs
have been \wrapping your head around", each of these words represents a layer. Predicting the
next word \something" is aided by the propagation of information in the hidden layers to predict
the output.

Figure 4: Rolled and unrolled visualisation of an RNN.
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2.4 Long Short-Term Memory Networks

Long short-term memory networks (LSTMs) [9] expand upon recurrent neural networks. It is a
special kind of RNN that is capable of long-term memory as well as the ability to regulate the
addition or removal of information from the network. LSTMs add a state to the RNN, this state is
made up of the LSTM cell. The LSTM cell uses three gates that control the 
ow of information in
a sequence in the network. The forget gate controls what information in the state can be forgotten
since it is no longer relevant. The input gate controls what information should be added to the
state information. The output gate controls what part of the information stored in the state is
outputted. How these gates are formed can be seen in �gure 5. The managing of information by
the gates depends on the importance that is assigned to the information through weights, which
are also learned by the algorithm. The bene�t of using an LSTM over a normal RNN is that it can
capture potential long-distance dependencies in the data due to the introduced gates.

Figure 5: LSTM state cell.
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2.5 K-fold cross-validation

A good machine learning model should not only give accurate predictions on the data it is trained
on but also on new data and thus avoids over�tting. Over�tting occurs when the model is �tted to
the training data too well. This causes the model to have high accuracy on the training dataset but
perform poorly on new data. Testing if a model is over�tting can be done by splitting the dataset
into two parts: a train set and a test set. The train set is used for training the model, and the test
set for validating the model. The model is not over�tting when the loss on the train set is similar
to that on the test set. However, this way of validating a model is not very robust. Since the split
is done only once and the data in the test and train set can have a big e�ect on the results. A more
robust way of validating the model is by using K-fold cross-validation. In K-fold cross-validation, K
is a parameter that represents the number of equal-sized groups the dataset is split into. The value
of K also represents the number of evaluation folds. In each fold the following procedure occurs
with a di�erent group:

1. Take this group as the test set

2. Take the remaining groups as the train set

3. Train a new model on the train set and evaluate it on the test set

4. Store the evaluation score

After this procedure has been performed on each of the K groups, the evaluation scores are averaged.
This averaged score gives a more robust insight into the performance of the model and if it is
over�tting.
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