
Universiteit Leiden

ICT in Business and the Public Sector

DevOps Unravelled: A Study on the Effects of
Practices and Technologies on
Organisational Performance

Name: Robert Blinde
Student-no: 1370162

Date: 15/04/2022

1st supervisor: Dr. C.J. Stettina MSc
2nd supervisor: T.D. Offerman MSc

MASTER'S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

DevOps Unravelled: A Study on the
Effects of Practices and Technologies on

Organisational Performance

Robert Blinde

Leiden Institute of Advanced Computer Science (LIACS)
P.O. Box 9512, 2300 RA Leiden, The Netherlands

April 15, 2022

Abstract

After waterfall and Agile, DevOps is the latest trend in software delivery. Evolved
from the Agile mindset, DevOps aims to shorten lead times and increase the quality
of software through continuous delivery [1], making organisations more flexible to
changes in the environment [2].

Depending who you ask, DevOps can be described in different ways: a role, a
group of people “doing” DevOps, or a mindset, much like Agile. In fact, DevOps has
been difficult to define [3] and thus many definitions of DevOps exist [4, 5]. Similarities
between the definitions include bridging the gap between Dev and Ops teams, adher-
ing to DevOps practices, and improving communication and collaboration. Using the
CALMS framework, DevOps and its tools and practices will be explained in detail.

Research has shown that adopting DevOps can be fruitful; after correct imple-
mentation, numerous benefits can be expected. Some of these include: shorter cycle
times [6–9], more frequent releases [10, 11], increase in quality [6, 7, 9], and improved
collaboration and communication [7, 12]. Correct implementation, however, can be
hindered by different challenges. DevOps can be hard to define [3, 7, 8], requires a shift
in organisational culture [3, 7, 13–15], as well as approval from management [8, 14].
Combatting these challenges is key in the adoption process.

This research studies the effects of DevOps practices and technologies on organisa-
tional performance. Using a web-based survey, data was collected from 123 DevOps
practitioners, consultants, and their managers. The survey included different sections:
demographics, transformation, maturity, DevOps practices and tools, and impact and
(software delivery) performance.

DevOps and Agile maturity are closely related. The Organisation and Culture layer
of the DevOps maturity model had the highest average score. The required shift in
organisational culture has thus successfully been combatted by a large number of re-
spondents. Unplanned work generally decreases when maturity increases, as well as
the time spent working on features. Maturity can be improved by adhering to three
DevOps practices: 1) automated and continuous testing in development and staging

environments, 2) automated and continuous deployments, and 3) automated and con-
tinuous monitoring. Two of those practices are already commonly in use by prac-
titioners. Those, and the most common one – everything stored as code and under
version control – also have a positive impact on both software delivery performance
and organisational performance. Popular DevOps tools include Azure DevOps, Jenk-
ins, GitLab, and Bamboo. Bamboo and Datadog are solely used by high performers.
They also tend to use more GitLab CI, but use Azure DevOps and Jenkins less often.
Other technologies, such as containerisation and open-source software have shown to
fuel DevOps.

After unravelling the mysteries around DevOps, its practices and tools, adhering
to practices that improve lead time (e.g. continuous and automated deployments or
everything as code and under version control) will have a positive impact on both
software delivery performance and organisational performance.

3

Acknowledgements

This research was started after the initial inspiration of Tyron Offerman MSc. Our biweekly
meetings were of incredible value to me, how efficicent they sometimes were. Your ability to
respond quickly to any questions I had, allowed me to keep working without losing focus.
Next, I would like to thank my first supervisor, dr. Christoph J. Stettina, for his extensive
acedemic knowledge and feedback, as well as the opportunity to present a part of my results at
the 2021 RTE Summit in Utrecht. Your constructive feedback has improved the overall quality
of this research. Lastly, and most importantly, I would like to thank my parents and girlfriend
for their continuous support and by helping me clear my mind while writing this thesis. Thank
you all.

1

Contents

1 Introduction 1
1.1 Research Questions 2
1.2 Contribution 3
1.3 Document Structure 3

2 Related Work 4
2.1 What is DevOps? 4
2.2 DevOps Models in Scientific Literature 8
2.3 DevOps Practices & Tools 9
2.4 Benefits After Implementation 15
2.5 Challenges Implementing DevOps 16
2.6 Organisational Routines 17

3 Methodology 19
3.1 Population & Sample 19
3.2 Survey 20
3.3 Data Analysis 22
3.4 Reflective Workshops 22

4 Results 23
4.1 Who Are the Respondents? 23
4.2 DevOps & Agile Maturity 26
4.3 DevOps Practices & Tools 27
4.4 Impact & Performance 33
4.5 Correlations & Cluster Analysis 36

5 Discussion & Recommendations 43
5.1 Impact of DevOps Practices and Tools on Organisational Performance 43
5.2 Technology Trends Fuelling DevOps 47
5.3 Comparing Agile and DevOps Survey Data 50
5.4 Limitations 51

6 Conclusion 53
6.1 Future Work 54

i

CONTENTS

A Definitions of DevOps 62

B Practices Found in Literature 64

C Tools Found in Literature 67

D DevOps & Agile Maturity by Industry 70

E Survey Questions 72

F Time Allocation & Maturity 133

G Tools Used by Survey Participants 134

ii

Chapter 1
Introduction

Nowadays, most aspects of our lives are in some way connected to software. We use
software programmes and cloud applications at work, connect with like minded peo-
ple using social media platforms, and consume the content of smartphone apps or
streaming services (e.g. Spotify for music or Netflix for movies) when we want to be
entertained. All these pieces of software have been carefully developed with a clear
business goal in mind. Possible goals include: high user satisfaction, increase in sales,
or reaching a certain number of users.

Not too long ago [1] software was developed using a traditional waterfall method.
Characteristics of traditional (or linear) software development projects are: long lead
times, inflexible requirements, and little involvement of clients throughout the pro-
cess. Users could grow impatient while waiting for the next large update, or even
disappointed when bugs are discovered [14]. Other problems of the waterfall method
are [14]: 1) developers do not fully grasp the trade-offs of running a production en-
vironment, 2) while developers focus on creating new features, the operations team
focusses on stability, and 3) stakeholders get feedback months after project approval,
slowing down future iterations.

Today, with continuous changes in both market needs and technology, organisa-
tions cannot afford long lead times. The waterfall method is therefore being replaced
by new mindsets and methodologies: Agile and Scrum. A 2018 survey by Stack Over-
flow shows that 85.4% of the respondents use Agile [16]; an increase of 8.5% from the
previous year [17]. In 2017, 26.9% of the respondents used waterfall methods. In 2018,
this decreased to 15.1%.

Agile’s main focus lies on adaptability and dealing with changes in customer re-
quirements [18]. The Agile mindset is used within development departments to in-
crease collaboration with product management [19]. Within Scrum, feedback from
end-users is frequently used to update and improve products or services. It welcomes
changes throughout the entirety of the project and adds new features in short iterative
cycles. To reach business goals and maintain the competitive edge, companies thus
require to quickly react upon their customers’ feedback. However, the introduction of
this new methodology comes with technical, cultural, and organisational stresses [1].

While the focus lied on increasing communication and collaboration between de-
velopment teams and clients, the operations team – in charge of deploying and main-
taining the newest versions of the software – was “left out of the revolution” [19].

1

1.1 Research Questions

DevOps was introduced to overcome the issue of misalignment between developers
and operators. Although Agile and DevOps share the practice of continuous delivery,
DevOps is much more than that [18].

The DevOps approach is concerned with the problems organisations encounter
when trying to deliver incremental software in short cycles. DevOps combines the
practices used in both Software Development and IT Operations and can be divided
in roughly three phases: build, deployment, and operations [13]. The main goal of
DevOps is to shorten lead times and increase the quality of software through continu-
ous delivery [1], making organisations more flexible to changes in the environment [2].
New features are released frequently and bugs are solved quickly [14].

DevOps involves a shift in culture towards “collaboration between development,
quality assurance, and operations” [13]. Two major elements in the context of DevOps
are cross-department collaboration and automation [5, 7, 15]. Monitoring of appli-
cations and resources is also a key factor for a successful implementation [20]. Many
practices seen in DevOps are inspired by those found within Lean, Agile, or The Toyota
Way [21]. The common approach is to reduce the Work in Progress (WIP) by reducing
batch sizes. This means, for example, breaking down software products into different
functionalities and ship them one at a time. DevOps is similar to continuous delivery
and both are used in parallel. However, DevOps also focusses on management and the
required organisational change to effectively develop products and services [21].

DevOps can be used in most cases of software delivery [13], requiring special con-
figurations for both the environment and architecture. It allows organisations to plan
and deliver software updates quickly. A good example is the software used in (self-
driving) cars. The delivery of such software needs to be extremely secure and runs
on a very unique architecture. For these, and embedded systems, DevOps faces the
challenge of combining legacy systems with continuous delivery [13].

1.1 Research Questions

As seen, high levels of automation, collaboration, and correct tools for the job lead to
shorter lead times. However, it remains unclear whether these technologies and prac-
tices influence the performance of organisations. Furthermore, some scholars raised
the question: “Which practices are best for which kinds of systems in which kinds of
organisations?” [1]. Therefore, the main research question is as follows:

What are the effects of DevOps practices and technologies on organisational performance?

Based on this question, the following guiding questions are identified:

• Which technologies are utilised for which DevOps practices?

• Which metrics are used in practice for measuring performance in the context of
DevOps?

• What combination of DevOps practices and technologies are positively related
with performance?

2

1.2 Contribution

1.2 Contribution

Answering the research question helps in understanding how certain DevOps prac-
tices and technologies impact organisational performance. The contribution of this
study is twofold. First, organisations, and more specifically DevOps practitioners at
these organisations, are given recommendations on what practices to adopt to im-
prove: 1) DevOps maturity, 2) software delivery performance, and 3) organisational
performance. Second, the outcome of this research can be used to fill the current
knowledge gap between DevOps practices and technologies, and organisational per-
formance. The recommendations given in this research can be explored further in fu-
ture research.

1.3 Document Structure

The remainder of this document is structured as follows. Chapter 2 discusses rele-
vant scientific (and grey) literature to define the concept of DevOps together with its
tools and practices. The effects and challenges of implementing DevOps within organ-
isations are also described. Chapter 3 focusses on the methodology used within this
research to answer the research question. It explains why a survey is used, the contents
thereof, and the distribution strategy. In Chapter 4 the data gathered from the survey
is described and depicted. Chapter 5 discusses and interprets the results and gives
recommendations for DevOps practitioners. Last but not least, Chapter 6 finalises this
research with a conclusion and pointers for future work.

3

Chapter 2
Related Work

Traditionally, the software development and IT operations departments worked inde-
pendently of each other and communicated mostly via ticketing systems [5]. Knowl-
edge concerning processes, tools, or practices was not shared, generating business si-
los. Although the development team focussed on delivering new software (perhaps
using Agile), IT operations focussed on system stability, thus not letting through every
change [5]. While this does ensure high quality code and a stable system, time-to-
market for most changes is protracted. Adopting and leveraging the benefits of a new
concept called DevOps, could combat these challenges.

This chapter reviews scientific literature to define the concept of DevOps together
with its tools and practices. Next, the effects and challenges of implementing DevOps
within organisations are discussed, as well as organisational routines.

2.1 What is DevOps?

To better understand the practices, tools, and technologies related to DevOps, first a
clear definition of DevOps is required. However, the concept of DevOps has been
difficult to define [3] and thus many definitions of DevOps exist [4, 5]. An unclear
definition of DevOps can hinder its implementation [15]. Moreover, DevOps can be
viewed through three different lenses: engineers, managers, and researchers [5]. Al-
though some scholars have attempted to clarify DevOps concepts and practices [3], it
still remains unclear how DevOps can be adopted effectively.

Most existing definitions mention that DevOps is either a paradigm, a method, or a
set of practices that combines Development and Operations, bridges the gap between
the two, and enables collaboration and communication. In their research, Jabbari et
al. [4] define DevOps using the common components in other scholars’ definitions. All
definition found in scientific literature can be found in Appendix A.

Since this research focusses on the effects of DevOps on the performance of organi-
sations, the definition by Balalaie et al. [22] is most fitting:

“DevOps is a set of practices which not only aims to decrease the time between applying a
change to a system and the change being transferred to the production environment, but also
insists on keeping the software quality in terms of both code and the delivery mechanism as

one of the key elements in the development process.”

4

2.1 What is DevOps?

Although this definition does not address collaboration and bridging the gap, it
stresses the importance of a fast time-to-market and the ensurance of high quality prod-
ucts. As mentioned in the Chapter 1, organisations require efficient channels since their
surroundings are ever-changing.

DevOps typically occurs on three levels: individual, team, and department [23].
Individuals often take a specific DevOps role: DevOps engineer or DevOps coach.
Most organisation have “DevOps teams” containing members with different skill sets.
Lastly, the borders between the Development and Operations departments are fading.

2.1.1 Key DevOps Components

DevOps consists of two core elements [5, 7, 15]: 1) collaboration between software
development and IT operations, and 2) automation to manage deployments and the
architectural environment. By easing communication between the two teams, software
can be released in much shorter cycles [7, 24]. This, in turn, can lead to higher customer
satisfaction and profitability [14].

Humble and Molesky [25] propose four key components of DevOps: Culture, Au-
tomation, Measurement, and Sharing, or CAMS for short. Together, these components
align the incentives of all stakeholders: development, IT operations, and quality assur-
ance. Scholars have later added the Lean component [26]. Together, these components
are known as the CALMS framework, and is used to assess how well an organisation
has adopted DevOps, or to measure success during DevOps transformations [27]. Fig-
ure 2.1 is a graphical representation of the framework. Each CALMS component will
now be explained in detail.

Figure 2.1: CALMS framework for DevOps (from [28]).

Culture

Although the practical side of DevOps involves practices and technologies, “DevOps
is just another buzzword if you don’t have the right culture” [29]. A key part of im-

5

2.1 What is DevOps?

plementing DevOps is therefore a shift in culture towards “collaboration between de-
velopment, quality assurance, and operations” [13]. Business silos need to be broken
down and a collaborative way of working should be instantiated [29].

One way of doing so is building a transparent culture and sharing knowledge [23,
25]. Developers and operators should empathise with each other to understand each
others needs [30]. Members of the operations teams should be involved in the design
of applications and be present during planning meetings to share their knowledge.
Moreover, development teams should learn about production environments in case of
critical incidents [25].

Humble and Molesky [25] suggest moving away from project-oriented teams and
use product-oriented teams instead. This ideology is shared by Wiedemann et al. [14]:
instead of delivering complete projects, teams focus on building features instead. This
way, organisations can continuously deliver new software – and therefore value. In-
stantly switching to a product-based approached can be too much, however [27].

Another aspect of the DevOps culture is shared responsibility [3, 29]. Instead of
”throwing the software over the fence”, both development and operations are invested
in the success of the product. This, in practice, results in better ways to deploy and
maintain software. Putting development and operations staff in the same room will
help increase collaboration. The aforementioned handovers are discouraged and team
efforts reduce a culture of blame [29]. Instead, team members should be encouraged
to experiment and learn from mistakes [3]. Shared responsibility and co-locating thus
improve communication and collaboration between teams.

With new teams being formed, new responsibilities arise and new tools and prac-
tices are introduced. For these teams to be successful and work effectively, teams
should be autonomous [29]. Moreover, teams should be allowed to choose tools based
on their own skills and knowledge [23]. This way, teams can make better decisions
without having to wait for approval. This does, however, require sufficient trust from
higher level management. Risks should also be managed. Open channels of commu-
nication within the entire organisation [27] and new practices such as infrastructure as
code help facilitate the changes by providing transparency.

Automation

The abovementioned shift in culture is followed by a change in business processes.
Automation, by definition, removes manual work and creates repeatable business pro-
cesses or functions. By removing “manual error-prone repetitive tasks” [3], errors are
reduced and employees can be more creative and productive.

Humble and Molesky [25] argue that this change is possible with the right tools, en-
abling the practice of infrastructure as code. Automating processes will then result in
shorter lead times and an increase in usable feedback [24]. This fast and frequent deliv-
ery of software updates is called continuous deployment [31]. As processes are usually
followed by other processes, this too should be made possible under DevOps. Within
DevOps, a pipeline models the process of building and releasing software, starting at
development and ending with deployment. Pipelines are often run on cloud-based in-
frastructure and use various open-source tools. I will explain more about pipelines in
Section 2.3.

Every change made by developers finds its way through the pipeline. Automated

6

2.1 What is DevOps?

tests will check if the modified code contains bugs or introduces conflicts. If all tests
return positive, a new release candidate is created and is oftentimes deployed on a
staging environment. The production environment is only one mouse click away. The
pipeline thus gatekeeps the production environment [8] by allowing only valid code
to pass through.

A benefit of such automation is configuration as code. Teams can create small, inde-
pendent pieces of software – often called microservices – making them more reliable
and easier to update and maintain [27]. Since these microservices have little depen-
dencies, they can be deployed almost everywhere. Not only application code can
be stored under version control [21], the same yields for infrastructure or other con-
figuration settings. A useful side-effect of automation is that it results in up-to-date
documentation [29]. Scripts used in automated testing or deployment can be used by
both developers and operators to change the behaviour of infrastructure, for exam-
ple. When everything is stored as code and under version control, older versions of
applications and infrastructure can be instantly created in case of emergency [25].

Automation also helps increase collaboration [29]. As tasks (e.g. testing and de-
ployment) are automated, human errors will decrease and free up time for other tasks
automation cannot perform.

Lean

As mentioned in Chapter 1, DevOps practices find their origin in Lean, Agile, or The
Toyota Way. The amount of Work in Progress is decreased by reducing batch sizes (soft-
ware features). Software products are broken down into different functionalities and
shipped one at a time. Work is only done when it is included in the current sprint [8].
Automation, as seen above, reduces manual work and increases quality by testing con-
tinuously.

Another aspect of the DevOps mindset is to improve wherever possible [27]; sprint
retrospectives improve team performance and A/B testing improves products. By cre-
ating a minimal viable product (MVP) and improving continuously, users will be able
to provide valuable feedback.

Continuous improvement also means dealing with failures or errors. Logging and
monitoring tools provide real-time information about systems and infrastructure. In-
stead of pointing fingers, teams re-asses current processes and emerge stronger.

Measurement

In DevOps, measurement is defined as “monitoring high-level business metrics such
as revenue or end-to-end transactions per unit time” [25]. For day to day activities
this comes down to choosing the right metrics to measure. Following Agile princi-
ples, these could include: lead time, recovery time after failure, or number of cus-
tomers [21, 27]. These business-focused metrics and their visualisations keep team
members and others stakeholders informed at any given moment. With the right infor-
mation, better decisions can be made. Metrics can also be used to identify bottlenecks,
and thus keeping the process Lean [8]. Measurable data (e.g. conversion rate) is thus
the determinator of success [30].

7

2.2 DevOps Models in Scientific Literature

Aside from using the data to make informed decisions, it should be shared with
other teams and departments [27]. Sharing information and open communication en-
sures all departments are on the same line, further breaking down business silos.

All data and metrics collected while operating the product or service can be seen as
feedback [3]. Aside from the abovementioned metrics, this feedback can include how
and when customers use services. By continuously monitoring customer behaviour,
feedback loops for planning and development are created [30]. Developers gain real-
time information about the software they build, making it easier to optimise [3]. More-
over, a continuous stream of feedback allows for true experimentation [3, 15].

Application monitoring is another way to look at measurement. Continuously
monitoring production systems is used to ensure stability. When implemented cor-
rectly, quality assurance is increased [7]. An important aspect of DevOps is to build
the required production environments alongside the actual application. As seen, mi-
croservices allow teams to develop smaller pieces of software. Managing these requires
a pipeline that automatically triggers various monitoring tools [8].

Sharing

As mentioned in the Culture component, sharing knowledge is one of the main ways
to break down business silos. The reorganisation of project teams into product teams
delivering features instead of projects improves collaboration [8]. Developers, along-
side operators, are now also in control of deployment and maintenance. With shared
responsibilities and pains in case of crisis, successful releases brings teams closer to-
gether [21, 25]. Moreover, co-location and non-electronic communication increase the
social aspect [8].

Like most aspects of DevOps, sharing (knowledge) is aided by the introduction of
new tools. Forsgren et al. and other scholar [15, 32, 33] are advocators for the prac-
tice of ‘version control for everything’. Alongside increased transparency, tools and
technologies are easily shared across different teams. Developers can thus experiment
with different tools and share their results with the rest of the organisation [8]. The
aforementioned DevOps pipeline can also be used as a shared workflow when visible
to everybody. Other tools that foster collaboration are chat and wikis [15, 34].

Lastly, infrastructure as code not only benefits automation but also improves shar-
ing development environments. Development teams can easily share their setup and
implement the same practices [8]. Virtualisation tools (e.g. Docker or Vagrant) can be
used, for example, to quickly share environments without the issue of package and
infrastructure requirements [9, 35]. Choosing an IaaS provider, however, comes with
the difficult task of evaluating costs and performance [36].

2.2 DevOps Models in Scientific Literature

Leite and colleagues [5] created a conceptual DevOps framework containing funda-
mental concepts. The concepts are grouped into four categories: process (business
related), people (skills and collaboration), (continuous) delivery, and runtime (stabil-
ity and reliability). Using the aforementioned lenses (engineers, managers, and re-
searchers [5]), the process and people categories would fall under management, and

8

2.3 DevOps Practices & Tools

the remaining two under engineers. However, the article distinguishes between de-
velopers and operators within the engineer group. For each category, a conceptual
map was created with the most important concepts related to the category. From these
maps, the most important concepts are: frequent release process with a short feedback
cycle, cross functional teams with a culture of collaboration, tools and automation, and
continuous monitoring.

A similar study was done by Bou Ghantous and Gill [15], showing matching re-
sults. One difference is the notion of an automated pipeline within the major concepts.
The research identified twenty DevOps practices and twelve categories of DevOps
tools. The most commonly found practices are: automating the entire development
pipeline, automated test reports, and sharing of monitoring logs. Most practices can
be grouped into the following categories: automated development pipeline (including
testing), knowledge sharing, and version control for everything.

An exploratory study by Lwakatare et al. [30] used interviews to identify DevOps
practices from practitioners. The common dimensions (collaboration, automation, and
monitoring) came forward in their research as well. However, culture and collabora-
tion are separated and a measurement dimension is added. Here, collaboration is seen
as re-dividing the roles within teams, as responsibility increases. Moreover, collabora-
tion requires more cooperation and involvement. Culture focusses on empathy, work
environment, and respect. Useful metrics are used to incentivise both development
and IT operation teams.

Both Forsgren et al. [21] and Ur Rahhman and Williams [37] stress the importance
of security within DevOps. By “shifting left” on security [21], security and its practices
are considered in the earliest phases. Security practices can be in the form of train-
ing or automated and non-automated tools [37]. For automated tools, monitoring and
testing are used the most. This corresponds with the research described above, where
both tools are included in the pipeline. Non-automated security practices include re-
quirements analysis and configurations, as well as policies and manual tests.

2.2.1 DevOps Maturity Models

Although not all scholars [21] are keen on maturity models, they are a popular tool to
assess the maturity of organisations. After reviewing both scientific and grey litera-
ture, several DevOps Maturity models have been identified [38, 39]. Zarour and col-
leagues [39] benchmarked seven maturity models based on their levels, dimensions,
and application. Most models share the Collaboration, Automation, Monitoring di-
mensions and their levels are progressive. It is important to note that most models are
either found or based on grey literature. Eficode’s model [38] covers most aspects of
the aforementioned CALMS models and can be filled out unambiguously. For these
reasons, it will be used within this research. More details regarding the model can be
found in Chapter 3.

2.3 DevOps Practices & Tools

Merriam-Webster defines practice as “to do or perform often, customarily, or habit-
ually” [40]. Brunnert and colleagues [20] define DevOps practices as any technique

9

2.3 DevOps Practices & Tools

that enables the DevOps goal. Although many scholars have written about DevOps
practices [1, 5, 13, 30], DevOps principles and practices are not well defined within sci-
entific literature [13]. By reviewing relevant literature, 47 DevOps practices have been
identified and combined where possible (see Appendix B). The most common and, for
this research, relevant ones can be found in Table 2.1.

Table 2.1: Most common DevOps practices.

Practice References
1 Automated and continuous deployment throughout entire pipeline [4, 9, 11, 15, 33, 34, 41]
2 Make small and continuous releases [32, 41, 42]
3 Developers get feedback based on releases [32, 42]
4 Create development sandboxes for minimum code deployment [15]
5 Everything is stored as code and under version control [4, 9, 15, 32, 33]
6 Integrated configuration management [4]
7 Automated and continuous testing in development and staging environments [4, 15, 32, 33, 42]
8 Reduce the time it takes to test, validate and QA code [34]
9 Code reviews are change based [9]
10 Automated and continuous monitoring of applications and resources [4, 9, 22, 32]
11 Automated dashboards that include health checks and performance [4, 32]
12 Support configurable logging that can optionally be turned on/off as needed [32]
13 Use trunk-based development over long-lived feature branches [9, 33]
14 Use Test driven Development where all code has unit tests [42]

Tools and technologies are a requirement when automating DevOps processes [5,
13]. Tools within the context of DevOps have been defined as tools used for collabo-
ration, continuous delivery, and reliability [5]. According to Leite et al. [5], DevOps
tools can be defined as: “tools pursuing one of the following goals: 1) assisting cross-
departmental collaboration, 2) enabling continuous delivery, or 3) maintaining soft-
ware reliability”. For each phase within DevOps, a plural of tools are available [43].
The vast majority of tools can be explained by the custom user experiences practi-
tioners demand [43]. Suppliers of development tools feel pressured to deliver more
specialised tools. Thus, many technologies claiming to help relieve the stresses around
development and deployment arose. Their common focus lies on speeding up the de-
livery process [13]. After scanning relevant literature, DevOps tools can be grouped
into 25 categories. The categories and their references can be found in Table 2.2. All
identified tools can be found in Appendix C.

Although tools play an important role within (automating) DevOps, they should
not function as the key to enable it. When introducing DevOps into organisations,
team structure is more important than tools [5]. With the existence of many DevOps
tools, careful considerations should be made on deciding which one to adopt, as in-
tegration can be difficult [15]. Moreover, developers should be allowed to make their
own choices in which tools they use [21].

The objective of the following sections is to establish relationships between the con-
cepts found in the aforementioned scientific literature and tools used by DevOps prac-
titioners.

2.3.1 Collaboration

As seen in the Culture aspect of the CALMS model, DevOps requires a culture shift
involving collaboration across different business silos. Different departments within
organisations thus need to share processes, practices, and knowledge [5]. One prac-
tice involved in sharing knowledge is to provide a continuous collaboration system

10

2.3 DevOps Practices & Tools

Table 2.2: Functionalities of DevOps tools.

Functionality References
1 Build [13, 15, 34, 35, 44]
2 Cloud Computing [9, 11, 15, 34, 35, 45]
3 Code Analyser [9, 34, 35, 46]
4 Collaboration [15, 34]
5 Configuration Management [6, 9, 13, 34, 35, 44, 47, 48]
6 Continuous Delivery [6, 11, 13, 15, 35, 47]
7 Continuous Integration [1, 6, 9, 11, 13, 15, 35, 44, 46, 47, 49]
8 Database Management [6, 15, 34]
9 Delivery Server [49]
10 Deployment [11, 34, 35, 47, 48]
11 Documentation [12]
12 Hosting [11]
13 Infrastructure as Code [11]
14 Knowledge Sharing [34]
15 Logging [9, 13, 15, 34, 35, 44]
16 Monitoring [9, 13, 15, 34, 35, 44]
17 Process Analysis [9]
18 Project Management [12, 35, 46, 49]
19 Scripting [34]
20 Security [34]
21 Software Package Manager [6]
22 System Performance [50]
23 Testing [9, 11, 15, 34, 35]
24 Version Control Management [6, 9, 11, 15, 34, 35, 46, 49]
25 Virtualisation [6, 9, 34, 35, 45, 51]

in real-time [15]. GitHub, GitLab, Wikis, or Rocket Chat are examples of tools used
to share knowledge. With Wikis anyone can update or create topics, which are easily
searchable. Over time this will create a large number of documents – often referred to
as knowledge base – with up-to-date information.

Open communication channels between members from different teams or depart-
ments aids in collaboration [8]. Slack is a communication tool containing different
channels for tools, files, and people. Different channels can be created for different use
cases or projects. It also includes one-to-one messaging, a replacement for traditional
e-mails.

Other practices improving collaboration involve the empowerment of employees,
especially developers [30]. As developers gain new responsibilities, their knowledge
and skill set should be extended. Organisations need to choose the right tools and
methods for empowerment. Two practices are closely related to this aspect [30]: 1)
increasing the scope of responsibilities, and 2) intensifying cooperation and involve-
ment. By increasing responsibilities and working closely together, developers become
pro-active in learning and sharing new skills.

Infrastructure as code functions both as documentation and a way to improve trans-
parency. By using version control management software (e.g. Git) and host the code
online (e.g. GitHub, BitBucket, or GitLab), everybody has up-to-date documenta-

11

2.3 DevOps Practices & Tools

tion. Using commits and pull requests developers can update code and documentation
alike.

Another tool to promote collaboration is source code management [5]. Source code
management is at the core of continuous integration and delivery, as well as automa-
tion. Some scholars are in favour of storing everything as code and under version
control [13, 21]. By not only storing code, but also artifacts [5], developers gain insight
into how their code runs in production environments. Git and its online platforms
(e.g. GitHub) are commonly used for this task. Online platforms have the benefit of
providing visualisations of changes and often include issuing systems [5].

2.3.2 Automation

The combination of software development and IT operations results in a set of prac-
tices, methods, and technologies: a toolchain. DevOps practices (e.g. container man-
agement, continuous integration, testing, and monitoring) heavily rely on tools and
technologies [1, 15]: numerous tools exist for each practice. The actual route a piece of
software undertakes from coding to production is called a pipeline.

A pipeline – another manufacturing concept used in IT – consists of tools from the
toolchain which are connected and form a one-way path. Software follows the pipeline
and moves through different environments (e.g. testing and production). Developers
can continuously update software, and in a more efficient manner compared to existing
methods [34]. Some scholars have named this pipeline the “DevOps Platform” [52].
Common categories for tools and practices within a pipeline include: programming,
building, testing, and releasing. A well-created pipeline thus allows for short lead
times.

To ship new software with high quality on a regular basis, most steps within this
process are automated [13]. Automation within the DevOps infrastructure heavily re-
lies on the correct implementation of tools and the right configurations for all software-
related items. Effective automation begins by using version control for everything:
code, tests, and infrastructure [21, 30]. In addition, automated runtime monitoring is
used to improve performance, availability, and security [53]. These processes encour-
age software developers to write better code [1]. In addition, changes can be rolled
back, requiring a specific software and information architecture.

Within the concept of automation, three ‘continuous’ practices are common: inte-
gration, delivery, and deployment. Stahl and colleagues [41] explain them in an un-
derstandable manner. Continuous integration is the practice of frequently (e.g. daily)
integrating the changes of multiple developers. Continuous delivery is the practice
of treating every change as a potential release candidate evaluated by the pipeline that
could be deployed. Note the emphasis on potential and could: for business reasons, de-
ployment can be held back. Continuous deployment, then, is the practice of frequently
deploying release candidates to production.

As mentioned, the practice of using infrastructure as code is central to automation.
Applying this practices requires developers to establish the infrastructure in a repro-
ducible and programmatic manner, and stored under version control [30]. Configura-
tions and other practices from software development can be applied here as well.

12

2.3 DevOps Practices & Tools

2.3.3 Continuous Delivery & Deployment

Continuous deployment and delivery are the most important practices within Dev-
Ops [4]. Using these practices, developers can focus solely on their project and do not
require input from other teams [1]. A common practice found in literature is enabling
automated and continuous deployment throughout the entire pipeline [4, 9, 11, 15, 33,
34, 41]. Continuous delivery can be viewed from two angles: engineering and busi-
ness [23]. Engineers construct and automate the pipeline with the right tools, whereas
the business determines which departments are involved.

As seen, source code management is at the core of Continuous Delivery. Other
tools that are required to enable automated software delivery are so-called build tools.
Within the build phase, Continuous Integration (CI) tools are used to integrate soft-
ware from different developers [5]. CI tools can be configured to test the system every
time a developer commits a change within the versioning system. Possible errors can
thus be found before the software moves to the next step within the pipeline. Jenkins
(open-source) and Bamboo (Atlassian) are examples of popular CI tools.

Each programming language has its own build tools and test frameworks [5]. Build
tools (e.g. Maven or Gradle) perform all tasks to build a shippable product, an artifact.
It fetches the required software dependencies, checks for broken code, runs various
tests, and can perform custom tasks (e.g. send a success message via Slack), improving
software quality [13]. When an artifact is created, product owners can put these into
production with a single button click.

An important step in this pipeline is testing. Unsurprisingly, many scholars [4, 15,
32, 33, 42] favour the practice of ‘automated and continuous testing in development
and staging environments’. Tools for testing are test frameworks written in the same
language as the source code of the application. Test frameworks can perform unit
tests or even automate human behaviour [5]. When tests fail, the software will not
continue through the pipeline and no artifact will be created. Some example of test
frameworks are: Cucumber, Selenium, and Junit. Such frameworks provide develop-
ers with feedback regarding the correctness of the software. Feedback can also come
from code analysers (e.g. JS hint, Jacoco, or FindBugs). These tools scan code during
development and compare it to certain rules that are agreed upon beforehand.

Continuously delivering software affects the required architecture of the overall
product. One architectural style often used when needing to deploy software contin-
uously, are microservices [1]. Microservices are small, independent, and autonomous
pieces of software that focus on a single process [54]. Typically, a microservice is built
and maintained by a single group of developers, carrying all responsibility. The full-
stack development method fits best in this situation [13], since every developer re-
quires the know-how of the entire microservice. A requirement for microservices is
that developers understand they contribute to the entire system. Wherever possible,
microservices (and DevOps) should be cloud based [13]. A major benefit of microser-
vices is that they are independent of each other. Updates can be carried out contin-
uously, without requiring changes in other systems. Other benefits include: 1) using
different technologies for each microservice, 2) microservices are resilient, 3) microser-
vices scale well, and 4) microservices can easily be replaced.

However, scholars remain unclear whether microservices should be versioned [5].
In addition, the dilemma between containerisation and virtualisation exists [5, 13].

13

2.3 DevOps Practices & Tools

With these technologies, production environments can be created for use in develop-
ment. The focus of virtualisation lies on security, but lacks platform-compatibility.
Containerisation (e.g. using Docker) can run on any platform and can be version con-
trolled. Another tool used for virtualisation is Vagrant. Benefits of containerisation
include [45]: 1) services run on the same environment in both development and pro-
duction, 2) all dependencies are included in the configuration of the container, and 3)
updating one service has zero impact on other services as they do not interfere. More-
over, containers simplify the architecture and are more resource efficient [55].

The key practice during the deployment stage is to use configuration for every-
thing [13, 21]. This allows environments and architectures to be shared and tested
using version control practices. Minimising the differences between development and
production environments also reduces the chances of bugs and other problems [13].
To enjoy the benefits of automated and continuous delivery, systems need to be con-
nected [13]. This required architecture can be achieved using the aforementioned mi-
croservices. Tools for Continuous Delivery are: Puppet, Chef, or Ansible.

2.3.4 Measurement

As discussed, within DevOps there are two main ways to look at measurement: 1)
measuring high-level business metrics (or KPI’s) keeps team members informed and
allows for better decision-making, and 2) real-time monitoring of production systems
increases stability.

Monitoring systems track aspects such as: network traffic, temperatures, memory,
and other non-functional properties [5]. Other functionalities that come with monitor-
ing tools are: self-healing, alerting when problems are detected, and log management.
Akshaya et al. [44] distinguish two categories: system and network tools.

Two practices involving monitoring have been identified from literature: 1) applica-
tions and resources are automatically and continuously monitored [4, 9, 22, 32], and 2)
automated dashboards including health checks and performance metrics [4, 32]. Tools
commonly used for monitoring are Zabbix, Nagios, or Cacti [13]. These tools can ei-
ther be offered as a Service or through web interfaces.

Logging is the practice of storing pre-defined data over a period of time. Log data
can be used for different reasons, depending on the stage within the DevOps lifecy-
cle [44]. For example, logger frameworks are used to debug in production, since log-
ging is an important way to manage applications [13]. It can also be used for debugging
during development, performance testing, and web analytics [44].

Hamilton [32] identified the practice of supporting configurable logging that can
optionally be turned on/off as needed to debug issues. This way, certain information
is logged to a designated log-file only when it is required. This is useful during the
introduction of new features or when bugs arise. Some of the logging tools available
include: Graylog, LogStash, or Loggly. Most cloud services include monitoring and
logging functionalities by default [5].

14

2.4 Benefits After Implementation

2.4 Benefits After Implementation

Table 2.3 presents a short overview of benefits after implementing DevOps, according
to literature.

Table 2.3: Experienced benefits after DevOps adoption.

Benefit References
1 Automation of processes [14, 15]
2 Shorter cycle times [6–9]
3 More frequent releases [10, 11]
4 Continuous experimentation and improvement [3, 7, 8, 15]
5 Increase in stability [8, 24]
6 Increase in quality [6, 7, 9]
7 Improved collaboration and communication [7, 12]
8 Better and happier employees [3, 11]

DevOps enhances automation throughout the software delivery process [14, 15].
Automation not only reduces errors, but also improves the development process. This,
in turn, leads to developers being more creative and productive [3].

Continuously delivering new software improves the time it takes services to reach
users. Callanan and Spillance [6] found a 86% decrease in release cycle time – the
time from ‘development and testing complete’ to ‘released’ – from weeks to hours, or
even minutes. Moreover, the frequency with which new (smaller) releases are made,
also increased [10, 11]. This positive effect on the cycle time was also found by other
scholars [7–9]. For some organisations, the time-to-market improved with 20% after
the introduction of DevOps [10].

Shorter release cycles also benefits customers: with less new features to focus on
each release, users can provide better feedback [14]. Organisations could thus test with
real customers and use their feedback, enabling continuous experimentation [3, 7, 15]
and improvement [8].

According to some scholars, DevOps requires a “shift to product-based manage-
ment” [14]. This translates into shifting from delivering complete projects to a contin-
uous delivery of features. Riungu et al. [7] found that this leads to more features being
implemented and an improvement of quality assurance.

Adhering to the practice of continuous integration, organisations can make small
changes to software in production. This has the benefit of easier identifying defects
and hotfixes can be deployed faster [6]. The overall quality of the product or service
thus increases [9].

Another benefit of DevOps is an increase in stability [8]. Stability is achieved by au-
tomating tests and a culture of continuous improvement. Forsgren et al. [24] measure
stability using the Mean Time to Recover (MTTR) metric. MTTR measures the time it
takes to recover from a service incident [21]. As mentioned before, using version con-
trol and automated deployments roll-backs are simpler. High performers can restore
service in less than one hour, whereas low performers may need up to one month [24].
Th MTTR of ‘elites’ is 2, 604 times higher than low performers.

As DevOps requires breaking down the silos between the development and oper-
ations teams, better collaboration and cross-department communication are common

15

2.5 Challenges Implementing DevOps

benefits of adopting DevOps [7, 12].
Callanan and Spillance [6] found that shifting to a DevOps mindset, required no

extra costs (e.g. licensing, hardware or man-hours). Other scholars even found that
after implementing DevOps, costs for development and operations decreased in 46%
of the cases [10].

Lastly, DevOps can also improve employees’ way of working, in turn improving
their well-being. Teams become happier and are more engaged with the overall prod-
uct [11]. By better understanding the needs and expectations, pointing fingers between
developers and operators reduces.

2.5 Challenges Implementing DevOps

Table 2.4 shows a short overview of challenges that can potentially hinder the adoption
of DevOps.

Table 2.4: Experienced challenges implementing DevOps.

Challenge References
1 DevOps remains a vague concept [3, 7, 8]
2 Shift in organisational culture required [3, 7, 13–15]
3 Lack of communication [7, 8]
4 Management approval required [8, 14]
5 Employees gain new responsibilities [3, 8, 15]
6 DevOps is very context dependent [7, 13, 14]

Depending through which lens (engineer, manager, or researcher) one looks at Dev-
Ops, different challenges can arise [5]. Engineers want to continuously deliver new
software, which requires new architectural structures. Managers face cultural chal-
lenges when trying to introduce DevOps into the organisation. Lastly, researchers try
to understand the latest practices. Successfully implementing DevOps into an organi-
sation is thus not without challenges.

Ebert et al. [13] identified four major challenges when adopting DevOps: 1) com-
plex architecture needs to be broken down into small individual chunks (e.g. microser-
vices), 2) configuration and build environments should be maintained and be visible
for all, 3) legacy application life-cycles are converted into development environments,
and 4) breaking down the silos between software development and operation teams.

While Riungu-Kalliosaari et al. [7] found numerous benefits of adopting DevOps,
some implementation challenges were raised. When communication between teams is
lacking (e.g. only electronically), not all knowledge and information is shared, possibly
resulting in problems. The practices of continuous monitoring, for example, requires
input from all teams involved. Development teams need to know how their software
performs in production environments.

Implementing DevOps requires a significant shift in organisational culture [3, 7, 13–
15]. This cultural shift can be more difficult than the technical implementation [14].
Teams and individuals gain new responsibilities and tasks [7]. Operations teams are
suddenly connected to many other (business) functions. Hamunen [8] identified three

16

2.6 Organisational Routines

types of issues on a team level: 1) lack of trust, 2) lack of skills, and 3) lack of commu-
nication.

On a higher level, if management is not supportive of the changes, DevOps initia-
tives will likely never see the light of day. Lack of management support is therefore
considered another challenge in DevOps [8]. Close collaboration between teams and
strong leadership is therefore required. As culture is unique for every organisation,
an approach that works for some, might not work for others. Integrating a culture of
collaboration within team settings is a must [14].

Not all aspects and practices of DevOps are suitable in every situation [7, 13]. The
context of which an organisation operates in, is unique. Therefore, a custom interpre-
tation is required for each organisation [14]. Systems used within banks or healthcare
organisations, for example, cannot use continuous delivery, as certain systems cannot
be shut down easily. Changing legacy systems and older infrastructure to microser-
vices is also difficult [13, 15]. Moreover, complex production systems are hard to clone
to development environments. Automated testing is then less reliable.

In addition, some developers have a hard time embracing the practices of automat-
ing tests [8]. Originally, testing was not part of the developer role, so inexperience
can lead to frustration. Moreover, developers need to learn additional skills to keep
up with operations [3]. As writing tests does not add value, like building features,
some even consider it waste. Actions to combat these challenges can include: making
test templates developers can view and use, or requiring a certain level of code cover-
age before a change can make it to production. As automation requires new tools and
practices, picking the right tools [8] and maintaining them [15] can be a challenge on its
own. Quality and maturity levels of tools differ immensely and can become outdated
quickly.

Some scholars have stated [3, 8] that DevOps, with all its definitions remains vague.
In contrast, practitioners advocate that vagueness allows organisations to adopt a def-
inition that works for them [14]. Misconceptions about DevOps include: DevOps is
something that can be purchased, or DevOps is either a “guy” or a “team” [8]. There
is (yet) no standardised package of practices suitable in every situation and many dif-
ferent tools exist. The concept of DevOps thus remains “unclear but also evolving” [7].
However, according to Leite et al. [5], team structure should be prioritised over tools.
Similarly, Bass and colleagues [56] recommend alignment between DevOps and organ-
isational goals.

2.6 Organisational Routines

Since practices, and more specifically DevOps practices, are hard to define, a more solid
and scientific basis is required. Therefore, this section will discuss relevant literature
regarding organisational routines and capabilities.

Becker [57] systematically reviewed the concept of routines. He identified the fol-
lowing characteristics routines have. First, routines are patterns, focussing on the con-
cept’s consistency. By distilling concepts from relevant literature, Becker found that
patterns consist of four different terms: action, activity, behaviour, and interaction.
However, in economics and business, behaviour and interaction are considered sub-
sets of activity. He therefore proposes two other kinds of patterns: activity patterns

17

2.6 Organisational Routines

and cognitive regularities. Recurrence, by definition, is the second aspect of routines.
Activities need to be repeated in order for it to become a routine. The third charac-
teristic is the collective nature: routines involve multiple actors and can be distributed
across different locations (e.g. departments or physical locations). Dosi, Nelson, and
Winter [58] consider routines to be on the organisational level. Since routines occur in a
business setting, they are dependent on its context. The next characteristic is therefore
context-dependence and specificity. Routines can be specific in three ways: historical,
local, or relational. The historical aspect of routines means that they can change over
time in a path-dependent way [57]. New information or feedback can restructure a
routine. Lastly, routines start by one of two triggers: actor-related triggers or external
effects.

Becker [57] also identified multiple benefits of routines on organisations. Routines
reduce uncertainty by providing a rule-based way of choosing between different possi-
bilities. Routines also provide stability in employee behaviour: when a certain routine
provides sufficient results, employees will not seek different ways to do things. More-
over, changing a routine involves ‘costs’: the identification of new actions takes time
and effort. Lastly, routines are a source of knowledge since they provide specific ways
of carrying out activities. Such activities may include problem solving. Compared to
other sources of knowledge (e.g. Wiki’s or documentation), routines can store tacit
knowledge [59]

Organisational routines can be seen as one of the building blocks of organisational
capabilities [58]. Definitions of organisational capabilities fall in three categories [60]:
1) the ability to perform basic functional activities, 2) dynamic improvement to activi-
ties, or 3) strategic insights to develop novel strategies before competitors. Collis’ [60]
definition of capabilities is as follows: “the socially complex routines that determine
the efficiency with which firms physically transform inputs into outputs”.

Organisational capabilities have been found to be a source of competitive advan-
tage [60, 61]. Salvato [62] found that a number of routines carried out by individuals
within the organisation “allow organisations to successfully renew their core capabil-
ity” [62]. He argues that organisations should learn to recognise valuable experiments
to maintain their competitiveness. In a DevOps setting, experimentation could come
from continuously interacting with customers through continuous integration and us-
ing their feedback.

18

Chapter 3
Methodology

As seen in the previous chapter, exploratory research already found a number of Dev-
Ops best practices and technologies. Different research studies found numerous bene-
fits after adopting the DevOps approach [3, 6, 10, 11]. Moreover, a positive connection
between DevOps practices and technologies and short lead times was also found [33].

To answer the research question – What are the effects of DevOps practices and tech-
nologies on organisational performance? – further “deepening” research is required. Con-
firmatory research is a paradigm used in science to gather objective information that
can be generalised [63]. It requires detailed planning before data collection can begin.
Confirmatory research is quantitative as it allows for generalisation. To be able to gen-
eralise for all of the population, input from a large number of DevOps practitioners is
required.

3.1 Population & Sample

The first step in defining the population for this research is to determine the unit of
analysis. The unit of analysis is the entity studied within a research project. As this the-
sis analyses the effects of DevOps tools and practices on organisational performance,
the unit of analysis can therefore be defined as: organisations who are building soft-
ware according to the DevOps methodology.

Not all employees are equally suitable to participate in this research. Hence, the
population needs to be more precise. Only employees involved in the development,
testing, or maintenance of software are relevant for this study. Such employees typ-
ically have one of the following roles: Software Engineer, Tester, DevOps Engineer,
Security Engineer, or Automation Engineer. Managers or higher level executives are
also included since they share different views on this topic. The same yields for con-
sultants such as Agile coaches or external consultants.

The population can therefore be defined as: people working at software develop-
ment organisations which follow the DevOps methodology, with a role similar to the
ones described above.

To be able to generalise the results for the entire population, the aim is to gather a
sample of at least 100 people who are characterised by the abovementioned aspects.

19

3.2 Survey

3.2 Survey

To reach a large number of people who fall within the population within the timeframe
of this thesis, a survey is the most obvious choice. Aside from being easy to distribute,
anonymous internet-based surveys reduce desirability biases [64]. Another benefit of
using a survey is that data can be analysed quickly after collection [33]. Moreover,
surveys are often used in this field of research, for example: the State of DevOps re-
ports [24, 65–67], Humble et al. [33], and Forsgren [68].

The web-based survey will be made using the software provided by the university:
Qualtrics.

3.2.1 Survey Design

The survey consists of the following six categories: 1) Demographics, 2) Transforma-
tion, 3) Maturity Models, 4), Tools & Practices, 5) Impact of DevOps, and 6) Organ-
isational Performance. The full survey containing all questions can be found in Ap-
pendix E.

The survey closes with a thank you message and a link to a separate survey to
enter one’s e-mail address. Respondents can leave their e-mail address if they are
interested in the outcomes of this research. Separating the e-mail address from the
answers guarantees the respondents’ anonymity.

Demographics The survey starts by collecting data about the participant to ensure
a diverse enough sample of the population. This category includes questions regard-
ing the industry, the role within and size of the organisation, and years of experience
with DevOps. These questions also function as categorisation questions; there could
potentially be differences in results between different industries or company sizes.

Transformation In this category the participants are first asked if their organisation
has undergone or is currently undergoing an agile or DevOps transformation. If not,
the survey skips to the next section, skipping the rest of the questions. Otherwise, this
section continues and asks the respondents about the duration of the transformation
and the frameworks used during the transformation.

Maturity Models While not all scholars agree on the usage of maturity models [24],
they are a popular tool to measure the current state of an organisation. To measure
the Agile and DevOps maturity of organisations, the third section contains questions
regarding two maturity models. First, questions based on Laanti’s Agile Maturity
Model [69] ask the participants to rate their maturity on three organisational levels:
portfolio, program, and team. The possible answers to these questions range from
’Beginner’ via ’Fluent’ to ’World-class’.

Eficode [38] developed a DevOps Maturity Model consisting of six enterprise areas:
Organization & Culture, Environments & Release, Builds & Continuous Integration,
Quality Assurance, Visibility & Reporting, and Technologies & Architecture. Each area
can be rated according on a scale ranging from level 1 to level 4. All questions are
accompanied with a table of the corresponding level/area.

20

3.2 Survey

Practices & Tools This section explores which tools, technologies, and practices are
used in the day-to-day work of the participants. Questions include where software is
hosted, how it is deployed, if open source software is used, and what their DevOps
pipeline looks like. In addition, questions regarding capacity allocation measure what
people spent most of their time on. Next, multiple survey blocks list the most common
practices (from Table 2.1), grouped by category. The second practice is split up into
two subpractices to better understand their potential impact. For each category, the
respondents are asked how often they apply each practice. The answers are on a 7-
point Likert scale. The last questions in each category – shown only when they apply
at least one practice in the category – require input on the tools and technologies that
are used.

Impact of DevOps Forsgren et al. [21] created a latent construct for Software Delivery
Performance. This construct is made up of four questions regarding lead time, deploy-
ment frequency, mean time to restore (MTTR), and change fail percentage. These ques-
tions are included to compare with their research and have shown to have a positive
relation with organisational performance.

Second, to evaluate the perceived impact of DevOps on the participants and their
team members, they are asked to describe opinions on these metrics, as adopted from
Lanti [69]: effectiveness of development, quality of the product, customer satisfaction,
collaboration, work being more fun, work being less hectic, work being more organ-
ised, and earlier detection of bugs/errors. Additonal metrics regarding customer sat-
isfaction are added, e.g.: usefulness of the product, usability of the product, and pre-
dictability of delivery. The questions ask to input the percentage of change the impact
has, ranging from −100 (negative impact) to 100 (positive impact). The negative values
are in place to counter bias.

Organisational Performance The last section focusses on measuring organisational
performance. Commonly used questions for this metric are the ones adopted from
Widener [70]. Participants are asked to rate their organisation’s relative performance
on multiple dimensions. This survey uses the following dimensions: overall perfor-
mance, overall profitability, customer satisfaction, quality of products and services, op-
erating efficiency, and achieving organisational goals. For each dimension, a question
asks how well the organisation met its goals regarding that dimension. The answers
are on a 7-point Likert scale, ranging from ’Performed well below goals’ to ’Performed
well above goals’.

3.2.2 Distribution

The survey was distributed through the personal network of the author and social me-
dia platforms such as Facebook and LinkedIn. By creating interesting posts on the
platforms, people will share the posts with their network, thus gaining increased vis-
ibility. This way, posts will snowball and reach as much people as possible. Next,
unique posts will be created in relevant DevOps groups on the social media platforms.
A benefit of these groups is that all people are interested in the topic. In addition, peo-
ple with relevant DevOps experience were targeted directly by messaging them via the

21

3.3 Data Analysis

platforms.

3.2.3 Quality Assurance

As described above, the survey will be used to measure predefined metrics. Most
of them are based on related work by other researchers – e.g. Forsgren et al. [21],
Laanti [69], and Widener [70]. Questions based on their work are tested for both re-
liability and validity, meaning the questions measure exactly what they should. This
way, the quality of the survey is ensured.

3.3 Data Analysis

The first step after the data collection is to export the data. Qualtrics allows for export-
ing the data to different files, including a csv file.

Before the data can be analysed, it first needs to be sanitized. The data sanita-
tion process consists of the following steps. First, all partially filled in responses will
be deleted from the data. Then, all irrelevant columns (e.g. start time, progress, or
response id) will be removed to simplify the analysis. Next, all text inputs will be
scanned for spelling mistakes to avoid duplicates of the same answers. Lastly, long
sentences will be condensed and labelled for easier access.

The analysis will be done with Python using the pandas, scipy, and numpy pack-
ages. Visualisations will be made using the plotly package. The clustering is done
with the K-means algorithm from the sklearn package. K-means was used with dif-
ferent values for K, until distinct clusters were found. Correlations were made using
the Pearson correlation, a commonly used statistic. The correlation and p-value were
calculated using the scipy package. After the sanitized csv file is imported, visualisa-
tions were made and the clustering and correlation methods were executed.

3.4 Reflective Workshops

After the collection period had ended and the initial results were visualised, some of
these results were used in three interactive and reflective workshops. Two of them
were held during the 2021 RTE Summit, the last one took place online and was organ-
ised by IPMA Connect.

Participants of the workshops were grouped around the different results and were
asked to reflect on and discuss the outcomes. Using (digital) sticky notes, participants
described their observations, came up with reasons for those observations, and related
it to their experience. They then prepared a short plenary to share with the entire
group. After all groups had shared their discussions, a more general discussion about
the results, impacts, and experiences took place. Some of these discussions are in-
cluded in Chapter 5.

22

Chapter 4
Results

The survey was active in the period from June 30 to November 5, spanning 128 days.
Within this time, 337 people started the survey and 123 completed it. The response rate
of the survey is therefore 36.5%. This chapter describes and depicts the data gathered
from the survey.

4.1 Who Are the Respondents?

To better understand the respondents, first the demographic information is displayed.
Next, to compare the results of this survey with comparable previous studies, ques-
tions regarding a DevOps or Agile transformation were included in the survey.

Table 4.1 displays the most common roles of the respondents. The three most com-
mon roles are Software Developer/Engineer (30.1%), IT Operations/Infrastructure En-
gineer (22.0%), and Automation Engineer/Expert (8.9%). The roles categorised under
Other only had one or two occurrences and are therefore not displayed.

Table 4.1: Most common roles of respondents.

Role Respondents Percentage
Software Developer/Engineer 37 30.1%
IT Operations/Infrastructure Engineer 27 22.0%
Automation Engineer/Expert 11 8.9%
Product Manager 7 5.7%
Project Manager 5 4.1%
External consultant 4 3.3%
DevOps Engineer 4 3.3%
DevOps Coach 4 3.3%
Sponsor 3 2.4%
Data Engineer 3 2.4%
Other 18 14.6%
Total 123 100%

The primary industry of the respondents can be found in Table 4.2. The Technology
(32.5%) sector is represented the most, followed by Financial Services (15.5%). Retail,

23

4.1 Who Are the Respondents?

Consumer, & E-commerce (8.1%) ranks third. The Education (1.6%) sector is repre-
sented the least.

Table 4.2: Primary industry of respondents.

Industry Respondents Percentage
Technology 40 32.5%
Financial Services 19 15.5%
Retail, Consumer & E-commerce 10 8.1%
Other 9 7.3%
Insurance 8 6.5%
Telecommunications 8 6.5%
Energy & Resources 7 5.7%
Government 7 5.7%
Industrial & Manufacturing 6 4.9%
Media & Entertainment 4 3.3%
Healthcare, Pharma & Life sciences 3 2.4%
Education 2 1.6%
Total 123 100%

Figures 4.1 and 4.2 show the size of organisations (number of employees) and the
years of DevOps experience, respectively. The largest groups of respondents work
at organisations with 20-99 employees (24.0%), 100-499 employees (20.7%) or 10,000+
employees (20.7%). Only a small percentage of the respondents work in organisations
with less than 20 employees: 8.2%. For DevOps experience, most participants have
3-5 years of experience (38.2%), followed by 1-2 years (22.0%), and 6-10 years (17.9%).
5.7% of the respondents have no DevOps experience.

24%20.7%

20.7%

11.6% 9.09%

5.79%

4.96%

2.48%

20 - 99 100 - 499 10,000 +
500 - 1,999 5,000 - 9,999 2,000 - 4,999
5 - 9 10 - 19 1 - 4

Figure 4.1: Organisation size.

38.2%

22%

17.9%

10.6%
5.69%

5.69%

3 - 5 1 - 2 6 - 10 > 16
0 11 - 15

Figure 4.2: DevOps experience.

As shown in Table 4.3, 85.4% of the respondents indicated that their organisation
has undergone or is currently undergoing a DevOps or Agile transformation. A small
portion of the respondents (4.9%) said that their organisation is about to start a trans-
formation. The remaining 9.8% will thus not be taken into account for remainder of
this section.

24

4.1 Who Are the Respondents?

Table 4.3: Currently ongoing DevOps or Agile transformations.

Answer Respondents Percentage
Yes, completed a transformation 57 46.3%
Yes, currently undergoing a transformation 48 39.2%
No, but about to start a transformation 6 4.9%
No, not at all 12 9.8%
Total 123 100%

The (estimated) duration of the transformation is displayed in Figure 4.3. The
largest two groups of respondents mention a duration between one and two years
(29.7%) and between six months and one year (28.8%). The remaining respondents
classified the duration to be between two and five years (17.1%) or less than six months
(15.3%). 9.0% of the respondents estimated the duration of the transformation to be
more than five years.

29.7%28.8%

17.1%

15.3%

9.01%

Between 1 and 2 years Between 6 and 12 months
Between 2 and 5 years 6 months or less
More than 5 years

Figure 4.3: Duration of the transformation.

Figures 4.4 and 4.5 depict the Agile and DevOps frameworks used during the trans-
formation, respectively. The most common Agile frameworks are the Scaled Agile
Framework (26.1%), Enterprise Scrum (22.5%), Scrum of Scrums (16.2%), and Agile
Portfolio Management (14.4%). 11.7% of the respondents used internally created meth-
ods, while nine percent of the respondents indicated they did not use a Agile frame-
work during the transformation.

More than half (60.0%) of the participants also did not use a DevOps framework
during the transformation. The most popular DevOps frameworks are CALMS (20.9%)
and SAFe’s CALMR (11.8%). Since the Scaled Agile Framework also includes DevOps
topics, respondents might not need a separate DevOps framework. In fact, 37.9% of
the respondents who used SAFe, did not use a DevOps framework.

25

4.2 DevOps & Agile Maturity

0.9

1.8

2.7

3.6

4.5

5.4

9

9

11.7

14.4

16.2

22.5

26.1

0 5 10 15 20 25

Nexus

Large scale scrum (LESS)

Waterfall

Disciplined Agile Delivery (DAD)

Other

Lean Management

Spotify Model

None

Internally created methods

Agile Portfolio Management (APM)

Scrum of scrums

Enterprise scrum

Scaled Agile Framework (SAFe)

Participants (%)

Figure 4.4: Agile framework used during transformation.

1.8

1.8

1.8

3.6

11.8

20.9

60

0 10 20 30 40 50 60

DASA

SQUID Architecture Framework

CAMS

Other

SAFe's CALMR

CALMS

None

Participants (%)

Figure 4.5: DevOps framework used during transformation.

4.2 DevOps & Agile Maturity

To be able to recommend certain tools and practices to DevOps practitioners, first a
good understanding of the organisation’s maturity is required. This allows us to link
practices to maturity and make recommendations on improving maturity. DevOps
and Agile maturity per industry can be found in Appendix D.

Figure 4.6 depicts DevOps maturity across six aspects as defined by Eficode [38].
In general, most respondents estimated their organisation to be on either Level 2 or
Level 3. On the Organization & Culture aspect, Levels 3 and 4 were most common
with 40% and 29%. The rest of the participants estimated their organisation to be on
Level 2 (16%) or Level 1 (15%). On the Environments & Release aspect, Level 3 was
most common (41%), followed by Level 2 (30%). The remaining respondents rated
their organisation Level 4 (18%) or Level 1 (11%). 41% of the respondents rated their
organisation Level 3 on the Build & Continuous Integration aspect. Second was Level
2 (29%), Levels 1 and 4 scored equal at 15%. For Quality Assurance, the two largest
groups are Level 3 (38%) and Level 2 (28%). 18% of the participants voted on Level 1,
the remaining 15% on Level 4. On the Visibility & Reporting aspect, the largest group
is Level 2 (41%). The remaining respondents rated their organisation Level 3 (27%),

26

4.3 DevOps Practices & Tools

Level 1 (20%), and Level 4 (13%). On the Technology & Architecture aspect, 40% of
the respondents assessed their organisation to be on Level 3 and 29% on Level 2. The
remaining respondents estimated to be either on Level 4 (21%) or Level 1 (10%).

14.6

11.4

14.6

17.9

19.5

9.8

16.3

30.1

29.3

28.5

40.7

29.3

39.8

40.7

40.7

38.2

26.8

39.8

29.3

17.9

15.4

15.4

13.0

21.1

0 20 40 60 80 100

Technology & Architecture

Visibility & Reporting

Quality Assurance

Builds & Continuous Integration

Environments & Release

Organization & Culture

Level 1 Level 2 Level 3 Level 4

Figure 4.6: DevOps maturity across six aspects.

As can be seen in Figure 4.7, on the Portfolio level, the largest group of respondents
estimated their organisation to be on the Beginner level (32%), followed by the Fluent
level (26%). Only a small percentage of the respondents (7%) assessed their organisa-
tion to be World-class on this level. The remaining participants considered themselves
either Novice (23%) or Advanced (13%). On the Program level, the two largest groups
of participants rated their organisation Novice (28%) or Beginner (27%). The other par-
ticipants assessed it to be Fluent (20%), Advanced (16%), and World-class (8%). For
the Team level, the largest groups are Novice (33%) and Fluent (29%). The other par-
ticipants estimated they were either Beginner (16%), Advanced (13%), or World-class
(9%). The average maturities from Portfolio to Team are 48.0, 50.1, and 53.2, respec-
tively.

31.7

26.8

16.3

22.8

28.5

32.5

26.0

20.3

29.3

13.0

16.3

13.0

6.5

8.1

8.9

0 20 40 60 80 100

Team

Program

Portfolio

Beginner Novice Fluent Advanced World-class

Figure 4.7: Agile maturity across three levels.

4.3 DevOps Practices & Tools

This section takes a look at the practices and tools respondents follow and use when
developing, testing, and deploying software developed using DevOps concepts. It also
explores the day-to-day activities of the respondents.

27

4.3 DevOps Practices & Tools

Figure 4.8 shows how often respondents apply the most common DevOps prac-
tices, as seen in Table 2.1. The practices are ranked based on their adoption rate, which
was determined by following the algorithm of Serban et al. [71]. The most commonly
implemented practice is ‘everything as code and stored under version control’, with
87.0% of the participants using it most of the time or more. Only 0.8% of the respon-
dents never follow this practice. Other common practices that are applied most of the
time or more are: ‘automated and continuous monitoring’ (76.4%), ‘automated dash-
boards’ (78.1%), ‘trying to reduce time to test/QA’ (71.1%), and ‘change-based code-
reviews’ (71.5%). The practice that is implemented the least among the respondents
is ‘sandboxes for minimum code deployment’, with 53.7% of the respondents either
applying to it sometimes or never. Two other less applied practices involve test-driven
and trunk-based development.

61.8

46.3

42.3

38.2

39.8

33.3

30.9

32.5

38.2

27.6

25.2

26.8

13.0

16.3

25.2

30.1

35.8

30.9

31.7

36.6

39.8

37.4

26.8

31.7

30.9

26.8

27.6

20.3

6.5

8.9

7.3

18.7

8.1

10.6

10.6

5.7

9.8

11.4

11.4

11.4

16.3

9.8

5.7

9.8

8.1

8.1

15.4

15.4

8.9

17.9

17.1

23.6

28.5

19.5

28.5

24.4

0.8

4.9

6.5

4.1

4.9

4.1

9.8

6.5

8.1

5.7

4.1

15.4

14.6

29.3

0 20 40 60 80 100

Sandboxes for minimum deployment 14

Test-driven development 13

Trunk based development 12

Small & continuous releases 11

Developers get feedback on releases 10

Automated testing in environments 9

Con�guration management 8

Logging enabled through con�guration 6

Automated & continuous deployments 6

Change-based code reviews 4

Trying to reduce time to test/QA 4

Automated dashboards 2

Automated and continuous monitoring 2

Everything as code under version control 1

Always Most of the time About half the time
Sometimes Never

Figure 4.8: Usage of DevOps practices.

Table 4.4 contains the five most used DevOps tools for each practice, correspond-
ing to the practices in Figure 4.8. Tools in the categories continuous delivery, contin-
uous deployment, and continuous integration are often used for all three practices,
with Azure DevOps being the most popular tool. Azure DevOps also ranks fourth in
the version control management category. Microsoft’s Azure platform is included five
times in the figure, the GitLab ecosystem four times. The tools in the remaining cate-
gories focus solely on performing that task, with Azure Application Insights being the

28

4.3 DevOps Practices & Tools

only exception. All DevOps tools used by the participants can be found in Appendix G.
There, the combination of tools is left unchanged.

Table 4.4: Five most used DevOps tools per practice.

Practice Tool #1 Tool #2 Tool #3 Tool #4 Tool #5

Continuous delivery Jenkins (61) Azure DevOps
(18) GitLab CI (16) Bamboo (11)

Visual Studio
App Center

(11)

Continuous deployment Azure DevOps
(16) GitLab CI (14) CodeDeploy

(14) Bamboo (7) Jenkins (6)

Continuous integration Jenkins (53) Azure DevOps
(20) GitLab CI (16) Bamboo (8) CircleCI (5)

Version control management GitHub (51) Bitbucket (36) GitLab (31) Azure DevOps
(22) Nexus (12)

Configuration management Ansible (52) Puppet (16) Chef (9) Windows
Server IIS7 (7) Terraform (6)

Testing Selenium (47) Junit (35) Jmeter (29) Cucumber (26) Cypress (8)

Code analysis SonarQube
(67) SonarLint (19) Jacoco (14) JS hint (10) CheckStyle (8)

Monitoring Splunk (25) Prometheus
(17) Nagios (12) New Relic (11) Graphite (11)

Logging Kibana (39) Logstash (38) Graylog (7)
Azure

Application
Insights (5)

Datadog (5)

To get a better understanding of the DevOps pipeline, respondents were asked to
describe the contents of the main DevOps pipeline. The results can be found in Fig-
ure 4.9. Provisioning, in this figure, also included deployment to a testing environ-
ment. Build (75.4%), unit tests (69.7%), and provisioning (66.4%) are the most common
processes found in the pipeline. Integrations with monitoring (52.5%) and chatbots
(50.0%) are used in half of the respondent’s organisations. Security (37.7%) and perfor-
mance (36.1%) tests are used the least.

3.3

36.1

37.7

42.6

47.5

50

52.5

66.4

69.7

75.4

0 20 40 60

Other

Performance tests

Security tests

Acceptance tests

Deployment

Chatbot

Monitoring

Provisioning

Unit tests

Build

Participants (%)

Figure 4.9: Contents of the main DevOps pipeline.

29

4.3 DevOps Practices & Tools

4.3.1 How Do Respondents Divide Their Time?

The survey contained three questions regarding capacity allocation: measuring how
respondents spent their time. The first question asked respondents to divide their time
into four categories. Figure 4.10 shows the results: most respondents spend their time
developing features (39.3%), followed by maintenance (22.8%). Technical debt (19.2%)
and enablers (18.7%) are the remaining categories. When these categories are averaged
across DevOps and Agile maturity (Appendix F), we can see that the percentage of
Features and Enablers increases when maturity increases. On the contrary, time spent
on Technical Debt and Maintenance decreases when maturity increases.

Figure 4.11 depicts a different allocation of time: business features versus improv-
ing infrastructure. The average respondent spends about 50% of their time on both.
This number does not change when comparing by maturity.

39.3%

22.8%

19.2%

18.7%

Features Maintenance
Technical Debt Enablers

Figure 4.10: Time spent working across four
aspects.

51.9%
48.1%

Business Features Improving Infrastructure

Figure 4.11: Time spent on Business Features
vs Improving Infrastructure.

The last metric regarding time allocation is unplanned work. On average, respon-
dents spend 34.0% of their time working on unplanned work.

42.4

33.8

30.3

29.3

17

0 10 20 30 40

Beginner

Novice

Fluent

Advanced

World-class

42.4

35.3

27.3

33.2

19.6

0 10 20 30 40

41.2

34.3

29.6

31.7

37.3

0 10 20 30 40

Portfolio Program Team

Unplanned Work (%)

Figure 4.12: Unplanned work across three Agile layers.

When unplanned work is plotted for each layer and level of the Agile maturity
model, we get the results as shown in Figure 4.12. On the Portfolio and Program layer,

30

4.3 DevOps Practices & Tools

unplanned work decreases when maturity increases. However, on the Team layer,
the trend is more U-shaped; unplanned work decreases up until the fluent level, then
increases again. Figure 4.13 shows unplanned work for each DevOps maturity layer.
Across all layers, unplanned work decreases when maturity increases. Hence, there is
a negative correlation between DevOps maturity and unplanned work.

48.6

42.7

29.3

28.2

Level 1

Level 2

Level 3

Level 4

42

38.9

29.5

30.7

47

40.2

28.6

24.1

45.5

37.3

29.8

24.8

0 10 20 30 40 50

Level 1

Level 2

Level 3

Level 4

46.4

36.1

26.5

24.2

0 10 20 30 40

56.5

39.2

28.7

26.2

0 10 20 30 40 50

Organization & Culture Environments & Release Builds & Continuous Integration

Quality Assurance Visibility & Reporting Technology & Architecture

Unplanned Work (%)

Figure 4.13: Unplanned work across six DevOps layers.

4.3.2 Hosting & Deployment

Figures 4.14 and 4.15 show the methods respondents use to deploy and host their –
through DevOps developed – software. Close to 75% of the respondents use container-
isation or virtualisation to deploy their software. Functions or Platforms as a Service
are less popular: 7% and 6%, respectively. Ten percent uses a combination of multiple
methods, often client dependent.

4.9

5.7

7.3

9.8

24.4

48

0 10 20 30 40

Other

PaaS

FaaS

Combination

VM's

Containers

Participants (%)

Figure 4.14: Deployment methods.

Public clouds are the most popular option for hosting (31.7%), followed by hybrid

31

4.3 DevOps Practices & Tools

clouds (26.0%) – a combination of public and private clouds. On-premise data centres
are used in 14.6% of the organisations, private clouds in 13.0% of the organisations.

1.6

4.1

8.9

13

14.6

26

31.7

0 10 20 30

Other

Combination

Multiple public clouds

A private cloud

On-premise datacenter

Hybrid cloud

A public cloud

Participants (%)

Figure 4.15: Hosting methods.

4.3.3 Usage of Open Source Software

Figure 4.16 shows the usage of open source software across the respondents. Most
respondents (84.6%) agree to make extensive use of open source software. A neutral
response is given by less than one-tenth (8.9%) of the respondents. A small fraction of
the respondents (1.6%) makes no use of open source software. The industry in which
most people agreed to making extensive use of open source software is the Retail,
Consumer & E-commerce industry. Ninety percent of the respondents in this sector
answered with ‘Strongly agree’. The lowest usages of open source software are in the
Other (22.2%) and Education (33.3%) sectors.

54.5%

30.1%

8.94%

4.88%

Strongly agree Somewhat agree
Neither agree nor disagree Somewhat disagree
Strongly disagree

Figure 4.16: Open Source usage.

32

4.4 Impact & Performance

4.3.4 Results of Integration Tests

Figure 4.17 depicts how quickly developers can see the results of integration tests.
The largest groups of respondents can see their results between one and ten minutes
(35.0%), between ten minutes and one hour (26.8%), and between one hour and one
day (15.4%). 10.6% of the participants can see the results less than one minute after
running them. None of the respondents have to wait more than one month on the re-
sults of the integration tests. However, 6.5% of the respondents do not have any testing
in place.

10.6

35

26.8

15.4

3.3

2.4

6.5

0 10 20 30

No testing in place

More than 1 month

1 week - 1 month

1 day - 1 week

1 hour - 1 day

10 minutes - 1 hour

1 minute - 10 minutes

Less than 1 minute

Participants (%)

Figure 4.17: Time before developers can see the results of integration tests.

4.3.5 Customer Satisfaction

The most popular methods for measuring customer satisfaction are Net Promoter Score
– or NPS for short – (15.3%), Surveys (14.5%), and direct feedback (10.5%). Direct
conversations with customers (4.0%) and measuring complaints via customer support
(5.6%) are less common methods participants use. Other (34.7%) measurement meth-
ods are only used by a single respondent, such as: sales, number of website visitors, or
yearly/monthly metrics. About one-sixth of the respondents (16.1%) do not actively
measure customer satisfaction. Some reasons include: software is not yet in produc-
tion, software is for internal use only, or it is not the responsibility of the respondent.

4.4 Impact & Performance

Figure 4.18 displays the average organisational impact of a DevOps implementation
across thirteen aspects and grouped into six dimensions (based on the research of Stet-
tina et al. [72]). On average, all thirteen aspects show a positive impact. However,
for all impact dimensions, respondents have experienced negative impacts. For both
‘makes work more fun’ and ‘increases predictability of product delivery’, 25% of the
respondents experienced a negative impact ranging from −100 to 0. The aspects with
the highest perceived impact are: ‘improves time to market’ (47.6%), ‘increases collab-
oration’ (47.0%), ‘enables the earlier detection of defects’ (45.8%), and ‘increases the

33

4.4 Impact & Performance

effectiveness of development’ (45.0%). The impact dimensions with the lowest aver-
age impact are: ‘increases the usefulness of the product’ (29.4%), ‘increases the usabil-
ity of the product’ (30.5%), ‘makes work less hectic’ (30.8%), and ‘makes work more
planned’ (31.4%). Industry wise, the average impact of Insurance (23.8%) and Gov-
ernment (26.2%) was the lowest. Healthcare, Pharma & Life sciences had the biggest
impact (75.4%), followed by Education (62.3%) and Financial Services (53.0%).

Productivity

Responsiveness

Quality

Workflow health

Employee satisfaction
& engagement

Customer satisfaction

−75 −50 −25 0 25 50 75 100

 Meeting expectations for the product

 Increases the usefulness of the product

 Increases collaboration

 Makes work less hectic

 Makes work more fun

 Predictability of product delivery

 Makes work more organized

 Makes work more planned

 Increases the usability of the product

 Enables the earlier detection of defects

 Improves the quality of the product

 Improves time-to-market

 Increases the e�ectiveness of development45.0

47.6

41.3

45.8

30.5

31.4

40.9

40.0

43.4

30.8

47.0

29.4

34.2

Figure 4.18: DevOps impact on thirteen aspects (as from [69]).

Figure 4.19 depicts organisational performance across six aspects. The two largest
groups across all aspects are ‘Performed above goals’ and ‘Met goals’, with ‘Performed
above goals’ being the largest of the two. These groups combined account for 50% to
60% of all respondents. On each aspect, at least 50% of the respondents performed
slightly above goals or better and more than 80% of the respondents met their goals
or better. For each performance metric, less than 15% of the respondents rated their
organisation to perform below goals or well below goals. Very few participants (2%
or less) performed well below goals. Participants performed best on the Profitability
aspect, with only 8.5% of the respondents not meeting their goals. On the performance
metrics Effeciency and Achieving Goals, respondents performed the worst, with 14.6%
of the respondents not meeting goals. Similar to impact, the Healthcare, Pharma &
Life Sciences, and Education industries also had the biggest average performance. The
industries with the lowest recorded average performance are Insurance and Govern-
ment.

4.4.1 Software Delivery Performance

Earlier research by Forsgren et al. [21] has shown that software delivery performance
is related to organisational performance. For this reason, and to validate their work,
measures for software delivery performance have been included in the survey.

34

4.4 Impact & Performance

19.5

18.3

9.8

9.8

12.2

9.8

29.3

34.1

32.9

26.8

22.0

26.8

17.1

18.3

22.0

22.0

20.7

14.6

23.2

23.2

26.8

30.5

30.5

34.1

8.5

3.7

6.1

9.8

12.2

12.2

2.4

2.4

2.4

1.2

2.4

2.4

0 20 40 60 80 100

Achieving goals

E�eciency

Quality

Customer satisfaction

Pro�tability

Performance

Performed well above goals Performed above goals
Performed slightly above goals Met goals
Performed slightly below goals Performed below goals
Performed well below goals

Figure 4.19: Organisational performance across six aspects (as from [70]).

Figure 4.20 shows how often participants deploy code for their primary service or
application. Most respondents (37.4%) deploy code between once per week and once
per month. The next two largest groups deploy on demand (24.3%) and between once
per day and once per week (20.9%). The remaining participants are equally divided
(both 8.7%) into ‘between once per hour and once per day’ and ‘between once per
month and once every six months’. None of the participants deploys fewer than once
every six months.

24.3

8.7

20.9

37.4

8.7

0 10 20 30

fewer than once every six months

between once per month and once every six months

between once per week and once per month

between once per day and once per week

between once per hour and once per day

on demand (multiple deploys per day)

Participants (%)

Figure 4.20: Deployment frequency for primary service or application.

Figure 4.21 depicts how much time it takes to go from code committed to code
successfully running in production. For most respondents (33.6%) this takes less than
one hour. A small percentage (0.9%) of the respondents waits more than six months to
see their work in production. The remaining participants assessed the time as follows:
less than one day (18.1%), between one day and one week (19.8%), between one week
and one month (22.4%), and between one month and six months (5.2%).

Figure 4.22 depicts how long it generally takes to restore service (rollbacks in-
cluded) for the primary service or application when a service incident occurs. The two
largest groups of respondents can restore incidents within one hour (47.4%) or one day
(45.7%). The remaining participants need between one day and one week (5.2%), be-

35

4.5 Correlations & Cluster Analysis

33.6

18.1

19.8

22.4

5.2

0.9

0 10 20 30

more than six months

between one month and six months

between one week and one month

between one day and one week

less than one day

less than one hour

Participants (%)

Figure 4.21: Time from code committed to running in production.

tween one week and one month (0.9%), or between one month and six months (0.9%).
None of the respondents requires more than six months to solve incidents.

47.4

45.7

5.2

0.9

0.9

0 10 20 30 40

more than six months

between one month and six months

between one week and one month

between one day and one week

less than one day

less than one hour

Participants (%)

Figure 4.22: Mean time to restore service after incidents.

Figure 4.23 shows what percentage of changes for the primary service or applica-
tion results in degraded service or requires remediation. Most respondents (42.2%)
have to remediate between one and five percent of changes. The second largest group
of participants has to fix less than one percent (21.1%) of changes, closely followed by
6% – 15% (18.9%). A small percentage of participants (6.6%) has to remediate 31% of
changes or more.

4.5 Correlations & Cluster Analysis

To make informed recommendations to DevOps practitioners, first a clear understand-
ing of the statistics behind the data is required. In this section correlations between the
aforementioned tools, practices, maturities and performance metrics are explored.

4.5.1 Correlations

Figure 4.24 shows the correlation between DevOps maturity and practice usage. The
lowest correlating practices are ‘sandboxes for minimum code deployment’, ‘logging
enabled through configuration’, and ‘trunk-based development’. Stongly correlating

36

4.5 Correlations & Cluster Analysis

21.1

42.2

18.9

11.1

1.1

1.1

3.3

1.1

0 10 20 30 40

76% - 100%

61% - 75%

46% - 60%

31% - 45%

16% - 30%

6% - 15%

1% - 5%

Less than 1%

Participants (%)

Figure 4.23: Percentage of changes requiring remediation.

practices include ‘automated and continuous testing in development and staging en-
vironments’, ‘automated and continuous deployments’, and ‘automated and contin-
uous monitoring’. The highest overall correlation is between ‘automated testing in
environments’ and Quality Assurance (0.499), the lowest correlation can be found on
‘sandboxes for minimum code deployment’ and Quality Assurance (0.005).

O&C E&R B&CI QA V&R T&A

Test-driven development

Trunk based development

Logging enabled through con�guration

Automated dashboards

Automated and continuous monitoring

Change-based code reviews

Trying to reduce time to test/QA

Automated testing in environments

Con�guration management

Everything as code under version control

Sandboxes for minimum deployment

Developers get feedback on releases

Small & continuous releases

Automated & continuous deployments 0.281** 0.34*** 0.378*** 0.295*** 0.373*** 0.276**

0.187* 0.283** 0.309*** 0.25** 0.353*** 0.318***

0.117 0.159 0.247** 0.182* 0.237** 0.16

0.093 0.013 0.114 0.005 0.102 0.102

0.2* 0.138 0.255** 0.15 0.241** 0.33***

0.206* 0.276** 0.334*** 0.382*** 0.314*** 0.35***

0.252** 0.309*** 0.481*** 0.499*** 0.43*** 0.326***

0.139 0.074 0.199* 0.202* 0.246** 0.273**

0.264** 0.161 0.213* 0.253** 0.294*** 0.228*

0.327*** 0.364*** 0.321*** 0.267** 0.316*** 0.246**

0.353*** 0.271** 0.243** 0.19* 0.318*** 0.248**

0.274** 0.168 0.195* 0.195* 0.201* 0.264**

0.079 0.182* 0.16 0.077 0.04 0.177

0.158 0.156 0.211* 0.287** 0.342*** 0.109

Figure 4.24: Correlation between DevOps maturity and practices.

Figure 4.25 depicts the correlation between Agile maturity and practice usage. Prac-
tices with high correlations for all Agile layers are ‘automated and continuous testing
in development and staging environments’, ‘small and continuous releases’, and ‘au-
tomated and continuous deployments’. Likewise, the lowest correlating practices are
‘sandboxes for minimum code deployment’, ‘logging enabled through configuration’,

37

4.5 Correlations & Cluster Analysis

and ‘trunk-based development’. The highest overall correlation is between Portfolio
and ‘small and continuous releases’, the lowest correlation between ‘sandboxes for
minimum code deployment’ and Program or Team.

Portfolio Program Team

Test-driven development

Trunk based development

Logging enabled through con�guration

Automated dashboards

Automated and continuous monitoring

Change-based code reviews

Trying to reduce time to test/QA

Automated testing in environments

Con�guration management

Everything as code under version control

Sandboxes for minimum deployment

Developers get feedback on releases

Small & continuous releases

Automated & continuous deployments 0.381*** 0.364*** 0.235**

0.401*** 0.392*** 0.279**

0.277** 0.302*** 0.181*

0.146 0.125 0.125

0.275** 0.23* 0.167

0.265** 0.283** 0.305***

0.391*** 0.381*** 0.383***

0.22* 0.175 0.277**

0.282** 0.227* 0.274**

0.294*** 0.328*** 0.372***

0.33*** 0.355*** 0.264**

0.216* 0.187* 0.149

0.217* 0.185* 0.203*

0.398*** 0.326*** 0.278**

Figure 4.25: Correlation between Agile maturity and practices.

Figure 4.26 illustrates the correlation between Agile and DevOps maturity and
(software delivery) performance. The first four metrics on the y-axis are the software
delivery performance metrics described in Section 4.4.1. The remaining six metrics
are the performance metrics presented by Widener [70]. The metrics ‘Customer satis-
faction’, ‘Quality’, and ‘Restoration time’ show the strongest correlations across both
maturities. The ‘Remediation %’, ‘Performance’, and ‘Profitability’ metrics show the
weakest correlations. The strongest correlation is between ‘Customer satisfaction’ and
‘Quality Assurance’, the weakest correlation between ‘Remediation %’ and ‘Team’.

Figures 4.27 and 4.28 show the correlation between DevOps practices and perfor-
mance or software delivery performance, respectively. The practice of ‘automated and
continuous deployments’ as well as ‘small and continuous releases’ and ‘everything
as code under version control’ have the strongest correlations with the performance
metrics. The practice of ‘change-based code reviews’ has the weakest (even negative)
correlations. The performance metric ‘Effeciency’ correlates strongly with all Dev-
Ops practices, except for ‘change-based code reviews’ and ‘trying to reduce time to
test/QA’. Again, ‘Profitability’ is among the weakest correlating metrics.

For software delivery performance, ‘Restoration time’ and ‘Remediation %’ show
the weakest correlations with DevOps practices. The practice of ‘small and continu-
ous releases’ correlates strongly with both ‘Deployment frequency’ and ‘Deployment
time’. The DevOps practice of ‘automated and continuous monitoring’ correlates the
most with all software delivery performance metrics. The practices ‘test-driven devel-
opment’, ‘configuration management’, and ‘logging enabled through configuration’
show little correlation with all metrics.

38

4.5 Correlations & Cluster Analysis

Portfolio Program Team O&C E&R B&CI QA V&R T&A

Achieving goals

E�eciency

Quality

Customer satisfaction

Pro�tability

Performance

Remediation %

Restoration time

Deployment time

Deployment frequency 0.251* 0.133 0.336** 0.044 -0.016 -0.007 0.078 0.191 0.036

0.229 0.14 0.276* 0.017 0.217 0.113 0.07 0.253* 0.067

0.192 0.172 0.205 0.26* 0.35** 0.3* 0.304* 0.313** 0.361**

0.111 -0.033 -0.195 -0.03 0.081 0.078 0.092 0.101 0.136

0.165 0.125 0.144 0.06 0.05 0.075 0.107 0.159 0.065

0.133 0.168 0.205 0.093 0.17 0.116 0.147 0.191 0.095

0.309* 0.33** 0.176 0.281* 0.214 0.336** 0.444*** 0.253* 0.287*

0.313** 0.307* 0.147 0.26* 0.171 0.244* 0.334** 0.226 0.253*

0.267* 0.227 0.111 0.126 0.102 0.088 0.206 0.199 0.109

0.371** 0.283* 0.2 0.159 0.171 0.136 0.206 0.229 0.117

Figure 4.26: Correlation between Agile and DevOps maturity and performance.

Performance Pro�tability
Customer

satisfaction Quality E�eciency
Achieving

goals

Test-driven development

Trunk based development

Logging enabled through con�guration

Automated dashboards

Automated and continuous monitoring

Change-based code reviews

Trying to reduce time to test/QA

Automated testing in environments

Con�guration management

Everything as code under version control

Sandboxes for minimum deployment

Developers get feedback on releases

Small & continuous releases

Automated & continuous deployments 0.294** 0.248* 0.257* 0.319** 0.482*** 0.341**

0.306** 0.197 0.26* 0.344** 0.177 0.389***

0.181 0.135 0.1 0.25* 0.244* 0.149

0.148 0.15 0.218* 0.255* 0.292** 0.157

0.326** 0.277* 0.196 0.253* 0.323** 0.193

-0.034 -0.017 0.253* 0.298** 0.371*** 0.148

0.178 0.124 0.253* 0.243* 0.281* 0.249*

0.229* 0.268* 0.228* 0.329** 0.087 0.236*

-0.01 0.08 -0.105 -0.042 -0.111 -0.101

0.142 0.172 0.105 0.182 0.146 0.196

0.087 0.143 0.157 0.087 0.174 0.142

0.1 0.132 0.219* 0.275* 0.229* 0.187

0.144 0.152 0.149 0.208 0.319** 0.128

0.213 0.26* 0.281* 0.195 0.392*** 0.175

Figure 4.27: Correlation between DevOps practices and organisational performance.

Figure 4.29 depicts the correlation between software delivery performance and or-
ganisational performance. The ‘Deployment frequency’ metric correlates the strongest
with all organisational performance metrics, ‘Remediation %’ shows the weakest cor-
relation across all performance metrics. The performance metrics ‘Achieving goals’
and ‘Customer satisfaction’ shows the strongest correlations across three of the four
software delivery performance metrics.

39

4.5 Correlations & Cluster Analysis

Deployment
frequency Deployment time Restoration time Remediation %

Test-driven development

Trunk based development

Logging enabled through con�guration

Automated dashboards

Automated and continuous monitoring

Change-based code reviews

Trying to reduce time to test/QA

Automated testing in environments

Con�guration management

Everything as code under version control

Sandboxes for minimum deployment

Developers get feedback on releases

Small & continuous releases

Automated & continuous deployments 0.244* 0.243* 0.158 0.11

0.508*** 0.479*** 0.18 0.224*

0.165 0.233* -0.03 0.127

0.295** 0.132 0.038 0.041

0.271* 0.148 0.125 0.223*

0.104 0.018 -0.003 0.074

0.059 0.087 0.323** 0.132

0.285** 0.127 0.027 0.06

0.143 0.187 0.254* 0.164

0.325** 0.351*** 0.276** 0.257*

0.238* 0.237* 0.14 0.218*

-0.001 -0.067 0.106 0.143

0.157 0.19 0.074 0.093

0.167 0.105 -0.127 -0.092

Figure 4.28: Correlation between DevOps practices and software delivery performance.

Deployment
frequency Deployment time Restoration time Remediation %

Achieving goals

E�eciency

Quality

Customer satisfaction

Pro�tability

Performance 0.396*** 0.257* 0.035 0.001

0.313** 0.181 0.105 -0.067

0.338** 0.182 0.255* 0.038

0.295* 0.071 0.082 0.045

0.211 0.147 -0.004 -0.012

0.342** 0.204 0.292* 0.006

Figure 4.29: Correlation between software delivery performance and organisational
performance.

4.5.2 Clustering

Figure 4.30 shows the result of cluster analysis on the four metrics of software delivery
performance and displayed on the average performance (y-axis) and average software
delivery performance (x-axis). Two distinct clusters can be identified: one with high
average performance, and one with medium average performance.

Table 4.5 lists the average practice usage for both clusters. Although the practice
‘logging enabled through configuration’ is used equally across the two groups, for
almost all practices, high performers apply them more frequently. High performers
are 1.4 times more likely to implement the practice of ‘small & continuous releases’,
the biggest difference between the groups. In addition, high performers are 1.5 times
more likely to use containerisation. The differences in usage of open source software

40

4.5 Correlations & Cluster Analysis

1 2 3 4 5 6
1

2

3

4

5

6

Average Software Delivery Performance

Av
er

ag
e P

er
fo

rm
an

ce

Figure 4.30: Clustering based on software delivery performance.

is insignificant.

Table 4.5: Average practice usage by medium and high performers.

Practice Medium Performers High Performers
Automated & continuous deployments 3.7 4.1
Small & continuous releases 3.0 4.2
Developers get feedback on releases 3.4 4.0
Sandboxes for minimum deployment 2.5 3.0
Everything as code under version control 4.4 4.7
Configuration management 3.8 3.9
Automated testing in environments 3.7 4.0
Trying to reduce time to test/QA 4.0 4.3
Change-based code reviews 3.9 4.4
Automated and continuous monitoring 3.8 4.6
Automated dashboards 3.9 4.4
Logging enabled through configuration 3.9 3.9
Trunk based development 3.2 3.7
Test-driven development 2.9 3.1

Table 4.6 contains the top five tools for both medium and high performers. For
continuous integration, delivery, and deployment, high performers use Azure Dev-
Ops and Jenkins less often and Bamboo and GitLab CI more often than the medium
performers. The same can be seen in the version control management tools. The testing
tools show little difference between the groups. High performers also use Datadog for
both monitoring and logging, which is never used by the medium performers.

41

4.5 Correlations & Cluster Analysis

Table 4.6: Top five tools for medium and high performers.

Tool Medium Performers High Performers

Continuous delivery

Jenkins (27) Jenkins (16)
Visual Studio App Center (6) GitLab CI (9)
Azure DevOps (6) Bamboo (8)
TeamCity (3) Azure DevOps (4)
GitLab CI (3) TeamCity (3)

Continuous deployment

CodeDeploy (7) GitLab CI (9)
Azure DevOps (6) CodeDeploy (7)
Octopus Deploy (4) Bamboo (6)
Travis CI (3) Azure DevOps (4)
Ansible (2) Travis CI (2)

Continuous integration

Jenkins (24) Jenkins (13)
Azure DevOps (9) GitLab CI (8)
GitLab CI (4) Bamboo (6)
Codeship (3) Azure DevOps (3)
CircleCI (2) CircleCI (2)

Version control management

GitHub (17) GitHub (21)
Bitbucket (13) GitLab (12)
Azure DevOps (9) Bitbucket (11)
GitLab (9) Azure DevOps (4)
Nexus (6) Artifactory (4)

Configuration management

Ansible (17) Ansible (20)
Puppet (9) Terraform (5)
Chef (4) Chef (4)
Windows Server IIS7 (3) Puppet (3)
Azure App Configuration (1) SaltStack (2)

Testing

Selenium (17) Selenium (19)
Junit (14) Jmeter (13)
Jmeter (10) Junit (11)
Cucumber (8) Cucumber (9)
TestNG (3) Jest (3)

Code analysis

SonarQube (27) SonarQube (20)
SonarLint (8) SonarLint (7)
Jacoco (7) JS hint (4)
FindBugs (4) CheckStyle (4)
CheckStyle (3) Snyk (3)

Monitoring

Splunk (12) Prometheus (9)
Prometheus (6) Datadog (8)
Graphite (5) Splunk (8)
Nagios (5) New Relic (5)
New Relic (4) Elastic Stack (4)

Logging

Kibana (19) Logstash (15)
Logstash (12) Kibana (11)
Azure Application Insights (3) Datadog (4)
Elastic Search (2) Graylog (4)
Sumo Logic (2) Log.io (2)

42

Chapter 5
Discussion & Recommendations

This chapter focusses on interpreting the results of Chapter 4 and gives recommenda-
tions for practitioners. To organise and ensure all findings are being discussed prop-
erly, the chapter is organised in three different sections.

5.1 Impact of DevOps Practices and Tools on Organisa-
tional Performance

Looking at the collected data, the four most applied DevOps practices are: 1) every-
thing stored as code and under version control, 2) automated and continuous mon-
itoring, 3) automated dashboards, and 4) trying to reduce time to test/QA. Half of
those practices pertain to the automated (and continuous) monitoring of products or
services. This could be due to two reasons. First, most cloud providers enable moni-
toring and logging functionalities by default [5]. By choosing a cloud provider for (a
part of) the DevOps pipeline, monitoring is automatically included. Second, within
the CALMS and SAFe framework, measurement is considered a key activity. With
about one-fifth of the respondents using CALMS and a quarter using SAFe to intro-
duce DevOps and Agile into organisations, measurement could have high priority.
These monitoring practices have little impact on organisational performance, but do
impact deployment frequency and deployment time significantly. The practice of ‘au-
tomated and continuous monitoring’ has strong correlations with DevOps maturity.
Therefore, this practice, which seems many organisations can implement, can be used
to improve other aspects of organisations’ DevOps maturity.

The most popular practice being ‘everything stored as code and under version con-
trol’ is not unsurprising. As literature already mentioned, this practices has many
benefits [13, 21, 25], such as increased transparency, rollbacks in case of emergency,
and quickly setting up architecture. Moreover, it also the key practice in achieving a
fully automated pipeline [21, 30]. If the practice of ‘automated and continuous deploy-
ments’ was split up into two practices, the automated part would potentially have a
resembling adherence as the most popular one. Storing everything as code and un-
der version control correlates strongly with almost all metrics for organisational per-
formance, especially performance and efficiency. The same is true for the practice of
‘automated and continuous deployments’.

43

5.1 Impact of DevOps Practices and Tools on Organisational Performance

Another practice that correlates strongly with both organisational performance and
software delivery performance is ‘small and continuous releases’. Moreover, this prac-
tices also positively impacts both maturities. Next, it is used 1.4 times as much by high
performers than their medium scoring colleagues. Investing time and resources into
following this practices thus might be a good first place to start.

The practices that have been implemented the least are as follows: 1) sandboxes for
minimum code deployment, 2) test-driven development, and 3) trunk-based develop-
ment. These practices also do not show a strong correlation with most performance
metrics. DevOps is thus not so much about which development method is used, but
rather how rapid (via automation) software can be delivered. However, these devel-
opment focussed practices do have a positive impact on efficiency, which might help
increase lead time.

The least implemented DevOps practice of using sandboxes for minimum deploy-
ment also has little impact on both DevOps and Agile maturity, as well as most metrics
for organisational performance and software delivery performance. Two notable ex-
ceptions are efficiency (0.292***) and deployment frequency (0.296***). Other practices
such as ‘automated and continuous deployment’ and ‘small and continuous releases’,
however, have a higher impact on those metrics as well as high correlations with both
maturities. Even though there is little evidence this practice impacts performance, high
performers do use it 1.2 times more than medium performers.

5.1.1 Bamboo Solely Used By High Performers

For the first three practices – continuous delivery, deployment, and integration – a set
of similar tools are used (e.g. Azure DevOps, Jenkins, or Bamboo). Moreover, some
of those tools are also used for version control management. Respondents who use
Azure DevOps, for example, are likely to use this tool for all four practices. This is
in contrast with the reasoning of Kersten [43], who mentioned DevOps practitioners
demanding specialised tools with limited functionality. In practice, we thus see these
platform providers offering similar services based on the continuous integration and
delivery of software, including version control.

The remaining practices show little overlap of tools. This can be expected, espe-
cially for testing and code analysis: these tools are often based on the programming
language that is being used for development. Some overlap of tools does happen be-
tween the monitoring and logging practices. Again showing DevOps practitioners
picking tools that offer more than one specialised feature, which is not consistent with
Kersten’s work.

Since the survey data does not allow for correlation of tools with performance, they
cannot compared as easily as with practices. However, tools used by medium and high
performers can be compared. For continuous integration, delivery, and deployment,
high performers use Azure DevOps and Jenkins less often than medium performers.
Bamboo and GitLab CI are used more often for these practices. In fact, Bamboo is only
being used by high performers. The same yields for version control management tools.
Next, for the logging and monitoring practices, high performers use Datadog eight and
four times, respectively. Medium performers do not use this tool at all. So, does using
Bamboo and Datadog improve the (software delivery) performance of organisations?
Maybe. There is no certainty that switching to these tools will increase performance.

44

5.1 Impact of DevOps Practices and Tools on Organisational Performance

Perhaps future work could provide these insights.

5.1.2 DevOps & Agile Maturity

DevOps and Agile maturity are closely related; the correlations between the differ-
ent layers range from 0.4*** to 0.71***. The Organisation & Culture and Technology
& Architecture are considered to be on the highest levels. This first layer, further-
more, has the highest score on Level 4 (29%) of all layers. This is quite surprising as
multiple scholars [3, 7, 13–15] have identified the shift in culture as one of the main
challenges hindering the implementation and adoption of DevOps. Moreover, Level 4
requires frequent communication – another challenge – to share information, and even
continuous communication with IT operators. Although literature has identified these
challenges, DevOps practitioners have found ways to combat them and reach the high-
est levels of maturity. One explanation could be that the identification of these com-
mon challenges by researchers, allows practitioners to look for signs and pro-actively
counter them as soon as they occur.

Visibility & Reporting is the least mature layer, followed by Quality Assurance.
Moreover, the Visibility & Reporting layer has the most respondents on Level 1 (20%)
and Level 2 (41%) of all layers. Subsequently, the least participants assessed their or-
ganisation to be on Level 3 and Level 4 for this layer. One reason for this could be that
the Eficode model [38] has serious requirements for Level 3 and 4. To reach Level 3,
“the status of requirements can be monitored in real-time in relation to tests and re-
leased features”. Level 4 requires using metrics collected in development for improve-
ments. While logging and monitoring are considering DevOps practices [4, 9, 22, 32],
it is understandable that organisations might want to focus on other aspects first.

For Agile maturity, respondents rate their organisations lower scores when com-
pared to DevOps maturity. For the Portfolio and Program layer, the Beginner groups
are among the largest one. On the Team layer, however, organisations seem to be
more mature: most respondents are among the Novice or Fluent levels. A reason for
this could be that Agile transformations commonly use the bottom-up (team-by-team)
strategy [72]. Agile is thus first introduced on a team level, before transforming the
rest of the organisation. A takeaway for some of the participants of the reflective work-
shops was to carefully consider at which levels to apply Agile, as the value might be
lower than expected.

For all levels, the Advanced and World-class are the smallest groups. However,
participants of all reflective workshops indicated that 7 – 9% of the total population
seemed quite high. They were very impressed, especially for the World-class teams, as
the model requires Advanced and better to release zero errors to production environ-
ments.

Unplanned Work

For all six DevOps maturity layers, unplanned work decreases as maturity increases.
Hence, there is a negative correlation between DevOps maturity and unplanned work.
For some layers (e.g. Technology & Architecture, Builds & Continuous Integration,
and Visibility & Reporting) the amount of unplanned work decreases with almost 50%

45

5.1 Impact of DevOps Practices and Tools on Organisational Performance

when transitioning from Level 1 to Level 4. As for the impact (see Figure 4.18), DevOps
shows it makes work more planned by an average of 31.4%.

For Agile Maturity, however, only the Portfolio layer shows a clear decrease of un-
planned work when maturity increases. On the Program layer, Advanced is the ex-
ception: it increases instead of showing a decrease. One of the requirements to be on
the Advanced level is “continuous positive feedback from customers from last deliver-
ies” [69]. It is possible this could lead to unplanned work, especially in the early phase
when not all feedback might be positive. When this is tackled, however, organisations
can be considered World-class and are able to respond to complex customer requests.

Time Allocation

Figure F.1 and Figure F.2 (see Appendix F) depict capacity allocation grouped by Agile
and DevOps maturity, respectively. The four capacity aspects are: features, enablers,
technical debt, and maintenance. The general consensus across the two figures is an
increase in features and a decrease in technical debt and maintenance when maturity
increases. More mature organisations thus spent more time developing features than
less mature organisations. Similarly, less mature organisations spent more time on
technical debt and maintenance. Time spent on enablers does not change significantly
when maturity rises.

For Agile maturity specifically, the difference on the feature aspect between Begin-
ner and World-class can be as much as 20% (Portfolio and Program layer). For the pro-
gram level, this makes sense when looking at the maturity model used. Laanti’s [69] re-
quirements for World-class include the “ability to rapidly respond to customer needs”.
To be able to achieve this, most time should be spent on developing features. The same
yields for the Portfolio layer: features play an important role in supporting continuous
innovation and business development. Moreover, analysis* shows that work on this
layer becomes more organised and planned as maturity increases.

For DevOps Maturity, the increase in features is not as straightforward. Most layers
require a boost on Level 1 and Level 2 to technical debt and maintenance before devel-
oping features starts to increase. Some of these layers include: Technology & Architec-
ture, Environments & Release, and Builds & Continuous Integration. This makes sense:
to be able to leverage the advantages of continuously delivering features, first a stable
architecture, easy-to-setup development environments, and a well-defined pipeline are
required. When this is complete (Level 3), the focus shifts to development.

Improving Maturity

Now that the benefits of high DevOps and Agile maturity are clear, how can organi-
sations reach these high levels? When looking at Figure 4.24 and Figure 4.25, DevOps
practices that strongly correlate with the maturities can be identified. These practices
can then be used to improve maturity. As discussed, DevOps and Agile maturity are
closely related. In addition, practices that show a strong correlation with Agile matu-
rity, also have a strong correlation with DevOps maturity. High correlating practices
include: 1) automated and continuous testing in development and staging environ-
ments, 2) automated and continuous deployments, and 3) automated and continuous

Correlations are 0.11 and 0.19, respectively.

46

5.2 Technology Trends Fuelling DevOps

monitoring. Hence, these practices should be included in the first steps to improve
both DevOps and Agile maturity of organisations. Then, organisations should decide
on which maturity aspects they want to focus next, and follow DevOps practices ac-
cordingly.

Interestingly, while the Visibility & Reporting layer of the DevOps maturity model
was reported to be the lowest, the practice of ‘automated and continuous monitoring’
has high correlations across all layers, including the Agile ones. So while it does not
seem to be attractive to focus time and resources on this aspect, it may be worthwhile
after all. The practice of ‘automated and continuous deployments’ being among the
highest correlating practices is in accordance with the general consensus of DevOps.

Simply implementing the practices will not improve maturity. Many of the prac-
tices require a change in architecture, development methodology, or even culture. As
seen, to reach higher levels of maturity, often a boost in technical debt is required. This
investment can be worth it, however, as reaching high levels of DevOps and Agile
maturity have shown to reduce unplanned work and allow for a focus on feature de-
velopment. Moreover, most respondents show high levels of DevOps maturity on the
Organisation & Culture and Technology & Architecture layers. This could mean that
applying certain practices might be easier for some organisations as a solid technolog-
ical foundation is already in place.

5.2 Technology Trends Fuelling DevOps

This section discusses the following two operational aspects of DevOps: containerisa-
tion and cloud computing. In addition, open source usage will be discussed.

5.2.1 Containerisation

Nearly half (48%) of the survey participants use containers to deploy their through
DevOps developed software. This phenomenon explains why the most popular prac-
tice is ‘everything as code under version control’: to be able to containerise applications
and services, configuration should be stored as well.

The 2018 State of DevOps report [65] found that users of containers are between
1.3 and 1.5 times more likely to be “elite” performers (software delivery performance
is used as metrics for performance). This is similar to the difference between the high
and medium performers in this research: high performers tend to use containerisation
1.5 times more often than medium performers. The 2021 State of DevOps report also
measured the usage of containers and virtual machines. They too found containers
(64%) and VM’s (48%) to be among the most popular deployment options. The exact
numbers cannot be compared since their research allowed respondents to choose mul-
tiple answers. Compared to the 2018 study [65], the usage of containers has more than
doubled (from 31%). The increase in popularity thus reflects a transformation towards
modern technologies [65]. Indeed, Spafford and Herschmann [55] found that the de-
mand for containers keeps increasing. Container Management is therefore included in
the Gartner Hype Cycle for Agile and DevOps [55]. The continuous demand is, ac-
cording to Spafford and Herschmann, due to the “preference for container runtimes
and packaging formats”.

47

5.2 Technology Trends Fuelling DevOps

Another possible explanation for the large use of containerisation is that containers
fit well within the most common architecture used in continuous delivery: microser-
vices. Containers provide an easy way to create independent and autonomous envi-
ronments. Services such as databases, business logic, and customer-facing front-ends
can be separated. This also allows for teams to focus on a specific aspect of the en-
tire system. Updates can be released independent of each other, possibly improving
frequency.

To further explore the significant gap in deployment options, different performance
metrics have been compared between two groups of respondents: those who use con-
tainers for deployment and those who do not. The results can be found in Table 5.1. For
all metrics (albeit slightly for some) containers have a higher rating than no containers.

Table 5.1: Differences in performance when comparing container usage.

Metric Containers No Containers
Deployment frequency 4.25 3.87
Deployment time 4.89 4.0
Mean time to restore 5.5 5.31
Changes requiring remediation 5.75 5.51
Average impact 40.1 38.0
Average performance 5.0 4.9

Aside from benefits found in literature, such as ease of portability between develop-
ment and production environments [45] and simplifying the overall architecture [55],
containerisation will improve (software delivery) performance, analogous to the re-
sults of Forsgren et al. [65].

5.2.2 Cloud Computing

Respondents favour public and hybrid (a mix of public and private) clouds over other
options, such as on-premise data centres. Ebert et al. [13] suggest DevOps and mi-
croservices “should be cloud-based as much as possible”.

Table 5.2 shows cloud usage (in percentages) over the last years [65–67], the 2020
State of DevOps report did not include results on cloud usage. The State of DevOps
reports have no clear definition of hybrid clouds, therefore the comparison with our
finding (26%) cannot be made. The fact that cloud usage increases over time could
thus also be explained by a different definition being used. In 2019, both public clouds
and on-premise data centres are significantly higher than other years. The reports do
not attempt to explain this difference.

Table 5.2: Cloud usage in percentages of the last years (from [65–67]).

Type 2018 2019 2021
Public 39 50 35
Private 32 23 29
Hybrid 18 27 34
No cloud 17 44 21
Multiple public 54 - 21

48

5.2 Technology Trends Fuelling DevOps

Although the exact numbers cannot be compared with this research – due to forcing
respondents to chose only one answer – the same trend can be seen. Public clouds
remain the most popular choice, followed by hybrid, and private clouds. Although
cloud computing becomes more popular, a significant portion of organisation still use
on-premise data centres.

Mohammad [73] sees advantages for cloud-based DevOps, such as: improved au-
tomation, increased accessibility, and better back-up management. Another benefit of
cloud-based services over on-premise servers is increased flexibility of capacity. As
customer demand changes, cloud applications can be scaled accordingly without the
need for extra physical space. This allows for the virtualisation of resources being used
in real-time [74]. Cost plannings can thus be more accurate.

Another reason cloud-based environments are favoured over traditional options is
that cloud solutions work well with containers. Kubernetes, a popular open-source
container orchestration tool, is readily available on all major cloud vendors, lowering
the barrier to enter. In addition, vendors are responsible for the correct installation of
Kubernetes. Cluster operators can thus focus solely on their tasks.

5.2.3 Open Source Usage

Section 4.3.3 mentioned the extensive use of open source software across the respon-
dents. The results from this research are resemblent to the 2018 State of DevOps re-
port [65]. There, 58% agreed to making extensive use of open source software, com-
pared to 54.5% reported in the previous chapter. The highest performers in their study
are 1.75 times more likely to use open source software and 1.5 times more likely to
increase usage.

Kersten [43] mentions that DevOps and open source share a similar focus on “em-
powering the practitioner”. With the increasing complexity of software development
and delivery, practitioners demanded specialised tools, transforming the pipeline from
a few tools that could do everything to many specialised tools. A benefit of using open
source software within an organisation is that new hires are already familiar with the
tools and technologies used [67].

Since the survey did not include questions regarding the type of product/service
being developed, the open source usage cannot be divided into its two main categories:
infrastructure and libraries. However, with the aforementioned popularity of contain-
ers (and the microservice infrastructure), the wide usage of open source infrastructure
software – such as Docker or Kubernetes – could be explained. Moreover, popular
tools for version control management (GitLab), continuous integration (Jenkins), and
testing (Selenium) are also open source.

An explanation for why the Retail, Consumer, & E-commerce industry contains
the largest group of open source users, is that virtually all web frameworks are open
source. The biggest JavaScript framework for the web – e.g. React, Angular, NextJS, or
NodeJS – are all licensed under the MIT license.

49

5.3 Comparing Agile and DevOps Survey Data

5.3 Comparing Agile and DevOps Survey Data

Within this section, the outcomes of this research are compared to earlier scientific
studies.

5.3.1 DevOps Attracts Different Practitioners

Stettina and colleagues [72] conducted a study on the impact of agile transformations
on organisational performance. Similar to this research, they too used a survey and
measured Agile maturity. Figure 5.1 displays the Agile maturity from their research.

Before the results can be compared, first the difference in demographics has to be
addressed. The different focus of the studies results in different target groups: Agile
Program Coaches (26.1%), Trans-formation Leads (21.6%), and Team Coaches (21.6%)
versus Software Developers (30.1%), IT Operations Engineers (22.0%), and Automa-
tion Engineers (8.9%). In addition, the most common size of organisations in Stettina’s
data set is larger: 50,000+ (38.1%) and 1,001 - 5,000 (23,9%) compared to 20 - 99 (24.0%)
and 100 - 499 (20.7%). While using similar channels to distribute the survey, this study
has attracted a different group of practitioners than Stettina’s work.

38.0

26.0

19.3

25.0

32.0

20.3

17.0

18.0

23.3

14.0

18.0

29.5

7.0

7.0

8.5

0 20 40 60 80 100

Team

Program

Portfolio

Beginner Novice Fluent Advanced World-class

Figure 5.1: Agile maturity across three levels [72].

The overall (average) maturity compared to Stettina’s work is lower on the Pro-
gram and Team level, but higher on the Portfolio level. Visually comparing Figure 4.7
and Figure 5.1 shows the following: 1) world-class remains the same for all levels, 2)
advanced decreased on all levels in favour of fluent, and 3) most beginner and novice
levels are decreasing compared to the earlier study. The trend thus seems to be a grow-
ing maturity across all levels.

The differences between Stettina’s study and this research could be due to the dif-
ferences in the target group: Agile and Team coaches might rank themselves higher
than operational employees such as developers and engineers. An explanation for the
decrease in advanced (and increase of fluent) for all levels could be that organisations
completed an Agile transformation (thinking quite highly of themselves) and are now
introducing DevOps into the organisation. They have come to realise that their ear-
lier assessment of maturity may have been a little too high. The decrease in beginner
and novice levels is somewhat expected: as time passes, organisations should continue
to improve their Agile maturity. The overall increase in maturity on the Portfolio level
could be due to COVID-19. Many organisations are forced to enable their employees to
work from home, requiring them to continuously focus on portfolio decision-making
and data collection.

50

5.4 Limitations

5.3.2 Similar Impact Trends; Different Values

The study by Stettina et al. [72] also included some of the same impact dimensions used
in this research. Comparing the two shows the following. Although the overall impact
is lower in this research, the trends remain the same. The impact on ‘makes work less
hectic’ is the lowest in both studies, followed by ‘makes work more planned’. The
highest impacts are on ‘increases collaboration’ (an important aspect in both Agile and
DevOps), ‘improves time-to-market’, and ‘enables the earlier detection of defects’.

There are three reasons why the overall impact could be lower than in 2018. First,
the target groups of the studies are different. Agile coaches and trainers might eval-
uate the impact of Agile higher than developers or engineers. Second, the range of
possible answers differs between the studies. In the 2018 study [72] a range from 0 -
100 was used, meaning all impact is positive. Third, the pandemic forced many people
to work from home. This could have an impact on e.g. performance, planning, or ef-
ficiency. However, since the difference is almost 20% for every metric, the most likely
explanation is the change in range, reducing respondents’ bias.

5.3.3 Software Delivery Performance & Organisational Performance

Forsgren et al. [33] studied the impact of software delivery on organisational perfor-
mance. They found that their latent construct for software delivery performance (con-
sisting of delivery frequency, delivery time, MTTR, and remediation %) positively re-
lates to organisational performance. This research included their latent construct as
well as the commonly used metrics for organisational performance [70].

As can be seen in Figure 4.29, only the deployment frequency shows a strong cor-
relation with the organisational performance metrics. Deployment time shows little
correlation, the remaining metrics even include negative correlations. A reason for
this could be that their research includes data from a larger number of respondents,
compared to the 123 participants in this study.

Nevertheless, deployment frequency (and to some extent deployment time) is a
good predictor of organisational performance. Therefore, aforementioned practices
such as ‘automated and continuous deployments’, ‘small and continuous releases’, and
‘everything stored as code and under version control’ are DevOps practices that can
favorably impact organisational performance.

5.4 Limitations

Since this research is based on a web-based survey, some types of bias can occur.
The first bias is related to sampling: the way respondents are chosen to participate.

Two roles (Software Developer/Engineer and IT Operations/Infrastructure Engineer)
are responsible for more than 50% of the respondents. This might have lead to self-
selection bias: respondents selecting themselves to participate in the research. Self-
selection bias was combatted by sharing the survey in different online communities,
consisting of different roles and nationalities.

The second type of bias is non-response bias: people not participating in the study
differ significantly from those who do, resulting in a under-representation. Since the

51

5.4 Limitations

response rate of the survey was 36.5%, this might have been the case. The input of
managers or coaches, for example, takes up less than 15% of the respondents. Their
responses could differ significantly from DevOps practitioners, and can be a good ad-
dition for future work.

Another limitation is the lack of similar research on this topic. Although many
scholars have given input on the best DevOps practices, their input sometimes origi-
nated from single case studies. Although based on relevance and occurrence, the prac-
tices chosen for the survey could have a misalignment between theory and practice.
Future work could repeat the research with different practices and tools.

52

Chapter 6
Conclusion

This study focussed on the effects of DevOps practices and tools on organisational
performance. The main research question, therefore, was: ‘what are the effects of Dev-
Ops practices and technologies on organisational performance?’. Using an anonymous
web-based survey, data from 123 respondents was gathered. Respondents were tar-
geted through private channels, online communities on, for example, LinkedIn, and
direct messages to practitioners.

The most common roles of the respondents were Software Developer/Engineer, IT
Operations/Infrastructure Engineer, and Automation Engineer/Expert. Most of the
organisations (85.4%) are currently undergoing or have recently undergone either a
DevOps or Agile transformation. Most transformations are estimated to be completed
between six months and two years. The CALMS DevOps framework is the most pop-
ular one practitioners use. Since the Scaled Agile Framework also includes a strategy
for DevOps, 37.9% of the respondents who used SAFe, did not use a separate DevOps
framework.

Commonly implemented DevOps practices include: 1) everything as code and un-
der version control, 2) automated and continuous monitoring, 3) automated dash-
boards, and 4) trying to reduce time to test/QA. The least popular practices are ‘sand-
boxes for minimum code deployment’ and two regarding development: trunk-based
or test-driven development. DevOps is thus not so much about which development
method is used, but rather how rapid (via automation) software can be delivered and
monitored.

Popular DevOps tools include Azure DevOps, Jenkins, GitLab, and Bamboo. Bam-
boo and Datadog are solely used by high performers, indicating there might be some
advantage to using these tools. High performers also tend to make more use of GitLab
CI, but use Azure DevOps and Jenkins less often. While literature suggest that tooling
becomes more specialised, the data from this research shows that tools in the CI/CD
categories can be used for four practices: continuous deployment, delivery, and inte-
gration, as well as version control management. A minimal deployment pipeline is
thus possible by selecting a single (open-source) platform.

Other technologies, such as containerisation and open-source software have shown
to fuel DevOps. Containers are used 1.5 times more often by high performers than
their medium scoring colleagues. These results are similar to the work of an earlier
conducted study. While the usage of open source usage did not differ significantly

53

6.1 Future Work

within this research, previous research related open source usage with better software
delivery performance.

DevOps and Agile maturity are closely related. Improving maturity has its bene-
fits: as maturity increases, respondents spent less time on unplanned work and main-
tenance. Instead, they are able to develop new features. For DevOps maturity specif-
ically, an initial boost on maintenance and technical debt is observed. To leverage the
advantages of continuously delivering features, a solid technical foundation is thus re-
quired. To improve maturity, I recommend the following three practices: 1) automated
and continuous testing in development and staging environments, 2) automated and
continuous deployments, and 3) automated and continuous monitoring.

Comparing the results of this work to previous studies reveals the following. First,
while using a similar distribution strategy, DevOps triggers different practitioners to
respond to surveys than an Agile topic did. Moreover, Agile maturity has increased
between the two studies. Next, the impact of DevOps and Agile show similar trends.
Both mindsets increase collaboration, improve time-to-market, and enable the earlier
detection of defects.

After unravelling the mysteries around DevOps, its practices and tools, the over-
all conclusion of this research is as follows. Applying practices that improve lead time
(e.g. continuous and automated deployments or everything as code and under version
control) will have a positive impact on both software delivery performance and organ-
isational performance. In addition, certain tools (Bamboo and Datadog) are only used
by high performers. More general technologies, such as containerisation and open
source have also shown a positive impact on organisational performance.

For DevOps practitioners, the practices ‘automated and continuous deployments’,
‘small and continuous releases’, and ‘everything stored as code and under version con-
trol’ have shown to positively impact both software delivery and organisational perfor-
mance. Although implementation might require an overhaul of existing architectures,
the effort could be worthwhile.

6.1 Future Work

As mentioned several times in this research, the survey did not include questions re-
garding the type of product or service that is being developed. Further research could
incorporate this question and give recommendations specific for that kind of product
or service. This would also allow for a more detailed comparison for both DevOps and
Agile maturity.

Next, future work could repeat distributing the survey and 1) verify if this research
is accurate, but more importantly 2) see if organisations start to improve on both Dev-
Ops and Agile maturity as well as software delivery performance and organisational
performance by applying the recommended practices.

While this research aimed to provide a recommended toolchain, the data did not
support this. Although two tools were only used by high performers, it remains un-
clear whether the tools are solely responsible. Future work could thus focus on a more
specific set of tools or compare organisations who use these tools. A case study, for
example, could compare two teams within an organisation while working on similar
products, but differ in the DevOps tools they use.

54

6.1 Future Work

Lastly, future work could dive deeper into the usage of open source software. As
seen, open source usage has been adopted by most of the respondents. It remains
unclear, however, how open source software is used. This research did not differentiate
between, for example, open source architecture (e.g. Docker of Kubernetes), libraries
(e.g. ReactJS or Angular), or other tooling. It would be interesting to further investigate
the usage and impact of open source software in DevOps.

55

Bibliography

[1] L. Zhu, L. Bass, and G. Champlin-Scharff, DevOps and its Practices, IEEE Software
33, 32 (2016).

[2] S. Sharma and B. Coyne, DevOps for Dummies, John Wiley & Sons, 2015.

[3] J. Smeds, K. Nybom, and I. Porres, DevOps: A Definition and Perceived Adoption
Impediments, in Agile Processes in Software Engineering and Extreme Programming,
pages 166–177, Cham, 2015, Springer International Publishing.

[4] R. Jabbari, N. bin Ali, K. Petersen, and B. Tanveer, What is DevOps? A Systematic
Mapping Study on Definitions and Practices, in Proceedings of the Scientific Workshop
Proceedings of XP2016, Association for Computing Machinery, 2016.

[5] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, A survey of DevOps concepts
and challenges, ACM Computing Surveys (CSUR) 52, 1 (2019).

[6] M. Callanan and A. Spillane, DevOps: making it easy to do the right thing, Ieee
Software 33, 53 (2016).

[7] L. Riungu-Kalliosaari, S. Mäkinen, L. E. Lwakatare, J. Tiihonen, and T. Männistö,
DevOps Adoption Benefits and Challenges in Practice: A Case Study, in International
conference on product-focused software process improvement, pages 590–597, Springer,
2016.

[8] J. Hamunen et al., Challenges in Adopting a Devops Approach to Software Development
and Operation, (2016).

[9] L. E. Lwakatare, T. Kilamo, T. Karvonen, T. Sauvola, V. Heikkilä, J. Itkonen, P. Ku-
vaja, T. Mikkonen, M. Oivo, and C. Lassenius, DevOps in Practice: A Multiple Case
study of Five Companies, Information and Software Technology 114, 217 (2019).

[10] C. Technologies, TechInsights Report: What Smart Businesses Know About DevOps,
Technical report, CA Technologies, 2013.

[11] M. Senapathi, J. Buchan, and H. Osman, DevOps Capabilities, Practices, and Chal-
lenges: Insights from a Case Study, in Proceedings of the 22nd International Conference
on Evaluation and Assessment in Software Engineering 2018, pages 57–67, 2018.

56

BIBLIOGRAPHY

[12] M. Shahin, M. Zahedi, M. A. Babar, and L. Zhu, Adopting Continuous Delivery
and Deployment: Impacts on Team Structures, Collaboration and Responsibilities, in
Proceedings of the 21st international conference on evaluation and assessment in software
engineering, pages 384–393, 2017.

[13] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, DevOps, IEEE Software 33, 94
(2016).

[14] A. Wiedemann, N. Forsgren, M. Wiesche, H. Gewald, and H. Krcmar, Research for
practice: the DevOps phenomenon, Communications of the ACM 62, 44 (2019).

[15] G. Bou Ghantous and A. Gill, DevOps: Concepts, Practices, Tools, Benefits and Chal-
lenges, PACIS2017 (2017).

[16] S. Overflow, Developer Survey Results 2018, https://insights.stackoverflow.c
om/survey/2018, 2017, [Online; accessed 03/10/2021].

[17] S. Overflow, Developer Survey Results 2017, https://insights.stackoverflow.c
om/survey/2017, 2017, [Online; accessed 03/10/2021].

[18] M. Azure, DevOps vs. agile, https://azure.microsoft.com/en-us/overview/d

evops-vs-agile/, [Online; accessed 08/11/2021].

[19] T. Hall, Agile vs. DevOps, https://www.atlassian.com/devops/what-is-devop
s/agile-vs-devops, [Online; accessed 08/11/2021].

[20] A. Brunnert et al., Performance-oriented DevOps: A research agenda, arXiv preprint
arXiv:1508.04752 (2015).

[21] N. Forsgren, J. Humble, and G. Kim, Accelerate: The science of lean software and
devops: Building and scaling high performing technology organizations, IT Revolution,
2018.

[22] A. Balalaie, A. Heydarnoori, and P. Jamshidi, Microservices Architecture Enables
DevOps: An Experience Report on Migration to a Cloud-Native Architecture, Ieee Soft-
ware 33, 42 (2016).

[23] F. M. Erich, C. Amrit, and M. Daneva, A Qualitative Study of DevOps Usage in
Practice, Journal of software: Evolution and Process 29, e1885 (2017).

[24] N. Forsgren, D. Smith, J. Humble, and J. Frazelle, 2019 Accelerate State of DevOps
Report, Technical report, Google, 2019.

[25] J. Humble and J. Molesky, Why Enterprises Must Adopt Devops to Enable Continuous
Delivery, Cutter IT Journal 24, 6 (2011).

[26] E. van Ommeren, M. van Doorn, J. Dial, and D. van Herpen, Design to Disrupt.

[27] I. Buchanan, CALMS Framework, https://www.atlassian.com/devops/framewo
rks/calms-framework, [Online; accessed 07/09/2021].

[28] DevOpsGroup, CALMS Model of DevOps, https://pages.devopsgroup.com/ca

lms-model-of-devops, [Online; accessed 22/11/2021].

57

https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2017
https://insights.stackoverflow.com/survey/2017
https://azure.microsoft.com/en-us/overview/devops-vs-agile/
https://azure.microsoft.com/en-us/overview/devops-vs-agile/
https://www.atlassian.com/devops/what-is-devops/agile-vs-devops
https://www.atlassian.com/devops/what-is-devops/agile-vs-devops
https://www.atlassian.com/devops/frameworks/calms-framework
https://www.atlassian.com/devops/frameworks/calms-framework
https://pages.devopsgroup.com/calms-model-of-devops
https://pages.devopsgroup.com/calms-model-of-devops

BIBLIOGRAPHY

[29] R. Wilsenach, DevOpsCulture, https://martinfowler.com/bliki/DevOpsCultu

re.html, 2015, [Online; accessed 07/09/2021].

[30] L. E. Lwakatare, P. Kuvaja, and M. Oivo, An Exploratory Study of DevOps Extending
the Dimensions of DevOps with Practices, ICSEA 2016 104 (2016).

[31] P. Rodrı́guez, A. Haghighatkhah, L. E. Lwakatare, S. Teppola, T. Suomalainen,
J. Eskeli, T. Karvonen, P. Kuvaja, J. M. Verner, and M. Oivo, Continuous deployment
of software intensive products and services: A systematic mapping study, Journal of
Systems and Software 123, 263 (2017).

[32] J. R. Hamilton et al., On Designing and Deploying Internet-Scale Services, in LISA,
volume 18, pages 1–18, 2007.

[33] N. Forsgren, J. Humble, and G. Kim, Accelerate: The science of lean software and
devops: Building and scaling high performing technology organizations, IT Revolution,
2018.

[34] M. K. Aljundi et al., Tools and Practices to Enhance DevOps Core Values, (2018).

[35] R. Vaasanthi, V. P. Kumari, and S. P. Kingston, Analysis of Devops Tools using the Tra-
ditional Data Mining Techniques, International Journal of Computer Applications
161, 47 (2017).

[36] J. Scheuner, J. Cito, P. Leitner, and H. Gall, Cloud Workbench: Benchmarking IaaS
providers based on Infrastructure-as-Code, in Proceedings of the 24th International Con-
ference on World Wide Web, pages 239–242, 2015.

[37] A. A. Ur Rahman and L. Williams, Security Practices in DevOps, in Proceedings of
the Symposium and Bootcamp on the Science of Security, pages 109–111, 2016.

[38] Eficode, DevOps: Eficode Quick Guide, Technical report, Eficode, 2020.

[39] M. Zarour, N. Alhammad, M. Alenezi, and K. Alsarayrah, A research on DevOps
maturity models, International Journal of Recent Technology and Engineering 8,
4854 (2019).

[40] Merriam-Webster, Practice, https://www.merriam-webster.com/dictionary/p

ractice, [Online; accessed 25/09/2021].

[41] D. Stahl, T. Martensson, and J. Bosch, Continuous Practices and DevOps: Beyond
the Buzz, What Does It All Mean?, in 2017 43rd Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pages 440–448, IEEE, 2017.

[42] C. Patel and M. Ramachandran, Agile maturity model (AMM): A Software Process
Improvement framework for agile software development practices, International Journal
of Software Engineering, IJSE 2, 3 (2009).

[43] M. Kersten, A Cambrian Explosion of DevOps Tools, IEEE Computer Architecture
Letters 35, 14 (2018).

58

https://martinfowler.com/bliki/DevOpsCulture.html
https://martinfowler.com/bliki/DevOpsCulture.html
https://www.merriam-webster.com/dictionary/practice
https://www.merriam-webster.com/dictionary/practice

BIBLIOGRAPHY

[44] H. Akshaya, J. Vidya, and K. Veena, A Basic Introduction to DevOps Tools, Interna-
tional Journal of Computer Science & Information Technologies 6, 05 (2015).

[45] M. Stillwell and J. G. Coutinho, A DevOps Approach to Integration of Software Com-
ponents in an EU Research Project, in Proceedings of the 1st International Workshop on
Quality-Aware DevOps, pages 1–6, 2015.

[46] A. Janes, V. Lenarduzzi, and A. C. Stan, A Continuous Software Quality Monitoring
Approach for Small and Medium Enterprises, in Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering Companion, pages 97–100, 2017.

[47] P. Austel, H. Chen, T. Mikalsen, I. Rouvellou, U. Sharma, I. Silva-Lepe, and R. Sub-
ramanian, Continuous Delivery of Composite Solutions: A Case for Collaborative Soft-
ware Defined PaaS Environments, in Proceedings of the 2nd International Workshop on
Software-Defined Ecosystems, pages 3–6, 2015.

[48] J. Wettinger, U. Breitenbücher, and F. Leymann, Standards–based DevOps Automa-
tion and Integration Using TOSCA, in Proceedings of the 7th International Conference
on Utility and Cloud Computing (UCC 2014), pages 59–68, IEEE Computer Society,
2014.

[49] S. Krusche and L. Alperowitz, Introduction of Continuous Delivery in Multi-
Customer Project Courses, in Companion Proceedings of the 36th International Con-
ference on Software Engineering, pages 335–343, 2014.

[50] M. Guerriero, M. Ciavotta, G. Gibilisco, and D. Ardagna, Space4cloud: a DevOps
environment for multi-cloud applications, in Proceedings of the 1st International Work-
shop on Quality-Aware DevOps, pages 29–30, 2015.

[51] M. Shahin, M. A. Babar, and L. Zhu, The Intersection of Continuous Deployment and
Architecting Process: Practitioners’ Perspectives, in Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, pages
1–10, 2016.

[52] H. Yasar and K. Kontostathis, Where to integrate security practices on DevOps plat-
form, International Journal of Secure Software Engineering (IJSSE) 7, 39 (2016).

[53] J. Roche, Adopting DevOps practices in quality assurance, Communications of the
ACM 56, 38 (2013).

[54] S. Newman, Building microservices: designing fine-grained systems, O’Reilly Media,
Inc., 2015.

[55] G. Spafford and J. Herschmann, Hype Cycle for Agile and DevOps, 2021, Technical
report, Gartner, 2021.

[56] L. Bass, I. Weber, and L. Zhu, DevOps: A software architect’s perspective, Addison-
Wesley Professional, 2015.

[57] M. C. Becker, Organizational routines: a review of the literature, Industrial and Cor-
porate Change 13, 643 (2004).

59

BIBLIOGRAPHY

[58] G. Dosi et al., The Nature and Dynamics of Organizational Capabilities, Oxford uni-
versity press, 2000.

[59] A. M. Knott, The organizational routines factor market paradox, Strategic Manage-
ment Journal 24, 929 (2003).

[60] D. J. Collis, Research note: how valuable are organizational capabilities?, Strategic man-
agement journal 15, 143 (1994).

[61] D. J. Teece, G. Pisano, and A. Shuen, Dynamic capabilities and strategic management,
Strategic management journal 18, 509 (1997).

[62] C. Salvato, Capabilities unveiled: The role of ordinary activities in the evolution of prod-
uct development processes, Organization Science 20, 384 (2009).

[63] B. J. Biddle and D. S. Anderson, Theory, methods, knowledge, and research on teaching,
Handbook of Research on Teaching 3, 230 (1986).

[64] A. Joinson, Social desirability, anonymity, and Internet-based questionnaires, Behavior
Research Methods, Instruments, & Computers 31, 433 (1999).

[65] N. Forsgren, J. Humble, and G. Kim, Accelerate: 2018 State of DevOps, Technical
report, Google, 2018.

[66] A. Brown, N. Kersten, and M. Stahnke, 2020 State of DevOps Report, Technical
report, Puppet, 2019.

[67] D. Smith, D. Villalba, M. Irvine, D. Stanke, and N. Harvey, Accelerate: 2021 State of
DevOps, Technical report, Google, 2021.

[68] N. Forsgren and J. Humble, DevOps: Profiles in ITSM performance and contributing
factors, Forsgren, N., J. Humble (2016).” DevOps: Profiles in ITSM Performance
and Contributing Factors.” In the Proceedings of the Western Decision Sciences
Institute (WDSI) (2016).

[69] M. Laanti, Agile transformation model for large software development organizations, in
Proceedings of the XP2017 Scientific Workshops, pages 1–5, 2017.

[70] S. K. Widener, An empirical analysis of the levers of control framework, Accounting,
organizations and society 32, 757 (2007).

[71] A. Serban, K. van der Blom, H. Hoos, and J. Visser, Adoption and Effects of
Software Engineering Best Practices in Machine Learning, in Proceedings of the 14th
ACM/IEEE International Symposium on Empirical Software Engineering and Measure-
ment (ESEM), pages 1–12, 2020.

[72] C. J. Stettina, V. van Els, J. Croonenberg, and J. Visser, The Impact of Agile Trans-
formations on Organizational Performance: A Survey of Teams, Programs and Portfolios,
in International Conference on Agile Software Development, pages 86–102, Springer,
Cham, 2021.

60

BIBLIOGRAPHY

[73] S. M. Mohammad, Streamlining DevOps automation for Cloud applications, Interna-
tional Journal of Creative Research Thoughts , 2320 (2018).

[74] J. Wettinger, A. Vasilios, and F. Leymann, Automated Capturing and Systematic
Usage of DevOps Knowledge, in Proceedings of the IEEE International Conference on.
IEEE Computer Society, Citeseer, 2015.

[75] R. Penners and A. Dyck, Release Engineering vs. DevOps - An Approach to Define
Both Terms, Full-scale Software Engineering , 49 (2015).

[76] F. Erich, C. Amrit, and M. Daneva, Report: DevOps Literature Review, University of
Twente, Tech. Rep (2014).

61

Appendix A
Definitions of DevOps

Table A.1 displays all definitions of DevOps found in literature.

Table A.1: DevOps definitions found in scientific literature.

Definition Reference
1 DevOps is a set of practices intended to reduce the time between

committing a change to a system and the change being placed
into normal production, while ensuring high quality.

[56]

2 DevOps efficiently integrates development, delivery, and oper-
ations, thus facilitating a lean connection of these traditionally
separated silos.

[13]

3 DevOps ensures quick release cycles and promotes a collabora-
tive, integrated communication platform which should be made
available to all project stakeholders.

[52]

4 DevOps is a development methodology aimed at bridging the
gap between Development (Dev) and Operations (Ops), empha-
sizing communication and collaboration, continuous integration,
quality assurance, and delivery with automated deployment uti-
lizing a set of development practices.

[4]

5 DevOps is a collaborative and multidisciplinary effort within an
organization to automate continuous delivery of new software
versions, while guaranteeing their correctness and reliability.

[5]

6 DevOps is a set of practices that is trying to bridge developer-
operations gap at the core of things and at the same time covers
all the aspects which help in speedy, optimized and high quality
software delivery.

[15]

7 DevOps is a set of engineering process capabilities supported by
certain cultural and technological enablers.

[3]

8 DevOps is a mindset substantiated with a set of practices to en-
courage cross-functional collaboration between teams - especially
development and IT operations - within a software development
organization, in order to operate resilient systems and accelerate
delivery of change.

[30]

Continued on next page

62

Table A.1 – continued from previous page
Definition Reference
9 DevOps is a mindset, encouraging cross-functional collabora-

tion between teams - especially development and IT operations
- within a software development organization, in order to oper-
ate resilient systems and accelerate delivery of changes.

[75]

10 DevOps is a conceptual framework for reintegrating develop-
ment and operations of Information Systems.

[76]

11 DevOps is a set of principles and practices to improve collabora-
tion between development and IT Operations.

[11]

12 DevOps is a practice in which operations and developers work
together in each stage of DevOps life cycle (from development
stage to production stage).

[44]

13 DevOps is an emerging paradigm to tightly integrate developers
with operations personnel.

[48]

14 DevOps is a set of practices which not only aims to decrease the
time between applying a change to a system and the change be-
ing transferred to the production environment, but also insists on
keeping the software quality in terms of both code and the de-
livery mechanism as one of the key elements in the development
process.

[22]

15 DevOps is a set of principles and practices for smoothing out the
gap between development and operations in order to continu-
ously deploy stable versions of an application system.

[20]

16 DevOps is an approach in which traditional software engineering
roles are merged and communication is enhanced to improve the
production release frequency and maintain software quality.

[7]

17 DevOps is an interaction between development and operations
personnel on three levels: individuals, teams, and departments.

[23]

63

Appendix B
Practices Found in Literature

Table B.1 contains practices identified in scientific literature and combined where pos-
sible.

Table B.1: Practices identified in scientific literature.

Practice Category References
1 Architectures are designed

for failure but without single
points of failure

Architecture [4, 32]

2 Components are decoupled
and do not affect each other

Architecture [32]

3 Components are restartable
and redundant

Architecture [32]

4 Integrated change manage-
ment prepared for crisis situ-
ations

Change Management [4, 76]

5 Version roll-back is sup-
ported

Compatibility [32]

6 Maintain forward and back-
ward compatibility

Compatibility [32]

7 Everything is stored as code
and under version control

Configuration [4, 9, 15, 32, 33]

8 Integrated configuration
management

Configuration [4]

9 Continuous delivery Continuous Delivery [4, 11, 22, 33, 41]
10 Continuous integration Continuous Integration [4, 9, 33, 41, 42]
11 Production data is used to

find problems in quality as-
surance and performance

Data [4, 32]

12 Automated and continuous
deployment throughout en-
tire pipeline

Deployment [4, 9, 11, 15, 33, 34, 41]

Continued on next page

64

Table B.1 – continued from previous page
Practice Category References
13 DevOps team must provide

safe deployment parameters
to avoid excessive workload
on infrastructure

Deployment [15]

14 Production code is pair pro-
grammed and collectively
owned

Development [42]

15 Use trunk-based develop-
ment over long-lived feature
branches

Development [9, 33]

16 Use Test driven Development
where all code has unit tests

Development [42]

17 Keep variance
(code/quality/behaviour)
between development and
production to minimum

Development [15, 34]

18 Encourage full collaboration
and transparency between
developers and operators

DevOps Team [4, 15, 76]

19 DevOps team’s needs are
clarified and manual pro-
cesses are identified

DevOps Team [34]

20 Provide a real-time and con-
tinuous collaboration system

DevOps Team [15]

21 DevOps team synchronizes
critical services

Knowledge Sharing [15]

22 DevOps team must have
clear insight into the SD
project

Knowledge Sharing [15]

23 DevOps team must be able to
increase release frequency to
satisfy business demand

Lead Time [15]

24 Support configurable logging
that can optionally be turned
on/off as needed to debug is-
sues

Logging [32]

25 Automated and continuous
monitoring of applications
and resources

Monitoring [4, 9, 22, 32]

26 Automated dashboards that
include health checks and
performance (throughput,
and latency)

Monitoring [4, 32]

27 Teams can update systems
based on monitoring reports
or error logs

Monitoring [15, 32]

Continued on next page

65

Table B.1 – continued from previous page
Practice Category References
28 Risks are monitored through

acceptance testing
Monitoring [42]

29 Integrated and continuous
planning

Planning [4]

30 Production support includes
required utilities

Production [4, 32]

31 Use Agile and LEAN prac-
tices (e.g. sprint planning and
requirements engineering)

Project Management [4, 9, 33, 34]

32 Applications are prototyped Prototyping [4]
33 Code reviews are change

based
Quality Assurance [9]

34 Perform Retro-Quality As-
surance tests in the build
pipeline

Quality Assurance [15]

35 Make small and continuous
releases with feedback loops

Release [32, 41, 42]

36 Use single-version software Resources [32]
37 DevOps team must provide

self-service and resources
management of platform

Resources [15]

38 Create development sand-
boxes for minimum code
deployment

Sandboxes [15]

39 Collaborate with stakehold-
ers often and provide overall
visibility into the project

Stakeholders [4, 15, 42]

40 Processes are standardized Standardisation [4]
41 Automated and continuous

testing in development and
staging environments

Testing [4, 15, 32, 33, 42]

42 Enforce effective test data
management

Testing [33]

43 Reduce the time it takes to
test, validate and QA code

Testing [34]

44 Applications are modelled
and simulated

Testing [4]

45 Use DevOps tools to improve
and optimise work

Tooling [15, 34]

46 Allow teams to choose their
own DevOps tools

Tooling [76]

47 Consider the cultural change
from both the perspective of
the driver and the partici-
pants

Transform [76]

66

Appendix C
Tools Found in Literature

Table C.1 displays all tools identified in scientific literature. Please note that tools can
fall under multiple categories.

Table C.1: Tools identified in scientific literature.

Tool Category References
1 Apache Ant Build [13, 35, 44]
2 Maven Build [13, 34, 34, 35, 44]
3 Rake Build [13]
4 Gradle Build [13, 34, 35, 44]
5 AWS Cloud Computing [9, 11, 35]
6 Heroku Cloud Computing [15, 34]
7 OpenStack Cloud Computing [34, 45]
8 Azure Cloud Computing [34]
9 Google Cloud Cloud Computing [34]
10 Rackspace Cloud Computing [34]
11 SonarQube Code Analyser [9, 35, 46]
12 Coverity Code Analyser [35]
13 Fortify Code Analyser [35]
14 JS hint Code Analyser [35]
15 Blue optima Code Analyser [35]
16 CheckStyle Code Analyser [34, 35]
17 Gerrit Code Analyser [35]
18 Jacoco Code Analyser [35]
19 Clover Code Analyser [35]
20 Semmle Code Analyser [35]
21 SonarLint Code Analyser [34, 46]
22 FindBugs Code Analyser [34]
23 Slack Collaboration [15, 34]
24 HipChat Collaboration [15]
25 Puppet Configuration Management [6, 9, 13, 34, 35, 44, 47]
26 Chef Configuration Management [9, 13, 34, 35, 44, 47, 48]
27 Ansible Configuration Management [9, 13, 34, 35, 44]
28 SaltStack Configuration Management [34, 35]
29 CFengine Configuration Management [35, 44]

Continued on next page

67

Table C.1 – continued from previous page
Tool Category References
30 Windows Server IIS7 Configuration Management [35]
31 RANCID Configuration Management [44]
32 Hiera Configuration Management [6]
33 UrbanCode Continuous Delivery [47]
34 Jenkins Continuous Integration [9, 13, 35, 44, 46, 47]
35 Bamboo Continuous Integration [13, 35, 49]
36 ThoughtWorks’ GoCD Continuous Integration [1, 11]
37 Rundeck Continuous Integration [35]
38 CircleCI Continuous Integration [35]
39 CruiseControl Continuous Integration [44]
40 TeamCity Continuous Integration [6, 11, 13, 35]
41 Codeship Continuous Integration [15]
42 Travis CI Continuous Integration [15, 35]
43 MongoDB Database Management [15]
44 DBMeastro Database Management [34]
45 Liquibase Database Management [6, 34]
46 Datical Database Management [34]
47 HockeyApp Delivery Server [49]
48 Octopus Deploy Deployment [11, 34]
49 uDeploy Deployment [35, 47]
50 Juju Deployment [48]
51 Capistrano Deployment [34]
52 CodeDeploy Deployment [34]
53 Wiki Documentation [12]
54 Cloud Hosting Hosting [11]
55 Terraform Infrastructure as Code [11]
56 Confluence Knowledge Sharing [34]
57 Loggly Logging [13, 15, 44]
58 Greylog Logging [9, 13]
59 Papertrail Logging [15, 44]
60 Logstash Logging [34, 35, 44]
61 Kibina Logging [44]
62 Sumo Logic Logging [44]
63 Log.io Logging [34]
64 Nagios Monitoring [13, 15, 34, 35, 44]
65 New Relic Monitoring [9, 13, 15, 34]
66 Cacti Monitoring [13, 44]
67 MONIT Monitoring [35]
68 Splunk Monitoring [34, 35, 44]
69 AppPerfect Monitoring [35]
70 Ganglia Monitoring [44]
71 Graphite Monitoring [44]
72 Sensu Monitoring [44]
73 Zabbix Monitoring [34, 44]
74 Kineses Process Analysis [9]
75 Jira Project Management [12, 35, 46, 49]
76 Linux Bash Scripting [34]

Continued on next page

68

Table C.1 – continued from previous page
Tool Category References
77 Windows Powershell Scripting [34]
78 Vault Security [34]
79 Yum Software Package Manager [6]
80 SPACE4Cloud System Performance [50]
81 Cucumber Testing [11, 15]
82 Selenium Testing [9, 11, 34, 35]
83 Junit Testing [15, 34, 35]
84 TestNG Testing [34]
85 Jmeter Testing [34]
86 Dynatrace Testing [34]
87 GitHub Version Control Management [6, 9, 11, 15, 35]
88 Bitbucket Version Control Management [9, 15]
89 GitLab Version Control Management [35, 46]
90 Stash Version Control Management [49]
91 Nexus Version Control Management [34, 35]
92 Archiva Version Control Management [35]
93 SharePoint Version Control Management [35]
94 Artifactory Version Control Management [35]
95 Deveo Version Control Management [9]
96 Helix Core Version Control Management [35]
97 SVN Version Control Management [34]
98 Docker Virtualisation [6, 9, 34, 35, 45, 51]
99 Vagrant Virtualisation [34]

69

Appendix D
DevOps & Agile Maturity by Industry

Figures D.2 and D.1 show the DevOps and Agile maturity per industry, respectively.

67

33

67

33

67

33

33

33

33

33

33

33

33

33

33

0 25 50 75 100

Organization & Culture

Environments & Release

Builds & Continuous Integration

Quality Assurance

Visibility & Reporting

Technology & Architecture

14

14

29

29

71

43

43

29

57

86

14

43

43

29

14

14

14

14

0 25 50 75 100

16

11

11

21

16

11

32

32

32

21

32

37

21

47

42

42

32

32

32

11

16

16

21

21

0 25 50 75

29

14

14

14

14

57

14

29

43

57

43

43

43

29

14

14

43

14

29

29

14

0 25 50 75 100

Organization & Culture

Environments & Release

Builds & Continuous Integration

Quality Assurance

Visibility & Reporting

Technology & Architecture

100

50

100

100

100

50

100

0 25 50 75 100

50

17

33

33

50

17

50

50

33

17

50

33

17

17

17

17

17

17

17

17

17

17

0 25 50 75

13

13

13

38

13

38

50

50

50

63

38

38

25

38

25

50

13

25

13

0 25 50 75 100

Organization & Culture

Environments & Release

Builds & Continuous Integration

Quality Assurance

Visibility & Reporting

Technology & Architecture

25

25

25

25

25

25

25

25

25

75

50

50

50

75

75

0 25 50 75 100

22

11

11

11

11

11

11

11

22

33

56

56

33

56

44

33

22

22

33

22

22

22

11

11

0 25 50 75

10

10

20

10

30

40

20

50

10

80

60

40

50

50

70

10

10

10

10

10

0 25 50 75 100

Organization & Culture

Environments & Release

Builds & Continuous Integration

Quality Assurance

Visibility & Reporting

Technology & Architecture

13

18

13

20

23

10

18

25

33

33

43

18

40

40

40

35

28

43

30

18

15

13

8

30

0 25 50 75 100

13

13

25

25

25

13

25

13

13

13

63

38

50

63

63

63

25

25

25

13

0 25 50 75

Level 1 Level 2 Level 3 Level 4

Education (3) Energy & resources (7) Financial services (19)

Government (7) Healthcare, pharma & life sciences (2) Industrials & manufacturing (6)

Insurance (8) Media & entertainment (4) Other (9)

Retail, consumer & ecommerce (10) Technology (40) Telecommunications (8)

Figure D.1: DevOps maturity per industry.

70

67

67

67

33

33

33

0 25 50 75 100

Portfolio

Program

Team

57

14

14

43

29

14

14

29

14

29

14

14

14

0 25 50 75 100

26

21

21

16

21

21

21

21

26

26

26

16

11

11

16

0 25 50 75 100

29

43

29

43

43

43

29

14

14 14

0 25 50 75 100

Portfolio

Program

Team

100

100

100

0 25 50 75 100

17

33

33

33

33

17

33

17

33 17

17

17

0 25 50 75 100

50

25

13

38

38

50

13

38

25 13

0 25 50 75 100

Portfolio

Program

Team

25

25

50

25

25

25

25

25

25

50

0 25 50 75 100

33

22

11

11

33

56

33

11

33

22

22 11

0 25 50 75 100

20

20

10

30

40

30

30

20

20

40

30 10

0 25 50 75 100

Portfolio

Program

Team

35

33

15

30

28

38

23

20

30

8

13

13

5

8

5

0 25 50 75 100

25

25

13

13

25

50

38

50

13

13

13

13

13

0 25 50 75 100

Beginner Novice Fluent Advanced World-class

Education (3) Energy & resources (7) Financial services (19)

Government (7) Healthcare, pharma & life sciences (2) Industrials & manufacturing (6)

Insurance (8) Media & entertainment (4) Other (9)

Retail, consumer & ecommerce (10) Technology (40) Telecommunications (8)

Figure D.2: Agile maturity per industry.

71

Appendix E
Survey Questions

72

 Page 1 of 60

DevOps Survey

Start of Block: Intro

Q1

Dear participant,

Thank you for taking the time to participate in this anonymous survey. The research around this

survey investigates DevOps technologies and practices. We are interested if certain tools and/or

technologies have effects on the performance of organizations.

 Benefits of filling in the survey Gain insights into the tools/practices that other

organizations are using Gain insights into how specific tools/practices impact

organizational performance Gain insights into how the maturity of your organization compares

to others in the industry

This survey is meant for people who are working or have worked with DevOps. This survey is

fully anonymous and all data will be treated fully confidential. It is estimated that the survey will

take around 15-20 minutes to answer.

 Thank you for your participation.

Kind regards,

 Robert Blinde

 s1370162@vuw.leidenuniv.nl

Master student ICT in Business at Leiden University

Dr. C.J. Stettina MSc

 c.j.stettina@liacs.leidenuniv.nl Leiden University

 T.D. Offerman MSc

 t.d.offerman@liacs.leidenuniv.nl

 Leiden University

End of Block: Intro

Start of Block: Demographics / Organization

73

 Page 2 of 60

Q2

What is the industry you primarily work in?

o Education (16)

o Energy & resources (17)

o Financial services (18)

o Government (19)

o Healthcare, pharma & life sciences (20)

o Industrials & manufacturing (21)

o Insurance (22)

o Media & entertainment (23)

o Nonprofit (24)

o Retail, consumer & ecommerce (25)

o Technology (26)

o Telecommunications (27)

o Other (28)

Page Break

74

 Page 3 of 60

Q3 What is your role within your organization?

 Please choose the role that best describes you.

o Automation Engineer or Automation Expert (107)

o Information Security Operator (108)

o IT Operations Engineer or Infrastructure Engineer (109)

o Network Operations Engineer (110)

o Quality Engineer or Assurance Professional (111)

o Security Engineer (112)

o Software Developer or Software Engineer (113)

o Tester / Software Analyst (114)

o User Experience Designer (115)

o Project Manager (102)

o Product Manager (103)

o Release Manager (104)

o Sponsor (98)

o Agile Coach (99)

o DevOps Coach (100)

o Other consultant (105)

o Other (please specify): (116)
__

Page Break

75

 Page 4 of 60

Q4

How many employees work at your organization?

o 1 - 4 (9)

o 5 - 9 (10)

o 10 - 19 (11)

o 20 - 99 (12)

o 100 - 499 (13)

o 500 - 1,999 (14)

o 2,000 - 4,999 (15)

o 5,000 - 9,999 (16)

o 10,000 + (17)

o Don't know / NA (18)

Page Break

76

 Page 5 of 60

Q5 How many years of experience with DevOps do you have?

o 0 (6)

o 1 - 2 (7)

o 3 - 5 (8)

o 6 - 10 (9)

o 11 - 15 (10)

o > 16 (11)

End of Block: Demographics / Organization

Start of Block: Transformation

Q6 Is your organization currently undergoing or has it undergone an agile or DevOps

transformation?

o Yes, my organization is currently undergoing a transformation (1)

o Yes, my organization completed a transformation (2)

o No, but my organization is about to start a transformation (3)

o No, not at all (4)

Skip To: End of Block If Is your organization currently undergoing or has it undergone an agile or DevOps
transformation? = No, not at all

Page Break

77

 Page 6 of 60

Q7

What is the (expected) duration of the transformation?

o 6 months or less (1)

o Between 6 and 12 months (2)

o Between 1 and 2 years (3)

o Between 2 and 5 years (4)

o More than 5 years (5)

Page Break

78

 Page 7 of 60

Q8 Which large scale framework is used during the transformation?

▢ Agile Portfolio Management (APM) (27)

▢ Disciplined Agile Delivery (DAD) (29)

▢ Enterprise scrum (31)

▢ Internally created methods (32)

▢ Large scale scrum (LESS) (33)

▢ Lean Management (34)

▢ Nexus (35)

▢ Scaled Agile Framework (SAFe) (36)

▢ Spotify Model (43)

▢ Scrum of scrums (37)

▢ Waterfall (42)

▢ None of the above (40)

▢ Other (please specify): (41)
__

Page Break

79

 Page 8 of 60

Q9 Which DevOps framework is used during the transition?

▢ Culture, Automation, Lean, Measurement, and Sharing (CALMS) (1)

▢ SAFe's CALMR (4)

▢ CAMS (5)

▢ SQUID Architecture Framework (8)

▢ None of the above (3)

▢ Other (please specify): (6) __

End of Block: Transformation

Start of Block: Maturity Models

Q10

Below you find five levels of the Portfolio aspect from an Agile Maturity Model.

 Where in this model do you consider your organization currently?

o Beginner (6)

o Novice (7)

o Fluent (8)

o Advanced (9)

o World-class (10)

Page Break

80

 Page 9 of 60

Q11

Below you find five levels of the Program aspect from an Agile Maturity Model.

 Where in this model do you consider your organization currently?

o Beginner (6)

o Novice (7)

o Fluent (8)

o Advanced (9)

o World-class (10)

Page Break

81

 Page 10 of 60

Q12

Below you find five levels of the Team aspect from an Agile Maturity Model.

 Where in this model do you consider your organization currently?

o Beginner (6)

o Novice (7)

o Fluent (8)

o Advanced (9)

o World-class (10)

Page Break

82

 Page 11 of 60

Q13

Below you find four levels of the Organization & Culture aspect from a DevOps Maturity Model.

 Where in this model do you consider your organization currently?

o Level 1 (13)

o Level 2 (14)

o Level 3 (15)

o Level 4 (16)

Page Break

83

 Page 12 of 60

Q14

Below you find four levels of the Environments & Release aspect from a DevOps Maturity

Model.

 Where in this model do you consider your organization currently?

o Level 1 (13)

o Level 2 (14)

o Level 3 (15)

o Level 4 (16)

Page Break

84

 Page 13 of 60

Q15

Below you find four levels of the Builds & Continuous Release aspect from a DevOps Maturity

Model.

 Where in this model do you consider your organization currently?

o Level 1 (13)

o Level 2 (14)

o Level 3 (15)

o Level 4 (16)

Page Break

85

 Page 14 of 60

Q16

Below you find four levels of the Quality Assurance aspect from a DevOps Maturity Model.

 Where in this model do you consider your organization currently?

o Level 1 (13)

o Level 2 (14)

o Level 3 (15)

o Level 4 (16)

Page Break

86

 Page 15 of 60

Q17

Below you find four levels of the Visibility & Reporting aspect from a DevOps Maturity Model.

 Where in this model do you consider your organization currently?

o Level 1 (13)

o Level 2 (14)

o Level 3 (15)

o Level 4 (16)

Page Break

87

 Page 16 of 60

Q18

Below you find four levels of the Technology & Architecture aspect from a DevOps Maturity

Model.

Where in this model do you consider your organization currently?

o Level 1 (13)

o Level 2 (14)

o Level 3 (15)

o Level 4 (16)

End of Block: Maturity Models

Start of Block: Tools & Practices

Q19 Where are you currently hosting your, through DevOps developed, software?

o A public cloud (1)

o Multiple public clouds (2)

o A private cloud (3)

o Hybrid cloud (combination of public and private clouds) (4)

o On-premise datacenter (5)

o Other (please specify): (6) __

Page Break

88

 Page 17 of 60

Q20 How are you currently deploying your, through DevOps developed, software?

o Containers (Docker, Kubernetes) (1)

o FaaS (AWS Lambda, Google Cloud Functions) (2)

o PaaS (Heroku, App Engine, Elastic Beanstalk) (3)

o Virtual Machines (VM's) (5)

o Other (please specify): (6) __

Page Break

89

 Page 18 of 60

Q21 How much of your time do you spend working on the following?

 _______ Features (1)

 _______ Enablers (2)

 _______ Technical debt (3)

 _______ Maintenaince (22)

Page Break

90

 Page 19 of 60

Q22 What percentage of your time do you spend on creating business features vs. improving

infrastructure?

 _______ Business features (1)

 _______ Improving infrastructure (2)

Page Break

91

 Page 20 of 60

Q23 What percentage of your time do you spent on unplanned work?

 Not Applicable

 0 10 20 30 40 50 60 70 80 90 100

% unplanned work ()

Page Break

92

 Page 21 of 60

Q24

How quickly can developers see the results of integration tests?

o Less than 1 minute (25)

o 1 minute - 10 minutes (26)

o 10 minutes - 1 hour (27)

o 1 hour - 1 day (28)

o 1 day - 1 week (29)

o 1 week - 1 month (30)

o More than 1 month (31)

o We do not have any testing in place (32)

Page Break

93

 Page 22 of 60

Q25 The automated DevOps pipeline includes the following:

 Select all that apply.

▢ Integration with production monitoring and observability tools (7)

▢ Integration with chatbots/Slack (8)

▢ Automated provisioning and deployment to testing environments (9)

▢ Automated performance tests (10)

▢ Automated security tests (11)

▢ Automated unit tests (12)

▢ Automated acceptance tests (13)

▢ Automated build (14)

▢ Automated deployment to production (15)

▢ None of the above (16)

▢ Other (please specify): (17)
__

▢ Other (please specify): (18)
__

▢ Other (please specify): (19)
__

Page Break

94

 Page 23 of 60

Q26 Do you make extensive use of open source components, libraries, and platforms?

o Strongly agree (9)

o Somewhat agree (10)

o Neither agree nor disagree (11)

o Somewhat disagree (12)

o Strongly disagree (13)

o Don't know / NA (14)

Page Break

95

 Page 24 of 60

Q27

How do you measure customer satisfaction?

__

__

__

__

__

End of Block: Tools & Practices

Start of Block: T&P: CI + CD

Q28

The next questions will be about the practices, patterns, and technologies you use at work.

Please select how often you adhere to each practice.

Q29 For your organization's DevOps pipeline, how often are automated and continuous

deployments part of it?

o Always (9)

o Most of the time (10)

o About half the time (11)

o Sometimes (12)

o Never (13)

Page Break

96

 Page 25 of 60

Q30 Does your organization make small and continuous releases?

o Always (29)

o Most of the time (30)

o About half the time (31)

o Sometimes (32)

o Never (33)

Page Break

97

 Page 26 of 60

Q31 Do developers get feedback based on releases?

o Always (9)

o Most of the time (10)

o About half the time (11)

o Sometimes (12)

o Never (13)

Page Break

98

 Page 27 of 60

Q32 Are sandboxes created for minimum code deployment?

o Always (9)

o Most of the time (10)

o About half the time (11)

o Sometimes (12)

o Never (13)

Page Break

99

 Page 28 of 60

Q33 Which tools do you use for automated and continuous delivery?

 Select all that apply.

▢ Bamboo (4)

▢ CircleCI (14)

▢ Codeship (13)

▢ Jenkins (6)

▢ TeamCity (7)

▢ ThoughtWorks’ GoCD (15)

▢ Travis CI (8)

▢ Visual Studio App Center (12)

▢ None of the above (17)

▢ Other (please specify): (9) __

▢ Other (please specify): (10)
__

▢ Other (please specify): (11)
__

Page Break

100

 Page 29 of 60

Q34 Which tools do you use for automated and continuous deployment?

 Select all that apply.

▢ Bamboo (57)

▢ Capistrano (66)

▢ CodeDeploy (58)

▢ Juju (59)

▢ Octopus Deploy (60)

▢ Travis CI (65)

▢ uDeploy (61)

▢ None of the above (68)

▢ Other (please specify): (62)
__

▢ Other (please specify): (63)
__

▢ Other (please specify): (64)
__

Page Break

101

 Page 30 of 60

Q35 Which tools do you use for automated and continuous integration?

 Select all that apply.

▢ Bamboo (4)

▢ CircleCI (5)

▢ Codeship (6)

▢ CruiseControl (7)

▢ Jenkins (8)

▢ Rundeck (9)

▢ TeamCity (10)

▢ ThoughtWorks’ GoCD (11)

▢ Travis CI (12)

▢ None of the above (16)

▢ Other (please specify): (13)
__

▢ Other (please specify): (14)
__

▢ Other (please specify): (15)
__

End of Block: T&P: CI + CD

Start of Block: T&P: Configuration

102

 Page 31 of 60

Q36 Is everything stored as code and under version control?

 (Everything includes application code, infrastructure, deployment configuration, etc.)

o Strongly agree (38)

o Somewhat agree (39)

o Neither agree nor disagree (40)

o Somewhat disagree (41)

o Strongly disagree (42)

Page Break

103

 Page 32 of 60

Q37 Does your organization use configuration management?

o Always (9)

o Most of the time (10)

o About half the time (11)

o Sometimes (12)

o Never (13)

Page Break

104

 Page 33 of 60

Display This Question:

If Is everything stored as code and under version control?(Everything includes application code, inf...
!= Strongly disagree

105

 Page 34 of 60

Q38 Which tools do you use for version control management?

 Select all that apply.

▢ Archiva (4)

▢ Artifactory (5)

▢ Bitbucket (6)

▢ Deveo (7)

▢ GitHub (8)

▢ GitLab (9)

▢ Helix Core (10)

▢ Nexus (11)

▢ SharePoint (12)

▢ Stash (13)

▢ SVN (14)

▢ None of the above (18)

▢ Other (please specify): (15)
__

▢ Other (please specify): (16)
__

▢ Other (please specify): (17)
__

106

 Page 35 of 60

Page Break

107

 Page 36 of 60

Display This Question:

If Does your organization use configuration management? != Never

Q39 Which tools do you use for configuration management?

 Select all that apply.

▢ Ansible (29)

▢ CFengine (30)

▢ Chef (31)

▢ Puppet (32)

▢ RANCID (33)

▢ SaltStack (34)

▢ Windows Server IIS7 (35)

▢ None of the above (39)

▢ Other (please specify): (36)
__

▢ Other (please specify): (37)
__

▢ Other (please specify): (38)
__

End of Block: T&P: Configuration

Start of Block: T&P: Testing

108

 Page 37 of 60

Q40 Is there automated and continuous testing in development and staging environments?

o Always (19)

o Most of the time (20)

o About half the time (21)

o Sometimes (22)

o Never (23)

Page Break

109

 Page 38 of 60

Q41 Do you actively try to reduce the time it takes to test, validate and QA code?

o Strongly agree (14)

o Somewhat agree (15)

o Neither agree nor disagree (16)

o Somewhat disagree (17)

o Strongly disagree (18)

Page Break

110

 Page 39 of 60

Q42 Are code reviews change-based?

o Always (9)

o Most of the time (10)

o About half the time (11)

o Sometimes (12)

o Never (13)

Page Break

111

 Page 40 of 60

Display This Question:

If Is there automated and continuous testing in development and staging environments? != Never

Q43 Which tools do you use for testing?

 Select all that apply.

▢ Cucumber (50)

▢ Dynatrace (51)

▢ Jmeter (52)

▢ Junit (53)

▢ Selenium (54)

▢ TestNG (55)

▢ None of the above (59)

▢ Other (please specify): (56)
__

▢ Other (please specify): (57)
__

▢ Other (please specify): (58)
__

Page Break

112

 Page 41 of 60

113

 Page 42 of 60

Q44 Which code analyzer tools do you use?

 Select all that apply.

▢ Blue optima (4)

▢ CheckStyle (5)

▢ Clover (6)

▢ Coverity (7)

▢ FindBugs (8)

▢ Fortify (9)

▢ Gerrit (10)

▢ Jacoco (11)

▢ JS hint (12)

▢ Semmle (13)

▢ SonarLint (14)

▢ SonarQube (15)

▢ None of the above (19)

▢ Other (please specify): (16)
__

▢ Other (please specify): (17)
__

114

 Page 43 of 60

▢ Other (please specify): (18)
__

End of Block: T&P: Testing

Start of Block: T&P: Monitoring

Q45

Are applications and resources automatically and continuously monitored?

o Always (9)

o Most of the time (10)

o About half the time (11)

o Sometimes (12)

o Never (13)

Page Break

115

 Page 44 of 60

Q46 Are automated dashboards that include health checks and performance (e.g. throughput,

and latency) in place?

o Strongly agree (14)

o Somewhat agree (15)

o Neither agree nor disagree (16)

o Somewhat disagree (17)

o Strongly disagree (18)

Page Break

116

 Page 45 of 60

Display This Question:

If Are applications and resources automatically and continuously monitored? != Never

Or Are automated dashboards that include health checks and performance (e.g. throughput, and
latency... != Strongly disagree

117

 Page 46 of 60

Q47 Which tools do you use for automated and continuous monitoring?

 Select all that apply.

▢ AppPerfect (14)

▢ Cacti (15)

▢ Ganglia (16)

▢ Graphite (17)

▢ MONIT (18)

▢ Nagios (19)

▢ New Relic (20)

▢ Sensu (21)

▢ Splunk (22)

▢ Zabbix (23)

▢ None of the above (27)

▢ Other (please specify): (24)
__

▢ Other (please specify): (25)
__

▢ Other (please specify): (26)
__

End of Block: T&P: Monitoring

Start of Block: T&P: Logging

118

 Page 47 of 60

Q48 Do you support logging that can be turned on/off via configuration?

 (Configuration can be in the form of files, env. variables, etc.)

o Always (9)

o Most of the time (10)

o About half the time (11)

o Sometimes (12)

o Never (13)

Page Break

119

 Page 48 of 60

Display This Question:

If Do you support logging that can be turned on/off via configuration?(Configuration can be in the f...
!= Never

Q49

Which tools do you use for logging?

▢ Greylog (11)

▢ Kibina (12)

▢ Log.io (13)

▢ Loggly (14)

▢ Logstash (15)

▢ Papertrail (16)

▢ Sumo Logic (17)

▢ None of the above (21)

▢ Other (please specify): (18)
__

▢ Other (please specify): (19)
__

▢ Other (please specify): (20)
__

End of Block: T&P: Logging

Start of Block: T&P: Development

120

 Page 49 of 60

Q50 Is trunk-based development used over long-lived feature branches?

o Always (9)

o Most of the time (10)

o About half the time (11)

o Sometimes (12)

o Never (13)

Page Break

121

 Page 50 of 60

Q51 How often is test-driven development used where all code has unit tests used?

o Always (9)

o Most of the time (10)

o About half the time (11)

o Sometimes (12)

o Never (13)

End of Block: T&P: Development

Start of Block: Impact of DevOps

Q52 How often does your organization deploy code for its primary service or application?

o on demand (multiple deploys per day) (1)

o between once per hour and once per day (2)

o between once per day and once per week (3)

o between once per week and once per month (4)

o between once per month and once every six months (5)

o fewer than once every six months (6)

o Don't know / NA (7)

Page Break

122

 Page 51 of 60

Q53 How much time does it take to go from code committed to code successfully running in

production?

o less than one hour (1)

o less than one day (2)

o between one day and one week (3)

o between one week and one month (4)

o between one month and six months (5)

o more than six months (6)

o Don't know / NA (8)

Page Break

123

 Page 52 of 60

Q54

How long does it generally take your organization to restore service for a service/application

when a service incident occurs?

(restoration of service includes: hotfixes, rollbacks, patches, fix-forwards, etc.)

o less than one hour (4)

o less than one day (5)

o between one day and one week (6)

o between one week and one month (7)

o between one month and six months (8)

o more than six months (9)

o Don't know / NA (10)

Page Break

124

 Page 53 of 60

Q55 What percentage of changes for the primary service or application results in degraded

service or requires remediation?

o Less than 1% (11)

o 1% - 5% (12)

o 6% - 15% (13)

o 16% - 30% (14)

o 31% - 45% (15)

o 46% - 60% (16)

o 61% - 75% (17)

o 76% - 100% (18)

o Don't know / NA (19)

Page Break

125

 Page 54 of 60

Q56 How does the implementation of DevOps in your organization impact (positively or

negatively) the following topics?

 Change (%)

 -
100

-80 -60 -40 -20 0 20 40 60 80 100

Effectiveness of development ()

Quality of the product ()

Time to market ()

Collaboration ()

Makes work more fun ()

Makes work less hectic ()

Makes work more organized ()

Makes work more planned ()

Earlier detection of bugs/errors ()

Usefulness of the product ()

Usability of the product ()

Meeting expectations for the product ()

Predictability of product delivery ()

End of Block: Impact of DevOps

Start of Block: Firm Performance

126

 Page 55 of 60

Q57 Over the past year, how well did your organization meet its goals regarding overall

organizational performance?

o Performed well above goals (4)

o Performed above goals (5)

o Performed slightly above goals (6)

o Met goals (7)

o Performed slightly below goals (8)

o Performed below goals (9)

o Performed well below goals (10)

o Don't know / NA (11)

Page Break

127

 Page 56 of 60

Q58 Over the past year, how well did your organization meet its goals regarding overall

organizational profitability?

o Performed well above goals (4)

o Performed above goals (5)

o Performed slightly above goals (6)

o Met goals (7)

o Performed slightly below goals (8)

o Performed below goals (9)

o Performed well below goals (10)

o Don't know / NA (11)

Page Break

128

 Page 57 of 60

Q59 Over the past year, how well did your organization meet its goals regarding customer

satisfaction?

o Performed well above goals (4)

o Performed above goals (5)

o Performed slightly above goals (6)

o Met goals (7)

o Performed slightly below goals (8)

o Performed below goals (9)

o Performed well below goals (10)

o Don't know / NA (11)

Page Break

129

 Page 58 of 60

Q60 Over the past year, how well did your organization meet its goals regarding quality of

products and services?

o Performed well above goals (4)

o Performed above goals (5)

o Performed slightly above goals (6)

o Met goals (7)

o Performed slightly below goals (8)

o Performed below goals (9)

o Performed well below goals (10)

o Don't know / NA (11)

Page Break

130

 Page 59 of 60

Q61 Over the past year, how well did your organization meet its goals regarding operating

efficiency?

o Performed well above goals (1)

o Performed above goals (4)

o Performed slightly above goals (5)

o Met goals (6)

o Performed slightly below goals (7)

o Performed below goals (8)

o Performed well below goals (9)

o Don't know / NA (10)

Page Break

131

 Page 60 of 60

Q62 Over the past year, how well did your organization meet its goals regarding achieving the

organizational and mission goals?

o Performed well above goals (1)

o Performed above goals (4)

o Performed slightly above goals (5)

o Met goals (6)

o Performed slightly below goals (7)

o Performed below goals (8)

o Performed well below goals (9)

o Don't know / NA (10)

End of Block: Firm Performance

132

Appendix F
Time Allocation & Maturity

Figures F.1 and F.2 show time allocation across Agile and DevOps layers, respectively.

37.8

39.2

37.1

39

56.5

16.8

15.3

21.9

23.4

17.6

19

21.7

20.2

17.3
11.6

26.4

23.8

20.8

20.3
14.2

0 25 50 75 100

Beginner

Novice

Fluent

Advanced

World-class

38.7

35.8

36.2

41.8

56.3

17.3

18.7

17.7

23.6

16.1

22.3

18.3

21

17.4

11.7

21.7

27.2

25.1

17.2

15.9

0 25 50 75 100

37.4

37.6

37.2

46.2

45.6

17.8

15.8

21.7

18.8

21.2

22.4

18.7

20.3

17.2

14.8

22.4

27.9

20.8

17.8

18.4

0 25 50 75

Features Enablers Technical Debt Maintenance

Portfolio Program Team

Figure F.1: Time allocation across three Agile layers.

35.7

27.7

39.8

46.8

16.3

18.2

20.5

17.8

22.4

23.6

18

16.9

25.6

30.4

21.7

18.6

Level 1

Level 2

Level 3

Level 4

45

31.6

37.3

53

19.1

15.1

22.6

15.8

17.3

25

18.1

13.4

18.6

28.3

22

17.9

31.1

34

39.9

55.6

19.9

17.5

18.5

20.3

24.7

20.4

19

12.6

24.3

28.2

22.6

11.4

29.3

38.9

40.4

48.7

15.8

16.9

21.1

19.4

25.5

19.9

18.5

12.4

29.4

24.2

19.9

19.4

0 25 50 75 100

Level 1

Level 2

Level 3

Level 4

36

37.9

37.5

52.4

16.2

17.4

22.3

19.2

20.8

20.1

19.4

13.7

27

24.6

20.8

14.8

0 25 50 75 100

32.5

31.4

40.4

51.3

17.6

13

21.7

21.5

22.4

25.4

16.4

14.5

27.5

30.1

21.5

12.7

0 25 50 75

Features Enablers Technical Debt Maintenance

Organization & Culture Environments & Release Builds & Continuous Integration

Quality Assurance Visibility & Reporting Technology & Architecture

Figure F.2: Time allocation across six DevOps layers.

133

Appendix G
Tools Used by Survey Participants

The following tables show the DevOps tools used by the survey participants.

Table G.1: Continuous delivery tools used by participants.

Tool Usage
1 Jenkins 37
2 Azure DevOps 9
3 GitLab CI 9
4 Bamboo 5
5 Jenkins/Visual Studio App Center 4
6 GitLab CI/Jenkins 3
7 TeamCity 3
8 Azure DevOps/Jenkins 3
9 Bamboo/Jenkins 3
10 Bitbucket Pipelines 2
11 Visual Studio App Center 2
12 Jenkins/XL Deploy 2
13 Octopus Deploy 2
14 Azure DevOps/Visual Studio App Center 1
15 Azure DevOps/GitHub Actions 1
16 GitLab CI/TeamCity 1
17 GitHub Actions/GitLab CI 1
18 CircleCI/TeamCity/Travis CI/Visual Studio App Center 1
19 Azure DevOps/GitHub Actions/Jenkins/Travis CI 1
20 Spinnaker 1
21 Codeship 1
22 GitHub Actions 1
23 Bitbucket Pipelines/Jenkins 1
24 Azure DevOps/Jenkins/Visual Studio App Center 1
25 Buildkite 1
26 Azure DevOps/TeamCity 1
27 Bamboo/Jenkins/Travis CI 1
28 Azure DevOps/Jenkins/XL Release 1
29 Drone CI 1

Continued on next page

134

Table G.1 – continued from previous page
Tool Usage
30 CircleCI/Jenkins 1
31 OutSystems/Visual Studio App Center 1
32 Ansible/GitLab CI 1
33 AWS ECS/GitHub Actions/Serverless 1
34 Bitrise/GitLab CI 1
35 Jenkins/XL Deploy/XL Release 1
36 Consul/Jenkins/Nomad 1
37 Bamboo/CircleCI/Jenkins/Visual Studio App Center 1
38 Codefresh/GitHub Actions 1
39 Semaphore CI 1
40 Bamboo/TeamCity 1

Table G.2: Continuous deployment tools used by participants.

Tool Usage
1 Azure DevOps 14
2 GitLab CI 10
3 CodeDeploy 10
4 Octopus Deploy 5
5 Bamboo 4
6 Jenkins 4
7 Travis CI 3
8 Bitbucket Pipelines 2
9 Juju 2
10 XL Deploy 2
11 Ansible 2
12 Azure DevOps/GitHub Actions 1
13 GitHub Actions/GitLab CI/Terraform 1
14 Capistrano/CodeDeploy/Octopus Deploy/Travis CI 1
15 GitLab CI/Jenkins 1
16 Cloudbuild/Spinnaker 1
17 Python script/Shell script 1
18 Bitbucket Pipelines/CodeDeploy 1
19 Shell script 1
20 Buildkite/Shell script 1
21 Ansible/Terraform/XL Deploy/uDeploy 1
22 Ansible/GitLab CI 1
23 Bamboo/Capistrano 1
24 Azure DevOps/Jenkins 1
25 Flux/Kustomization 1
26 AWS ECS/GitHub Actions/Serverless 1
27 Nomad 1
28 Bamboo/CodeDeploy/Travis CI 1
29 GitLab CI/Terraform 1
30 Codefresh/GitHub Actions 1
31 Bamboo/CodeDeploy 1

135

Table G.3: Continuous integration tools used by participants.

Tool Usage
1 Jenkins 41
2 Azure DevOps 15
3 GitLab CI 11
4 Bamboo 5
5 Bitbucket Pipelines 3
6 GitLab CI/Jenkins 3
7 Azure DevOps/Jenkins 3
8 Codeship 2
9 TeamCity 2
10 CircleCI 2
11 Azure DevOps/GitHub Actions 1
12 CircleCI/Codeship/CruiseControl/Jenkins/TeamCity/GoCD 1
13 Azure DevOps/GitHub Actions/Jenkins/Travis CI 1
14 CruiseControl 1
15 Buildkite/Kubernetes/Terraform 1
16 Rundeck/TeamCity 1
17 Drone CI 1
18 Flux 1
19 Codeship/Jenkins 1
20 GitHub Actions 1
21 Bamboo/CircleCI 1
22 Bitrise/GitLab CI 1
23 GitLab CI/Jenkins/SVN 1
24 Bamboo/CircleCI/Jenkins/Rundeck/Travis CI 1
25 Codefresh/GitHub Actions 1
26 Semaphore CI 1
27 Cucumber/TeamCity 1
28 Bamboo/Jenkins 1

Table G.4: Version control management tools used by participants.

Tool Usage
1 GitHub 23
2 Bitbucket 15
3 Azure DevOps 13
4 GitLab 11
5 GitHub/GitLab 6
6 Bitbucket/GitHub 4
7 GitLab/Nexus 3
8 Bitbucket/GitHub/Nexus 2
9 Azure DevOps/GitHub 2
10 OutSystems 2

Continued on next page

136

Table G.4 – continued from previous page
Tool Usage
11 Artifactory/GitHub 2
12 Bitbucket/GitLab 1
13 Artifactory/GitLab 1
14 SharePoint 1
15 Archiva/Bitbucket/GitHub/Helix Core/Nexus/SVN/Stash 1
16 Azure DevOps/Bitbucket/GitHub/Nexus 1
17 CVS/GitLab/SVN 1
18 Azure DevOps/Bitbucket 1
19 GitHub/GitLab/SVN 1
20 PTC 1
21 GitHub/SharePoint 1
22 Git 1
23 Artifactory/Azure DevOps/Bitbucket/Nexus 1
24 GitHub/Stash 1
25 Azure DevOps/Bitbucket/Nexus/SVN 1
26 Artifactory/Bitbucket/GitHub/GitLab 1
27 Bitbucket/GitHub/GitLab/Stash 1
28 Bitbucket/GitHub/GitLab 1
29 Artifactory/Azure DevOps/Stash 1
30 Archiva/GitHub 1
31 SVN 1
32 Git/LifeTime 1
33 Bitbucket/Nexus 1
34 Artifactory/Bitbucket 1
35 Artifactory/GitLab/SVN 1
36 Artifactory/Bitbucket/GitHub/Nexus 1
37 Deveo 1
38 Azure DevOps/Git 1
39 Bitbucket/Nexus/SharePoint 1
40 Artifactory 1
41 Azure DevOps/GitLab/SharePoint 1
42 GitHub/GitLab/SharePoint 1
43 Bitbucket/GitLab/SVN 1
44 Artifactory/Bitbucket/GitHub 1

Table G.5: Configuration management tools used by participants.

Tool Usage
1 Ansible 36
2 Ansible/Puppet 6
3 Puppet 6
4 Terraform 4
5 Chef 4
6 Windows Server IIS7 3
7 Ansible/Chef 2

Continued on next page

137

Table G.5 – continued from previous page
Tool Usage
8 Helm 2
9 ServiceNow 1
10 Azure App Configuration 1
11 AWS Cloudformation Parameters/Jenkins Build Parameters 1
12 Ansible/SaltStack 1
13 Ansible/CFengine/Puppet/SaltStack/Windows Server IIS7 1
14 Ansible/Azure DevOps/Chef/Windows Server IIS7 1
15 Ansible/Chef/Puppet 1
16 HashiCorp Consul/HashiCorp Vault 1
17 Chef/SaltStack 1
18 Ansible/GitLab CI 1
19 Ansible/Puppet/Terraform 1
20 OutSystems 1
21 CoolConfigurator 1
22 Nomad 1
23 KeyVault/Octopus Deploy 1
24 Ansible/Terraform 1
25 Puppet/Windows Server IIS7 1
26 Jenkins 1
27 Ansible/Windows Server IIS7 1

Table G.6: Testing tools used by participants.

Tool Usage
1 Selenium 16
2 Junit 5
3 Cucumber/Jmeter/Junit 4
4 Cucumber 4
5 Jmeter 4
6 Junit/Selenium 3
7 Cucumber/Junit 3
8 Cucumber/Junit/Selenium 2
9 Jmeter/Selenium 2
10 Cucumber/Selenium 2
11 Cucumber/Jmeter/Junit/Selenium 2
12 MOO/Microsoft Test Framework 1
13 Cucumber/Cypress/SpecFlow 1
14 Sonarqube 1
15 Junit/Selenium/Sigos 1
16 Junit/TestCafe 1
17 Jest 1
18 Azure DevOps 1
19 Dynatrace/Jmeter/Junit/TestNG 1
20 Mocha/PHPUnit 1
21 OpenTest/Selenium 1

Continued on next page

138

Table G.6 – continued from previous page
Tool Usage
22 Dynatrace/Selenium 1
23 Selenium/TestNG 1
24 Cucumber/Jmeter/Selenium 1
25 Cypress/Selenium/TestNG 1
26 Cucumber/Jasmine/Jmeter/Junit/Postman Scripts/Selenium 1
27 Rspec/Selenium 1
28 Jmeter/Selenium/Splunk APM 1
29 Broadcom 1
30 HCL Test/Jmeter/Junit/NeoLoad/Selenium 1
31 Selenium/Tosca 1
32 PHPUnit 1
33 Cypress/Flood/Jmeter/Selenium 1
34 Behat/Cypress/Jest/Junit/PHPUnit/Psalm 1
35 Dynatrace 1
36 JOSE 1
37 Cucumber/Jmeter 1
38 Codecov/Cypress/Jest/Pytest/Selenium 1
39 Jmeter/K6/Selenium 1
40 Junit/TestNG 1
41 JOSE/Jmeter/Junit/Selenium/Tosca/UFT 1
42 Cucumber/Cypress/Junit 1
43 TOSCA 1
44 Citrus/Jmeter/Junit 1
45 Junit/Selenium/TestNG 1
46 Gatling/Jmeter/Junit/Wiremock 1
47 Jmeter/Junit 1
48 Cucumber/Dynatrace/Jmeter 1
49 Jmeter/Katalon 1
50 Cucumber/Rspec 1
51 Clayton/Junit/Provar 1
52 Cucumber/Jmeter/Karate/Selenium 1
53 Selenium/Xunit 1
54 Jmeter/K6 1
55 Jest/Junit/WebdriveIO 1
56 Cypress/Mabl/Selenium 1
57 Hypothesis/Jest/Pytest 1
58 Cucumber/Jmeter/Junit/Selenium/TestNG 1
59 Cypress/Jest 1

Table G.7: Code analysis tools used by participants.

Tool Usage
1 SonarQube 38
2 SonarLint/SonarQube 6
3 Snyk 3

Continued on next page

139

Table G.7 – continued from previous page
Tool Usage
4 JS hint 3
5 Jacoco/SonarQube 3
6 CheckStyle 2
7 SonarQube/VeraCode 1
8 ES lint/Visual Studio Code 1
9 CheckStyle/Clover/FindBugs/JS hint/Jacoco/SonarLint/SonarQube 1
10 JS hint/PHPCS/SonarLint/SonarQube 1
11 Cfn-lint/Cfn-nag/SonarQube 1
12 CheckStyle/FindBugs 1
13 Checkmarx/Stylecop 1
14 Gerrit/SonarQube 1
15 CheckStyle/Clover/Fortify/Gerrit/JS hint/SonarLint 1
16 Clover/Jacoco/SonarQube 1
17 Blue optima 1
18 JS hint/Jacoco/SonarLint/SonarQube 1
19 Rubocop 1
20 JS hint/SonarQube 1
21 Blue optima/SonarLint 1
22 Fortify/SonarLint/SonarQube 1
23 ReSharper 1
24 JS hint/Scrutinizer 1
25 OutSystems 1
26 Codesniffer/MessDetector 1
27 PHPCS/Psalm/SonarQube 1
28 Checkmarx/SonarQube 1
29 Boncode 1
30 Fortify 1
31 OS 1
32 CheckStyle/FindBugs/Jacoco/SonarLint/SonarQube 1
33 FindBugs/Jacoco/SonarQube 1
34 Checkmarx/Jacoco 1
35 Clover/FindBugs/Jacoco/SonarLint/SonarQube 1
36 CodeClimate 1
37 Fortify/Jacoco/SonarLint/SonarQube 1
38 CheckStyle/Fortify/SonarLint/SonarQube 1
39 Clover/SonarLint 1
40 Clayton 1
41 FindBugs 1
42 ES lint/Jacoco/SonarLint/SonarQube 1
43 Gosec/SonarQube 1
44 GHC/Mypy/Pylint 1
45 CheckStyle/FindBugs/JS hint/Jacoco/SonarLint/SonarQube 1
46 ES lint/Fortify/Jacoco/SonarQube 1

140

Table G.8: Monitoring tools used by participants.

Tool Usage
1 Splunk 13
2 Datadog 6
3 New Relic 5
4 Nagios 4
5 Grafana/Prometheus 4
6 Prometheus 4
7 Graphite/Splunk 3
8 Azure Application Insights 3
9 Azure Webtest 2
10 Graphite 2
11 MONIT 2
12 Kibana 2
13 Humio/Nagios 1
14 Cloudwatch/Uptimemonitor 1
15 Azure Monitor 1
16 Icinga/Nagios 1
17 Elastic Stack/Graphite/Nagios 1
18 Cloudwatch/Alerta/Alertmanager/Elastic Stack/Grafana/Prometheus 1
19 Zabbix 1
20 Graphite/Nagios 1
21 Elastic Cloud/Kiali/Prometheus 1
22 AppPerfect/Ganglia/MONIT/Sensu/Splunk/Zabbix 1
23 Elastic Stack 1
24 Nagios/Splunk 1
25 New Relic/Prometheus 1
26 New Relic/Splunk 1
27 Elastic Stack/Splunk 1
28 Graphite/Nagios/Splunk/Zabbix 1
29 Site24x7 1
30 Elastic Stack/K8 1
31 Sensu 1
32 Appsignal/Datadog/Kibana 1
33 Broadcom 1
34 AppDynamics/Azure Application Insights/Azure Log Analytics/Splunk 1
35 Nagios/New Relic/Zabbix 1
36 Elastic Cloud/Graphite 1
37 Prometheus/Zabbix 1
38 Elastic Stack/Grafana/Graylog/New Relic/Zabbix 1
39 Grafana 1
40 AppPerfect 1
41 Prometheus/Splunk 1
42 OutSystems 1
43 logz.io 1
44 Elastic Stack/Kibana 1
45 Elastic Stack/OMI 1
46 Njams 1

Continued on next page

141

Table G.8 – continued from previous page
Tool Usage
47 Elastic Stack/Grafana/Graphite/Prometheus 1
48 Azure Application Insights/Azure Monitor 1
49 Graphite/New Relic/Splunk/Zabbix 1
50 Elastic Cloud/Sensu 1
51 PRTG 1
52 Elastic Stack/Graphana/Prometheus 1
53 Datadog/Nobl9/Prometheus 1
54 Grafana/Loki/Prometheus 1
55 Cloudwatch/Nagios/Splunk 1
56 Datadog/New Relic 1

Table G.9: Logging tools used by participants.

Tool Usage
1 Kibana 13
2 Kibana/Logstash 12
3 Logstash 11
4 Elastic Stack/Logstash 3
5 Graylog 3
6 Azure Application Insights 3
7 Graylog/Kibana/Logstash 2
8 Cloudwatch 2
9 Datadog 2
10 Humio/Logstash 1
11 Log4Net 1
12 Azure Application Insights/Kibana 1
13 Datadog/Rapid7 1
14 Beats/Kibana/Logstash/Syslog 1
15 Elastic Search/Fluentbit/Kibana/Logstash 1
16 Papertrail 1
17 Seq 1
18 Kibana/Logstash/Prometheus 1
19 Kibana/Log.io/Logstash/Sumo Logic 1
20 Kibana/Papertrail 1
21 Amazon EC2 1
22 Kibana/Logstash/SLF4j 1
23 Splunk 1
24 Azure Log Analytics/Splunk 1
25 Log4Net/SeriLog 1
26 Azure Monitor/Loki 1
27 Datadog/Logstash 1
28 Kibana/OutSystems 1
29 Elastic Search/Graylog/Kibana/Logstash 1
30 Graylog/Kibana/Logstash/New Relic/RSYSLOG 1
31 Log.io/Loki 1

Continued on next page

142

Table G.9 – continued from previous page
Tool Usage
32 OutSystems 1
33 Log.io 1
34 Njams 1
35 Elastic Stack 1
36 Azure Application Insights/Python script 1
37 Kibana/Log.io/Loggly/Logstash 1
38 Loggly 1
39 Sumo Logic 1
40 Cloudwatch/Kibana/Papertrail 1
41 Datadog/LogDNA/Splunk 1
42 Loki/Promtail/Reluctantly/Stackdriver 1

143

	Introduction
	Research Questions
	Contribution
	Document Structure

	Related Work
	What is DevOps?
	DevOps Models in Scientific Literature
	DevOps Practices & Tools
	Benefits After Implementation
	Challenges Implementing DevOps
	Organisational Routines

	Methodology
	Population & Sample
	Survey
	Data Analysis
	Reflective Workshops

	Results
	Who Are the Respondents?
	DevOps & Agile Maturity
	DevOps Practices & Tools
	Impact & Performance
	Correlations & Cluster Analysis

	Discussion & Recommendations
	Impact of DevOps Practices and Tools on Organisational Performance
	Technology Trends Fuelling DevOps
	Comparing Agile and DevOps Survey Data
	Limitations

	Conclusion
	Future Work

	Definitions of DevOps
	Practices Found in Literature
	Tools Found in Literature
	DevOps & Agile Maturity by Industry
	Survey Questions
	Time Allocation & Maturity
	Tools Used by Survey Participants

