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Abstract

Efferential evolution and particle swarm optimisation problems are examples of natural
computing. These problems require an algorithm to solve them. This thesis analyses different
implementations of these algorithms based on their performance regarding 24 commonly-
used objective functions. The best- and worst-performing implementations are selected and
analysed. The codes of these implementations are compared to each other as well to the
pseudocode of a typical solution for these problems in order to ascertain whether differences
exist between these implementations and identify the impact of such differences. In this research,
several implementations have been found that differ from each other and after comparing
these implementations, it can be concluded that the differences in the implementations are
significant. This is because one implementation differs from another in how frequently it
updates the algorithm’s key variables.
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1 Introduction

Optimisation problems are common in a wide range of fields, and as such a variety of algorithm
solutions exist. One class of algorithms is pamo[ natural computing, which takes inspiration from
biology. A commonly used example is the particle swarm optimisation (PSO) algorithm. This
optimisation algorithm was originally inspired by observing shoals of fish and flocks of birds. The
shoals and flocks represent a simple entity, referred to as the population. The population consists
of a group of particles, which move through a parameter space of some problem or function [’0l07].

Differential evolution (DE) is another commonly used algorithm in natural computing. The search
space is thegggme as for the PSO algorithm. The DE concept is to create random parameter vectors
using three population members to generate a new member. The resulting vector is evaluated ysing
an objective function test. The resulting objective function value is compared to the particle with
the best objective function value. If the function value of the new parameter is lower than that of
the best particle, the previous vector is replaced by the new generated vector |5P95].

Both problems are examples of optimisation problems. The problem is solved when a score is under
a minimum or above a maximum benchmark and therefore considered optimal. These problems
can be challenging to visualise because they can scale up in n dimensions. Another characteristic
of these algorithms is that they are both examples of black-box solvers. In a black-box problem,
an algorithm is given some input and therefore returns some output |[NIH10]. DE and PSO are
algorithms for black-box optimisation. These problems form the basis of this research.

Although considerable research has been conducted on DE and PSO, with each study proposing an
implementation that provides a solution to determine the optimum, the implementations are diverse.
It has not been looked into why these implementations differ and if there is a performance difference.

1.1 Research questions

This research focuses on the DE and PSO algorithms because they are commonly used in natural
computing. The goal is to determine whether the performance of DE and PSO implementations
differ from each other and, if so, why this difference occurs. Therefore, this study addresses two
research questions:

e What are the most significant differences between implementations of the DE
and PSO algorithms?

e To what extent do these differences affect the impact of the DE and PSO
algorithm?

The thesis begins by presenting related work 2 before detailing the methods 3 used for the PSO
and DE problems. Subsequently, the results 4 of these problems are analysed and discussed. The
final section draws and presents conclusions 5 regarding DE and PSO implementations as well as
recommendations for further research 6.




2 Related work

The PSO and DE algorithms are examples of iterative optimisation heuristics (IOHs). An algorithm
is classified as an IOH when it aims to find the optimum by repeating the same process [('DI15].

2.1 Iterative Optimisation Heuristic Software

IOH software is a program that can analyse the same type of algorithms. These algorithms are
black-box optimisation algorithms. Algorithm 1 describes the structure of a typical IOH. For a
complete explanation of the pseudocode, please see |('D315].

Algorithm 1 Typical structure for a IOH algorithm [C'DE15]
1 t+0
H(1)=0
3: while termination criterion not met do
4 t + t + 1 Based upon the search history H (t), choose a probability distribution on N and
sample from it A(t)
Based upon H (t) and \(t), choose a probability distribution D(t) on S*®
From D(t) sample z%!, ..., 2(:2(1) € § and evaluate their function values f(zt'), ..., f(xt*1);
Build H(t + 1) by selecting which of the samples (25!, f ('), ..., (820 f(222®))) and
which of the samples from H(t) to keep in the search history;
8: end while

o

N e

The IOH software consists of two parts: an experimental component and an IOH analyser. The
experimental part is used in Python by installing the package IOH. The IOH analyser is written in
R; thus, it has a clear user interface |('DIE15].

2.1.1 Iterative Optimisation Heuristic Experiments

The IOH software contains several experiments that test how the algorithm reacts. Therefore,
multiple dimensions, which are explained later, are used. The goal of these experiments is to
gather as much information as possible about the empirical performance of the algorithm. These
experiments consist of testing the algorithm on the 24 commonly-used benchmark functions. Table
1 presents the information gained for each algorithm. By testing each algorithm on 24 benchmark
functions, a clear conclusion can be drawn regarding how an algorithm performs [SFA13].




Function id Information gain
1 'hat is the optimal convergence rate of an algorithm?
2 Is symmetry or separability exploited?
3 What is the effect of multi-modality?
1 What is the effect of asymmetry?
5 Can the search gem from the convex hull into the boundary?
6 What is the effect of highly asymmetric landscape?
7 Does the search get stuck under the plateaus?
8 Can the search follow a long path with D-1 changes in the direction?
9 Can the seaggh follow a long path without exploiting partial separability?
10 'hat is the effect of rotation (non-separability)?
11 What is the effect of constraints?
12 g&n the search continuously change its search direction?
13 What is the effect of non-smoothness, non-differentiable ridge?
14 What is the effect of missing self-similarity?
15 hat is the effect of non-separability for a highly multi-modal function?
16 Does ruggedness or a repetitive landscape deter the search behaviour?
17 What is the gffect of multi-modality on a less regular function?
18 'hat is the effect of ill-conditioning?
19 Vw.t is the effect of high signal-to-noise ratio?
20 ‘'hat is the effect of a weak global structure
21 E the search effective without any global structure?
22 What is the effect of higher condition?
23 ﬁ"hat is the effect of regular local structure on the global search?
24 Can the search behaviour be local on the global scale but global on a local scale?

Table 1: The explanation of the different objective functions |[SFA 13

2.1.2 TIterative Optimisation Heuristic Analyser

The TOH analyser uses a different interface, which is a free software located on the website
https:/ /ichanalyzer liacs.nl/. The website asks the user to load zip file data, which is the same zip
file produced during the experimental portion. Afterwards, the IOH analyser scans the data and
makes it immediately visible in graphs and tables [[I\WB22].




2.2 garticle Swarm Optimisation

The PSO algorithm optimises the particles in a parameter space by evaluating the fitness scores
of these particles. The particles move individually through velocity (v;), which is determined by
three factors. The first factor is its current velocity. The second factor is based on its fittest
location so far. The last factor is based on the particle’s social neighbourhood, which describes its
communication on the best position with other particles. Therefore, the second factor is the best
fitness score of a particle’s social neighbours. The velocity of the particle can be described as follows:

Velocity update: v;(t + 1) = wu;(t) + V1 R1(xs, — xi(t)) + VoRa(xpy, — 2i(t)) |Pol07]

Thus, the velocity depends on its current velocity (ww;(t)), its personal best fitness (x,, —x;(t)) and
the best fitness of the social nggmhbourhood (xy, — z;(t)). Ry and Ry are random variables, and
1 and 1y are constants. This formula is used for each dime@n of the problem and for all the
particles. Subsequently, the position in the parameter space is updated using the following formula:

Position update: z;(t + 1) = z;(t) + wi(t + 1) [Pol07]

These formulae form the basis of the PSO algorithm. Besides these formulas, the PSO algorithm
consists of updating the personal best and social neighbourhood best parameters, based on their
fitness scores. Each iteration of the PSO algorithm uses the variables p;, ¢;, and v; to calculate
the velocity of the subsequent iteration. After that, the current position and the velocity of the
subsequent iteration are combined to determine the position for the following round. By contrasting
the position and velocity of the individual's personal best with those of the social neighbourhood,
the algorithm is able to determine the optimal setting. Therefore, to find this ideal, evaluation
scores from each iteration are compared until they are identical to the optimum. The pseudocode
of the PSO algorithm describes how this process works:




Algorithm 2 PSO [T13221)] 12
1: Randomly initialise particles (x;) and their velocities (v;) in the search space
2: while termination criterion are not met do

B for each particle i do
4: Evaluate the fitness y; at current postition x;
5 if y; is better than its person best pbest; then
6: update p; and pbest,
T: end if
8: if y; is better than its global best gbest; then
update g; and gbest;
@ end if
1Lz end for
12: for each particle i do
: Update the velocity v; based on p;, g; and v;
@ Update the position: x; « x; + v;
15: end for

16: end while

2.3 Differential Evolution

The DE algorithm improves 'gsel[ by making new parameter vectors and evaluating these vectors
based on their fitness score. A new parameter vector is created by adding the weighted difference
vector between two population members to a third vector from the population. The mutation can
be described mathematically as:

Mutation: vy = 2r,, + F * (2, , — Zr,,) [TB224]

The mutant (v; 4) is the new parameter, and it depends on the three population vectors (&, ,, Zr, . Try, )-
The new vector then undergoes the crossover process. The crossover process determines whether
the new vector w; 4 receives the vector value of the mutation or the parent value and is described in
the following formula:

Crossover:

Uiig. i (rand;(0,1) < Crorj = jrand)

WUig = Wyig =

k [TB22a]

Tjig, oOtherwise

Finally, the new vector parameter is evaluated using a fitness function. This fitness score is
compared with the parents’ score, and the best score is used to determine which parameter vector
has the lowest fitness score.

Selection:
”i,g: if (f(ui,g) S f("ri,g))

) [TB22a]
x4, otherwise

Lig+1 =




These formulas are used to optimise the parameters in an iterative process. Algorithm 3 describes
this process.

Alggrithm 3 DE [T 13224]
1: E.-reate an initial population x4, ..., 23_; of M random real-valued vectors
Eva.ll.la.te the fitness of each vector
3: while termination criterion are not met do
4 forggach vector x; € xg, ...,x37_1 do
Select three other vectors randomly from the population

6: Apply difference vector to base vector to create variant vector

T: Combine vector x; with variant vector to produce new trial vector
8: Evaluate fitness of the new trial vector

9: if trial vector has better fitness than x; then

10: Replace x; with the trial vector

11: end if

12: end for

13: end while




3 Methods

Multiple DE and PSO algorithm implementations were required to determine whether the imple-
mentations were the same. In this experiment, five implementations were chosen per algorithm to
compare their performance. These implementations, PSO; [Uzi21], PSO, [Rool6], PSOs |MA1H],
PSSOy [Macly] and PSO; |[P5021], were selected after doing a typical Google search using the
terms "Particle Swarm Optimization Python Implementation". For the DE, a similar approach was
taken, which resulted in the following implementations: DEy [C'ri21], DEy [Micl7], DEg [McC214],
DE, [DE122] and DE5 [McC21b]. For comparison purposes, the structure of each experiment
remained the same for the individual algorithms. For instance, the parameter settings on the DE
algorithm were the same for all five implementations. The different implementations can be found
on the following GitHub website: https://github.com/Rens-byte/Natural-Computing-Thesis.git.

=

The DE and PSO implementations could be analysed using the same method because they are both
black-box optimisation algorithms. Therefore, the same approach can be used and then examined
to see if the same results emerge. The first step was to experiment with the implementations using
the IOH software. To compare these implementations, the hyper-parameters were set with the
same values, which are listed in Table 2.

Parameter | Value
Dimensions 5 Parameter Value
Bounds [-5, 5] Dimensions 5
Population size | 50 Bounds [-5, 5]
cl 0.8 Population size 30
c2 0.9 Differential scaling factor | 0.8
target error 0.2 Crossover probability 0.6
W 0.5

Table 2: The DE parameter values
Table 1: The PSO parameter values

When the parameter settings are equal, the evaluation budget must also be the same. The number
of evaluation values depends on the number of iterations, and this number could therefore be
different when comparing the implementations. The evaluation budget can be manually changed
by changing the number of iterations. A crucial premise is that the evaluation budget should
be identical if the population size and the number of iterations are both equal. If not, it can be
assumed that the implementations differ fundamentally from one another.

The number of iterations is the only parameter that can be changed because it does not impact
other variables in the algorithm. Due to the fact that increasing this parameter results in more
evaluations, it is an effective method to set the number of evaluations equal to each other.

The rating of the implementations’ performance on the 24 commonly-used objective functions
determines how distinct they are from one another. The two implementations that were the most
dissimilar from one another were compared by analysing the code of the implementation.




4 Results

4.1 Particle swarm optimisation

The evaluation budget must be the same, to conclude that the iterations are different and therefore,
the implementations differ from one another. Table 3 describes the number of iterations required
for the 5,000 evaluations. These PSO implementations can be divided into two groups. PS0O; and
PS04 used 50 iterations, whereas PS0,, PSO3 and PSO; used around 100 iterations due to the
number of loops used inside each algorithm. In PSOs, the fitness of each particle is evaluated once,
as indicated in the pseudocode 2, while PS( is evaluated twice in section 4.1 which confirms that
PS50y does, in fact, differ from PSOs.

Name implementations | Iterations | Evaluation budget
PSO, 50 5050
PSO. 100 5000
PSO4 99 5000
PSO4 50 5000
PSO4 99 5000

Table 3: The number of iterations and evaluations for the PSO

Figure 1 depicts the performance of each implementation for the % noise-free real-parameter
single-objective benchmark functions. The y-axis describes the number of evaluations, and the
x-axis describes the best value. The implementations’ performances were ranked and compared in
a heatmap. The colour blue denotes an implementation that did not perform well in comparison
with another implementation, whereas the colour red indicates an implementation that performed
better in comparison with a different implementation.
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Figure 1: The performance of the PSO implementations on the 24 commonly-used objective

functions




Figure 2: The overall ranking of the implementations on the 24 commonly-used objective functions

To explain why PSO; performed better than PSO,, it is important to compare thkepalgorithms
with the pseudocode 2. The PSO pseudocode consists primarily of updating the personal best
position and global best position; the velocity and position are subsequently updated. This cycle
repeats until no iterations remain. When comparing P50; to PS50y, this aspect is an area in
which most of the implementations are found on this part.

gcoording to the velocity update and position update in 2.2, PSO; and PS0; use the correct for-
mulae in the code. Each implementation must complete a specific number of iterations, which varies
from implementation to implementation, in order to reach the evaluation budget. Therefore, the
number of iterations is where the difference in evaluation budget may be detected. This results in the
fact that whereas PSO; updates the p;, g; and v; twice, PSO; only does so once. PSOs uses twice
the updates to gather the optimal for each of these parameters during every iteration. This method
is efficient and effective for obtaining the best possible outcome. The remainder of this section
describes part of the PSO; and PS(O; codes. These are the most crucial sections of the code since
they describe how the implementation modifies the position update and the velocity update formulae.
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V\Pile Iter < max _iter:
or i in range(n):
for h in range (dim):
swarm|1i|. velocity k] = (

(w * swarm|i]|. velocity |k|) +
(¢l * rl * (swarm]|i|.best_part_pos|k| —
swarm |1 |. position [k])) +
(c2 % r2 * (best_swarm_pos|k]|
—swarm| i |. position|k]))

4
for k in range(dim):
swarm| i |. position [k] += swarm|i|. velocity |k]

The part of the code where PSO;s; updates its position and velocity

PS0; has a clear structure from the outset. It starts with two loops. The first loop is the while
loop, which contains the same number of iterations as the parameter iterations. The second loop is
a for loop. This loop analyses the performance of each particle in the swarm. The last step of this
loop, and the most important part of the algorithm, is to compare the particle’s new position with
the particle with the best fitness score. The algorithm updates many variables during the double loop.

PS50 has a different format in comparison with PS0;. A part of the PSO; implementation is
described in this next section.

while error.min() > eps and iter num < max_iter and count <
earlmstopping:
v=w=xv+cl *xrl * (pbest —p) + ¢2 % r2 x (ghest — p)
p=p+V

The part of the code where PSO; updates its position and velocity

P SOy begins by creating all the variables that will be useful in finding the optimum. Afterwards,
the implementation starts with a single while loop. This while loop includes a few conditions.
The first condition is that error.min() > eps. Eps is a parameter in PSO; and is small by default.
When the error.min is larger than or equal to the last error.min, the result will be 1; otherwise, the
result will be 0. The PSO; results are only 0, which means it improves at every iteration. The
second condition is that Iter,,,, is smaller than max;.,. maz;,., is a parameter that can easily
be changed. Every iteration Iter,., increases by one, until the max;., is reached. At this point,
this condition changes to false. The final condition is that count < earlyyopping. The variables
begin updating in the loop, but unlike PSO5, PSO,; does not track which parameter has the best
value. Instead, it only updates the global and personal best positions. The personal and global best
positions are selected by taking arguments from the array error and errorbest. These arguments

11




are not updated repeatedly because the variables pbest and gbest are outside this loop.

The velocity update and the position update formulae, which were discussed in 2.2, are the two
formulae that make up the PSO algorithm. When comparing the implementations, it can be seen
that both of these formulae are applied correctly. In addition, the parameters are also set equal,
as specified in 3. The only variable that varies depending on the implementation is how many
iterations are necessary to attain the evaluation budget. Therefore, it is crucial to understand how
many iterations are necessary to attain the evaluation budget in order to determine whether the
implementations differ fundamentally from one another. Since PS50y has twice as many iterations
as PSOy, it can be assumed that PSOs is truly very different from PS0,. The differences between
PS50z and PSO; are the number of iterations and therefore, the number of p;, ¢g; and v; updates.
Because PS0O5; may evaluate twice as much as PS0O; as a result, PSO5 outperforms PSO; for the
24 commonly-used objective functions.

12




4.2 Differential evolution

To draw the conclusion that the iterations in the implementations are distinct from one another,
the evaluation budget must be the same. Table 4 details the iterations and evaluations for the DE
implementations. The implementations were split into two groups. The first group consisted of
DE,;, DE; and DFE5, and the second group consisted of DE,, DE,. The number of iterations for
the first group was twice as large as for the first group. Consequently, the fitness of each particle
in the first group is evaluated once, as specified in the pseudocode 3 while the second group is
evaluated twice. This occurs at the section of the implementation where Mutation, Crossover, and
Selection are used, which shows us how the first group and the second group are different.

Name implementation | Iterations | Evaluation budget
DE, 83 5010
DE, 166 5010
DE; 166 5010
DE4 82 5014
DE; 166 5010

Table 4: The number of iterations and evaluations for the DE

The second group achieved better result than the first group because they attained a better f(x)
value in fewer function evaluations. Figure 3 presents these results, based on the performance of
the implementations for the 24 commonly-used objective functions. The various implementation
performances were compared and ranked; Figure 4 contains the resulting heatmap.
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Figure 3: The performance of the DE implementations on the 24 commonly-used objective functions
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Figure 4: The overall ranking of the DE implementations on the 24 commonly-used objective
functions

The implementations were compared to determine whether they differed and, if so, how this differ-

ence impacted the algorithm. According to Figure 4, DFE5; was the best-performing implementation,
while DFE, was the worst-performing implementation.

DE5 is analysed based on how this implementation uses its Mutation, Crossover and Selection.
This part is described in the next section.

or g in range(max gen):
for i in range(pop size):

= indices [0]; b = indices|[1]|; ¢ = indices |2]
mutation = population|a] + F %
(population |b| — population|c])
new soln = np.zeros (dim)
for k in range (dim):
= np.random .random ()
1t p < cr:
new _soln|k| = mutation |k|
else:
new_soln|k| = population|i]]|k]

The Mutation, Crossover and Selection sections in the D E5 implementation
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An analysis of DE;5 based on part of its code revealed that it begins with two loops to iterate over
every vector in the population size. In a subsequent third loop, three random vectors are selected to
create a mutation. Afterwards, the mutation and the new candidate vector are checked to ascertain
whether the evaluation value of the new candidate has a better fitness score than the best vector so
far. If so, the current best vector is replaced by the new candidate. This process continues until no
vectors are left in the population. This code is similar to the pseudocode 3 and is therefore highly
effective.

DE5 is very similar to the Pseudocode 3, while the creation of the sections Mutation, Crossover
and Selection of DFE, has a different structure. D E) looks as follows:

for 1 in range (POPULATION):

while 1 < MAX ITER:
i +=1
k = np.random.randint (0 ,POPULATION, 3)
Vs +F o« (£(s[k[0])— £(s[k[1]]))

is _cross = np.random.rand (POPULATION % len(lb)).reshape((POPULATION, len (1b)
v =23 =% (1 — is_cross) + v % is_cross

for p in range (POPULATION):
f new = f(v|p])

if (f_new <= fitness|p]):
s[p] = £(v[p])
fitness [p] = f new

The Mutation, Crossover and Selection section in the D FE, implementation

Unlike DE;, DEy consists of two main loops. The first loop goes over the number of vectors in
the population, and the second loop goes over the number of iterations. In each iteration, three
variables are selected for mutation. Afterwards, the mutation is checked with constraints and
crossed to create a new gene. In the second part of the code, the new candidate vector is evaluated.
This is where it goes wrong. The fitness function of f,, is compared to the evaluation value of f, ...
If the fitness score of f,.,, is better than the value of the fitness of the evaluation and f,,, then
Jope 18 replaced by the new candidate vector f,,,,. However, this event rarely transpires because
the evaluation process occurs in a different for loop. The for loop iterates over the population of
vectors and thus repeats the optimisation only 30 times.

The difference between the DFEy and DFEs5 algorithms is their structure. DEj; starts with a first
loop over the max ., which is equal to the variable Maw;., in DE,;. The next loop goes over the
population, which equals 30. The DF process is an exact reverse; it first loops over the population
and afterwards over the Maw;,,. What occurs inside these loops is consequently highly important.
DEj5 uses these two loops along with a third loop to create mutations and uses these mutations
to create new candidate vectors. These candidate vectors are evaluated, and when the evaluation
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score is better than the prior best fitness score, the new vector replaces the previous best vector.
This method is highly efficient and enables an optimum to be found. In contrast, DFE, uses the
two loops to create a mutation, and afterwards the loop ends. DFE, is therefore inferior as it fails
to evaluate the mutations inside these two loops. The algorithm should create candidates and
afterwards evaluate these candidates to determine whether the fitness score of the parameter is
better than the current best vector. DE; thus has a third for loop, which evaluates the fitness
scores of the new candidate vectors in the population. The lack of improvements is logical because
the new candidate score is compared to the current best score in a new for loop. The new for-loop
iterates over the population from 30, and this is where the function begins to evaluate.

The three acts to be carried out by the DE algorithm are Mutation, Crossover, and Selection, as
explained in 2.3. Both implementations make use of the same three formulae. Additionally, both
implementations use the same parameter settings, as explained in 3. As a result, the only parameter
for DE that can differ between implementations is the number of iterations. To detepssine whether
the differences between the implementations are significant, it is crucial to compare ﬁ number of
iterations. Because the number of iterations for DE; is twice as large as for DE,, DFE; can update
its Mutation, Crossover, and Selection two times as frequently. The difference in iterations can be
explained by examining how frequently the implementation updates the Mutation, Crossover, and
Selection formulae. Since DFE5 updates these formulae every iteration, whereas DE; primarily does
this once every two iterations, DE5 executes the most crucial part of the algorithm more frequently
and thus performs better. Because of this, DE; outperforms D E, on the 24 most-commonly used
objective functions.
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5 Conclusions

Algorithm implementations can be compared in many ways. This study opted to compare their
performance for 24 commonly-used objective functions. Using this metric, it was possible to rank
the implementations and identify the greatest differences. To conclude that they differ in fact,
the experiment on both implementations must be the same. As a result, the implementations’
parameter settings, evaluation score, and formulae must all be the same. Since the only parameter
that may change in each implementation is the number of iterations, it can be inferred that there
is a fundamental difference between the implementations if the number of iterations is not equivalent.

The next step was to investigate the cause of these differences. For the PSO algorithm, PSO; ranked
as the best-performing implementation, while PS0O; was the worst-performing implementation.
The high performance of PSO; was due to the number of total iterations combined with the number
of velocity and position updates. PSOs had 99 iterations, and both the velocity and position were
updated each iteration, while PSO; only consisted out of 50 iterations. The parameters for position
and velocity must accurately update during each iteration. Each iteration involves adjusting p;, g,
and v; to achieve this. Therefore, the parameter velocity should be updated every iteration and
used to update the parameter position. The parameter position should be used to update the best
particle and global positions when the value of the new position is better than the existing best
particle or global position. Since PS0j; has twice as many iterations as PS0O;, PSO; may update
the position and velocity formulae two times as frequently. As a result, PSOs outperforms PS0,
on the 24 commonly-used objective functions.

The DE implementations were also ranked based on performance. Accordingly, the best-performing
implementation was DFE5, and the worst was DFE,4. The reason why D Es performed better relates
to what occurred inside the iterations. Three genes were initially chosen after the second loop and
used for mutation and crossover to perhaps produce a solution. The possible solution was evaluated
and compared with the best value achieved. The best value was replaced with the possible solution
when this possible solution had a better evaluation score. The next iteration was identical by
taking the next gene in the population. The three steps of the DE algorithm—Mutation, Crossover,
and Selection—are crucial. To create a more successful algorithm, these steps should be repeated
as frequently as possible. Currently, two times as many iterations with DFEs as with DFE, are
required to achieve the same evaluation budget. As a result, there are twice as many updates in
the Mutation, Crossover, and Selection for DEj as for DE,. Therefore, DE5 outperforms DE, on
the 24 commonly-used objective functions.
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6 Further research

This research has shown that there are significant differences between the frequently searched
implementations of the DE and PSO algorithms. As a result, some implementations have greatly
outperformed others. The PSO and DE algorithms were the main subject of this study; the other
black-box optimisation benchmark problems were not. This could serve as the starting point
for further research into whether this holds true for the other black-box optimisation benchmark
problems. The second section of the study concentrated on how the implementations varied from
one another. This study has demonstrated how important it is to repeat the algorithm’s most
crucial steps as frequently as feasible. The most important formulae, for instance, need to he
modified after each iteration. It was discovered that an implementation performs noticeably worse
when given half as many iterations as opposed to an implementation given twice as many iterations.
How much an algorithm is impacted by each iteration that it receives might be the subject of future
research.
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