
Computer Science

Proxy Caching in Accenture’s Employee Evolution Tree

Project

A case study of it’s effect on performance

Lucas Allison

dd/mm/yyyy

Thesis Supervisors:
Dr. A.W. Laarman
Dr. A. Uta

Internship Supervisor:
Guillermo Martinez, Senior Manager at Accenture

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl

www.liacs.leidenuniv.nl

Abstract

For this thesis we explored if proxy caching could increase the performance of Accentures
Employee Evolution Tree project. We did this by deploying a proxy cache and benchmarking
it with a realistic workload. We studied the influence of several eviction policies on the
performance of the cache, namely LRU, LFU, GDS, GDS and TinyLFU. We also distributed
the cache to see of this could better handle an increasing amount of concurrent requests. From
the experiments we found that the proxy cache did not increase performance. The eviction
policies had little effect the functioning of the cache and distributing the cache increased the
average response latency.

Contents

1 Introduction 1
1.1 Context . 1
1.2 Microservices and their use case . 1
1.3 Problem statement . 2
1.4 Research questions . 2
1.5 Contributions . 2
1.6 Overview . 3

2 Background 3
2.1 Technology stack of the Employee Evolution Tree Project 3
2.2 General terminology . 3

2.2.1 The HTTP protocol . 3
2.2.2 REST APIs . 3
2.2.3 Scaling applications . 4

2.3 Caching . 4
2.3.1 Where can caching be applied? . 4
2.3.2 What to cache? . 5
2.3.3 Invalidation . 6
2.3.4 Eviction . 7
2.3.5 Performance measures . 7

3 Implementation 7
3.1 Proxy cache implementation . 7
3.2 Cache control middleware . 8
3.3 Expected effect of the implementation on performance 10

3.3.1 How can the proxy cache increase performance? 10
3.3.2 Managing eviction . 10
3.3.3 Preventing a bottleneck . 11

3.4 Example trace . 11

4 Experiments 13
4.1 Validation . 13
4.2 Experiment setup . 14
4.3 Experiment Results . 15

4.3.1 Increasing the request count . 15
4.3.2 Increasing amount of concurrent requests . 15
4.3.3 Distributing the cache . 16
4.3.4 Decreasing the cache size . 16

5 Related Work 16

6 Conclusions and Further Research 17

7 Acknowledgment 18

8 Appendix 19

1 Introduction

1.1 Context

This thesis has been written for Leiden University while following an internship project at Accenture.
This is a global consultancy company with large departments specialized in technology. Every
employee is assigned a level: this starts at 13 and can decrease to 1 as they progress within in the
company by way of promotions. To gain promotions people are expected to deliver adequate work
but also to keep evolving their skill set. To do so employees can follow online courses, conferences,
presentations from colleagues and many other resources. However, it is unclear what skills should
be obtained at which level. Moreover the resources are scattered and can be difficult to find. The
Employee Evolution Tree project strives to resolve these problems by offering a simple and easy to
navigate dashboard where all learning resources can be found and an employees progression can be
tracked. The thesis project has been designed around this internship project and seeks to add value
to it by increasing it’s performance.

1.2 Microservices and their use case

The backend of the Employee Evolution Tree is written in Go and separated into microservices.
In a microservice architecture an application is split into different services which are deployed
in an isolated manner, often running on separate severs or their own operating system process.
Ideally, these services are small and focused on one specific functionality [New15]. Consumers
(e.g. the frontend or other services) access this functionality by communicating with an interface
provided by the service. A common way is to expose REST over HTTP, which is the case for the
Employee Evolution Tree services. This is in sharp contrast with the classic monolithic structure,
where functionality is often separated through packages, modules or libraries. Which approach is
used has many consequences for the development process. For the microservice architecture Chris
Richardson defines the following reasons as some of the key benefits in his book “Microservices
Patterns” [Ric19]:

• It enables the continuous delivery and deployment of large, complex applications.

• Services are small and easily maintained.

• Services are independently deployable.

• Services are independently scalable.

• The microservice architecture enables teams to be autonomous.

• It allows easy experimenting and adoption of new technologies.

• It has better fault isolation

This is particularly useful when writing large scale software with many contributing developers.
Therefore it has become a popular architecture for many companies.

1

https://www.accenture.com/

1.3 Problem statement

Microservices do not come without their drawbacks. The development process is more complex
and debugging the application can be significantly more difficult. Microservices do not only effect
developers. As opposed to a monolithic architecture there are problems specific to microservice
architectures which frequently occur and affect the user perceived latency:

• Communication between services is complex. This requires remote calls which can increase
latency, especially when these are synchronous calls which often appear for GET requests. In a
monolithic architecture local in process calls are used which do not incur any network latency.

• Managing consistency between services can effect performance. Keeping other services informed
and processing messages from them causes overhead, particularly when this is not managed
by asynchronous message queues.

• Data might be more difficult to access. In the Employee Evolution Tree project each microser-
vice has their own database only accessible through the interface provided by the service.
When a different service needs access to a different databases it has to communicate through
the separate services. It cannot directly query a single database.

If not dealt with properly these aspects can lead to long response times.

1.4 Research questions

Designing a backend well can be difficult and performance issues (as mentioned in Section 1.3) can
always occur, especially for inexperienced microservice developers. For this research project we are
seeking to decrease the overhead of microservices and increase the performance of the backend.
We will try to do this by deploying a proxy cache. In further sections we will describe in detail
what this entails and in Section 3 we will elaborate on this choice of a proxy cache as opposed to
other forms of caching. The main question we seek to answer is: Can proxy caching increase the
performance of the Employee Evolution Tree application? We will also consider the following sub
questions to help answer our main question:

• Which eviction algorithms yield the largest increase in performance?

• How do we prevent the cache from becoming a bottleneck as the workload increases?

There is one last question which is particularly useful for Accenture, since it is a consultancy
company: In what scenarios can proxy caching bring value to a client?

1.5 Contributions

In this thesis we will explore the effect of a proxy cache on the Employee Evolution Tree project. We
will use existing literature to design the cache and through experiments we will see how they effect
the performance. Caching has been extensively researched, so in this paper we will try to combine
this existing knowledge into a useful extension of the Employee Evolution Tree. We will discuss
which aspects are necessary to successfully deploy a proxy cache within an existing application.

2

1.6 Overview

First we will introduce all necessary terms and background information in Section 2 needed for the
rest of this thesis. In Section 3 we will discuss the cache implementation that has been made for
this project. We will cover the experiments to measure its performance in Section 4. Some related
papers and research will be discussed in Section 5. Last, the conclusions and further research can
be found in Section 6

2 Background

2.1 Technology stack of the Employee Evolution Tree Project

The project consists of two parts: the frontend and backend. The frontend is a React app hosted on
an Azure App Service. The backend is a collection of microservices written in Go hosted on an
Azure Kubernetes Service. Each service has their own database: depending on the requirements of
the service this is either a MySQL or a MongoDB database.

2.2 General terminology

2.2.1 The HTTP protocol

There are many protocols which computers can use to interact over the internet. In the case of the
Employee Evolution Tree this is by means of the HTTP protocol. A request is sent to the server, to
which it replies with a response over a lossless TCP connection. The three most important aspects of
a HTTP request are the method, headers and body. The method denotes what operation the sender
wants the server the execute, the headers contain key-value paired meta data and the body contains
any data that the sender wishes to supply to the server. Upon receiving a request the server can
“choose” to act upon it and send back a HTTP response. This is a way to inform the sender of the
request how the server has handled it. Besides also having headers and a body, a response returns
a status code: this indicates whether the request has successfully been completed.

A HTTP request potentially alters the state of the server. This is the case when the request method is
POST, PUT or DELETE1. We will refer to them as invalidating requests, since they possibly invalidate
cached data (see Section 2.3.3). A GET request only asks to retrieve data from the server and does
not alter it.

2.2.2 REST APIs

Uniform Resource Identifiers, or URIs, are a way to address resources on the internet. A URI has
the following format:

URI = scheme :// host / path

1The HTTP protocol has many more request methods, but these are not supported by the Employee Evolution
Tree backend and therefore not considered in this thesis.

3

https://docs.microsoft.com/nl-nl/azure/app-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/#overview

The scheme denotes the protocol that is used to access the resource. The host is either an IP address
or a domain name which resolves to this address. The path denotes a resource of the backend
relative to the base of the server (this can be compared to the root folder ‘/’ in Linux systems).
If a servers resource is accessible through a URI with a given scheme, the host that identifies the
server and a path, it is also referred to as an endpoint. To interact with the Employee Evolution
Tree HTTP requests can be made to URIs which identify endpoints of the backend.

The accessible URIs of the backend follow the REST design pattern. This has useful benefits when
interacting with the backend, but for caching it is important to know that REST APIs impose a
hierarchy on the paths. This means that a path conveys a resource model, with each forward slash
separated path segment corresponding to a unique resource within the model’s hierarchy [Mas12].
Consider the following URI:

https://mydomain.com/paths/pid/skills

This path implies that there are paths (accessed by /paths), which can be accessed individually by
their path ID (accessed by /path/pid) and finally the skills belonging to this specific path can be
accessed by the example.

2.2.3 Scaling applications

We can differentiate between two ways of scaling applications: vertical and horizontal scaling. In
vertical scaling the computing power of the host machine that runs the application is increased (e.g.
more RAM, CPU cores, etc.). In horizontal scaling the amount of machines that the application
runs on is increased. In this case the application will be run distributively over these machines
[Clo21]. It is important to note that vertical scaling is powerful but the amount of hardware that
can be added to a machine is limited. Horizontal scaling can relieve this problem (you can add as
many machines to the distributed system as you have to your disposal) but is only useful when
the application is parallelizable. Note that for applications serving HTTP requests this is the case.
Requests are independent of each other be handled separately. This observation will be useful when
considering the scalability of the proxy cache.

2.3 Caching

Caching in computer science is the practice of storing data in temporary storage that is often in
closer proximity to the processing/querying party to decrease latency and increase throughput.
Often it is referred to in the context of hardware performance, but it can be used in many more
places. For this thesis we will specifically look at caching within the context of web applications
where it can also be desirable.

2.3.1 Where can caching be applied?

When implementing caching for web applications there are three main places it can be applied
[New15]:

1. Client-Side/browser caching: the cache runs on a users device. This is mostly managed
by a users browser but can also be controlled by the frontend.

4

2. Proxy caching: a proxy is placed in between two parties communicating over the internet.
This could be in between the client and the frontend or the frontend and the backend. The
proxy intercepts requests and potentially serves cached data. This is useful when data has to
be served in places geographically far from the server hosting the application. It is easy to
build upon existing systems and is deployed separately from the actual web application.

3. Serverside caching: here the servers running the application handle the caching. Specifically
for a microservice architecture this could mean that an individual service chooses to implement
and serve data from a cache. The implementation can be easier to reason about than proxy
caches and the bottlenecks (services with high latency) can be specifically targeted.

In the context of the Employee Evolution Tree project these are depicted in figure 1. In the first
case the cache is called a private cache. The latter two cases are referred to as shared caches [con22].

Private (browser)

Cache
Proxy Cache Serverside

Caching

HTTP Request

HTTP Response

Frontend
Backend

Microservices
Storage

Figure 1: Possible cache locations for the Employee Evolution Tree project

2.3.2 What to cache?

The RFC document 7234 [Fie14] describes rules for HTTP caching. HTTP responses can be saved
as key value pares in the desired cache. It states that caching responses is often limited to GET

requests that return a status code of 200 (status OK), but can also store them when the status code
is 301 (Moved Permanently), 404 (Not Found) or 206 (Partial Content). Caching can be extended
to DELETE and PUT requests, since they are idempotent operations [Mas12]. But these are often
omitted from caching, since this is not always implemented properly.

A cache should be aware of certain headers supplied in the request/response, since these can be
added as directives for it. The RFC defines the following rules, which must always be followed
[Fie14]:

• The request method is understood by the cache and defined as being cacheable, the response
status code is understood by the cache, and the no-store cache directive does not appear in
request or response header fields.

• If the cache is shared, the private response directive does not appear in the response and
the Authorization header field does not appear in the request, unless the response explicitly
allows it (by setting the public and must-revalidate directives).

If the cache adheres to all the impositions a response can be cached.

5

2.3.3 Invalidation

We say a cache entry is invalid or stale when the entry in the source and cache do not match for the
given key. Specifically for web caches this means that if a GET request is made to a certain endpoint
the corresponding cached response cannot be served, since a request directly to the backend would
yield a different response. If an entry can safely be served by the cache it is called fresh. Cache
invalidation usually refers to removing or replacing the entry, but in proxy caches the entries are
blacklisted [Unk21]:

“A reference to the cached content is added to a blacklist (or ban list). Client requests are then
checked against this blacklist, and if a request matches, new content is fetched from the application,
returned to the client, and added to the cache.”

Cached entries can be added to the ban list once an invalidating request modifies the entry on the
origin server.

How invalidation is manged depends very much on the context. The most common case for proxy
caches is that the server controls the cache by supplying it with the expires or max-life header,
indicating how long the cache can consider the entry to be fresh. After the entry has surpassed
it’s “lifetime” etags (see Section 3.2) can be used to revalidate the entry [con22]. Note that in
this case the invalidation is managed by the server, not the cache. This is because in web caching
not all entries can be treated the same by the cache. For example some entries should always be
revalidated (e.g. to check credentials) or never cached while others (such as static content) can be
served without revalidation for very long periods of time. There are many other aspects to consider,
so the caching possibilities for an endpoint depend very much on the implementation and requires
knowledge about that endpoint to determine what they are. Therefore it is useful to “control the
cache” from the backend so that all the caches that the response passes through (e.g. proxy cache,
client side cache, etc...) handle it in the same way. It is still possible to maintain the blacklist
within in the cache, as long as the server has already informed it about the cachebility of its entries.
However there are two main reasons to keep the blacklist on the server side. First, once different
proxy caches are deployed it is easier to manage from the backend. Say we are running two proxy
caches in geographically different locations, let’s refer to them as cache A and B. If invalidation is
managed separately and an invalidating request passes through A than either B would be unaware
of this and could potentially serve stale content or A would have to keep B informed about the
requests it receives (and vice versa). Enforcing consistency between these caches can be difficult, so
managing it from a central point can be convenient. Second, in many cases the proxy cache has to
confirm with the backend if a user has the proper credentials for the requested entry (in the case
of the Employee Evolution Tree this holds for all endpoints). For these requests the cache has to
communicate with the backend before serving a cached response, so confirming with the blacklist if
an entry is fresh at this moment does not incur any overhead.

The cache control can be implemented in a microservice itself or even for specific endpoints. This
can be useful if you want the cache to behave in a certain way for the responses of this particular
service/endpoint. It can also be managed by more generic middleware which can be included in
the microservices where caching is desired. The middleware can also be executed for every request,

6

managing cache control for all endpoints.

2.3.4 Eviction

The eviction policy of a cache determines which entry to remove once it becomes full. A good
eviction policy is a very important aspect of a well functioning cache: we do not want to remove
entries that are frequently accessed. In contrast to CPU caches, which deal with uniform sized
entries, proxy caches have to be able to deal with vastly different sized entries. In Section 3.3.2 we
will discuss policies implemented for this thesis.

2.3.5 Performance measures

The Hit Ratio (HR) and Byte Hit Ratio (BHR) are common ways to measure the performance of a
cache. The Hit Ratio denotes the percentage of requests to which the cache can serve a saved entry.
The Byte Hit Ratio is similar, but denotes the amount of bytes served by the cache as a percentage
of the total amount of bytes served to the user. Let N be the total amount of requests. Let δi = 1 if
request i ∈ N is served by the cache and δi = 0 otherwise. Lastly, let bi denote the amount of bytes
served for the ith request. Mathematically these measurements can be written as follows [WI11]:

HR =

∑
δi

N
BHR =

∑
biδi

biN

3 Implementation

As mentioned in Section 2.3.1 there are three possible locations to implement the cache. To adhere
to Accenture’s request to keep the thesis and internship project as separated as possible we will be
implementing a proxy cache. This can be deployed independently without having to write code
supporting it in the internship project. For client side and server side caching this is not the case.
For the former we would have to control the cache from the frontend, for the latter we would have
to implement the cache in the microservices themselves. In both cases the thesis and internship
code will become very coupled.

To successfully cache responses two parts have to implemented: the proxy cache and middleware
controlling it. They will be discussed separately.

3.1 Proxy cache implementation

The cache abstractly consists of three layers:

1. Request handling and tagging

2. Concurrent access and eviction management

3. Cache implementation

7

This is the case because the proxy cache is an extension of Google’s Groupcache. The first layer
is built on top of the existing cache in order to proxy and tag requests. The third layer has been
extended to support cache implementations with different eviction algorithms; Groupcache only
supports LRU eviction.

The first layer receives requests and determines what to do with them. If an invalidating request is
received it is immediately proxied to the backend (and received by the cache control). Responses
to these requests are never cached. In the case of a GET request there is more work to be done. If
the cache holds a response to this request it tags the request (with the etag saved for the cached
response, see 3.2) and sends it to the backend. The backend either responds with a status code
304 or with any other status code. In the former case this means the cached entry is valid and a
request to the second layer can be made to retrieve it. In the latter case the cached entry is invalid
(or not yet stored) and a request to the second layer can be made to store the response.

In order to store a response the first layer calculates and stores it’s etag. Afterwards it deconstructs
and encodes the response as a byte array which is sent as a key value pair to the second layer. The
key is set to be the path of the URI that the request is sent to. If the cache wants to serve a fresh
entry, the first layer retrieves the stored byte array which it decodes and uses to reconstruct a
response that can be served.

The second layer manages requests to store and retrieve data from the cache (the third layer). This
is done by using a mutex lock. The lock can be held by an arbitrary number of readers or a single
writer, which ensures data consistency when concurrent writes appear. When the first layer wants
to retrieve an entry, the second layer obtains the lock as a reader and returns whether the cache
holds data for the supplied key and if so it also returns the data. In case the first layer wants to
store data the second layer obtains the lock as a writer and stores the key-value pair in the cache.
If the entry will cause the number of bytes stored by the cache to exceed the maximum number of
available bytes (set by the programmer), a request is made to evict entries until there is enough
space to store the new key-value pair.

The third layer is the implementation of the actual cache. It stores key-value pairs which can be
removed based on an eviction policy. This is discussed further in Section 3.3.2.

3.2 Cache control middleware

As mentioned in Section 2.3.3 the cache is controlled by the backend. In this project the cache
control has been implemented as middleware running on the backend cluster. It is essential in
making the cache useful. Invalidation is completely managed by the middleware and it informs the
cache about the freshness of its entries. It intercepts requests before they go on to the designated
microservice. Even though it is a part of the backend the middleware can be though of as “sitting in
between” the proxy cache and the backend. Therefore they will be discussed as if they are separate
entities.

Fundamentally the middleware stores etags (or simply tags) for each endpoint accessed by GET

requests. An etag is a hash of a HTTP response. When an endpoint is accessed by a GET request for

8

https://github.com/golang/groupcache

the first time the etag of the response is saved by both the middleware and the cache. The cache can
now confirm with the middleware if it’s entry is fresh by sending the etag to it. If the etag’s match
the status code 304 is sent back to the cache. If the etag is empty or not present this means that
the cached entry might not be fresh anymore. The middleware forwards the request to the backend
and determines and saves the etag for the given response. Before sending the response to the cache
it compares the etag supplied by the cache with the newly calculated etag once again: it is possible
that the cache still holds a valid entry. If they match the status code 304 is sent, otherwise the
response from the backend. Notice that in the former case the latency is not necessarily reduced,
but the amount of bytes sent over the network is decreased.

Invalidation is a bit more difficult. Blacklist too many endpoints and the cache will become obsolete.
Targeting very specific endpoints to blacklist is the most effective but can be computationally
intensive or difficult to implement. In this middleware the following heuristic is used: if an invalidating
request is made to a microservice all endpoints of this microservice are blacklisted. This heuristic is
useful since the microservices should have tight coupling and loose cohesion [New15]. Therefor it is
likely that an invalidating request to a microservice has an effect on many of its endpoints, but not
on those of other services. In the backend a request is routed to a microservice based on first prefix
of the path of a URI. For example the path

/users/5/skills

is routed to the user service, since /users indicates that all paths containing this prefix are related
to users due to the hierarchy imposed by REST API’s 2.2.2. We use this to our advantage and let
the first prefix of a path create a natural categorization for saving tags. Each tag is saved in a tag
pool. A tag pool contains all tags for endpoints accessed with the same prefix (in the backend they
would be routed to the same microservice).

When an invalidating request comes in all tags within the corresponding tag pool are blacklisted.
Blacklisting in this case simply refers to setting the etag to be empty: empty tags are never used for
comparison, so the tag pool controller will always forward requests for these entries to the backend.
Notice that we now probably over invalidate endpoints. It can be the case that an endpoint is not
effected by the invalidating request. So an empty etag in the middleware does not imply that a
cached entry is stale, it just cannot guarantee that it is fresh.

Note that it is possible that a request to a specific microservice can also invalidate endpoints of
different microservices (this occurs when the services are coupled). In this case the programmer has
to explicitly set instructions for to the tag pool controller. Once the request comes in all tags in the
coupled tag pools are concurrently blacklisted.

Finally, there is one more important thing to note: storage is never infinite, so if the tag pool
becomes full (a maximum amount of tags/bytes are stored in the pool) tags are removed based on
the LRU policy.

9

3.3 Expected effect of the implementation on performance

3.3.1 How can the proxy cache increase performance?

When the proxy cache is deployed it has two advantages that can decrease latency:

1. Each time a GET request is made for which the cache holds a fresh entry this can directly be
served as a response. There is no need for the backend to retrieve data from a database or
recompute the same response.

2. The proxy cache can be deployed geographically closer to originating requests, incurring less
networking latency.

Managing the cache also incurs overhead, especially when an entry is stale or not present. However
the expectation is that this effect is small compared to serving requests directly from the backend.

3.3.2 Managing eviction

The eviction policy that is used can have a big effect on the performance of the cache. On
initialization a specific eviction policy is chosen to manage the storage. The following policies are
supported:

• LRU : evict the least recently used entry.

• LFU : evict the least frequently used entry.

• GDS : function based eviction.

• GDSF : an extension of the GDS algorithm also taking frequency into account.

• TinyLFU : manages cache admission on top of eviction.

The advantages of LRU and LFU are that they are fast and easy to implement. They also retain
entries based on intuitively valuable aspects: recently and frequently accessed items are more likely
to be accessed again. The GDS algorithm is designed to consider specific properties of internet
resources. It is a function based eviction policy and takes the recency, fetching cost and size of
entry into account. The GDSF algorithm extends this by also considering the frequency of the
entry. The TinyLFU algorithm seeks to combine the desirable aspects of considering recency and
frequency by evicting based on the LRU policy and admitting based on LFU.

The downside of the LRU and LFU policies is that both of them are limited since they only take a
single aspect of the access pattern into account. The expectation is that using a more sophisticated
policy, such as the latter three, will yield better performance results. They are discussed in more
detail in Section 5

10

3.3.3 Preventing a bottleneck

As the application scales and the amount of requests increase it is important that the proxy cache
and the middleware can keep up with the demand. If they cannot this would make the cache
irrelevant.

We can scale the cache vertically, but as mentioned in Section 2.2.3 there is a limit to this approach.
We can use the fact that HTTP request can be handled independently to distribute the cache over
multiple machines which can serve them separately. This is achieved by defining a cache pool on
initialization. This is a constant sized array containing the HOST addresses of each cache instance.
If our array has 50 entries and we have 3 caches the HOST address of each cache will appear
roughly 50

3
times. They are inserted in a cyclical manner: in our example the HOST address of the

first cache will appear at the index 0,3,6, etc. When a request is sent to the cache the path of the
URI is hashed and used to determine an index within the array boundaries. Retrieving the entry
from the cache pool with this index yields one of our cache addresses to which the request can be
forwarded. This is called peer picking.

For the middleware there are two main concerns to keep in mind:

1. Checking if an entry is fresh and blacklisting endpoints should be fast operations: if this is
not the case the backend could have directly served the response.

2. It should scale well horizontally: the same argument holds here as it does for the cache. If the
workload increases the middleware could become a bottleneck, so having the possibility to
scale it easily is important.

Figure 2 shows the components of the middleware. With the help of this illustration we can easily
explain why the middleware satisfies our requirements. Checking if an entry is fresh can be done
very quickly. A tag can be retrieved in constant time O(1). This is because the tag pool controller
accesses tag pools through a map, using the prefix of the URI that the request is made to as a
key. Within the tag pool a tag is accesses through another map with the entire path as the key.
Blacklisting can be done in polynomial time O(n), where n denotes the amount of tags of the largest
tag pool. This is because for an invalidating request all tags within a tag pool are set to be empty.
The figure also shows that it can easily be scaled horizontally: tag pools operate independently of
each other and can be managed on different machines. The only difference now being that the tag
pool controller accesses a pool over the remotely.

3.4 Example trace

To clarify how requests are served and endpoints are invalidated we will show an example of a
request trace. Consider that the cache holds data for the endpoint /path/3 and when the response
for this endpoint was cached the etag was calculated and set to “3a4dk”. Now consider three
consecutive requests depicted in figures 3, 4 and 5 respectively.

11

Tag pool controller

/paths tag pool /users tag pool /blogs tag pool

Tags TagsEtag: 5yt7

Safe: True

Etag: 6h8j

Safe: False

Tags

Tag for /paths/5

Tag for /paths/9/skills

¥
0

Figure 2: Cache control middleware

The first request is a GET request to the cached endpoint /path/3. The request is first tagged by
the cache and sent to the backend. The middleware validates this tag and sees that it is safe and
equals the tag for this endpoint, which means the cached data is valid. There is no need to retrieve
the data from the backend so the middleware responds with the status code 304. The cache is
informed that it’s data is fresh and responds with the cached entry.

Match: respond

with 304

Response:

Statuscode 304

Cached data

valid:

Retrieve and

serve

Response:

Cached

value

Endpoint: etag

/path/3: "3a4dk"

Request: GET

/path/3

Request: GET

/path/3

Request: GET

/path/3

Tag

Request

Cache control EET Backend

Validate etag

Cache

ii.

Figure 3: Cached data is fresh

The second request is a POST request. This potentially invalidates all data for endpoints with the
prefix /path, so all tags within the tag pool /path are set to empty by the middleware.

12

Request: POST

/path/3/skill/5 Proxy

request
Invalidate

endpoints

Response: Statuscode 200

EET BackendTagging middleware
Proxy cache

Request: POST

/path/3/skill/5

Request: POST

/path/3/skill/5

p
Figure 4: POST request invalidating endpoints

The third request is another GET request to the endpoint /path/3. As with the first request it is
tagged but the middleware sees that the tag is empty. The request is sent to the backend and its
etag is calculated. The middleware compares it too the supplied etag and sees that they do not
match: the POST request changed the data for this endpoint. The middleware cannot respond with
the status code 304 so it sends the respond from the backend to the cache, which updates the entry.

Request: GET

/path/3

Request: GET /path/3

(etag:"3a4dk")
Validate etag

Empty Tag:

Forward request

Store

response

Cache

EET BackendCache control
Proxy cache

Response:

Statuscode 200

{pid: 3, …}

Tags do not match:

Store tag

Endpoint: etag

/path/3: "7uk82"

Tag

Request

Request: GET

/path/3

Response:

Statuscode 200

{pid: 3, …}

Response:

Statuscode 200

{pid: 3, …}

11
"
"

Figure 5: Cached data is stale

4 Experiments

4.1 Validation

Before running the experiments it is important to validate that the cache behaves as expected. A
big pitfall of caching is serving stale data. This undesirable for two reasons:

1. Stale data might never be evicted, potentially being served forever.

13

2. If a lot of stale data is served the benchmarks will not be realistic, since this is computationally
less expensive than fetching fresh data for an endpoint.

It is difficult to guarantee that a cache will always serve fresh data, but in order to combat this
problem a validator has been written, which can optionally be enabled. For every entry that the
cache serves the validator confirms with the backend whether this data is actually fresh. If this is
not the case it will write to the logs for which entry this appears. Requests can be generated and
sent to the proxy cache, as described in section 4.2. The logs are now easily examined to determine
the correctness of the cache.

4.2 Experiment setup

In order to yield the most realistic results we will use the existing server infrastructure to deploy
the cache. We have two servers to our availability: the Kubernetes cluster from the backend and
an Azure App Service from the frontend. It is a possibility to deploy the proxy cache on the
Kubernetes cluster, however if it would be used in a production environment it would be deployed
on a separate server, preferably as close as possible to the originating requests. To simulate this we
will deploy the proxy cache on the Azure App Service. Both servers are located in West-Germany,
so the proxy will not have a geographical advantage, however we do not have a server at our
disposal for which this is the case. The proxy cache can be deployed within a slot. Here a web
app can run in an isolated manner accessible through a public endpoint. Each slot has 3.5 GB
of RAM available. We will use 2.5 GB of this for the storage of cached entries. The rest can be
used by the to Go program running the cache. In Section 4.3.4 we will look at a smaller cache size,
but in the rest of the experiments we will not vary this value. In a production environment the
cache size would also be set to be as large as possible, so there is no need to restrict it with less storage.

To benchmark the deployed cache a couple of steps are execute. First a custom Go program deletes
all data from the database and floods it with random entries. The entries that are generated are
based on what would be representative of the production database. For example the app will have
about 100 users, so this is the amount of users that will be generated as mock data. After having
generated the mock data the program generates trace files. These are simply files denoting which
endpoints are accessible. For example if the program would generate a path with ID 3 it would add
/path/3, /path/3/skill, /path/3/info and many others to the trace files. Each supported HTTP

method has a separate trace file. This is necessary because from these files a program called YCSB
generates a workload and sends requests to the cache. The program uses a Zipfian distribution of
the endpoints to generate an realistic workload. The amount of times a certain request method
occurs can be set as a percentage of the total amount of requests. For each experiment the total
workload consists of 80% GET requests, the other 20% are POST, PUT or DELETE requests. This
division is chosen since the application will be mostly used to retrieve information. Altering data
will occurs much less frequently. For each request YCSB can only set the method. However, some
requests require a body or specific headers. This is mostly the case for POST and PUT requests. To
solve this, the requests pass through a Go program which will make sure to turn them into valid
requests by adding a body and/or headers where necessary.

Each request in the experiments is generated and sent from a Dell XPS 15 (Intel(R) Core(TM)

14

https://azure.microsoft.com/nl-nl/services/app-service/
https://github.com/brianfrankcooper/YCSB

i7-9750H CPU @ 2.60GHz) located in Leiden. They are sent to the proxy cache on the Azure App
Service in West-Germany. The cache then communicates with the Kubernetes cluster, also located
in West-Germany. In case the performance of the backend is measured requests are sent directly to
the cluster, skipping the proxy cache.

4.3 Experiment Results

4.3.1 Increasing the request count

For the first experiment we will look at performance of the proxy cache as the request count
increases. A request is sent once the previous has received a response. In Figure 6 we can see the
average response latency to a request as the total request count increases. Here we can see that the
latency does not drop as the amount of requests increase. This is interesting to note since we can
see in figures 7 and 8 that the amount of responses served from the cache increases overtime. This
implies that serving an entry from the cache is not faster than serving it directly from the backend.
In fact, from Figure 6 is it is clear that the overhead that serving entries from the cache incurs
even slows down response times.

When looking at figures 7 and 8 we can see that the Hit Ratio and Byte Hit Ratio are nearly
identical for all eviction policies. At first this seems strange, as it would imply that they all evict
entries similarly. On closer inspection this is not the case, but rather that entries are not being
evicted at all. We ran the experiments with a cache size of 2.5 GB. If we look at the responses the
backend serves these are all very small, many under 1 KB. Some endpoints serve “larger” data,
for instance when requesting all paths, but almost all are under 20 KB. If we assume that each
response we cache is 20 KB (which is quite large overestimation), we can cache response for over 105

unique endpoints. This is well over the amount supported by the Employee Evolution Tree. Since
the workload is generated by the YCSB program and overtime will roughly send requests with a
similar access pattern, it causes the cache to contain roughly the same amount and variety of en-
tries for each experiment. This explains the similarity between the eviction policies seen in the figures.

We can also see that the TinyLFU algorithm sometimes performs much worse than the rest of the
eviction policies. This is probably due to the overhead that maintaining the counting Bloom filter
incurs. For each GET request the filter has to be updated. This is done by acquiring a mutex lock.
Waiting for other requests to finish updating the filter can slow down serving requests. This likely
caused the increase in response latency.

4.3.2 Increasing amount of concurrent requests

As applications become more popular the amount of concurrent requests will increase. In Figure 9
we can see the effect of sending requests on an increasing amount of threads to the cache and server.
For this experiment the request count was not varied and set to 15000. We can see that the latency
increases similarly for each eviction algorithm. This is likely due to the fact that entries are not
being evicted, as mentioned in Section 4.3.1. We can also see that the response latency of the server
increases as the amount of concurrent request increase. We can also see that the response latency
of the backend increases similarly, but for each amount of threads performs better than the cache.

15

4.3.3 Distributing the cache

Since the proxy cache can be distributed we will look at the effect of this as the amount of concurrent
requests increase. The experiment setup was the similar as in Section 4.3.2, however this time we
have varied with the amount of cache instances and set the eviction policy to be LRU for all caches.
In Figure 10 we can see that distributing the cache actually decreases performance. This is caused
by the overhead of forwarding a request. Since the single proxy cache can store all the responses,
having a different cache serve the response only increases the latency. It does seem the case that if
the cache is distributed (and the overhead of forwarding requests appears) using three distributed
caches over time will serve responses faster than two distributed caches.

4.3.4 Decreasing the cache size

For the last experiment we will try to find the smallest possible cache size for which it offers 90% of
the performance. This way we can make a recommendation for a cheaper cache. The total request
count will be set to 15000 and sent using 4 threads. We will measure it’s performance based on the
hit ratio. We will use hit ratio over average response latency since this will give an indication for
which amount of memory the cache can serve a similar amount of requests from it. The latency
will not be a useful metric since we’ve seen in the previous experiments that serving requests from
the backend is faster than serving them from the cache. For such a workload the cache used in
the previous experiments had a hit ratio of roughly 78% for all eviction policies. In Figure 11 we
can see that for all eviction policies a cache size of 7× 106 bytes (or almost 7 MB) is sufficient to
obtain 90% of the performance (in terms of hit ratio) of the full proxy cache. If the cache would be
smaller than this, the the LFU policy performs considerably worse and the TinyLFU policy slight
better than the other eviction algorithms.

5 Related Work

Since invalidation is very dependent on the context, most research is related to eviction policies.
Managing eviction for proxy caches is different than for example hardware caches. It deals with
vastly different fetching latencies and entry sizes. Coa and Irani developed the Greedy Dual Size
(GDS) algorithm specifically for this case [CI97]. Each entry is given a value based on a function.
A priority queue is maintained where entries with the smallest values are removed when they are
“popped” from the queue (i.e. evicted from the cache). Inserting entries can be done in O(log n)
time. By keeping track of all the existing entries in a map cache hit’s can be handled in constant
time, O(1). For an entry p it is assigned a value based on the following function:

H(p) = L+
C(p)

S(p)

Here L denotes an aging factor: it is updated as an entry is accessed which causes “old” entries to
be moved to the front of the queue more quickly. S(p) denotes the size of the entry and C(p) the
cost. How the latter value is determined depends on the goal of the cache. As mentioned in the paper:

16

“Cost is set to 1 if the goal is to maximize hit ratio, it is set to the downloading latency if the goal is
to minimize average latency, and it is set to the network cost if the goal is to minimize the total cost.”

The GDS algorithm does not take the access frequency of the entries into account. However it can
be useful to incorporate this. Cherkasova extended the algorithm by including the frequency while
determining an entries value, know as the Greedy Dual Size Frequency (GDSF) algorithm [Che98].
The function now becomes as follows:

H(p) = L+ F (p) · C(p)

S(p)

Where F (p) is initially set to 1 and incremented on every access.

Conventional eviction policies can be adequate, but are often limited. For example eviction based on
LFU is intuitively desirable; we want to keep frequently accessed items in the cache. But often access
patterns change rapidly overtime. A popular video on one day might not be viewed much the next.
In this case it is desirable to take the recency of the access patterns into account. For this Einziger,
Friedman and Manes developed the TinyLFU cache admission policy [GM17]. Instead of imme-
diately evicting an entry the algorithm decides whether it is desirable to cache the replacement entry.

TinyLFU uses the access frequency of entries to determine whether it is worth replacing an entry.
For this project the least recently used entry will be replaced. Keeping track of the full request
history will be too memory intensive. Instead it uses a counting Bloom filter to estimate the access
frequency of an entry. Normally a Bloom filter is used to predict whether an entry is part of a set.
It relies on the fact that false positive matches are possible, but false negatives are not. In the case
of TinyLFU this means that if the Bloom filter indicates that an item is accessed infrequently we
can guarantee that it is. However if it indicates that an item is accessed frequently we only know
that this might be the case. With this estimate we can now choose if we want to replace the least
recently used item with the newly accessed entry. This way infrequently visited endpoints are not
cached, and frequently visited ones replace the items that have not been visited recently.

6 Conclusions and Further Research

With the experiment results we can answer our research questions. It is clear that for a representative
proxy cache the choice of eviction policy matters very little. This is due to the fact that entries do not
have to be evicted, as mentioned in Section 4.3.1. The conventional eviction policies, LRU and LFU,
perform slightly better than others. This is however not because the eviction management is better,
but rather the “book keeping” of these algorithms is computationally less expensive. Distributing
the cache does not help in combating an increase in concurrent requests and even slows down
response times. Forwarding requests to another cache instance incurs unnecessary overhead. We
can surely say that proxy caching does not increase the performance of the Employee Evolution Tree.

From this project is has become clear that for an application that serves small amounts of data
and does not suffer any performance issues that proxy caching brings no value to it. However, in

17

the following scenarios it might be of use to one of Accentures clients:

• Large amounts of data have to be fetched from a server geographically distant from the
originating requests. A strength of a proxy cache is that it can serve content closer to the
source of requests, decreasing request latency. For companies this can be valuable since a
single server can be maintained but content can be served from a proxy closer to the clients.

• Generating a response is computationally expensive. If response latency of the server is high
due to expensive operations that have to be performed in the backend a proxy cache can
reduce response latency since the produced values do not have to be recomputed again.

• A large or difficult code base suffering from performance issues. Increasing the performance
by optimizing code can be difficult in these cases. A big advantage of a proxy cache is that it
can be deployed independently without having to have much knowledge of the application.
This could be an easier way to solve the performance problems than modifying the code base.

From the last experiment, discussed in Section 4.3.4, we can conclude that we if we are deploying
the cache this can be done on a much cheaper server. For example we could deploy it on Azure
B-series virtual machine. Here we have 0.5 GB of memory to our availability, which is more than
enough to run the cache with similar performance as the one deployed on the Azure App service.
The B-series virtual machine costs only 0.0052 dollars per hour, which is roughly 3,7 dollars a
month. This is considerably cheaper than the price of the Azure App Service, which costs 83.95
dollars per month. However, it is worth noting that scaling down the server for the proxy cache is
only useful if the server is dedicated to it. Currently deploying the cache does not incur any extra
costs, since the Azure App Service is needed by the frontend.

Further research can be done into the effects a proxy cache has on an application that serves larger
data and/or has performance issues. It can also study the effects of client side and server side
caching. This might yield better results than a proxy cache since requests do not have to pass
through the proxy server. For this thesis relatively simple eviction policies have been studied. Future
work can look into the effects of eviction policies using machine learning on performance. These
policies can for example use support vector machines or decision trees [NN18]. Another interesting
topic to look into is prefetching. Here the cache predicts the access patterns of users to fetch entries
before they are requested. This can be done for example by using Markov Chains [GF15].

7 Acknowledgment

The main contribution to this thesis is from Dr. A.W. Laarman. He set up the internship project
and allowed for the freedom of working on the thesis project besides it. Most of this project was
spent at Accenture, but it was always possible to ask for advise. Dr. A. Uta provided useful insights
on technical aspects of the thesis. Another important contribution is from Guillermo Martinez. He
allowed for us to experiment with many new technologies and provided the opportunity to work on
this research project alongside the internship project. Lastly, Joey van der Wijk helped develop the
backend of the Employee Evolution Tree, which the research project revolves around.

18

https://azure.microsoft.com/en-us/updates/b-series-update-b1ls-is-now-available/
https://azure.microsoft.com/en-us/updates/b-series-update-b1ls-is-now-available/

References

[CI97] Pei Cao and Sandy Irani. “Cost-Aware WWWProxy Caching Algorithms”. In: Proceedings
of the USENIX Symposium on Internet Technologies and Systems Monterey, California
(1997).

[Che98] Ludmila Cherkasova. “Improving WWW Proxies Performance with Greedy-Dual-Size-
Frequency Caching Policy”. In: Hewlett-Packard Laboratories. 1501 Page Mill Road Palo
Alto, CA 94303 (1998).

[WI11] Siti Mariyam Shamsuddin Waleed Ali and Abdul Samad Ismail. “A Survey of Web
Caching and Prefetching”. In: Soft Computing Research Group, Faculty of Computer
Science and Information System, Universiti Teknologi Malaysia, 81310 Skudai, Johor
(2011).

[Mas12] Mark Masse. REST API Design Rulebook. 1005 Gravenstein Highway North, Sebstopol,
United States: O’Reilly Media, Inc., 2012.

[Fie14] Ed. Fielding. Hypertext Transfer Protocol (HTTP/1.1): Caching. 2014. url: https:
//datatracker.ietf.org/doc/html/rfc7234.

[GF15] Arpad Gellert and Adrian Florea. “Web prefetching through efficient prediction by partial
matching”. In: Appeared in World Wide Web, Vol. 19, Issue 5, pp. 921-932, USA. (2015).

[New15] Sam Newman. Building Microservices. Sebastopol, United States: O’Reilly Media, Inc.,
2015.

[GM17] Roy Friedman Gil Einziger and Ben Manes. “TinyLFU: A Highly Efficient Cache Admis-
sion Policy”. In: ACM Trans. Storage 13, 4, Article 35 (2017).

[NN18] Sivaraj Nimishan and Sivaraj Nimishan. “An Approach to Improve the Performance
of Web Proxy Cache Replacement Using Machine Learning Techniques”. In: IEEE
International Conference on Information and Automation for Sustainability (ICIAfS)
(2018).

[Ric19] Chris Richardson. Microservices Patterns. Shelter Island, NY, United States: Manning
Publications Co., 2019.

[Clo21] CloudZero. Horizontal Vs. Vertical Scaling: How Do They Compare? 2021. url: https:
//www.cloudzero.com/blog/horizontal-vs-vertical-scaling#:~:text=While%

5C%20horizontal%5C%20scaling%5C%20refers%5C%20to,%5C%2C%5C%20storage%5C%

2C%5C%20or%5C%20network%5C%20speed..

[Unk21] Unknown. Cache invalidation. 2021. url: https://en.wikipedia.org/wiki/Cache_
invalidation#cite_note-:0-1.

[con22] MDN contributers. HTTP caching. 2022. url: https://developer.mozilla.org/en-
US/docs/Web/HTTP/Caching.

8 Appendix

19

https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7234
https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling#:~:text=While%5C%20horizontal%5C%20scaling%5C%20refers%5C%20to,%5C%2C%5C%20storage%5C%2C%5C%20or%5C%20network%5C%20speed.
https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling#:~:text=While%5C%20horizontal%5C%20scaling%5C%20refers%5C%20to,%5C%2C%5C%20storage%5C%2C%5C%20or%5C%20network%5C%20speed.
https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling#:~:text=While%5C%20horizontal%5C%20scaling%5C%20refers%5C%20to,%5C%2C%5C%20storage%5C%2C%5C%20or%5C%20network%5C%20speed.
https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling#:~:text=While%5C%20horizontal%5C%20scaling%5C%20refers%5C%20to,%5C%2C%5C%20storage%5C%2C%5C%20or%5C%20network%5C%20speed.
https://en.wikipedia.org/wiki/Cache_invalidation#cite_note-:0-1
https://en.wikipedia.org/wiki/Cache_invalidation#cite_note-:0-1
https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching
https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

·104

5

10

15

20

25

30

18,252

18,200

17,943

18,004

18,016

18,139

22,096

22,342

22,485

22,112

22,315

22,076

23,413

22,792

23,484

22,219

23,655

22,417

22,971

22,598

22,831

23,136

22,924

24,475

23,817

23,073

22,992

22,662

23,037

22,747

28,297

22,591

23,600

29,747

22,461

22,306

Average Latency (µs)

T
ot
al

re
q
u
es
t
co
u
n
t
(×

10
3
)

No Cache
LRU
LFU
GDS
GDSF

TinyLFU

Figure 6: Effect of an increasing request count on average latency

20

5 10 15 20 25 30
60

65

70

75

80

85

90

Request count (×103)

H
it
R
at
io

(%
)

LRU
LFU
GDS
GDSF

TinyLFU

Figure 7: Effect of an increasing request count on hit ratio

5 10 15 20 25 30
70

75

80

85

90

95

100

Request count (×103)

B
y
te

H
it
R
at
io

(%
)

LRU
LFU
GDS
GDSF

TinyLFU

Figure 8: Effect of an increasing request count on byte hit ratio

21

1 2 3 4 5 6

2

2.5

3

3.5

·104

Number of threads

A
ve
ra
ge

L
at
en
cy

(µ
s)

LRU
LFU
GDS
GDSF

TinyLFU
No Cache

Figure 9: Effect of an increasing amount of concurrent requests on average latency

1 2 3 4 5 6
2

2.5

3

3.5

4
·104

Number of threads

A
ve
ra
ge

L
at
en
cy

(µ
s)

Single Cache
Two Caches
Three Caches

Figure 10: Effect of distributing the cache over multiple instances

22

2 3 4 5 6 7 8

40

50

60

70

Cache Size (bytes ×106)

H
it
R
at
io

(%
)

LRU
LFU
GDS
GDSF

TinyLFU

Figure 11: Effect of restricting cache size of hit ratio

23

	Introduction
	Context
	Microservices and their use case
	Problem statement
	Research questions
	Contributions
	Overview

	Background
	Technology stack of the Employee Evolution Tree Project
	General terminology
	The HTTP protocol
	REST APIs
	Scaling applications

	Caching
	Where can caching be applied?
	What to cache?
	Invalidation
	Eviction
	Performance measures

	Implementation
	Proxy cache implementation
	Cache control middleware
	Expected effect of the implementation on performance
	How can the proxy cache increase performance?
	Managing eviction
	Preventing a bottleneck

	Example trace

	Experiments
	Validation
	Experiment setup
	Experiment Results
	Increasing the request count
	Increasing amount of concurrent requests
	Distributing the cache
	Decreasing the cache size

	Related Work
	Conclusions and Further Research
	Acknowledgment
	Appendix

