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Abstract

Rotating machinery are essential components in most today’s manufacturing and
production industries. Therefore, developing efficient approaches for prognostics and
health management of rotating machinery has drawn attention of many researchers as
well as maintainers. Commonly, approaches used in prognostics for rotating machinery
are classified into three types, namely physics-based approaches, data-driven approaches,
and hybrid approaches. The physics-based approaches work on the physical knowledge
that is acquired by the physical laws. In this approach, a physical/mathematical model
for the system or component is developed. Physics-based methods do not require a large
amount of data or the data of the failure events. However, to establish this model, a
thorough understanding of the physics of the system/component is required. In contrast
to physics-based approaches, data-driven methods are much easier to be developed and
applied in practical. Data-driven approaches mainly rely on techniques in the field of
Artificial Intelligence, which has many ready-to-use tools that could be applied directly
with minor modifications. Nonetheless, compared to the physics-based methods, the
data driven methods require a large amount of data, including both historical obser-
vation and current condition monitoring data. Hybrid prognostics approaches, which
are newly developing approaches, aim at integrating the merits of the above-mentioned
methods while minimizing their limitations.
In this work/thesis, we propose a method for fault detection and diagnosis of rotating
machinery, which combines classical fast Fourier transform and data-driven techniques.
We validate our method on two study cases that include induction motors and roller
bearings. Our method achieves high accuracy’s on real-world data and requires minimal
domain knowledge.
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1 Introduction

1.1 Induction Motor and its main defects

Induction motor plays one of the most important roles in the conversion of electrical energy
into mechanical energy and it is seen as one of the most fault tolerant and economical motors
in the modern industry [1]. This is why many companies tend to use the kind of motors for
multiple applications within the industry. The fault tolerance does not mean that there are no
defects on the induction motor. The faults that occur can be classified into multiple groups.
These groups are the following. The bearing faults, the stator faults, the rotor faults and the
other fault that occur within the motor [2]. According to the statistical studies of the IEEE
[3], the faults that occurs the most is the bearing fault, this occurs in 42% of the times. The
stator fault occurs 28% of the times and the rotor fault occurs 8% of the time. The remaining
22% can be ascribed to the other faults that occur in the induction motor.
The failure of insulation of winding can cause a winding fault, this fault is widely associated
with the stator. This fault can lead to heating. This can result in total failure in the stator
winding when this fault is not taken care of properly. [4].
The faults concerning the the rotor can be caused by multiple factors. The faults that can
occur are for example a broken bar, a broken end-ring, a coupling fault and many more. These
faults do not have just a singular cause, they can be caused by many factors. When we look at
the difference between medium and small voltage motors the rotor fault can be more dominant
due to the thermal stress on the rotors. The broken bar can be caused by multiple reasons.
These factor all have to do with and overload of stress. This stress can either be environmental,
dynamic, magnetic or thermal [5].
The faults that could be assigned to the fault that were not stated specifically are air-gap
eccentricities. These can be dynamic, static or mixed. Between the stator and the rotor could
be a non uniform air-gap which could result in the eccentricity errors. These errors can result
damage to the core an stator when the friction between these parts become to severe. This
could cause the motor to fully stop functioning. The cause of these air-gaps can be ascribed
to either a manufacturing error or a bearing fault [5, 6].
The final and most prominent fault is the bearing fault. This, as stated before, covers around
42% of all faults in the electrical motor[3]. This is the reason why this thesis mainly focuses
on this fault. The following section will cover this fault in more detail.

1.2 Bearing and its main defects

Bearings are one the most important elements in an induction motor, but it has a lot more
applications than just within this induction motor. This bearing is used for rotating different
parts within the motor itself. The bearing itself is made out of different parts. The outer ring,
the inner ring and a number of rolling elements which are called the balls. These balls can
spin within these rings. These most common factors are improper lubrication, the mounting
and installation, operational stress and environmental influences [8]. These factor can all result
in bearing failure. Even though some of these reasons do not have a clear general cause like
the improper mounting but there are some main errors that occur in a functioning induction
motor. The bearing errors that turn up in the functioning motors are outer race, inner race,
cage and ball errors. These errors can result in multiple forms of dysfunction. The most used
methods for failure detection are either the monitoring of the vibration of the motor or the
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Figure 1: Scheme of induction motor [7]

acoustic emission of the bearing. This is because when a failure occurs it will result in specific
vibrations. These vibration can then cause an increase in acoustic emission.

1.3 Review of Diagnosis and Prognosis methods for rotating
machinery

Both Prognosis and Diagnosis are measures to calculate the current health of rotating machin-
ery. This can be assessed by calculating this from the symptoms that can be derived from the
data that comes from rotating machinery. The three main approaches to this problem are the
following. First you can look at fault detection. This is the process of figuring out that a fault
has occurred in the motor. Without the actual detection of the fault, no other assessment can
be done. When the fault is detected you can either look at fault isolation or fault identification.
The isolation means that the fault can be rooted down to a specific part of the motor. The
identification is the calculation of what the fault came from. This is important because when
you know the root of the fault you could prevent it in the future. The Diagnosis of the rotating
machinery means that the rotating machinery will be maintained on the moment when it is
most necessary. Unnecessary maintenance is expensive and by looking at past data of broken
parts it should be possible to see when an error occurs. This can be done by monitoring the
current health of specific parts to see if it needs maintenance at a specific time.
The Prognostics is the calculation of how the element in the rotating machinery will react in
the future. This means not only looking at what you can calculate at a specific point but also
how it will evolve over time. This makes this a prognostic evaluation of the data. This could
result in a prediction called the remaining useful lifetime. This is how long a specific element
in the rotating machinery can go on until it breaks down. This together with the classification
of the different faults is what this paper mostly focuses on.
There are many methods of either classifying or calculating the remaining useful lifetime.
These methods are either physics based, data driven or a hybrid of the two. In A review of
physics-based models in prognostics: Application to gears and bearings of rotating machinery
[9] different prognostic approaches are discussed considering rotating machinery and bearing.
This is all focused on physical models. A data driven approach can be found in different forms.
In An Extension Neural Network and Genetic Algorithm for Bearing Fault Classification [10]
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Neural networks are used to classify the bearing error and its intensity. This paper has found a
100% accuracy with these bearings. It uses traditional Extension Neural Network and improves
it by automatic determination of the learning rate. Another method that is used is using multi
label classification. This is considered in Multi-label Classification for Fault Diagnosis of Ro-
tating Electrical Machines [11]. Multiple methods are considered and compared. This paper
uses both vibration and current data. Both these kinds of data will also be considered in this
paper.
There is not a main approach to calculating the remaining useful lifetime. This is mainly due
to the fact that the variables that the remaining useful lifetime is based upon can either be
chosen by the researcher or by an algorithm. In the paper Predicting remaining useful life of
rotating machinery based artificial neural network [12], neural network is used to calculate
the remaining useful lifetime. For these neural network, it uses different features like the time
and the fitted measurements Weibull hazard rates of both the kurtosis and the root mean
square. This results in a percentage of the expected life total left as the output. In Remaining
Useful Life Prediction for Rotating Machinery Based on Optimal Degradation Indicator [13] it
is stated that the first predicting time and the degradation indicator are subjectively chosen.
This is why this thesis is opting to find the optimal degradation factor upon which it uses the
Wiener model to calculate the first predicting time. Another approach can be found in models
like the bayesian models used in Remaining useful life estimation of critical components based
on Bayesian Approaches [14]. This shows that neural network is not the only way of calculating
the remaining useful lifetime. A method that is widely used within different approaches use
the Fast Fourier Transformation, which will be explained in further detail later on. An example
of this is Analysis of the Rolling Element Bearing data set of the Center for Intelligent Main-
tenance Systems of the University of Cincinnati [15]. In this thesis the same dataset as the
one used in this thesis is analyzed using fast Fourier transformations. This is used to translate
the data from the time domain to the frequency domain.
Considering the previous work in comparison with this thesis we can define some limitations
to the previous work and how this thesis works with those limitation. Previous work as stated
above often use neural networks and other methods which can be seen as expensive opera-
tions. These methods are mostly based on purely computer science. This thesis works on a
more hybrid approach which aims to combine both the physical and data driven approaches.
Another limitations to the previous work is based on fabricated data while this thesis uses real
data with both its source in either the current or vibration of the rotating machinery.

1.4 Structure of the thesis

This thesis is structured in the following way. First the general outset of the datasets is given.
In this part both datasets will be described in detail. Both the origin of the data and the
structure of the data itself will be discussed. Thereafter the outline of the steps taken within
the thesis will be discussed in the method section. All different elements in the research will
be outlined and explained in detail. After this section the actual results will be discussed
and shown. This will be in the same structure as will be explained in the section before. All
results will be discussed in detail and the way these results were acquired. The classification
and remaining useful lifetime will be discussed in separate sections within this thesis. These
sections are section 4.1 and 4.2 Finally both the classification and remaining useful lifetime
will be concluded and summarized in separate sections which are 5.1 and 5.2 .
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1.5 Research Questions

This thesis will finally conclude in answering the following research questions.

1. How can raw data from the current of a motor be used to classify whether a motor is
broken and what error occurred?

2. How can vibration data from bearing be used for the calculation of the remaining useful
lifetime?
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2 Data Set

This section will describe the two datasets that were used for this thesis. The first dataset
is provided by Semiotic Labs Company [16]. This dataset contains data from two induction
motors. The second data set is provided by Intelligent Maintenance System. This data contains
a test on four bearings that were installed on the same shaft.

2.1 Electrical motors

Data of two induction motors, which are in real working conditions, was provided by Semi-
otic Labs Company [16]. The data set contains measurements of the motors in 3 different
conditions: healthy, coupling fault, and bearing fault.

2.1.1 General Specifications

Two different sets of data were provided by Semoitic Labs Company. These two induction mo-
tors have different configurations. The configurations and their technical details are described
in Table 1.

2.1.2 Dataset specification

The data consists as stated before of two different datasets. These dataset are split in three
different folders. These folders are either healthy, bearing fault or coupling fault. These are
the three main sets that belong to these motors. The data consists of real operational data
from these motors. The motors start with the error already inflicted on the motors. This is
done to make sure that the correct fault occurs in the different test. These adjustments have
been made slightly. This means that the motors aren’t broken at the very start but it is made
sure that over time these faults will occur. The severity of the fault increases over time until
the motors either break down or the test is stopped. The motors actually breaking down only
occurs with the coupling error. The healthy and bearing error tests are stopped after a finite
amount of instances.
The recording duration of each measurement is 15 seconds with a sampling rate of 20 kHz.
The instances in the dataset all have a date and two different sets of data. These sets are the
current and the voltage at specific points in time. Both current and voltage datasets are split
into three columns. These three columns represent the values of the phases that make up the

Id 1 2
Amps 21.2 39.5
Motor type NK 80-250/270 NK 80-160/167
Power factor 0.86 0.9
Number of poles 4 2
Wiring wiring.DELTA wiring.DELTA
Rated voltage 380 380
Efficiency 0.914 0.927
Power 11.0 22.0

Table 1: Dataset motor specifications.
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1 2
Coupling Fault 54 18
Healthy 1477 477
Bearing Fault 2531 10468

Table 2: Amount of files per dataset

three phases system. Both dataset have the same data set up and the same sample rate. The
amount of instances for the different datasets are shown in Table 2.
The amount of data that is recorded per instance remains the same for all files. The intervals
between instances does vary over time.

2.2 Rolling element bearing dataset

2.2.1 Specification

The rolling element bearing data was created by Intelligent Maintenance System (IMS) and
downloaded from [17]. This data contains different experiments using bearings. This data ,
provided by the center of intelligent Maintenance system, the IMS, contains the vibration data
of three different tests on bearings. The following description is taken from the README file
included with the datasets. Four bearings were installed on the same shaft. The rotation speed
was kept constant at 2000 RPM by an AC motor coupled to the shaft via rub belts. A radial
load of 6000 lbs was applied onto the shaft and bearing by a spring mechanism. All bearings
were force lubricated. Rexnord ZA-2115 double row bearings were installed on the shaft. PCB
353B33 High Sensitivity Quartz ICP accelerometers were installed on the bearing housing (two
accelerometers for each bearing [x- and y-axes] for data set 1, one accelerometer for each bear-
ing for data sets 2 and 3). Sensor placement is also shown in figure 2 . All failures occurred
after exceeding designed life time of the bearing which is more than 100 million revolutions.

Figure 2: Scheme of IMS test set up [18]
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Three (3) data sets are included in the data packet (IMS-Rexnord Bearing Data.zip). Each
data set describes a test-to-failure experiment. Each data set consists of individual files that
are 1-second vibration signal snapshots recorded at specific intervals. Each file consists of
20,480 points with the sampling rate set at 20 kHz. The file name indicates when the data
was collected. Each record (row) in the data file is a data point. Data collection was facilitated
by NI DAQ Card 6062E. Larger intervals of time stamps (showed in file names) indicate
resumption of the experiment in the next working day.[17]

First test
Recording Duration October 22, 2003 12:06:24 to November 25, 2003 23:39:56
No. of Files 2,156
No. of Channels 8
Channel Arragement Bearing 1 – Ch 1 and 2; Bearing 2 – Ch 3 and 4;

Bearing 3 – Ch 5 and 6; Bearing 4 – Ch 7 and 8.
File Recording Interval Every 10 minutes (except the first 43 files were taken every 5 minutes)
File Format ASCII
Description At the end of the test-to-failure experiment, inner race defect occurred

in bearing 3 and roller element defect in bearing 4.

Table 3: Description First Test

Second test
Recording Duration February 12, 2004 10:32:39 to February 19, 2004 06:22:39
No. of Files 984
No. of Channels 4
Channel Arragement Bearing 1 – Ch 1; Bearing 2 – Ch 2;

Bearing 3 – Ch 3; Bearing 4 – Ch 4.
File Recording Interval Every 10 minutes
File Format ASCII
Description At the end of the test-to-failure experiment, outer race failure occurred

in bearing 1.

Table 4: Description Second Test

Third test
Recording Duration March 4, 2004 09:27:46 to April 4, 2004 19:01:57
No. of Files 4,448
No. of Channels 4
Channel Arragement Bearing 1 – Ch 1; Bearing 2 – Ch 2;

Bearing 3 – Ch 3; Bearing 4 – Ch 4.
File Recording Interval Every 10 minutes
File Format ASCII
Description At the end of the test-to-failure experiment, outer race failure occurred

in bearing 3.

Table 5: Description Third Test
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Figure 3: Part of the Vibration signal of the IMS data

2.2.2 Vibration

When considering the vibration of the bearings there is a special device which registers the
different amplitudes of the vibration in one specific direction. For one bearing the registration
was done in two directions but because this hasn’t been done for all bearings we only consider
one direction which is used for all the other bearings as well. By using this amplitude we can
see what vibrations were in the bearings at those specific windows. Not all measurements were
done directly after each other. The motor was stopped at some points in time and reinstalled
again. In this thesis we don’t look at these open spots but consider the amount of cycles we
read rather than the exact moment the motor was on or off. The following figure 3 shows a
small sample of the vibration data.

2.2.3 Error Harmonics

In the following table the frequencies of the different errors are stated. These values are found
in [15].
The errors we need to consider for this thesis are the Ball Pass Frequency Outer Race and the
Ball Pass Frequency Inner Race. The first data set has an inner race error in bearing three and

Characteristic frequencies
Shaft frequency 33.3 Hz
Ball Pass Frequency Outer Race 236 Hz
Ball Pass Frequency Inner Race 297 Hz
Ball Spin Frequency 278 Hz (2 x 139 Hz)
Fundamental Train Frequency 15 Hz

Table 6: Characteristic frequencies [15]
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the other two sets have an outer race error in bearing one for set two and in bearing three for
set three. The error harmonic means that instead of only looking at the given frequencies we
also look at the harmonic of these frequencies. This means that we look at multiplications of
these frequencies and also use those for the energy that we calculate.
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3 Method

3.1 Data exploration

Data exploration is the process of exploring the dataset that is given to the scientist. This
can be done in different ways. This is the important first step in the analysis of the dataset
that is used in research. The data exploration is done before any analysis is done to give the
researcher more insight in what the dataset contains. This is done to prevent the error of any
forethought knowledgde of the dataset that turns out to be false. The data exploration is
mostly focused on visualizing the given dataset to understand it better [19]. The visualization
of the dataset is an important step in understanding the dataset used by a researcher. Table
and number are abstract to us. The visualization used for the data exploration is important
for understanding the data, rather then examening the number by themselves. The chosen
visualization is therefore considerable to show the right patterns that are within the data. This
has also been done in this thesis. A visualization is used for understanding the raw data and
examining specific patterns in the data.

3.2 Data Processing

Data processing is the transformation of the dataset used by the researcher. The most impor-
tant reasons of data processing can be summarized as boosting the consistency of the data
and smoothing the dataset so the analysis that can be done easier.This process can include
multiple steps. These steps can be summarized in the following main steps: data cleaning,
data transformation and data reduction [20]. Data cleaning is the first step that can be taken
in the data processing. This step is mostly considered when you are uncertain of the reliability
of the given dataset. By looking at different factors like missing or noisy data, processing the
data before working on the analysis can be advantages. Data transformation can be done in
numerous ways and forms. The main goal of data transformation is to translate the data to
a form that can be used for better analysis. Normalization and generalization are of many
different approaches to transforming the data[20]. This research will use multiple data tran-
formation approaches to the raw dataset. This includes fast Fourier transformations and pre
whitening methods which will be explained later on in this section. Data reduction also consists
of numerous different methods of reducing the data for analysis. The reasoning behind this is
mostly due to the amount of data that will be analyzed. A big dataset can be very costly to
analyse in total while an analysis of the reduced dataset can give insights on the whole dataset.
Methods like feature selection can be used to reduce the amount of data that is analyzed [20].

3.2.1 Fast Fourier Transformation

Fast Fourier transformation is a fast low complexity algorithm that calculates the discrete
Fourier transformation of a specific dataset [21]. This transformation is one of the most im-
portant algorithms in modern mathematical and computer science because of its applicability
to one and multidimensional systems theory and signal processing [21].
Fourier transformation is the operation of transforming data in the time domain to the fre-
quency domain. This can be used to analyze specific signals and their frequencies. These fre-
quencies will all be decomposed for the time series into distinct frequencies which are present
in the data. The discrete Fourier transformation formula can be written as shown in equation
1.
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x[k] =
N−1∑
n=0

x[n]e
−2jπkn

N

Equation 1

Here the x[n] is the discrete signal where x[k] is the resulted Fourier transform. N is the
domain size. The Discrete Fourier transform is calculated by multiplying all its values by e
raised to a function of n. The result is then summed up for a specific n. The complexity of
this algorithm is O(N2) [22].
The formula can be separated in both an even and an odd sub-sequence. When this is done
both the odd and even sub-sequences can be computed at the same time because of equation
2.

x[k] = xeven[k] + e
−2jπkn

N
xodd[k]

Equation 2

The equation given above, because of its separation of the even and odd sub-sequences, can
be calculated faster with the complexity of O(Nlog2N) [22].

These formulas will be used on the dataset to calculate what frequencies are present at specific
points in time and in what amplitude.

3.2.2 Feature extraction

Feature extraction is the art of using the features from your dataset and translate them to new
features. The features that the feature extraction works on are either the features of the raw
data of features that were calculated before. With a big dataset the amount of features could
be enormous. So calculating more insightful features from this big stack of features could be
beneficial to the analysis. The most important benefits of the feature extraction are accuracy
improvements, over fitting risk reduction, speed up in training, improved data visualization
and increase in explainability of the model that is created [23]. This research will mainly use
feature extraction in the form of accuracy improvement and improved data visualization.

3.2.3 Pre-whitening

A spectrogram is a form of visualization on which it is possible to see the change of specific
features over time. These features have a specific value and this value can increase or decrease
over time. In the spectrogram this can be visualized by coloring these values. The change of
color can show how the features change. With pre-whitening the overall spectrogram can be
normalized by its first instances. This is can result in clearer images of the differences over time.
This is due to the fact that specific features could have consistently high values that could
overshadow lower values. By normalizing the data by the first instances the change in values
can be spotted more clearly over time because high constants are filtered out. The contrast

15



is therefore enhanced [15]. This method will be used for the visualization of the frequency
changes.

3.2.4 Data imbalance

Data imbalance means that the amount of instances in two classification have a significant
difference between one another. This would mean that we have loads of instances for classifi-
cation A but very few for classification B. Data imbalance can be dealt with in multiple ways.
The methods used in this thesis are resampling and the Synthetic minority oversampling tech-
nique. Resampling is the method of copying the the existing data that is used and multiplying
it so that the amount of data is changed to the size of the larger dataset. This method does
not create new instances but rather copies them from existing ones [24]. Synthetic minority
oversampling is the method that takes the minority dataset and creates new instances that
are similar to the existing instances. It uses a nearest neighbour approach to calculate these
new instances. By this method a new point in the decision space is chosen. Now a line can
be drawn from the original to the newly chosen spot by the k nearest neighbour algorithm. A
convex combination is used to generate the new instances used for the imbalance. The number
of created instances can be made equal to the amount of instances in the majority dataset
[24]. For this part of the method we will look into the different algorithms which are used
within this thesis for classification of the different stages of the motor. The algorithms which
are used are some of the most widely used algorithms for data classification. I will discuss them
now briefly.

3.2.5 Algorithms

For the machine learning algorithms the sci-kit learn package was used. This package contains
all basic machine learning algorithms that are mostly used for data analysis. These algorithms
are easy to use using the functions that are given within the sklearn package, such as random
forest and support vector machines. There is also a lot of extra information online on how the
package works which makes this the best option to use for your machine learning experiments.
[25]

3.2.5.1 Decision Tree

The decision tree is the most straight forward algorithm used for this research. The algorithm
learns from the given features what he can split the data from. So for example when a certain
peak is higher than a specific value it belongs to one group and when it’s lower it belongs to
the other group. This way the algorithm keeps splitting the data until only specific groups are
left which belong to either the healthy group, coupling error or bearing error. These decisions
are based on the given training set and it will fit the tree as good as possible on the given data.
This results in the decision tree of that data set. When we try to optimize the results of the
decision tree we look at multiple hyper parameters for this algorithm. These can all be chosen
using a grid search. This grid search looks at multiple sets of combination of different hyper
parameters and calculates the result of the algorithm using those specific hyper parameters.
This way a vast amount of different set ups is considered to find the optimal hyper parameters
for this algorithm. The grid search takes as much hyper parameters into account as possible.
Some of which are the depth of the tree, the amount of features used and the splitter, which
could be best or random and there are many more hyper parameters to be tuned. [26]
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3.2.5.2 Random Forest

The random forest algorithm is mostly based on the algorithm stated above. This algorithm
makes a finite amount of decision trees and classifies the instance according to their outcome.
The way this algorithm does that is based on the outcome that comes up the most by the
different algorithms. Because these trees all grew on their own they all have their own strengths
and weaknesses. The reason the random forest algorithm works is because all these trees grow
independently the individual errors of these trees should be neglected because they all won’t
make the same error. So the forest has a better overall outcome than the individual trees.
Random forest has a lot of hyper parameters which are equal to the decision tree like the
maximum depth and the amount of features that are considered. The most important feature
that is new to the random forest is the amount of trees that are created by the algorithm. It is
important to find a good amount of trees for the algorithm to function properly. This is why
there are many different amounts of trees considered in the grid search. [27]

3.2.5.3 Logistic Regression

Logistic regression is the way that the algorithm calculates what the probability would be that
an instance would be in one class or the other. Instead of saying 0 for not in the class and 1 for
in the class, the probability could be 0.8 which would indicate that the chance that is is in the
class is quite high. After these probabilities are calculated a threshold could be calculated or
a specific line using linear regression. This can then split the calculated values in the class or
not. The hyper parameters used in this method aren’t as impactful as for the other methods
but there are still some parameters to be considered. The most important ones are the solver,
which can be done by a number of different algorithms, the penalty given to errors and the C
parameter which determines the severity of the penalty calculated by the penalty algorithm.
Even though these parameters are less impactful they could still prove to show improvements.
[28]

3.2.5.4 Support Vector Machine

A support vector machine is based upon the distinction between the classes in a hyperplane.
A hyperplane is a grid with multiple dimensions. For humans two or three dimensions is easy
to visualize but beyond three it gets difficult. The support vector machine tries to distinct the
different classes as far as possible from each other in specific hyper planes. It tries to create a
boundary which is as far as possible from the point that is the closest within both sets. The
higher the distance between the boundary and the closest point, the higher the confidence
to say that a new point that falls within these planes is a specific class. Some of the most
important hyper parameters to be tuned for the support vector machines are the range between
the classifying line and the classified point and the penalty given for wrongly classified points.
This will also be done using the grid search method discussed earlier [29].

3.3 Health Index

The health index is a factor that states the condition of a specific subject. This subject could be
anything like a machine to a human being. The health index shows what the current condition
of the subject is. This condition is derived by multiple factors. These factors vary for different
subjects. These factors have to be chosen from the features acquired from the given dataset.
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The features are chosen by the researcher. Every subject could have different features which
affect the health index. When the features are combined this should result in a single index
that decreases over time. When the health index is followed over the whole life cycle of the
subject the line should eventually hit zero. This is the point where the subject fails. In the
case of rotating machinery this is the moment the machine stops working. For convenience,
researchers/users normally set the health index between 1 and 0; 1 and 0 indicates the totally
healthy subject and totally faulty subject, respectively.

3.4 Remaining Useful Lifetime

The remaining useful lifetime for a specific subject is the time that is left until the subject
eventually fails. The subject in this case can also, just like the health index, be anything that
has a limited life cycle. The remaining useful lifetime uses the health index that was explained
in the previous section and predicts how this index will decrease over time. When only the
health index in considered we would only know the current status. By calculating the remaining
useful lifetime we can predict how this status will move on in the future. This can be done in
multiple ways of prediction. This can vary from simply continuing the current health index as it
goes until a full time series analysis. The goal of remaining useful lifetime is to calculated when
the subject will fail so you can be prepared when it eventually fails or maintain the subject
before it will fail.
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4 Results

4.1 Classification

This section will go into the process of classifying the dataset received from Semiotic Labs
into healthy, coupling error and bearing error. The process will of classification will be outlined
from acquiring the data to the final results.

4.1.1 Data exploration

The data exploration is done by creating a visualization of the raw data that was received.
This data was, as told before in section 3.1.2, split into three phases that make up the three
phase system. In the following figures an example visualization is shown of the dataset. The
three different lines represent the three different phases. This is both shown for the current
and voltage, see figure 6 and figure 7.
It is clearly visible that these lines show a clear image of the three phase system of both the
current and the voltage. All three lines show the same pattern over the time that the test
measurement is running. The three lines also all show the same anomalies that are clearly
visible in the form of peaks and fall. These anomalies are all very consistent. This is probably
due to the fact that the energy source is a variable supply unit. The test set up it not directly
connected to the electrical grid. This is done so that the supply frequency can be changed
during the test.

4.1.2 Fast Fourier Transformation

We converted the induced current from time domain to frequency domain using FFT. The
current was chosen as the main dataset because the current is more expressive compared to
the bare voltage. This is because the current can be seen as the function of the voltage.

Figure 6: Part of the current signal of motor 1
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Figure 7: Part of the voltage signal of 1

The current data consists of three phases. These phases were averaged before calculating the
fast Fourier transformation, short cut FFT. These different instances were then all translated
to FFTs. These FFTs show as stated before what frequencies were present in the different
instances. The FFTs were done using the scipy package [30]. All calculated FFTs were then
combined into one big data set which could then be used for further research. This was done
for all three different datasets of both motors. figure 8 shows an example of the average FFT
spectrum of different motor conditions including healthy, bearing fault, and coupling fault.

The fast Fourier transformation was done on the raw data. The current was chosen as the main
dataset because the current is more expressive compared to the bare voltage. This is because
the current can be seen as the function of the voltage. All different files were transformed into
fast Fourier transformations in the same manner using the scipy package [30]. This package can
be used on time series datasets and produce the corresponding fast fFourier transformation.
This fast Fourier transformation is then calculated to a single column with the amplitude for
each individual point in the frequency domain. This shows whether the frequency is present
in the time series data or not. All these columns were then combined into one large dataset
with columns corresponding to the files they came from. This is done for the healthy, coupling
and bearing datasets. figure 8 shows an example of fast Fourier transformation for all three
different dataset types combined in one graph.
In figure 8 we can see that a clear main frequency of 50 Hz is present in the data which also
results in peaks around 150 Hz and 250 Hz. The peak before 50 Hz can be mostly written
down to noise in the data as all three dataset showed similar abnormalities around 25 Hz. This
graph also shows that the three dataset show a similar fast Fourier transformation apart from
some difference in amplitude. The difference in amplitude of 150 Hz does not immediately
show the bearing fault because the amplitudes in all three datasets vary between different
instances.
From this visualization can be concluded that the main peak of 50 Hz and its harmonics are
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Figure 8: Fast Fourier Transformation showing all three conditions

the biggest peaks present in the raw dataset. The peak that can be seen before the main peak
of 50 Hz can be assigned to misalignment in the set up and noice in the dataset itself.

4.1.3 Feature extraction

Feature extraction was done on the fast Fourier transformations calculated in the previous
section. The main frequency was chosen as the base for this thesis. The dataset that was
analyzed mostly consisted of data that was acquired with the main frequency of 50 Hz. As
told before the energy supply was variable, this shows in the data in the way that some instances
have a main frequency of 25 Hz. These fast Fourier spectra with different main frequencies
are too different to analyze in the same manner. This resulted in the fact that we only used
data with a main frequency of 50 Hz because most data had this main frequency. The data
with the main frequency of 25 Hz was not considered and removed from the dataset.
The energy is a feature that is calculated by summing up the amplitudes within a specific
window. By looking at this feature over time it can be shown how the amplitude, and thus
the presence of a specific frequency, changes over time. The windows that were chosen for
this feature are around the main peaks and between them. This can be written down as the
windows [0 − 40][40 − 60][60 − 90][90 − 110][...]. This resulted in 80 features.This can be
visually shown in figure 9.
Here the window taken around the main peak of 50 Hz is shown. Within these windows the
amplitudes were summed up for every distinct window and turned into a new dataset that is
used as the feature set.
The method shows a rather simple approach to the feature extraction issue. Rather than
using different forms of features, which is done in previous papers as well, this single feature
extraction methods proves to be very expressive over the different windows in the dataset.
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Figure 9: Chosen energy window for feature extraction.

4.1.4 Machine learning results

This section will go into the classification of whether the data is healthy or unhealthy con-
sidering both coupling and bearing faults. After this classification the unhealthy data will be
classified as either the coupling fault or the bearing fault.

4.1.4.1 Healthy versus unhealthy classification

For the classification of the healthy versus unhealthy data both the coupling fault and bearing
fault datasets are combined in the unhealthy dataset set. The features, as stated before, are the
energy calculated from the windows chosen that were described in section 4.1.3. A gridsearch
is used to optimize the hyperparameters for the different algorithms. The machine learning
models used for this classification are the decision tree, random forest, logistic regression and
support vector machines. These classification models were used because these models are some
of the most well known models used for research. These have all been tested numorous times
and often show good results even though they are quite simple to use and understand. The
first results that were acquired with this method are shown in Table 7
We see here that the accuracy is of the models are overall very good but when we look at the

Algorithm Class Weight Accuracy Precision Recall F1 False Neg.
Logistic Regression 1 0.9809 0.98 0.99 0.99 17
Support Vector Machine 1 0.9611 0.96 0.98 0.97 42
Random Forest 1 0.9776 0.99 0.98 0.98 15
Decision Tree 1 0.9683 0.98 0.97 0.98 17

Table 7: Results for different methods, class weight 1
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amount of False Negatives they are still quite high. False negatives mean that an error is not
classified as an error. This can be very costly when an error is not found. This is why a lower
amount of false negatives is desired. This could result in an increase in True negatives. These are
healthy conditions which are classified as unhealthy. This means that the cost of maintanence
in increased because there are more false flags of errors. This is a tradeoff which can be made
by the user themselves. The models can be adjusted to reduce the amount of false negatives
using the class weight.The class weight is used to put more empathize on a specific class [31].
This is used to more empathize on the unhealthy class. This is done because this makes sure
that an instance is classified as unhealthy more frequently because of its higher weight in the
models. The results of the four different algorithms and their decision boundaries are shown in
figures 10, 11, 12 and 13. These results are received by only considering the dataset of motor 1.

Figures 10, 11, 12 and 13 show that by increasing the class weight the areas that are classified
as unhealthy are more narrowed. This shows for two out of four of these algorithms. The
random Forest shows the opposite result. It shows a decrease in False Positives by increasing
the area that is labelled as unhealthy. This is the same for the decision tree.

The features that were used can be ranked in the order of their importance. The importance of
features is a value that shows how important specific features were to the final classification.
The following 10 features were the most important from the feature set. These values are
based on the Random Forest algorithm.The top 10 of the most important features, based on
the Random Forest algorithm, are shown in figure 14.

(a) 1 (b) 5

(c) 10 (d) 15

Figure 10: Decision boundary of Decision Tree classifier with classweight
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(a) 1 (b) 5

(c) 10 (d) 15

Figure 11: Decision boundary of Random Forest classifier with classweight

(a) 1 (b) 5

(c) 10 (d) 15

Figure 12: Decision boundary of Logistic Regression classifier with classweight
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(a) 1 (b) 5

(c) 10 (d) 15

Figure 13: Decision boundary of Support Vector Machine classifier with classweight

The results shown earlier are calculated by only considering the data of motor 1. To show that
this method can be used on different motors figure 15 shows the results of the increase of
class weight for the combined data of motor 1 and 2. The solid line shows the amount of False

Figure 14: Feature importance healthy versus unhealthy
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Figure 15: Result of different Classification algorithms

Negatives. The dotted line shows the amount of false positives. A False negative in this graph
means that a fault is not found. The false positive means that a healthy machine is flagged
as an unhealthy machine. We want to reduce the amount of False Negatives because these
errors in the classification can do the most harm to the motor. When an error is not found
while it is present, the motor could break down even further. This is why the amount of False
Negatives needs to be reduced to a minimum.
Figure 15 shows that by increasing the class weight both the logistic regression and the
support vector machine have almost no False Negatives left. The amount of false positives
does increase. In the Table below the exact results are shown for the different algorithms.
From these results can be concluded that using the energy as a main feature for the classifi-
cation does show good results. This method, combining physical and data driven knowledge,
does not use heavy neural networks to classify the faults but rather basic machine learning
methods. This proves that heavy calculations are not required for a good classification, which
has mostly been done in previous work. By tuning the class weight the amount of False Neg-
atives can even be reduced to a minimum. This can be seen when we look at the results of
both Logistic Regression and the Support Vector Machine. The amount of False Negatives
were reduced to almost zero.
When considering the different classification methods the Logistic regression and Support vec-
tor machine outperform the Decision Tree and Random Forest. This is probably because of

Algorithm Class Weight Accuracy Precision Recall F1 False Neg.
Logistic Regression 15 0.9789 1.00 0.97 0.99 1
Support Vector Machine 15 0.9710 1.00 0.96 0.98 1
Random Forest 1 0.9776 0.99 0.98 0.98 15
Decision Tree 1 0.9683 0.98 0.97 0.98 17

Table 8: Best results for different methods.
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the nature of the problem. The classification is a two classes classification. With this kind of
classifications Support Vector Machines and Logistic Regression normally work better because
these algorithms try to split the decision space as good as possible while the other methods try
to make decisions on specific values of the features. Because of the amount of False Positives
we can say that from the two best performing algorithms Logistic Regression performs the
best, which is also shown in Table 8.

4.1.4.2 Bearing fault versus Coupling fault classification

The bearing and coupling feature sets are as stated before imbalanced. The bearing fault
dataset is far larger than the coupling fault dataset. These first results show the classification
of the coupling fault versus the bearing fault on the dataset of motor 1. The results are received
by checking the model using a test set created from the feature set. This is why in the result
there are very few coupling instances while the dataset is scaled up later on using the SMOTE
and resampling methods.
These tables all show high accuracy considering the classification of the motor 1 failures. To
prove that this method is not overfitted on this specific motor the following results are from
the datasets of 1 and 2 combined.
Figures 16 give the same classification but also show how the decision lines are created using
the random forest algorithm for this classification.
For the classification of the bearing fault versus the coupling fault we can also show what
features were the most important to the final classification. We do this in the same way as
we did with the healthy versus unhealthy classification by ordering them by their importance.
These values are also from the Random Forest algorithm. The result can be seen in figure 17
By looking at these results we can state that it is possible to classify the fault when a fault
is found in the data. With the combined datasets it is shown that the errors that occur are
mostly predicted as bearing errors due to the large data imbalance. This imbalance can be

Algoritm Imbalance method AUC Precision Recall F1-Score
Decision Tree Original set 0.999 0.93 1,00 0.97

Resampling 0.963 0.93 0.93 0.93
Oversampling 0.963 0.93 0.93 0.93
Over and Undersampling 0.999 0.93 1.00 0.97

Random Forest Original set 1.00 0.93 1.00 0.97
Resampling 1.00 0.93 1.00 0.97
Oversampling 1.00 0.93 1.00 0.97
Over and Undersampling 1.00 0.93 1.00 0.97

Logistic Regression Original set 0.998 0.93 1.00 0.97
Resampling 0.998 0.93 1.00 0.97
Oversampling 0.998 0.93 1.00 0.97
Over and Undersampling 0.999 0.93 1.00 0.97

Support Vector Machine Original set - 0.93 1.00 0.97
Resampling - 0.93 1.00 0.97
Oversampling - 0.93 1.00 0.97
Over and Undersampling - 0.93 1.00 0.97

Table 9: Classification results different imbalance methods, including Resampling,
Over(sampling) and Under(Sampling) motor 1
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Algoritm Imbalance method AUC Precision Recall F1-Score
Decision Tree Original set 0.858 0.68 0.72 0.70

Resampling 0.859 0.76 0.72 0.74
Oversampling 0.885 0.64 0.78 0.70
Over and Undersampling 0.878 0.38 0.78 0.51

Random Forest Original set 0.999 1.00 0.72 0.84
Resampling 0.999 1.00 0.61 0.76
Oversampling 1.00 0.94 0.89 0.91
Over and Undersampling 1.00 0.94 0.94 0.94

Logistic Regression Original set 1.00 1.00 0.67 0.80
Resampling 1.00 0.90 1.00 0.95
Oversampling 1.00 0.95 1.00 0.97
Over and Undersampling 1.00 0.94 0.94 0.94

Support Vector Machine Original set - 0.90 1.00 0.95
Resampling - 1.00 1.00 1.00
Oversampling - 1.00 1.00 1.00
Over and Undersampling - 0.95 1.00 0.97

Table 10: Classification results different imbalance methods, including Resampling,
Over(sampling) and Under(Sampling) motor 1 and 2

(a) original (b) oversample

(c) SMOTE oversampling (d) SMOTE oversampling and undersampling

Figure 16: Decision boundary of Random Forest methods using data imbalance method
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Figure 17: Feature importance bearing fault versus coupling fault

improved by using SMOTE. Both show slight improvements over the overall dataset. This is
not the case with the 1 alone. The differences are small but when considering the decision
boundaries in figure 16 we see that the more decision space is considered as coupling the
better the classification result is. This could prove that bearing fault have a more consistent
output while coupling has multiple outputs in different areas in the decision matrix. It has to
be stated that the results given by both SMOTE methods vary over different random seeds.
This is because the instances that are created are random as stated in the method section.
This makes it so that both the original and normal oversampling results remain the same while
the SMOTE results vary.
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4.2 Remaining Useful Lifetime prediction of machine bearing

In the following section the remaining useful lifetime will be calculated using the Center of
Intelligent Maintenance Systems dataset. This dataset shows a full lifecycle of different bearings
which can be perfectly used to calculate a health index and eventually a remaining useful
lifetime. First the dataset will be explored to see how the data is built up. Then the remaining
useful lifetime will be calculated in different steps.

4.2.1 Fast Fourier Transformation

The Center of Intelligent Maintenance Systems dataset consists of different datasets of multiple
bearings. There are three main datasets that consist of data from four bearings. This data is
the measure of vibration of these different bearings. The Fast Fourier Transformation was also
used to translate the data to the frequency spectrum for this dataset. The FFT can then be
used to do the analysis on the dataset. These FFT’s were, same as for the previous dataset,
created with the scipy package [30].

4.2.2 Energy Increase

For the analysis of the different FFT’s features need to be created from these FFT’s to actually
do the analysis on. There are multiple features that can be derived from the FFT’s. In the
previous section of this thesis the energy was the main feature to classify the dataset. This
feature, as stated earlier, calculates the combined amplitude of specific windows of the FFT’s.
The classification showed very promising results. This shows that energy is a very helpful
feature. This is why in this section the energy will also be used as the main feature to show
that the energy might also be a good feature for the calculation of the remaining useful lifetime
the following example will be explored in figure 18. This example shows an example of how
the energy behaves over time.

Figure 18: Example of an increasing energy window
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Figure 19: Scatterplot of the different phases of the bearing 3 of dataset 1

The example above shows an example of a specific bearing that will eventually break down
over time. It is the third bearing of the first dataset. The energy remains quite stable for
around 700 cycles. Then the energy starts to increase rather fast. A huge peak can even be
seen at the very end. This could show that the error in the bearing is causing a spike in energy
for this bearing. In [15] it is stated that there is an overall consensus on this dataset on which
point in time the bearing starts to break down. There are four phases stated in the paper. First
the bearing is starting up, then the bearing is in a healthy state for a while. After this healthy
state the phase of suspected error starts up until the actual fatal error occurs for the final
phase. These phases have specific time windows when they start and when the dataset enters
the next phase. To see if these phases show differences in energy the time windows were used
to classify the data. In figure 19 the result of this will be shown in a scatter plot.
The scatterplot in figure 19 shows the result of classifying the energy of two features to the
different phases. The green area shows the starting phase, the yellow shows the healthy area,
the orange the suspected error and the red the fatal error. The points on the graph are the
actual test data point colored to the window that they belong in. This shows that the test
data falls into the classified areas from the training data. Some green point are located on the
yellow area and also some orange point are located in the yellow area. This is logical because
there is not a clear exact point when the motor changes phase. The picture does show however
that a clear transition can be seen from one phase to the next by the increase of energy. At
first one of the features stays quite steady until the suspected error phase when both energies
increase until a big jump to the fatal error phase. The transitions are very well captured within
this figure 19 which shows that the energy is a good feature for measuring the health index
of the bearings.

4.2.3 Spectrogram

The next step is to visualize the energy increase over the whole spectrum. This will show at what
frequencies the energy increase occurs and if this increase happens at the frequencies where
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they are expected. The two errors that occur in these datasets are the Ball Pass Frequency
Outer Race (BPFO) and the Ball Pass Frequency Inner Race (BPFI). These errors can be seen
at specific frequencies and their harmonic orders according to [15]. The BPFI can be found
at a frequency of 297 Hz while the BPFO can be found at a frequency of 236 Hz. These
frequencies are the base frequencies at which these errors can be found, but as stated before,
these errors can also be found at the different harmonic orders. These are the powers of these
frequencies, so for 236 Hz it will be 472, 708, 944 and so on. This is why not only the base
frequency but also the harmonic orders of the errors will be considered. First the full spectrum
of all bearings in dataset one will be shown in figure 20. All frequencies until 10.000 Hz are
shown here over time.
In figure 20 the following can be seen. Bearing one shows very steady frequencies. It has some
frequencies which show higher energies than others but they stay quite consistent over the
whole set. This can also be said about the second bearing. The frequencies stay quite steady.
It gains a little more energy at the end but not over the whole spectrum. Bearing three on the
other hand has higher energies over the whole spectrum. Also at 1500 cycles the overall energy
seems to increase at a big range of the data. It is not an enormous spike but it is visible. For
bearing four an enormous spike at the end is visible. This happens at a clear point at which
the energy increases. From these spectrograms could be concluded that bearing three and four

(a) Bearing 1 (b) Bearing 2

(c) Bearing 3 (d) Bearing 4

Figure 20: Spectrograms Dataset 1
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Figure 21: Spectrogram of the second harmonic order of the BPFI frequeny, IMS dataset
1

behave differently from the other two bearings. This is in line with what was expected. Bearing
three breaks down at the end and after that bearing four also has a fatal error. Bearing three
is the main bearing that breaks down in this dataset so now the spectrogram will be zoomed
in to the specific frequencies of this error for bearing three. The second harmonic order, 594
Hz, is shown in figure 21.
Looking at figure 21 it is very difficult to see a big change at the specific frequency of 594 Hz.
This could be due to the fact that the increase is present but not as considerable to pop up
among the other frequencies. Other harmonic orders were also considered but these did not
show any real visible increase in the spectrograms as well. The sum of these harmonic orders
compared to the other bearings will be shown later on in the thesis. Now the next dataset will
be shown in the same way as the first dataset. All four spectrograms together for the four
bearings. The result can be seen in figure 22.
While the differences in the first dataset were not as big as expected. The second dataset
shows exactly what was expected from the literature. Bearing one breaks down while the other
bearings remain healthy. Bearing one shows a big increase in energy over time while the others
show almost no increase except for the end of bearing four. Now to find the error that was
found in this bearing the specific frequencies of the BPFO need to be visualized. This frequency
is 236 and its harmonic orders. When the energy increases it can be said that this error occurs
in this bearing. The third harmonic, frequency 708 Hz, is shown in figure 23.
Figure 23 shows what was expected from this interval. Around the frequency of 708 Hz an
increase in energy occurs. The error also starts at the moment that was expected around half
of the instances. This energy spike also occurs at different harmonic orders of the BPFO error.
The figure 24 shows the eighth order, which is around 1888 Hz.
Also figure 24 shows the high increase around the expected frequency of 1888 Hz. Therefore it
can be concluded that the BPFO is clearly present in this dataset and can be visualized using
the energy.
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(a) Bearing 1 (b) Bearing 2

(c) Bearing 3 (d) Bearing 4

Figure 22: Spectrograms Dataset 2

Figure 23: Third harmonic order of the BPFO frequeny, IMS dataset 2
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Finally, the third dataset will be visualized using spectrograms. In [15] the BPFI was not found
in the visualization. This is why it will be very interesting to see whether the visualization
method proposed in this thesis can actually show the error. The error occurs in bearing three
and is as stated before a BPFI error. All four spectrograms of the different bearings are shown
in figure 25.
For this last dataset it is very difficult to see a lot of increase in the energy of all four bearings.
For most of the instances the energy remains the same. Only at the very end an increase in
energy can be observed. All four bearings show this but for bearing three it is the clearest.
Which is also what was expected because the error occurs in bearing three. The reason the
increase can be seen here but was not spotted in [15] could be because the amount of instances
does not seem to be the same. While the dataset that was used for this thesis contains more
than 6000 instances. The dataset of [15] only had a little over 4000 instances. This difference
could be because new data was added later on. This could also explain that they could not
see any difference because around 4000 instances there is no big difference visible.
To show that the error that seems to occur at the very end is in fact a BPFO, the harmonic
orders of this error can again be considered in a smaller spectrogram. The base frequency is
236 Hz. For the following figure 26 the third harmonic order will be considered for the third
bearing.
The spectrogram shows what was expected from the BPFO. The error seems to occur at the
very end but a spike in energy around 708 Hz is clearly visible.
From all the spectrograms that were shown in this section it can be concluded that for dataset
two and three the error can be shown using this method. The energy increases at the intervals
where the increase was expected. For the first dataset it was not as visible as expected. The
error did not show big spikes of energy while the others errors did. It will be interesting to
see whether the error can still be observed in the health index despite not seeing it in the
spectrogram.

Figure 24: Eighth harmonic order of the BPFO frequeny, IMS dataset 2
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(a) Bearing 1 (b) Bearing 2

(c) Bearing 3 (d) Bearing 4

Figure 25: Spectrograms Dataset 3

Figure 26: Third harmonic of the BPFI frequeny, dataset 3
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4.2.4 Health and Failure Index

In the following section the actual failure rate will be calculated. The failure rate will show
what bearing breaks down the fastest. A failure rate does not have a general way of calculation.
The failure rate is based on a feature that can show whether a motor is failing or not. From
the previous section it can be concluded that the energy is a good feature to show if a bearing
is having an error or not. It also shows by the increase of energy how fast it breaks down.
These two features of the energy make it a good candidate to use as the main calculation
method for the failure rate.
The failure rate will now be calculated from the energy. This will be done by calculating the
energy per instance for every bearing. Because we are looking for specific errors we will only
consider the frequencies of these errors in the calculation. To make this more clear for the
dataset one, only the energy around 297 Hz, 594 Hz, 891 Hz up until 11.880 Hz will be
calculated and summed together. This comes down to the first 40 harmonic orders of the
errors. The base frequency for dataset one is 297Hz and for dataset two and three it is 236
Hz. The sum of the energy of these harmonic orders can be seen in figures 27, 28 and 29
resulting in the failure rates.
The failure rates in the figures 27, 28 and 29 show some very interesting results. Dataset one
shows one bearing that clearly fails the fastest compared to the other bearings. This bearing
is the third bearing. This bearing also is the bearing that we expected here. Even though it
wasn’t possible to visualize that this error happens to this bearing, from the failure it actually
is possible to conclude that bearing three breaks down the fastest considering the BPFI.
Figure 28 shows the opposite of what was expected from the spectrograms. The spectrograms
show a clear difference in energy between the first bearing and the others. In the figure it can
be seen that bearing three breaks down faster than bearing one up until the point where the

Figure 27: Failure Rate of the IMS Dataset 1, main Frequency of 297Hz
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Figure 28: Failure Rate of the IMS Dataset 2, main Frequency of 236Hz

error seems to occur. This results in the fact that bearing three and one both end at more
or less the same spot. Even though there is no evidence in other literature that bearing three
breaks down as well. From this figure it could actually be stated that bearing three was actually
breaking down as well. Unfortunately this is not verifiable because the tests stop when one of
the bearings break down, in this case it was bearing one. So even though bearing one seems to
break down the fastest at the end it is still a very interesting finding that bearing three could
also be broken or is about to break as well.

Figure 29: Failure Rate of the IMS Dataset 3, main Frequency of 236Hz
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Figure 29 shows what was expected from this dataset. Overall all bearings stay quite steady
over the whole dataset up until the very end. Bearing three, even though slightly, seems to
break down the fastest. The interesting part for this dataset is the energy spike at the very end
for all bearings. This was also visible in the spectrograms. This could have different causes.
The first possibility is that when bearing three breaks down the energy increase in that bearing
increases the energy for all other bearings as well. The bearings are connected in the test set
up, so this could be a possibility. The other option is that something goes wrong when the test
ends. The ending condition of the datasets is not totally clear. So the sudden huge increase
could also be a result of human interference at the very end, but this is hard to tell because
there is no real data on how the tests ended specifically.

From the figures discussed in this section can be concluded that the failure rate that is cal-
culated from the energy feature works well on the given dataset set. The failures that were
expected also show in these figures. An interesting observation is that in all cases bearing three
is the bearing fastest increasing failure rate. For dataset two bearing one eventually has its
failure rate increase faster but after the start bearing three increases faster at first. This is why
it might not be a coincidence that bearing three breaks down in both dataset one and three. It
could be that the way the test was set up bearing three has a specific conditions which makes
its health decrease faster than the others. These specific results could be interesting to explore
in more depth in future work.
The next step is to calculate the health index from this failure rate. The health index is an

index that starts at one for fully healthy up until zero where the motor is broken. The faster this
line will go down to zero the faster the motor breaks down. We calculate this index from the
failure rate by first normalizing the data between zero and one. Now the failure rate needs to
be normalized so that it will go from zero to one. For the health index the opposite is required.
To achieve this all values in the graph will be reversed. This means that zero becomes one,
one becomes zero and everything in between will also be inverted. This results in the health

Figure 30: Health Index of the IMS Dataset 1
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Figure 31: Health Index of the IMS Dataset 2

index graphs. These graphs can be seen in figures 30, 31 and 32. All three datasets are shown
in order.
The health indexes in figures 30, 31 and 32 show the same results as was seen in the figures
from the failure rate. It can be seen that for two of the datasets, dataset one and three, that
the bearing that decreases the fastest is actually the one that breaks down.The second dataset
shows that at the end of the test both bearing one and three reach zero. It is also visible that
bearing one starts to break down very fast compared to the other bearings. This indicates that,

Figure 32: Health Index of the IMS Dataset 3
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while bearing one’s health started off decreasing slower than bearing three’s health, bearing
one’s health starts to decrease a lot faster later on and thus could show a more severe error
than bearing three. It is still interesting to see the health index of bearing three is zero at
the end of the test even though there is no mention of this in other literature. Unfortunately
whether bearing three was about to break is not verifiable because the tests end when one
of the bearings is broken, in this case bearing three. Overall the results seem very promising
because of the fact that the expected behaviour also shows in the graphs. This leads to the
final step, the calculation of the remaining useful lifetime for the other bearings.

4.2.5 Remaining Useful Lifetime

The remaining useful lifetime will be calculated on top of the health index results. The remain-
ing useful lifetime shows how many cycles the remaining bearings could have stayed healthy.
This is done by predicting the path of the health index over time. This means that the re-
maining useful lifetime will show how the health index would further behave when the test
would not have been stopped. This prediction is done using the fbprophet [32] package. This
package takes time series data and predicts how it will behave over time. The time series
data that fbprophet receives will be the health index data. To clearly see how much cycles the
bearings have left as remaining useful lifetime the graph will be transposed. The graph will be
transposed so that the health index data will go up until zero on the x axis. All data after the
zero on the x axis will therefore be predicted data. When the predicted lines reach zero the
amount of cycles that were predicted as the remaining useful lifetime can be read. Fbprophet
is, as stated before, a prediction package. This means that the predictions always have a range
in which they fall. This is visualized in the graphs by the colored areas around the lines. These
are the minimal and maximal range of the predicted values. Just as all the other calculations,
the remaining useful lifetime was calculated by looking at the first 40 harmonic intervals of
the base frequency of the errors. So for dataset one a frequency of 297 Hz and its powers, for
dataset two and three a frequency of 236 Hz.

Figure 33: Remaining Useful Lifetime of IMS Dataset 1
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Figure 34: Remaining Useful Lifetime of IMS Dataset 2

The final results can be seen in figures 33, 34 and 35. The vertical line shows the split between
health index data and the predicted remaining useful lifetime data.
Figures 33, 34 and 35 show the results of the predicted remaining useful lifetime. The results
mostly show quite predictable results. For example figure 33 shows the lines moving on consis-
tently until they finally reach zero. Also the range of predictions do not show odd behaviour.
For the other two graphs there are some interesting results to be discussed. The most inter-
esting result is the predicted lifetime of bearing four of dataset two. This shows a huge range
in the predicted values. The reasons this could happen is because of patterns in the health
index data that are not clearly visible. Even though these patterns can not be seen on the

Figure 35: Remaining Useful Lifetime of IMS Dataset 3
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graph, fbprophet might see them in the data. This could result in the huge prediction range.
The other result that should be discussed is the fact that bearing three does not end on zero.
The explanation for this is that fbprophet probably does not consider the very ending of the
health index as important as the overall trend of the dataset. If these sudden changes at the
very end would have been considered, all bearing would have only lasted a few more cycles.
Because the ending conditions of the tests are not clear it is better to predict the remaining
useful lifetime on the overall trend of the dataset and thus this figure shows that with that
knowledge it might have had a few more cycles before a fatal error.
This thesis used the harmonic order of 40 for the different calculations. The reason for picking
this number is that from 40 on and higher the difference in remaining useful lifetime does not
change much anymore. The lower orders show varying results but from 40 and up the number
stay quite similar. This can also be seen in the following tables. The tables show the harmonic
order and what the remaining useful lifetime would have been for the healthy bearings if this
harmonic order would have been chosen.

H. O. Bearing 1 Bearing 2 Bearing 4
Mean Lower Upper Mean Lower Upper Mean Lower Upper

5 859 744 1046 620 582 671 961 784 1390
10 787 668 1008 1122 1015 1279 665 549 895
15 405 367 461 1103 919 1498 -1 -2 0
20 365 333 410 760 663 897 182 159 220
25 668 601 785 1098 938 1333 408 346 530
30 740 660 873 954 844 1130 460 388 603
35 809 710 945 951 846 1110 378 326 471
40 809 715 953 951 841 1107 378 324 462
45 809 721 953 951 850 1112 378 323 470
50 809 719 969 951 850 1108 378 326 498

Table 11: Dataset 1

From these tables we can conclude that from the harmonic order of 40 and up the predicted
remaining useful lifetime does not vary a lot anymore. This is why 40 was a good amount to
use as the basis for this thesis.
Looking back at the complete calculation of the remaining useful lifetime it can be concluded

H. O. Bearing 2 Bearing 3 Bearing 4
Mean Lower Upper Mean Lower Upper Mean Lower Upper

5 99 79 319 -4 -4 -4 427 289 572
10 50 45 63 -4 -4 -3 325 213 601
15 15 15 16 -4 -4 -3 298 192 614
20 107 86 316 100 85 137 356 251 610
25 122 98 313 69 61 80 438 319 622
30 113 92 196 24 23 25 468 347 638
35 90 76 127 -2 -2 -2 474 349 647
40 82 71 100 -4 -4 -3 498 362 623
45 87 75 116 -4 -4 -3 498 362 629
50 87 75 108 -4 -4 -3 498 362 627

Table 12: Dataset 2
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H. O. Bearing 1 Bearing 2 Bearing 4
Mean Lower Upper Mean Lower Upper Mean Lower Upper

5 3399 3014 3976 2662 2400 3026 5801 4953 7469
10 6822 5772 9176 2603 2338 2966 8706 6965 9982
15 2441 2210 2785 1886 1741 2042 3856 3295 4786
20 968 910 1036 1794 1643 2008 2440 2225 2723
25 1020 962 1094 1219 1139 1309 2863 2528 3391
30 1082 1017 1168 968 916 1025 3094 2726 3645
35 1401 1306 1527 1043 983 1122 3527 3083 4146
40 1622 1489 1770 1144 1079 1223 3788 3279 4747
45 1668 1546 1823 1124 1055 1202 3714 3288 4326
50 1668 1545 1834 1124 1054 1198 3714 3295 4314

Table 13: Dataset 3

that the approach taken in this thesis is very promising. The energy proves to be a very helpful
feature both showing the current health index as well as calculating the remaining useful
lifetime of these bearings.
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5 Conclusion

5.1 Classification

The thesis will be summarized by answering the research questions stated in section 1.5

5.1.1 Summary

How can raw data from the current of a motor be used to classify whether a motor is broken
and what error occurred?

In this thesis, we successfully detected the type of errors of electrical motor as well as estimated
the remaining useful lifetime of bearings. Both solutions came from the calculated energy that
was retrieved from the Fast Fourier transformation of the raw data. This energy was taken
from specific intervals around the main peaks and between them.
The classification resulted in using the energy of specifically chosen windows and classify them
using algorithms like logistic regression and support vector machines. In combination with an
increased class weight this resulted in a minimal amount of false negatives and an acceptable
amount of false positives. By changing the class weight the amount can be varied if that would
be more preferable. By showing the results of the motors combined it was shown that this
method is not only fit for one specific type of motor.

5.1.2 Discussion and Future Work

For this specific research we only used the main frequency of 50 Hz. The signal also had
different main frequencies like 25 Hz but there wasn’t an easy way to generalize this data so
that both main frequencies could be used.
The future work that can be done on this subject is most of all finding a way to generalize the
data so that the main frequency is not a factor in the classification. This would be a major
improvement to this method. A possible suggestion for tackling this issue is to generalize
the raw data to a specific chosen frequency. This can only be done if the main frequency is
known beforehand. Another approach could be translating the Fast fourier transformation to
a standard frequency. The result could be wider or thinner peaks. This might not be what
you would want because of the energy feature. The data should therefore also be normalized.
A final approach could be to filter out the main frequency from either the raw data or the
FFT. Only data that is not related to the main frequency will then be shown in the FFT.
This way the same error frequencies can be analyzed on the dataset. Because of these reasons
this approach seems the most promising for future work. In [33] multiple approaches to this
filtering are proposed together with their advantages and disadvantages. Furthermore it would
also be interesting to try this method on other datasets to see how well it performs.

5.2 Remaining Useful Lifetime

5.2.1 Summary

How can vibration data from bearing be used for the calculation of the remaining useful life-
time?
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In this thesis the remaining useful lifetime was estimated by using the energy that was cal-
culated from the fast Fourier transformation. In spectrograms was shown that the different
harmonic orders of the specific errors could be used to calculate a failure rate. This failure rate
was then calculated by taking the summation of all the energy around these harmonic order
frequencies. This resulted in the failure index which could be translated to the health index.
The health index could then be used to forecast the further remaining useful lifetime until it
hit a specific boundary. By doing this for three distinct dataset it was shown that this method
can be used on different set ups and motors.

5.2.2 Discussion and Future work

The main discussion point with this research is also the main frequency issue. The dataset
used for this research had only one specific main frequency which was good to have a start
with but it at this point it is not possible to work with other main frequencies yet or with
frequency changes. This is why this would be the most interesting for future work as well. This
could be a huge benefit if this method can be translated to a dataset with a varying main
frequency. The methods mentioned in section 5.1.2 could therefore be looked into. Also the
fact that bearing three’s health index decreases fast in all three datasets could be interesting
to look into in future work.
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