
Master Computer Science

Would Rather be More than Less:

On-Demand Container Resizing

Name: Yuxuan Zhao

Student ID: S2258609

Date: 05/08/2021

Specialisation: Computer Science and Advanced
Data Analytics

1st supervisor: Alexandru Uta
2nd supervisor: Nele Mentens

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Master Thesis

Would Rather be More than Less:
On-Demand Container Resizing

Yuxuan Zhao
(S2258609)

Supervisors:
Alexandru Uta & Nele Mentens

MASTER THESIS

Leiden Institute of Advanced Computer Science (LIACS)

www.liacs.leidenuniv.nl 05/08/2021

www.liacs.leidenuniv.nl

Abstract

Containers are lightweight virtualization and isolation environments for running applications. Typ-
ically, the resource allocation of containers, in terms of CPU, memory, network bandwidth, is set
before deployment. However, the actual application resource usage changes dynamically while the
resource allocated to containers are kept constant. This may contribute to applications termination or
throttling owing to insufficient resource or resource under-utilization due to improper sizing. To solve
this problem, the concept of on-demand container resizing was proposed, which indicates the resource
allocations are able to change with changes in actual resource usage automatically. In this thesis, we
focus on vertical pod autoscaling, as named by the Kubernetes community.

We observe that the autoscaling mechanism in the current vertical pod autoscaler may perform
poorly in fine-grained time intervals, where the CPU usage is highly variable per minute, or even
per second. Thus, in this thesis, we propose a finer-grained vertical pod autoscaling mechanism for
Kubernetes and integrate it into the vertical pod autoscaler component to make it plug and play. We
compare our autoscaling strategy with the default autoscaling strategy in the current vertical pod au-
toscaler component, showing that our strategy performs closer recommendation values to the actual
container CPU usage without trend delay. Then, we compare our autoscaling mechanism with another
autoscaling mechanism based on Holt-Winters exponential smoothing and Long Short-term Memory.
Our autoscaling mechanism shows a lower average slack in YCSB workloads. Moreover, our autoscal-
ing mechanism presents higher usability than HW-based and LSTM-based autoscaling mechanisms at
least in short-term workloads due to our algorithms inexpensive computational complexity.

Contents

1 Introduction 1

2 Background 5
2.1 Cgroup . 5
2.2 Virtual Machines & Containers . 6
2.3 Docker & Kubernetes . 8
2.4 Redis & MongoDB . 10
2.5 YCSB Benchmark . 10

3 Methods 13
3.1 Vertical Pod Autoscaler Recommender . 14
3.2 HW and LSTM Recommender . 16

3.2.1 Holt-Winters (HW) exponential smoothing 17
3.2.2 Long short-term memory (LSTM) . 17

3.3 Our Contribution: SMA-based and EMA-based recommender 17
3.3.1 Load trackers . 18
3.3.2 Load predictor . 19

4 System Architecture 21
4.1 Monitor . 21
4.2 Vertical Pod Autoscaler . 23

5 Experiments 25
5.1 Redis and YCSB Pods Validation . 25
5.2 Vertical Pod Autoscaling Validation . 26
5.3 SMA-based vs EMA-based recommender . 29
5.4 Comparison with HW and LSTM Recommender 32

6 Related Work 37
6.1 Predicting trend of workloads . 37
6.2 Autoscaling in the cloud . 37
6.3 Autoscaling containers . 38
6.4 Vertical autoscaling of VMs . 38

1

CONTENTS

7 Conclusions 39
7.1 Answers to the Research Questions . 39

Appendices 40

A Environment Setup 41
A.1 Minikube Setup . 41
A.2 YCSB Setup . 41
A.3 Redis Setup . 42
A.4 MongoDB Setup . 43
A.5 Vertical Pod Autoscaler Setup . 43
A.6 Docker Image . 44

References 49

2

List of Figures

2.1 Two types of hypervisor-based virtualization architecture overviews [16, 17]. 6

2.2 The container-based architecture overview [16, 17]. 7

2.3 The basic architecture overview of docker [17, 18]. 8

2.4 The basic architecture overview of Kubernetes [19]. 9

2.5 The basic architecture overview of minikube [20]. 10

3.1 The basic framework of load prediction models [9]. 18

3.2 An example of the trends of predicted value and its lower bound. 20

4.1 The architecture overview of our system. 22

4.2 Resource metrics pipeline in Kubernetes [31, 34] 22

4.3 The architecture overview of vertical pod autoscaler [30]. 23

5.1 CPU and memory usage of pods in the loading phase, record count is set to 2,500,000. 26

5.2 CPU and memory usage of pods in the running phase, operation count is set to 2,500,000. 27

5.3 CPU usage and requests of redis-master node in the loading phase of workload A,
record count is set to 2,500,000. 28

5.4 CPU usage of redis master pod and recommendations from vertical pod autoscaling
recommender in the loading phase of workload A. 29

5.5 CPU usage of redis master pod and recommendations from recommender sma-5-3 in
the loading phase of workload A. 31

5.6 CPU usage of redis master pod and recommendations from recommender ema-5-3 in
the loading phase of workload A. 31

5.7 CPU usage of redis master pod and recommendations from ema-5-3 recommender in
the loading and running phase of workload A to D. 33

5.8 CPU usage of redis master pod and recommendations from ema-5-3 recommender in
the loading and running phase of workload E and F. 34

5.9 CPU usage of redis master pod and recommendations from recommender sma-5-3 in
the running phase of workload E, multiplier in algorithm is set to 2. 34

5.10 Performance comparison of different recommenders in the loading phase of workload
A. 36

LIST OF FIGURES

5.11 Performance comparison of different recommenders (without HW recommender) in
the loading phase of workload A. 36

4

List of Tables

2.1 The specifications of six core workloads in YCSB. 11

3.1 Methods considered and compared in this thesis. 14
3.2 Some sample multipliers of lower bound value for various history lengths. 15
3.3 Some sample multipliers of upper bound value for various history lengths. 15

4.1 Data monitoring source. 22

5.1 The performance of vertical pod autoscaler in the loading phase of workload A. . . . 28
5.2 The performance of different recommenders in the loading phase of workload A. The

first number in the name of recommenders is the size of the load tracker and the second
is the number of load trackers. 30

5.3 The performance of ema-5-3 recommender in the loading and running phase of work-
load A to F. 32

5.4 Compared with the performance of HW and LSTM recommenders in the loading
phase of workload A. 35

5

Chapter 1

Introduction

Cloud computing technology has become prevalent in the current industry. Among the Software-as-a-
Service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS), elasticity [1] of
the cloud is an essential feature in the actual use. Elasticity is the capability of a cloud to adjust the
configurations to control the resource provision in an on-demand style. Virtualization [2, 3] techniques
are typically applied at the layer of Infrastructure-as-a-Service (IaaS). One can change the configura-
tions of virtual machines to rightsize the virtual machines, achieving a better utilization. However, it
turns to a problem that recreating virtual machines with new configurations is very costly [4]. To avoid
the cost of turning on and off virtual machines, a lighter-weight virtualization technique, container-
izaion [5, 6], is leveraged. The emergence of containers greatly eliminates the overhead of restarting
virtual machines.

For most cloud computing workloads, resource demands such as those for CPU, memory, network,
and disk change significantly over time. In containers, we set resource requests to specify how many
resources should be allocated to that container. The resource requests are usually used for the container
scheduling in the container orchestration platform like Kubernetes [7] and they are always required to
be set manually before the container’s deployment. However, it is not easy to accurately estimate in
advance how many resources an application in the container needs to run gracefully. If the resources
allocated to the container are too small, the applications in the container would be throttled when it
exceeds its CPU limit or terminated when it exceeds its memory limit. But if the resources allocated
to the container are redundant, the spare resources would be wasted, namely, leading to resource
under-utilization. Furthermore, the requests of the container are constant but the actual resource usage
changes dynamically due to the usage patterns of applications change over time. For instance, an
application may need a lot of CPU and memory resources at the initial stage of deployment but with
time going by, the demand for CPU and memory may decrease gradually and more resources would
be spare resulting in unworthy resources under-utilization. Operators can change the resource requests
manually but the maintenance is time-consuming.

Thus, if the resource request of a container can change following the resource demand changes
automatically, the utilization rate would increase, throttling and termination of applications would
be less, and maintenance time would be reduced. This technique is called autoscaling for the con-

1

tainer resource changes in demand. In the Kubernetes community, a component called vertical pod
autoscaler [8], abbreviated as VPA, is responsible for setting the container requests automatically.
Vertical pod autoscaling has the following advantages. First, pods can use the amount of resources
they need, which leads to the high utilization of cluster nodes. Second, pods will be allocated to the
node that has available resources. Third, users do not need to run benchmarks to estimate the resource
requests. Fourth, vertical pod autoscaling can change the requests of CPU and memory dynamically,
resulting in less maintenance time. This thesis aims to figure out if we can design a mechanism and
policies for on-demand resource resizing for existing containers.

In this thesis, without loss of generality, we only focus on the CPU usage of containers. We
propose as our contribution a mechanism for autoscaling in short-term workloads that are sensitive
to the CPU usage changes at a per-second granularity. Inspired by the load prediction models in [9],
our design includes two types of recommenders. The recommenders involve two linear models, one is
based on the simple moving average model and the other is based on the exponential moving average
model. Both models are responsible for smoothing the trend of the actual CPU usage by calculating
the unweighted or weighted average of the recent CPU usage. Then we make a prediction for the
future CPU demands through the unweighted and weighted average of the recent CPU usage obtained
in the previous step.

We integrated both of our methods into the vertical pod autoscaler component. We also compared
these to the recommender in the current vertical pod autoscaler. The current vertical pod autoscaler
recommends the resource through a maintained histogram for every container. Furthermore, we com-
pare them with a state-of-the-art autoscaling mechanism [10]. This autoscaling mechanism is based on
Holt-Winters exponential smoothing method [11] and Long Short-Term Memory neural networks [12]
to make a prediction for future CPU usage. All of the comparisons in this thesis are in the loading
and running phase of different workloads in the state-of-the-art YCSB [13] benchmark designed for
key-value store workloads.

To tackle our fine-grained vertical pod autoscaling problem, we propose three research questions
in this thesis:

• How does the current vertical pod autoscaler work? What problems does the current vertical
pod autoscaler have?

• How can we design an autoscaling policy which enables good performance for the application
and minimizes resource waste?

• Compared to the current vertical pod autoscaler and autoscaling mechanism based on HW and
LSTM, what are the advantages of our autoscaling design?

In this thesis, we propose the following three main contributions:

• We give a detailed analysis for the current vertical pod autoscaling mechanism.

• We propose an autoscaling mechanism for the container CPU usage, which outperforms current
vertical pod autoscaling and HW, LSTM autoscaling mechanism at least in short-term work-
loads, where the CPU usage is highly variable.

2

CHAPTER 1. INTRODUCTION

• We integrate our autoscaling mechanism into the current vertical pod autoscaler component and
make it plug and play. Moreover, the implementation code of our design and all the analysis
code for the performance comparison are open-sourced1.

1https://github.com/ZhaoNeil/On-Demand-Resizing

3

https://github.com/ZhaoNeil/On-Demand-Resizing

4

Chapter 2

Background

This chapter involves the background of this thesis. Firstly, we make a general introduction of
cgroup [14, 15] because it is the foundation of containerization [5, 6]. Containers are primarily imple-
mented through cgroups. Then, we compare two types of virtualization techniques [16]: hypervisor-
based architecture and container-based architecture. Virtual machines [2, 3] and containers are im-
plementations of these two techniques. Compared with virtual machines, containers are more light-
weight [6] and are what we mainly focus on in this thesis. After that, we include the introduction of
some related knowledge about docker [17, 18] and Kubernetes [7, 19], which are tools used through-
out the experiment section. Specifically, we use docker to package the images of revised vertical pod
autoscaler [8] and we store our images on the remote registry, Dockerhub. Kubernetes serves as a con-
tainer orchestration platform in our experiments. We deploy related containers on a simplified version
of Kubernetes, minikube [20], which only runs a single-node Kubernetes cluster on our remote server.
The difference between Kubernetes and minikube is presented in detail in the following explanation.
Afterward, we involve the introduction of two databases: redis [21] and mongoDB [22]. One is a key-
value database and the other is a document-oriented database. A redis cluster serves as the application
in the container and is connected with the YCSB [13] container on minikube. MongoDB is used for
storing the containers monitoring data in our experiments. Lastly, we present the background of the
YCSB benchmark, which serves as an application in a container on minikube as well.

2.1 Cgroup

Cgroup [14, 15] is the abbreviation of control group, which is a mechanism for hierarchically orga-
nizing resources allocation. It was firstly merged in the Linux kernel in the 2.6.24 version. The UNIX
group of cgroup is cgroups. Cgroup can be applied to any schedulable entity like virtual machines
and containers [16], ensuring that none of them consume all of CPU, memory, I/O bandwidth, and
network bandwidth. As a feature of Linux kernel, cgroup allows users to limit resources, isolate, and
account for the Linux processes or collections of Linux processes. For instance, users can limit certain
resource usage by cgroups like specifying the number of the CPU core and controlling the amount of
memory. If the process occupies too many resources that exceed the limitation, it will be suspended

5

2.2. VIRTUAL MACHINES & CONTAINERS

Figure 2.1: Two types of hypervisor-based virtualization architecture overviews [16, 17].

or killed. Cgroup mechanism is the foundation for Linux kernel to realize the resource virtualization
technique. Similar to processes, cgroups are hierarchical and child cgroups can inherit attributes from
their parent groups.

2.2 Virtual Machines & Containers

Virtualization [2, 3] is a technique allowing whole hardware elements like processor, memory, and
storage to be divided into several parts for more efficient use. Each separated part is called a virtual
machine (VM). A virtual machine can be regarded as a software-based computer, it has its own guest
operating system and applications and runs like an independent physical computer. Since virtual
machines are totally independent of one another, different operating systems can be run on different
virtual machines. This feature makes the environment more flexible and more portable, at the same
time enables the hardware utilization to be more efficient.

Hypervisor is an interface layer between the layer of physical hardware and virtual machines. It
mainly functions as a resource manager for the virtual machines allocating the resources to them and
ensuring there is no interference between them. There are two types of hypervisors, one is type 1 and
the other is type 2 [16]. Type 1 hypervisors directly run on the top of physical hardware and they are
also called native or bare-metal hypervisors. Type 2 hypervisors operate on top of a host operating
system and are therefore called hosted hypervisors. Type 1 hypervisors are used more frequently and
have a lower latency than type 2. Two types of hypervisor-based virtualization architectures are shown
in Figure 2.1. As the Figure 2.1 shows, for type 1 hypervisor, independent virtual machines run on the
layer of hypervisor which virtualizes the physical hardware. Each virtual machine serves as a physical
computer, contains its own guest operating system and application, and it doesn’t interfere with others.
While, for the type 2 hypervisor, there is a host OS layer between hypervisor and physical hardware,
which means virtual machines have to go through one more layer (host OS) to access the physical
hardware.

Virtualization has a couple of benefits [3]. First, efficient use of resources. Since every virtual

6

CHAPTER 2. BACKGROUND

Figure 2.2: The container-based architecture overview [16, 17].

machine has its own operating system, this enables users to make a portable and flexible combination
for their deployment, which would maximize the utilization of hardware resources. Second, improved
fault tolerance. It’s easy to backup and creates virtual machines, which makes the recovery after a
severe down much simpler and allows to minimize the server downtime. Third, easier and faster
deployment and more efficient management. Compared with setting up and configuring the physical
hardware, deploying virtual machines is definitely simpler and faster.

Containerization [5, 6] is a technique that is always compared with virtualization but in a lighter-
weight way, requiring less overhead. Container is an essential component of containerization, which
is an isolated environment containing the needed elements, such as application code and its dependen-
cies. Containers are mainly implemented through cgroups [14, 15]. Applications can run in containers
in an isolated way, which means the applications are packed can be separated from their actual operat-
ing environment. Container supports share CPU, memory, storage, and network resource at the level
of the operating system since containerization is an OS-level virtualization and containers share the
host operating system instead of sharing the physical hardware. Moreover, containers can be deployed
in any environment where the container engine is installed in a portable manner.

The container-based architecture is shown in Figure 2.2. Unlike type 1 hypervisor, there is a
layer of host operating system on the top of the physical hardware layer. Container runtime engine
is installed on the host operating systems to enable containers on top of it to share the host oper-
ating system. To reduce the overhead and the capacity of containers, some common dependencies
can be shared among containers as well. On the layer of containers, each container encapsulates an
application with its required dependencies like bins and libraries.

Containers have a couple of advantages [6]. First, containers have high portability. Containers
are able to run virtually in any environment where the container engine is installed, greatly lightening
the workload of development and deployment. Second, containers are lighter-weight. Instead of
containing a guest OS in every virtual machine, containers only encapsulate related dependencies
they need, which significantly eliminates the overhead of guest OS and speeds up, driving a higher
efficiency. Third, containers have security because containers isolate the applications, virtualize CPU,

7

2.3. DOCKER & KUBERNETES

Figure 2.3: The basic architecture overview of docker [17, 18].

memory, storage, and network resources. In this way, an application in a container is prevented from
interfering with other containers or the host OS. Fourth, more convenient management. A container
orchestration platform like Kubernetes [7, 19] is able to create, deploy, and scale multiple containers
in a very convenient manner.

In a nutshell overall, both virtualization and containerization are technologies that enable more
efficient resource utilization but are different fundamentally. Virtual machines build isolated virtual
environments by accessing the underlying physical hardware and sharing the resources of hardware.
Containers are lighter-weight than virtual machines because containers pack applications and their
required dependencies without a guest operating system. Containers virtualize at the operating system
level, while virtual machines virtualize at the hardware level. Namely, containers share resources of
the host operating system but require less setup time compared with virtual machines which share the
resources of physical hardware. Virtualization tackles the pain point of the demand for using the entire
server for an application. Containerization tackles the pain point of the demand for using the entire
operating system for an application.

2.3 Docker & Kubernetes

Docker [17, 18] is a containerization software, which is used to create, deploy, and ship contain-
ers. Usually, the projects need various different technologies, for instance, node.js for font-end and
mongoDB for database. Developers have to ensure these services are compatible with the version of
the underlying operating system. Moreover, developers have to guarantee these different services are
compatible with each other and libraries and dependencies on the operating system. The versions of
the applications change over time, so the compatibility might change as well. However, docker can
guarantee the applications that developers are going to deploy run in the same way and in the same
environment by separating each application into containers with its own dependencies. In this way,
developers do not need to pay attention to the software compatibilities.

Docker consists of docker client and docker host. Docker client is the main access for the users

8

CHAPTER 2. BACKGROUND

to interact with docker. Docker host contains docker daemon and docker objects like images and
containers [18] as Figure 2.3. Docker daemon is responsible for managing the containers, images, and
volumes, etc. Docker daemon can pull docker images from a docker registry as well, such as Docker
Hub. The basic architecture of docker is shown in Figure 2.3.

Kubernetes [7, 19] (called k8s as well), might be the most popular container orchestration plat-
form, is from Borg [23] which is an internal large-scale cluster management system of Google and
originally open-sourced by Google. If hundreds of or even thousands of containers communicate with
each other or interact with each other and when multiple containers need to be deployed in differ-
ent servers and different environments, it needs very much effort to handle these tedious problems
manually in these situations. Moreover, some containers would crash or some containers would lose
connection. Operators have to fix these issues one by one, which is time-consuming. As a result, Ku-
bernetes came into being to manage multiple containers in a more efficient manner, in the meanwhile,
guaranteeing high availability, scalability, and disaster recovery.

Figure 2.4: The basic architecture overview of Kubernetes [19].

The basic Kubernetes architecture is shown in Figure 2.4. Some necessary Kubernetes compo-
nents [24] run on the master node, which are API server, controller manager, scheduler, and etcd. API
server is the entrypoint to Kubernetes cluster. Controller manager is for controlling and managing
the containers. Scheduler is responsible for container scheduling on different worker nodes. Etcd is
a key-value storage storing the Kubernetes cluster states over time. Master node and worker nodes
are connected through a virtual network. Pods are the smallest scheduling unit in Kubernetes and
are an abstraction of containers, they run on the worker nodes. Pods are able to contain one or more
containers but typically there is only one container in a pod. Each pod in Kubernetes has its own
internal IP address and communicates with each other by addressing their internal IP. When the pods
restart, their internal IP addresses would get changed. So another component of Kubernetes counts,
which is service. Service actually is a constant IP address attached to pods. No matter how many
times a pod restart, the IP would stay constant with the help of service. If users would like to expose
the IP addresses of pods, the ingress component of Kubernetes can help to achieve that. If one does
not have enough available resources to set up a Kubernetes cluster, minikube [20] is a good candidate.

9

2.4. REDIS & MONGODB

Minikube can be regarded as a simplified version of Kubernetes, which is a one-node Kubernetes clus-
ter whose master node process and worker node processes run on the same machine. The architecture
of minikube is shown in Figure 2.5. The container runtime with docker engine is pre-installed on the
minikube node.

Figure 2.5: The basic architecture overview of minikube [20].

2.4 Redis & MongoDB

Redis [21] is an open-source key-value database. Data is stored in Redis in the form of key-value
pairs. Redis supports multiple data structures to be the form of values, such as strings, hashes, etc.
Leader follower replication [25] is an essential feature of redis cluster, it realizes backup of data,
disaster recovery, and load balancing. Leader follower replication refers to copying data of one redis
node to other redis nodes. The former one is called master node and the latter is called worker nodes
correspondingly. Data replication is one-way in leader follower replication mode, which means data
is only from the master node to the worker nodes. In this thesis, we deploy redis cluster benchmarked
by YCSB [13] on minikube to test the resource usages fluctuate.

MongoDB [22] is classified as a NoSQL database. MongoDB is a kind of document-oriented
database, which means it is similar to key-value storage but can be regarded as an upgraded version
of key-value database. Data is stored in mongoDB in the form of documents. The documents look
like JSON objects, consisting of multiple fields and value pairs. MongoDB supports other documents,
arrays, etc. as values of the fields. In this thesis, we use mongoDB to store the monitoring data of
containers resource usages, requests, and recommended values.

2.5 YCSB Benchmark

YCSB [13] is the abbreviation of Yahoo! Cloud Serving Benchmark, which is a standard benchmark
framework to evaluate the performance of different cloud systems. It was developed by Yahoo! as its
name indicates. YCSB consists of two main components, the YCSB client and the core workloads.
The YCSB client is responsible for generating different workloads. The core workloads contain six
different workloads for six scenarios. They are named in order from Workload A to Workload F and

10

CHAPTER 2. BACKGROUND

each of these workloads has two phases, loading and running. In the loading phase, the database will
be created and records will be loaded into the database. In the running phase, YCSB will operate
the database as specified, the operations could be read, write, and modify. Different core workloads
will have different proportions of operations. For example, workload A has 50% read operations
and 50% write operations. Specifically, if we set record count to 2,500,000, which means 2,500,000
records will be loaded in database in the loading phase. In the running phase, if we set operation
count to 2,5000,000 as well, which means there will be 1,250,000 read operations and 1,250,000 write
operations due to the 50/50 proportion of workload A. The specifications of six core workloads are
shown in Table 2.1. In this thesis, YCSB is used to make redis pod performance fluctuate.

Workload Specifications
Workload A: Update heavy 50% read operations and 50% write operations
Workload B: Read mostly 95% read operations and 5% write operations
Workload C: Read only 100% read operations
Workload D: Read latest Insert new records, the most recently inserted might read first
Workload E: Short ranges Query small ranges of records
Workload F: Read-modify-write Read a record, modify it, and write it back

Table 2.1: The specifications of six core workloads in YCSB.

11

2.5. YCSB BENCHMARK

12

Chapter 3

Methods

The recommender is an essential component in the vertical pod autoscaler. It provides the core re-
source usages (CPU and memory) estimation algorithm which recommends appropriate resource re-
quest values for pods in Kubernetes. As a result, the containers would resize according to the recom-
mended resource values. Therefore, the quality of the recommendation algorithm largely determines
the quality of the container resizing. An application would be throttled if it exceeds the specified CPU
limit of the container and gets terminated if its memory exceeds the limited amount of the container.
However, we only focus on container CPU demand variation in this thesis.

In this chapter, we introduce the resource estimation algorithm in the original vertical pod au-
toscaler in detail. The recommendation algorithm currently used in vertical pod autoscaler is deeply
inspired by the moving window recommender in Google Borg Autopilot [26]. Then we include the
autoscaling strategy proposed in [10], which primarily applies Holt-Winters exponential smoothing
(HW) [11] and Long Short-Term Memory (LSTM) [12] algorithms to predict the future resource de-
mands. Lastly, we present a resource estimation algorithm largely based on the ideas in CPU usage
prediction models in web-based system [9] and bring forth new ideas into the algorithm. We have im-
proved the algorithm to adapt to the usage scenarios of container resizing better. According to different
CPU usage data processing methods, we divide our algorithm into two types: SMA-based and EMA-
based. SMA represents simple moving average, responsible for getting the unweighted average of the
recent CPU usage and the weights of observations are unchanged. EMA indicates exponential moving
average, calculating the weighted average of the recent CPU usage while the weights of observations
decay exponentially. Then, we make a prediction for the future CPU demands through the weighted
and unweighted average of the recent CPU usage obtained in the previous step. To check whether
they perform well in actual use, we implement our algorithms and integrate them into the vertical pod
autoscaler component and evaluate the revised vertical pod autoscaler component in a real Kubernetes
cluster. We show that our implementation works well and it is available in a plug-and-play fashion.
Table 3.1 makes a summary of the methods used in this thesis and shows whether these methods are
integrated into the vertical pod autoscaler component. Besides our newly implemented algorithms,
the original VPA recommendation algorithm is already implemented into vertical pod autoscaler. As
for HW and LSTM autoscaling strategy proposed in [10], they are not integrated into the vertical pod

13

3.1. VERTICAL POD AUTOSCALER RECOMMENDER

autoscaler component, unfortunately.

Methods Integrated into Vertical Pod Autoscaler
VPA recommender Yes (existing)
HW recommender No

LSTM recommender No
SMA recommender Yes (our contribution)
EMA recommender Yes (our contribution)

Table 3.1: Methods considered and compared in this thesis.

3.1 Vertical Pod Autoscaler Recommender

The recommender of vertical pod autoscaler mainly borrows the ideas from moving window recom-
mender in Google Borg Autopilot. Vertical pod autoscaler recommender creates a decaying histogram
object for every container to store the CPU and memory usage. The recommender acquires the re-
source usage of all pods from Prometheus [27] regularly and writes the resource usage of containers
into a maintained corresponding decaying histogram. The decaying histogram is composed of multi-
ple buckets, which are used to store the weight of resource usage and the boundaries of buckets are the
values of resource usage. The size of buckets in decaying histogram is growing exponentially with a
ratio of 1.05. The first bucket stores the weights of resource usage in the range of [0, f irstBucketSize).
Specifically, the first bucket size for CPU usage in decaying histogram in the current VPA recom-
mender is set to 0.01 cores and for memory usage is set to 10MB. Since the bucket size grows expo-
nentially, the starting value (left boundary) of the nth bucket follows

value(n) = f irstBucketSize∗
(

1+ ratio+ ratio2 + . . .+ ratio(n−1)
)
=

f irstBucketSize∗ (ration−1)
ratio−1

.

The weight of every resource usage is stored in the bucket where the resource usage falls between the
bucket boundaries (starting value and ending value of that bucket). Therefore, the index of the bucket
where the weight of usage value was written is

index = int
(

logratio

(
value∗ (ratio−1)

f irstBucketSize
+1
))

,

value is the current usage value and the weight of current usage is

weight = Max(CPURequestCores,minSampleWeight)∗2
time−begin

CPUHistogramDecayHal f Li f e ,

the minSampleWeight here is set to 0.1 cores, the begin here refers to the time of the first recorded
usage value, and time means time of the current usage value. So it can be seen from the weight
calculation formula that as time goes by, the weight of usage increases as well. Moreover, the default
CPUHistogramDecayHal f Li f e is set to 24h. It means under other conditions unchanged, the weight
of the usage 24 hours ago will be halved.

14

CHAPTER 3. METHODS

VPA recommender maintains a decaying histogram composed of multiple buckets for each con-
tainer as mentioned above. In the following, we explain how the VPA recommender uses the his-
tograms to make predictions for future CPU demand. In terms of recommendation, VPA recommender
involves three values: target value, lower bound value, and upper bound value. They are the starting
values (left boundaries) of the bucket where the total weight of that bucket and the former buckets
arrives at 0.9 ∗ totalWeight, 0.5 ∗ totalWeight, and 0.95 ∗ totalWeight for the first time, correspond-
ingly. For memory usage, VPA recommender watches the out of memory events in addition. VPA
will increase the recommended values for the pods that had out of memory events. After that, VPA
recommender adds some safety margin on target value, lower bound value, and upper bound value.
The default safety margin is set to 15%, indicating these values have become 115% of the original so
that containers can have some slack to breathe. Furthermore, VPA recommender applies a confidence
multiplier to lower bound value and upper bound value. For lower bound value, it is multiplied by the
factor (1+ 0.001

history length in days)
−2, so we get

lowerBound = lowerBound ∗ (1+ 0.001
history length in days

)−2.

For upper bound value, the multiplier is 1+ 1
history length in days . Then we obtain the upper bound value

after applying the confidence multiplier, which is

upperBound = upperBound ∗ (1+ 1
history length in days

).

Vertical pod autoscaler evicts the pod as soon as its request value is beyond the range of upper bound
and lower bound, then creates a pod with the current recommended value as its request. Table 3.2
and 3.3 display some sample multipliers yielded by the above lower bound and upper bound calcula-
tion formulas.

History Lengths Lowerbound Multipliers
No history 0

5m 0.6
30m 0.9
60m 0.95

Table 3.2: Some sample multipliers of lower bound value for various history lengths.

History Lengths Upperbound Multipliers
No history INF

12h 3
24h 2

1 week 1.14

Table 3.3: Some sample multipliers of upper bound value for various history lengths.

15

3.2. HW AND LSTM RECOMMENDER

For instance, when the history length is 1 hour, the vertical pod autoscaler will evict the pod when
the pod request is lower than 0.95 ∗ lowerbound. Similarly, when the history length is 24 hours and
the pod request is higher than 2∗upperbound, the pod will be evicted by vertical pod autoscaler and
a new pod will be created. From Table 3.2 and 3.3, we can see that both lower bound multiplier and
upper bound multiplier are converging to 1.0 with time going by. However, lower bound multiplier
converges much more rapidly than upper bound multiplier. For lower bound multiplier, it only needs
1 hour to converge around 1.0 while upper bound multiplier needs around 1 week to converge around
1.0. This is in line with the intuition that the recommendation value of resource usage would rather be
more than less.

3.2 HW and LSTM Recommender

Thomas Wang et al. proposed an autoscaling mechanism in their paper [10], which applies Holt-
Winters exponential smoothing (HW) [11] and Long Short-Term Memory (LSTM) [12] algorithms to
increase the CPU utilization of the container. Their autoscaler takes target value, lower bound value,
and upper bound value from HW and LSTM models as input and supplies 120 millicores as the error
buffer. Millicores here is the same as the milliCPU. 1,000 millicores or milliCPU equals 1 CPU. In
Kubernetes, 1 CPU refers to one vCPU on AWS or one vCore on Azure [28]. Their algorithm will
give a new recommended value when the current CPU request is out of the range of bounds. They
preset two values to avoid unnecessary rescaling. One is rescale cool-down value (18 time-steps), the
other is minimum change check value (50 millicores). It means it will rescale only after at least 18
time-steps since the last time rescaling, in addition, the difference between the value of the current
request and a new request must be more than 50 millicores.

Unfortunately, this autoscaling mechanism is not integrated into the vertical pod autoscaler. So its
performance is only evaluated in a simulated way, out of the vertical pod autoscaler component. HW
and LSTM models are implemented in Python with Statsmodels and Keras. We apply the actual CPU
usage data obtained from the evaluation experiment of our recommenders as the input data of HW and
LSTM recommenders. The input data are fed into these two models to refit or retrain the models and
get the predicted values of future CPU usage. The final output of these models is the recommended
value for the future CPU demands and is displayed in plot to compare with the actual CPU usage. The
details of HW and LSTM recommenders can be seen in their paper [10]. All of the predictions are
calculated out of the vertical pod autoscaling component through a python script. Thus, the results
from HW and LSTM recommenders are not actually produced by a certain vertical pod autoscaler in
real but are simulation results.

Moreover, HW and LSTM recommenders here are not plug-and-play because they need some time
to ”warm up”. To be specific, HW and LSTM are only able to generate predictions after at least two
seasons. Because HW and LSTM models need some data to initialize at the beginning. The season
length is one day in their paper [10]. We present the general introduction of HW and LSTM algorithms
in the following parts.

16

CHAPTER 3. METHODS

3.2.1 Holt-Winters (HW) exponential smoothing

Exponential smoothing methods [29] produce a smoothed time series data. Exponential smoothing
methods smooth the historical data with exponentially decaying weights, which means recent data
is attached a bigger weight than the older data. HW [11] is a triple exponential smoothing method
involving three parameters to take care of not only the trend of data but also the seasonality of data.
The formulas of Holt-Winters are shown as follow:

Overall smoothing:
St = α

yt

It−L
+(1−α)(St−1 +bt−1)

Trend smoothing:
bt = γ (St −St−1)+(1− γ)bt−1

Seasonal smoothing:
It = β

yt

St
+(1−β)It−L

Forecast:
Ft+m = (St +mbt) It−L+m

where y denotes the observation, S refers to the observation after smoothing, b indicates the factor
of trend, I is the index of seasonality, F is the predicted value, and t refers to the time period. More
details about HW implementation for autoscaling can be seen in the original paper [10].

3.2.2 Long short-term memory (LSTM)

Long short-term memory [12] is a special Recurrent Neural Network (RNN), which primarily aims
at solving the problem of gradient vanishing and gradient explosion during the long-term sequence
training process. Compared with vanilla RNN, LSTM can outperform in the longer sequences. A
typical LSTM unit consists of a cell, an input gate, an output gate, and a forget gate. Cell is used
for remembering values in any period. Three gates serve as regulators to control the input and output
information flow of the cell. In other words, remember what needs to be remembered for a long time,
forget the unimportant information. More details about LSTM implementation for autoscaling can be
seen in the original paper [10].

3.3 Our Contribution: SMA-based and EMA-based recommender

Mauro Andreolini et al. [9] proposed load prediction models for CPU usage in web-based systems.
Since the CPU usage workloads in Kubernetes are similar to web-based systems, both of them behave
in a highly variable manner, we decide to adapt the models to better apply to vertical pod autoscaling.
We innovate their algorithms while inheriting the ideas behind their prediction models. Moreover,
we integrate the revised prediction models into the vertical pod autoscaler component and make it
plug and play. The CPU measures are extremely variable at different time scales, especially in a
short period. Mauro Andreolini et al. demonstrate in their paper [9] that it is almost impossible to
predict future load well using the raw CPU usage measures. So they design load trackers, two linear

17

3.3. OUR CONTRIBUTION: SMA-BASED AND EMA-BASED RECOMMENDER

Figure 3.1: The basic framework of load prediction models [9].

functions to smooth the trend of CPU usage, representing the CPU load behavior of the system (see
Section 3.3.1). Then, they make predictions of CPU usage through load representations processed by
load trackers. The basic framework of the load prediction models looks like Figure 3.1.

3.3.1 Load trackers

As Figure 3.1 shows, the load prediction model achieves a two-step approach. In the first phase of
the models, we still apply two linear load tracker functions presented in the original paper [9], which
are simple moving average (SMA) load tracker and exponential moving average (EMA) load tracker.
Given a CPU usage value si measured at time ti and previously sampled n CPU usage values, they
compose a set Sn (ti) = (si−n, . . . ,si). The load tracker function is defined as LT (Sn (ti)) : Rn+1→ R,
where the Sn (ti) is the input of the load tracker function and it returns a representation li to represent
the set of Sn (ti) at time ti. Simple moving average (SMA) is the unweighted average of n+ 1 CPU
usage values in the set Sn (ti), the weights assigned to each observation are the same. So the SMA-
based load tracker function at time ti is defined as:

SMA(Sn (ti)) =
∑

i−n≤ j≤i
s j

n+1
.

The problem of the SMA load tracker in theory is that it will involve a delay when it represents the
workload trend, especially if the size of Sn (ti) is large. Whereas exponential moving average (EMA)
load tracker function can decrease the delay effect well in theory. Exponential moving average (EMA)
is the weighted average of n+ 1 CPU usage values in the set Sn (ti) and the weights of observations
are exponentially decreasing. Thus, the EMA-based load tracker function at time ti is defined as:

EMA(Sn (ti)) =

∑

0≤ j≤n
s j

n+1 if i≤ n,

α ∗ si +(1−α)∗EMA(Sn (ti−1)) if i > n.

18

CHAPTER 3. METHODS

The parameter α is called the smoothing constant. We conform with the constant value in the paper [9]
and set the smoothing constant α = 2

n+1 . For the load tracker based on EMA at time ti, the recent
observations contribute more to the representation li than the older observations due to the decaying
weights.

3.3.2 Load predictor

In the second phase of the models, we adapt and innovate the load prediction in the paper [9] according
to our usage scenarios. The load predictor function is defined as LP(Lq (ti)) : Rn+1 → R, where
Lq (ti) = (li−q, . . . , li) is a set of q+1 representations obtained from load tracker function. LP(Lq (ti))
returns the predicted future CPU usage value. LP(Lq (ti)) follows

LP(Lq (ti)) = Max(1.5∗SMA(Sn (ti)) , m∗ (i+ k)+a),

SMA(Sn (ti)) =
∑

i−n≤ j≤i
s j

n+1 ,

m =
li−li−q

q ,

a = li−q−m∗ (i−q).

or

LP(Lq (ti)) = Max(1.5∗EMA(Sn (ti)) , m∗ (i+ k)+a),

EMA(Sn (ti)) =

∑

0≤ j≤n
s j

n+1 if i≤ n,

α ∗ si +(1−α)∗EMA(Sn (ti−1)) if i > n.

,

m =
li−li−q

q ,

a = li−q−m∗ (i−q).

According to the analysis in the paper [9] and our experiments, when k is equal to 2 times q, we can
obtain a lower prediction error. Thus, we apply k = 2∗q here.

The fundamental idea behind the load predictor is conforming with the title of this thesis, which is
the estimation for the future resource demands would rather be more than less. Because the applica-
tion in a container will be throttled due to the insufficient CPU resource and be terminated due to the
insufficient memory resource. Thus, in our prediction algorithm, we apply the bigger value between
1.5 times (unweighted or weighted) average of recent CPU usage values and linear extrapolation pre-
dicted value according to recent representations from the load tracker as our final predicted value.
Since we introduce a multiplier m =

li−li−q
q in prediction, m will be close to 0 when the CPU load tends

to be flat, which will lead to a ”cliff” on the predicted values. Thus, we creatively introduce a ”bot-
toming” mechanism to the algorithms. The adoption of 1.5 times (unweighted or weighted) average of
recent CPU usage values prevents the predicted resource usage value from rapid decline unexpectedly
and unreasonably. While linear extrapolation predicted value according to recent representations from
load tracker ensures the predicted value to be capable to rise abruptly when CPU usage is peak. SMA-
based and EMA-based recommenders have the advantage of their low computational complexity, so
they are more suitable for a real-time processing system while keeping a promising prediction result.

19

3.3. OUR CONTRIBUTION: SMA-BASED AND EMA-BASED RECOMMENDER

Figure 3.2: An example of the trends of predicted value and its lower bound.

In terms of update policy, we follow the design in vertical pod autoscaler. We keep the lower
bound and upper bound for a recommendation value. However, what is different from vertical pod
autoscaler is that we revise the calculation methods of lower bound and upper bound. In vertical pod
autoscaler, the lower bound and upper bound are calculated as the starting values of the bucket where
its accumulated weight achieves 50% and 95% of total weight. In our recommender, the upper bound
and lower bound follow the trend of predicted value but with a multiplier like one in vertical pod
autoscaler. Thus, the lower bound and upper bound will converge to the predicted value as time goes
by like what they do in vertical pod autoscaler. The lower bound and upper bound follow as:

lowerBound = predictedValue∗ (1+ 0.001
history length in days

)−2,

upperBound = predictedValue∗ (1+ 1
history length in days

).

When the request value of the pod is out of the range of lower bound and upper bound, the pod will be
updated to a pod with a new request value that is the same as the recommendation value at that time.
Figure 3.2 displays an example of the trend of predicted value and its lower bound.

20

Chapter 4

System Architecture

The basic architecture of our system is shown in Figure 4.1. Our experiment is conducted on a
minikube cluster on Ubuntu 20.04. On this minikube cluster, three pods are deployed and we con-
figure only one container running per pod. In this thesis, they correspond to the pod containing YCSB
benchmark, the pod containing redis master node, and the pod containing redis worker node. The pods
containing redis master and redis worker can establish a redis cluster in the leader follower replication
mode [25] or in an isolated way without any connection. The details of deployment are demonstrated
in A.2 and A.3. Out of the pods, a monitor is performed to monitor the resource usages of pods (or
containers) in second granularity and write these resource usage values in an established mongoDB
database (details in A.4). Furthermore, we enable vertical pod autoscaler to provide a mechanism
re-scaling the containers resource request automatically. The main aims of vertical pod autoscaler are
not only reducing the redundant resource wastage requested by containers but also reducing the prob-
ability of an application in the container being throttled or terminated due to insufficient resources.
Vertical pod autoscaler primarily consists of three components, namely recommender, updater, and
admission controller. In this thesis, we mainly focus on the recommender component. Our prediction
algorithms are integrated into the recommender component and the performance of our algorithms
is validated by configuring vertical pod autoscaler with replaced recommender component in a real
minikube cluster. In the following sections, we demonstrate in detail how do we monitor the resource
usage in Kubernetes and involve an overview of vertical pod autoscaler architecture [30].

4.1 Monitor

Resource metrics pipeline [31] in Kubernetes is shown as Figure 4.2. The values in the cgroup file are
the ultimate sources of monitoring data. These monitoring data are collected by cAdvisor (container
adsvisor) [32], which is a project open-sourced by Google. cAdvisor can collect the information of
all the running containers on a machine, including CPU usage, memory usage, etc. Then, cAdvisor is
integrated into kubelet [33]. Kubelet is an agent of each node in the cluster. Thus, metrics server [34]
gets the resource metrics from kubelet and integrates the resource metrics into apiserver like metrics
API [35]. Metrics API can also be accessed by kubectl commands as ’kubectl top’.

21

4.1. MONITOR

Figure 4.1: The architecture overview of our system.

Figure 4.2: Resource metrics pipeline in Kubernetes [31, 34]

CPU and memory usages of containers are monitored through the kubernetes.client.CustomObjectsApi
in the Kubernetes python client. Resource requests of pod and container are read via kubernetes.client.CoreV1Api.
Resources recommended by vertical pod autoscaler are obtained from kubernetes.client.ApiClient. Ta-
ble 4.1 lists three data types and their corresponding APIs where we monitor the resource values. All
of the resource values mentioned above are monitored in second granularity and stored in a mongoDB
database in real-time. CPU resource is measured in ’m’, representing milliCPU. 100m CPU is equiv-
alent to 0.1 CPU. In Kubernetes, 1 CPU refers to one vCPU on AWS, or one vCore on Azure [28].
Memory resource is measured in ’Ki’ or ’Mi’, 1 Mi equals 1024 Ki, 220 bytes [36].

Data API
Resource usages client.CustomObjectsApi

Resource requests client.CoreV1Api
VPA recommendations client.ApiClient

Table 4.1: Data monitoring source.

22

CHAPTER 4. SYSTEM ARCHITECTURE

Figure 4.3: The architecture overview of vertical pod autoscaler [30].

4.2 Vertical Pod Autoscaler

The basic architecture overview of vertical pod autoscaler is illustrated in Figure 4.3. Vertical pod
autoscaler is mainly composed of recommender, updater, and admission controller. Recommender
watches all the pods in the Kubernetes cluster and calculates the recommendation values for each pod.
The recommendation algorithm is included in section 3.1. Recommender reads the pod metrics from
Prometheus [27] regularly. Updater is responsible for updating pods according to pod recommenda-
tions. When the current pod request is out of range between upper bound and lower bound, the pod
will be updated by the VPA updater. Currently, the VPA updater only supports evicting old pods be-
fore recreating a new pod with the recommended resources. It means the service will be disrupted
when a pod needs an update. Thus, in-place update [37] was proposed, which does not need to evict
old pods anymore. But the in-place update is still under development. In terms of the VPA admission
controller, it gets recommendations from the VPA recommender and sets it as the pod specifications.

23

4.2. VERTICAL POD AUTOSCALER

24

Chapter 5

Experiments

In this chapter, we conduct the following experiments. Firstly, we set up our experiments environ-
ment, which are redis pods and YCSB pods on minikube. We connect redis pods with YCSB to make
redis pods fluctuate in performance. We verify all of the pods on minikube work well and the con-
nection between redis and YCSB is stable. Secondly, we validate the function of the current vertical
pod autoscaler and its several limitations. We design the subsequent experiments according to the
experience from this vertical pod autoscaling validation. Moreover, the current vertical pod autoscal-
ing recommender is evaluated in the loading phase of workload A by three metrics, displaying there
are still improvements to be done in vertical pod autoscaling. Thirdly, we evaluate the performance
of our SMA-based and EMA-based recommenders in the real minikube cluster. Both of these two
recommenders are integrated into the vertical pod autoscaler component and are plug and play. Three
combinations of load track size and number for both SMA-based and EMA-based recommenders are
evaluated. Three metrics are applied to evaluate performance and we pick the ema-5-3, which per-
forms better, for the follow-up experiments. In the follow-up experiments, we verify if the ema-5-3
recommender is able to perform in the same way on other workloads of YCSB. For the poorly per-
forming workload E, we adjust the multiplier in the algorithm and obtain better results. Lastly, we
adjust the recommenders in the paper [10] slightly to make them suitable for our situation. We com-
pare our ema-5-3 recommender with HW and LSTM recommenders. HW and LSTM recommenders
are implemented out of vertical pod autoscaler to compare with our methods more conveniently.

5.1 Redis and YCSB Pods Validation

As mentioned in Chapter 4, we deploy a redis cluster consisting of one master node and one worker
node on the minikube cluster. The redis master node is benchmarked by a YCSB pod. When the redis
master pod loads or runs the workload in the YCSB pod, the CPU and memory usage of this redis
master pod would fluctuate in theory. Thus, we want to validate the performance fluctuation of pods
on the minikube cluster, at the same time, test if all the pods work well and if the connection between
redis master pod and YCSB pod is stable.

We use command ’kubectl top’ to monitor CPU and memory usage. ’kubectl top’ needs to install

25

5.2. VERTICAL POD AUTOSCALING VALIDATION

Figure 5.1: CPU and memory usage of pods in the loading phase, record count is set to 2,500,000.

a supporting addon, Kubernetes metrics server, to obtain the resource monitoring values. The same as
units of container monitor, CPU and memory usages of pods are measured in milliCPU and Ki bytes.
The CPU and memory usages of all pods are monitored in second granularity.

Figure 5.1 and Figure 5.2 show the CPU and memory usage of redis-master-0 pod, redis-worker-
0 pod, and YCSB pod in the loading and running phases of workload A when the record count is
set to 2,500,000 and operation count is set to 2,500,000 as well. Each pod contains a corresponding
container. Redis-master-0 pod and redis-worker-0 pod compose a redis cluster. The master node is
followed by a worker node and they are configured in leader follower replication mode [25]. The
configuration for leader follower replication in the redis cluster is shown in A.3. From Figure 5.1 and
Figure 5.2, we can see CPU usage fluctuates but memory usage presents a stepped increase which is
in line with expectations. Moreover, it clearly shows that the trends of the redis master node and the
redis worker node appear similar not only in the loading phase but also running phase. It indicates
that the pods we deploy on minikube cluster work well and the connections between redis master pod
and redis worker pod, as well as the YCSB pod are stable. Since the trends of redis cluster are the
same, we will only focus on the pod containing redis master node in the following experiments for
simplicity.

Conclusion-1: The pods deployed on minikube work well and the connections with each other are
stable. Also, our monitoring framework is able to capture resource variability.

5.2 Vertical Pod Autoscaling Validation

In this section, we verify the function of the current vertical pod autoscaler and its several limitations.
We configure the vertical pod autoscaler in ”Auto” mode on the redis master node. ”Auto” mode
should have been an in-place update mode which avoids the restarts of the pod to be updated. But it
has not been accomplished, the pods that need to be updated still have to be evicted first and then be

26

CHAPTER 5. EXPERIMENTS

Figure 5.2: CPU and memory usage of pods in the running phase, operation count is set to 2,500,000.

created. Figure 5.3 obviously shows that there is a CPU request change on redis-master-0 pod and it
works well after that change. We owe it to manually establishing the connection between redis master
pod and the YCSB pod as soon as the redis master pod is recreated. Moreover, the figure presents
the CPU usage and request of two redis master nodes. So now it brings out one of the limitations of
vertical pod autoscaler, which is vertical pod autoscaler works normally only if the pod has at least
two replications. It explains why there are two redis master pods in Figure 5.3, and we configure two
replications of redis master pod to make sure vertical pod autoscaler works well. Despite there is one
more replication for the pod, but the other pod replication does not show any changes at all. Another
limitation of vertical pod autoscaler is that each pod can only correspond to one vertical pod autoscaler
and vertical pod autoscaler can not be used with horizontal pod autoscaler at the same time. Thus, it
implies we can not compare the recommenders on the same pod in one run, except the recommenders
are not integrated into the vertical pod autoscaler, namely out of the VPA component.

According to the above facts, firstly, we decide to merely fix attention on the performance of the
first replication that belongs to the target pod. Secondly, for the smoothness of our experiments, we
decide to set VPA in ”Off” mode in the following comparisons of different recommenders. Vertical
pod autoscaler in ”Off” mode only computes the recommended values but without automatic updates.

Following above-mentioned configurations, we deploy pods of the redis master node and YCSB
on the minikube cluster and two pods connect with each other. We use the loading phase of workload
A in YCSB to make the redis master pod fluctuates in CPU usage. The record count in workload A
is set to 2,500,000. We monitor the actual CPU usage and recommendation values of the redis master
pod in 900 seconds, which is long enough to complete the loading phase of workload A. Inspired by
the three metrics in [10], the performance of the default vertical pod autoscaler is quantified by three
metrics: average slack (m), percent of insufficient CPU observations (%), and average insufficient
CPU (m). Slack is the amount of the resource that is overprovisioning. Insufficient CPU means the
resource that is underprovisioning, namely, recommended values are lower than the actual CPU usage.

27

5.2. VERTICAL POD AUTOSCALING VALIDATION

Figure 5.3: CPU usage and requests of redis-master node in the loading phase of workload A, record
count is set to 2,500,000.

Recommenders Average slack Percent of insufficient CPU Average insufficient CPU
(m) (% observations) (m)

VPA 556.8 14.2 44.8

Table 5.1: The performance of vertical pod autoscaler in the loading phase of workload A.

Thus, the average slack in this thesis is defined as:

Average Slack =
Total Slack

Total Number o f Observations
.

Percent of insufficient CPU observations follows:

Percent o f Insu f f icient CPU =
Number o f Insu f f icient CPU Observations

Total Number o f Observations
.

Average insufficient CPU is defined as:

Average Insu f f icient CPU =
Total Amount o f Insu f f icient CPU

Total Number o f Observations
.

With the above metrics, we evaluate the performance of the current vertical pod autoscaling rec-
ommender in Kubernetes. Table 5.1 and Figure 5.4 present the performance of the current vertical pod
autoscaling recommender. In spite of the VPA recommender has a low percentage of insufficient CPU,
it obviously shows in the figure that the VPA recommender is not able to follow the trend of actual
CPU usage very well at least in a short term, which contributes to too much slack between the actual
CPU usage and recommendation. Furthermore, we can obtain the fact that the VPA recommender has

28

CHAPTER 5. EXPERIMENTS

Figure 5.4: CPU usage of redis master pod and recommendations from vertical pod autoscaling rec-
ommender in the loading phase of workload A.

an obvious delay when the actual CPU usage increase suddenly. It may lead to the application has
already been throttled before the container rescaling.

Conclusion-2: In the current vertical pod autoscaler, the pods that need to be updated still have to
be evicted first and then be created. The pod that is applied on vertical pod autoscaling has to have
at least two replications. Each pod can only correspond to one vertical pod autoscaler in one run.
Moreover, the recommended value from the current vertical pod autoscaler can not follow the trend of
CPU usage very well in a short-term workload and the recommended value from the current vertical
pod autoscaler has an obvious delay in terms of the trend of CPU usage changes, resulting in a large
slack and inefficiencies. It indicates there are still improvements to be done in vertical pod autoscaling.

5.3 SMA-based vs EMA-based recommender

In this section, we experiment three combinations of parameters for both SMA-based and EMA-based
recommenders to verify the performance of these two recommenders. Two parameters are needed
in both SMA-based and EMA-based recommenders, which are the size of the load tracker and the
number of the load tracker. The size of the load tracker represents how many observations are in a
load tracker to calculate the weighted or unweighted average. The number of the load tracker indicates
how many representations li obtained from the load tracker function are used to make an extrapolation
prediction. If the size of the load tracker and the number of it are two high values, it denotes that the
recommender considers too many previous observations rather than recent observations, which will
lead to trend delays in prediction. However, if the size of the load tracker and the number of it are
two small values, it suggests that the recommender takes too many recent observations into account

29

5.3. SMA-BASED VS EMA-BASED RECOMMENDER

rather than more previous ones. Namely, it usually indicates that the trend is very recent and is not
fully smoothed in that situation. Both two situations mentioned above prevent a low prediction error.

Pods of the redis master node and YCSB are deployed on the minikube cluster and two pods are
connected with each other. We use the loading phase of workload A in YCSB to make the redis master
pod fluctuates in CPU usage. The record count in workload A is set to 2,500,000. We monitor the
actual CPU usage and recommendation values of the redis master pod in 900 seconds, which is long
enough to complete the loading phase of workload A. In addition, we set the VPA in ”off” mode to
ensure the smoothness of the experiments, which means the pod will not update automatically but still
get recommendations. The recommenders are evaluated in three metrics, which are average slack (m),
percent of insufficient CPU observations (%), and average insufficient CPU (m) as above-mentioned
(see Section 5.2).

Recommenders Average slack Percent of insufficient CPU Average insufficient CPU
(m) (% observations) (m)

sma-3-2 340.9 30.4 79.7
ema-3-2 448.9 33.9 93.8
sma-5-3 53.0 43.3 76.7
ema-5-3 51.8 34.4 42.5
sma-10-5 71.9 34.7 87.6
ema-10-5 45.3 52.1 71.1

Table 5.2: The performance of different recommenders in the loading phase of workload A. The first
number in the name of recommenders is the size of the load tracker and the second is the number of
load trackers.

The performance of different recommenders in the loading phase of workload A is quantified in
Table 5.2. The first number in the name of recommenders is the size of the load tracker and the sec-
ond is the number of load trackers. For instance, ema-5-3 means EMA-based recommender with load
tracker size as 5 and load tracker number as 3. In Table 5.2, it indicates ema-5-3 has the best perfor-
mance among all recommenders, three metric values of it are relatively low. Figure 5.5 and 5.6 present
the CPU usage of the redis master pod and recommended request values for that pod provided by rec-
ommender sma-5-3 and ema-5-3 correspondingly. Both two recommendations are able to follow the
trend of actual CPU usage in general. However, compared with recommender sma-5-3, recommender
ema-5-3 recommends the request values cover the actual CPU usage better despite the fact that there
is some slack between ema-5-3 recommends and actual CPU usage.

To verify if the ema-5-3 recommender is able to perform in the same way on other workloads,
we test the ema-5-3 recommender performance in the loading and running phase of workload A to
D. Table 5.3 displays the performance of ema-5-3 recommender in the loading and running phase of
workload A to F. Figure 5.7 and 5.8 present the CPU usage of the redis master pod and recommenda-
tions from ema-5-3 recommender in the loading and running phase of workload A to F. Recommender
ema-5-3 achieves similar results in most workloads no matter loading and running phase, except for

30

CHAPTER 5. EXPERIMENTS

Figure 5.5: CPU usage of redis master pod and recommendations from recommender sma-5-3 in the
loading phase of workload A.

Figure 5.6: CPU usage of redis master pod and recommendations from recommender ema-5-3 in the
loading phase of workload A.

31

5.4. COMPARISON WITH HW AND LSTM RECOMMENDER

running phase of workload E. In the workload E running phase, the CPU usage behaviors a flat but
slightly fluctuating trend. Due to the characteristics of our extrapolation algorithm, the percent of
insufficient CPU is high, at 48.7% in the workload E running phase. In this situation, our algorithm
does not prevent the recommendations from dropping below the actual CPU usage very successfully
but due to the ”guarantee mechanism” in our design, the predicted value has not dropped too exagger-
atedly. Thus, we can choose a larger multiplier for the average of recent CPU usage values to obtain a
better result. The performance is displayed in Figure 5.9 when the multiplier is set to 2, we get 84.1m
average slack, 26.8% insufficient CPU, and 12.6m average insufficient CPU.

Conclusion-3: Both the recommended value from ema and sma recommenders can follow the trend
of actual CPU usage closely in the loading phase of workload A when the size of the load tracker is
set to 5 and the number of the load tracker is set to 3. The ema-5-3 has the best performance in the
loading phase of workload A. In other workloads, ema-5-3 performs similarly except in the running
phase of workload E. But when we enlarge the multiplier in our methods, it can get a better result in
the running phase of workload E.

Workloads Average slack Percent of insufficient CPU Average insufficient CPU
(m) (% observations) (m)

A-loading 51.8 34.4 42.5
A-running 30.4 10.7 15.5
B-loading 71.5 31.2 57.7
B-running 37.4 5.1 4.4
C-loading 58.0 35.4 67.6
C-running 32.3 11.5 14.0
D-loading 81.7 19.0 32.8
D-running 46.9 5.5 6.2
E-loading 57.1 42.4 70.0
E-running 23.2 48.7 54.3
F-loading 49.5 41.6 78.2
F-running 33.0 12.8 12.1

Table 5.3: The performance of ema-5-3 recommender in the loading and running phase of workload
A to F.

5.4 Comparison with HW and LSTM Recommender

In this section, we compare the performance of HW and LSTM recommenders with our recommender
ema-5-3. Due to the computational complexity of HW and LSTM algorithms, they are not suitable to
support vertical pod autoscaling per second because the models can not be trained in one second. For
HW recommender, the prediction model refits when each new observation is collected. For LSTM
recommender, the prediction model retrains every season. Thomas Wang et al. apply the HW and

32

CHAPTER 5. EXPERIMENTS

(a) Workload A loading phase (b) Workload A running phase

(c) Workload B loading phase (d) Workload B running phase

(e) Workload C loading phase (f) Workload C running phase

(g) Workload D loading phase (h) Workload D running phase

Figure 5.7: CPU usage of redis master pod and recommendations from ema-5-3 recommender in the
loading and running phase of workload A to D.

33

5.4. COMPARISON WITH HW AND LSTM RECOMMENDER

(a) Workload E loading phase (b) Workload E running phase

(c) Workload F loading phase (d) Workload F running phase

Figure 5.8: CPU usage of redis master pod and recommendations from ema-5-3 recommender in the
loading and running phase of workload E and F.

Figure 5.9: CPU usage of redis master pod and recommendations from recommender sma-5-3 in the
running phase of workload E, multiplier in algorithm is set to 2.

34

CHAPTER 5. EXPERIMENTS

LSTM algorithms in their paper [10] to estimate the CPU usage every 10 minutes. So there are 144
samples per day. Samples in one day compose a season. Furthermore, at least two season data are
needed to generate the future CPU usage prediction from HW and LSTM recommenders because these
two models need to be initialized at the beginning. That explains why there is a fixed recommendation
value in the initial stage for both HW and LSTM recommenders.

In this experiment, we apply these two recommenders out of the vertical pod autoscaler and use
the same CPU usage as in the ema-5-3 run for a more equitable performance comparison between
recommender ema-5-3 and them. We modify the season length to one minute and these two recom-
menders present the preset value in the first two seasons due the models initialization. From Table 5.4
and Figure 5.10, we can obtain the fact that HW recommender is not capable to predict the CPU usage
trend very well. The average slack of HW recommender is pretty high, ten times more than the slack
of recommender ema-5-3. To have a clearer demonstration of the comparison between LSTM rec-
ommender and ema-5-3, we remove the prediction from HW recommender and show the comparison
again in Figure 5.11. As seen in Figure 5.11, the prediction value from LSTM recommender has more
slack than the value predicted by ema-5-3. Moreover, compared with LSTM recommender, the pre-
diction from ema-5-3 follows the CPU usage trend much more closely and the prediction from LSTM
recommender displays delays in terms of changes in the CPU usage trend.
Conclusion-4: HW recommender can not perform well in the loading phase of workload A due to its
random seasonality. Compared with LSTM recommender, the prediction from ema-5-3 follows the
CPU usage trend much more closely, namely, with less slack and without delays in terms of changes
in the CPU usage trend. Moreover, our method has much lower computational complexity than HW
and LSTM methods.

Recommenders Average slack Percent of insufficient CPU Average insufficient CPU
(m) (% observations) (m)

ema-5-3 51.8 34.4 42.5
LSTM 269.3 22.1 40.6

HW 588.5 26.3 111.4

Table 5.4: Compared with the performance of HW and LSTM recommenders in the loading phase of
workload A.

35

5.4. COMPARISON WITH HW AND LSTM RECOMMENDER

Figure 5.10: Performance comparison of different recommenders in the loading phase of workload A.

Figure 5.11: Performance comparison of different recommenders (without HW recommender) in the
loading phase of workload A.

36

Chapter 6

Related Work

In this chapter, we mainly introduce some works related to our thesis. We introduce them in four
aspects: prediction of workloads, autoscaling in the cloud, autoscaling containers, and vertical au-
toscaling virtual machines.

6.1 Predicting trend of workloads

Prediction algorithm for the future resource demands plays an essential role in container autoscaling in
this thesis. Thus, we describe several related works in the aspect of predicting the trend of workloads
in this section. As the comparison of our prediction methods, a recent work [10] about the CPU usage
prediction for autoscaling is based on Holt-Winters exponential smoothing (HW) and Long Short-
Term Memory (LSTM) methods. These two methods have more expensive computational complexity
than our methods. We have analyzed them in detail in the previous chapter. Our prediction methods
are based on the two-step CPU usage prediction model from [9]. This CPU usage prediction model is
introduced in detail in the previous chapter of this thesis as well. Similar to this model, Sara Casolari
and Mauro Andreolini [38] proposed another trend-aware regression model. The idea of the trend-
aware regression model is very similar to that of the two-step prediction model from [9] because
these two models are proposed by the same authors. Both of these two models mainly use linear
extrapolation to predict future CPU usage but with some differences in the representation of recent
CPU usage values.

Apart from these, I.J. Davis et al. [39] proposed a regression-based hybrid method which com-
posed of Fourier analysis, autocorrelation, multivariate linear regression. It chooses the best prediction
strategy from these methods according to the recent prediction accuracy. Nilabja Roy et al. [40] used
an autoregressive moving average method to predict the trend of workloads.

6.2 Autoscaling in the cloud

Some works specifically investigate the performance study of the state-of-art autoscalers. Therefore,
we firstly involve several works related to the autoscalers performance study in this section. For

37

6.3. AUTOSCALING CONTAINERS

instance, Laurens Versluis et al. [41] analyzed the impact of several factors on the performance of
autoscalers. These factors include the application domain, sudden peaks, allocation policy, and di-
versity of datacenter environments. Alexey Ilyushkin et al. [42] demonstrated a detailed performance
comparison of seven state-of-the-art autoscaling strategies. Anshul Jindal et al. [43] developed a tool
for the performance measurement of autoscaling.

While the other works research on the autoscaling strategy itself. For instance, Tao Chen et al. [44]
investigated the self-aware and self-adaptive cloud autoscaling system and gave a complete taxonomy
in this field. They listed a lot of autoscaling models in their paper. Zhiheng Zhong and Rajkumar
Buyya [45] proposed a task allocation strategy to optimize resource utilization from three aspects.
One of them is to change the cluster size to increase the utilization through autoscaling strategies.
Brandon Thurgood and Ruth G. Lennon [46] offered a software solution to autoscale the Kubernetes
cluster itself. Hamoun Ghanbari et al. [47] provided a solution for autoscaling mechanisms from an
optimization perspective. They proposed an autoscaling strategy that regards the problem as a model
predictive control problem, minimize the cost of resource usage while meeting with the application
provider’s requirements.

6.3 Autoscaling containers

In this thesis, we only focus on the autoscaling mechanism at the container level. Our work in this
thesis only provides a solution for the vertical autoscaling on CPU usage. The same is to address the
containers rightsizing problem in Kubernetes, Gourav Rattihalli et al. [48] designed an autoscaling
mechanism called RUBAS to estimate the CPU and memory resources of containers through the sum
of the median of observations and the absolute deviation of observations. RUBAS can reschedule the
containers based on the above-mentioned estimation method. They also showed the effectiveness of
their estimation method in their previous work [49, 50].

However, some works focus on the horizontal autoscaling as well. Horizontal autoscaling is an
autoscaling mechanism to adjust the number of concurrent running containers automatically. Au-
topilot [26] from Google is a complete autoscaling system, it not only takes into account vertical
autoscaling but also horizontal autoscaling on both CPU and memory usage. The current vertical
pod autoscaling recommender is directly inspired by the moving window recommenders in Autopilot.
Thanh-Tung Nguyen et al. [51] investigated the horizontal pod autoscaling and gave suggestions on
optimizing the performance of horizontal pod autoscaling.

6.4 Vertical autoscaling of VMs

Different from focusing on the vertical autoscaling of the containers like what we do in this thesis,
some works focus on the vertical autoscaling of virtual machines. For instance, Abdul R. Hummaida
et al. [52] investigated the veritical autoscaling of virtual machines and they defined it as cloud systems
adaptation. Mina Sedaghat et al. [4] proposed a vertical autoscaling mechanism for virtual machines,
which considers the cost and benefit trade-off of replacing the virtual machines.

38

Chapter 7

Conclusions

In this thesis, we have uncovered the autoscaling mechanism of the vertical pod autoscaler component
in Kubernetes. Based on the fundamental of the current vertical pod autoscaler, we design an autoscal-
ing mechanism that is sensitive to the CPU usage changes. Our proposed autoscaling mechanism is
able to follow the container CPU usage trend very closely. Due to its inexpensive computational
complexity, it is suitable to be applied in actual scenarios. Moreover, our autoscaling mechanism out-
performs the current vertical pod autoscaling mechanism and autoscaling mechanism based on HW
and LSTM in short-term workloads, where the CPU usage is highly variable.

7.1 Answers to the Research Questions

• How does the current vertical pod autosclaer work? What problems does the current vertical
pod autoscaler have?

The detailed mechanism of the current vertical pod autoscaler is included in Section 3.1. Cur-
rently, vertical pod autoscaler can not solve the problem of recommendations for sudden CPU
usage increases very well. The recommendations from the current vertical pod autoscaler usu-
ally have lots of slack, which means it results in resource under-utilization. On the contrary,
vertical pod autoscaler is able to provide a reliable recommendation in a long-term workload.

• How can we design an autoscaling policy which enables good performance for the application
and minimizes resource waste?

Would rather be more than less is the essential idea of autoscaling. Because insufficient re-
sources will lead to the termination or throttle of the application, which is more serious than the
resource under-utilization. In the current vertical autoscaler, it is reflected that the lower bound
converges much more rapidly than the upper bound. In the autoscaling mechanism based on
HW and LSTM, it is reflected in the extra rescaling buffer for some error rooms. As for our
design, it is reflected in two following aspects. First, due to the characteristic of extrapolation
prediction, we adopt a ”bottoming” mechanism for the future CPU demands prediction. The
final prediction value is the bigger one between the several times the weighted or unweighted
average of recent CPU usage and the extrapolation prediction value.

39

7.1. ANSWERS TO THE RESEARCH QUESTIONS

• Compared to the current vertical pod autoscaler and autoscaling mechanism based on HW and
LSTM, what are the advantages of our autoscaling design?

Our autoscaling mechanism has the following advantages. First, it fits the CPU usage trend
well and almost has no delay to the trend change. Second, due to its inexpensive computational
complexity, it is easier to be applied in actual scenarios. Third, it is integrated into the vertical
pod autoscaler component which is plug and play. Moreover, unlike the autoscaling mechanism
based on HW and LSTM, our mechanism does not need any time to ”warm-up”, namely, train
the model in the initial stage.

40

Appendix A

Environment Setup

A.1 Minikube Setup

curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube-linux-amd64

sudo install minikube-linux-amd64 /usr/local/bin/minikube

minikube start --cpus 8 --memory 8192

minikube addons enable metrics-server

A.2 YCSB Setup

vim ycsb.yaml

apiVersion: v1

kind: Pod

metadata:

name: ycsb

labels:

app: test

spec:

containers:

- name: ycsb

image: 0track/ycsb:latest

imagePullPolicy: Always

ports:

- name: ycsb

containerPort: 80

protocol: TCP

kubectl apply -f ycsb.yaml

kubectl exec -it ycsb -- sh

apt-get update

apt-get install vim

apt-get install maven

cd YCSB

mvn -pl com.yahoo.ycsb:redis-binding -am clean package

exit

41

A.3. REDIS SETUP

A.3 Redis Setup

vim redis-statefulset.yaml

apiVersion: apps/v1

kind: StatefulSet

metadata:

name: redis-master

spec:

serviceName: redis

replicas: 2

selector:

matchLabels:

app: redis

template:

metadata:

labels:

app: redis

spec:

containers:

- name: redis-master

image: redis:6.0-alpine

ports:

- containerPort: 6379

name: redis-master

apiVersion: v1

kind: Service

metadata:

name: redis-service

spec:

clusterIP: None

ports:

- port: 6379

targetPort: 6379

selector:

app: redis

vim redis-worker.yaml

apiVersion: apps/v1

kind: StatefulSet

metadata:

name: redis-worker

spec:

serviceName: redis

replicas: 2

selector:

matchLabels:

42

APPENDIX A. ENVIRONMENT SETUP

app: redis

template:

metadata:

labels:

app: redis

spec:

containers:

- name: redis-worker

image: redis:6.0-alpine

ports:

- containerPort: 6379

name: redis-worker

kubectl exec -it redis-worker -- sh

redis-cli

slaveof 172.17.0.4 6379

172.17.0.4 is the ip of redis-master

A.4 MongoDB Setup

wget https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-ubuntu2004-4.4.5.tgz

tar -zxvf mongodb-linux-x86_64-ubuntu2004-4.4.5.tgz

sudo mv mongodb-linux-x86_64-ubuntu2004-4.4.5 /usr/local/mongodb4

export PATH=/usr/local/mongodb4/bin:$PATH

sudo mkdir -p /var/lib/mongo

sudo mkdir -p /var/log/mongodb

sudo chown `whoami` /var/lib/mongo

sudo chown `whoami` /var/log/mongodb

mongod --dbpath /var/lib/mongo --logpath /var/log/mongodb/mongod.log --fork

A.5 Vertical Pod Autoscaler Setup

git clone https://github.com/kubernetes/autoscaler.git

cd autoscaler/vertical-pod-autoscaler

./hack/vpa-down.sh

./hack/vpa-up.sh

vim redis-vpa.yaml

apiVersion: autoscaling.k8s.io/v1

kind: VerticalPodAutoscaler

metadata:

name: redis-vpa

spec:

targetRef:

apiVersion: "apps/v1"

kind: StatefulSet

name: redis-master

43

A.6. DOCKER IMAGE

updatePolicy:

updateMode: "Auto"

A.6 Docker Image

docker build -t vpa-recommender:lastest .

docker tag vpa-recommender:lastest username/vpa-recommender:lastest

44

References

[1] Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. “Elasticity in Cloud Computing:
What It Is, and What It Is Not”. In: 10th International Conference on Autonomic Computing
(ICAC 13). San Jose, CA: USENIX Association, June 2013, pp. 23–27. ISBN: 978-1-931971-
02-7. URL: https://www.usenix.org/conference/icac13/technical-sessions/
presentation/herbst.

[2] Keith Adams and Ole Agesen. “A Comparison of Software and Hardware Techniques for X86
Virtualization”. In: Proceedings of the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems. ASPLOS XII. San Jose, California, USA:
Association for Computing Machinery, 2006, pp. 2–13. ISBN: 1595934510. DOI: 10.1145/
1168857.1168860. URL: https://doi.org/10.1145/1168857.1168860.

[3] IBM Cloud Education. IBM Cloud Learn Hub/What is Virtualization?/Virtualization. Accessed:
2021-05-01. URL: https://www.ibm.com/cloud/learn/virtualization-a-complete-
guide.

[4] Mina Sedaghat, Francisco Hernandez-Rodriguez, and Erik Elmroth. “A Virtual Machine Re-
Packing Approach to the Horizontal vs. Vertical Elasticity Trade-off for Cloud Autoscaling”.
In: Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference. CAC ’13.
Miami, Florida, USA: Association for Computing Machinery, 2013. ISBN: 9781450321723.
DOI: 10.1145/2494621.2494628. URL: https://doi.org/10.1145/2494621.2494628.

[5] Claus Pahl et al. “Cloud Container Technologies: A State-of-the-Art Review”. In: IEEE Trans-
actions on Cloud Computing PP (May 2017), pp. 1–1. DOI: 10.1109/TCC.2017.2702586.

[6] IBM Cloud Education. IBM Cloud Learn Hub/Containerization Explained/Containerization.
Accessed: 2021-05-01. URL: https://www.ibm.com/cloud/learn/containerization.

[7] Brendan Burns et al. “Borg, Omega, and Kubernetes”. In: ACM Queue 14 (2016), pp. 70–93.
URL: http://queue.acm.org/detail.cfm?id=2898444.

[8] K. Grygiel and M. Wielgus. Kubernetes Vertical Pod Autoscaler: Design Proposal. Accessed:
2021-04-28. URL: https : / / github . com / kubernetes / community / blob / master /
contributors/design-proposals/autoscaling/vertical-pod-autoscaler.md.

45

https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://doi.org/10.1145/1168857.1168860
https://doi.org/10.1145/1168857.1168860
https://doi.org/10.1145/1168857.1168860
https://www.ibm.com/cloud/learn/virtualization-a-complete-guide
https://www.ibm.com/cloud/learn/virtualization-a-complete-guide
https://doi.org/10.1145/2494621.2494628
https://doi.org/10.1145/2494621.2494628
https://doi.org/10.1109/TCC.2017.2702586
https://www.ibm.com/cloud/learn/containerization
http://queue.acm.org/detail.cfm?id=2898444
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/autoscaling/vertical-pod-autoscaler.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/autoscaling/vertical-pod-autoscaler.md

REFERENCES

[9] Mauro Andreolini and Sara Casolari. “Load Prediction Models in Web-Based Systems”. In:
Proceedings of the 1st International Conference on Performance Evaluation Methodolgies and
Tools. valuetools ’06. Pisa, Italy: Association for Computing Machinery, 2006, 27–es. ISBN:
1595935045. DOI: 10.1145/1190095.1190129. URL: https://doi.org/10.1145/
1190095.1190129.

[10] Thomas Wang, Simone Ferlin, and Marco Chiesa. “Predicting CPU Usage for Proactive Au-
toscaling”. In: Proceedings of the 1st Workshop on Machine Learning and Systems. EuroMLSys
’21. Online, United Kingdom: Association for Computing Machinery, 2021, pp. 31–38. ISBN:
9781450382984. DOI: 10.1145/3437984.3458831. URL: https://doi.org/10.1145/
3437984.3458831.

[11] Rong Pan. “Holt–Winters Exponential Smoothing”. In: Wiley Encyclopedia of Operations Re-
search and Management Science. American Cancer Society, 2011. ISBN: 9780470400531. DOI:
https://doi.org/10.1002/9780470400531.eorms0385. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/9780470400531.eorms0385. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1002/9780470400531.eorms0385.

[12] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural Comput.
9.8 (Nov. 1997), pp. 1735–1780. ISSN: 0899-7667. DOI: 10.1162/neco.1997.9.8.1735.
URL: https://doi.org/10.1162/neco.1997.9.8.1735.

[13] Brian F. Cooper et al. “Benchmarking Cloud Serving Systems with YCSB”. In: SoCC ’10.
Indianapolis, Indiana, USA: Association for Computing Machinery, 2010, pp. 143–154. ISBN:
9781450300360. DOI: 10.1145/1807128.1807152. URL: https://doi.org/10.1145/
1807128.1807152.

[14] Red Hat. CHAPTER 1. INTRODUCTION TO CONTROL GROUPS (CGROUPS). Accessed:
2021-05-02. URL: https://access.redhat.com/documentation/en-us/red_hat_
enterprise_linux/6/html/resource_management_guide/ch01.

[15] Christoph Lameter Paul Jackson. CGROUPS. Accessed: 2021-07-10. URL: https://www.
kernel.org/doc/Documentation/cgroup-v1/cgroups.txt.

[16] Roberto Morabito, Jimmy Kjällman, and Miika Komu. “Hypervisors vs. Lightweight Virtual-
ization: A Performance Comparison”. In: 2015 IEEE International Conference on Cloud Engi-
neering. 2015, pp. 386–393. DOI: 10.1109/IC2E.2015.74.

[17] Thanh Bui. Analysis of Docker Security. 2015. arXiv: 1501.02967 [cs.CR].

[18] Docker. Docker Overview. Accessed: 2021-05-03. URL: https://docs.docker.com/get-
started/overview/.

[19] 2021 The Kubernetes Authors. What is Kubernetes? Accessed: 2021-05-03. URL: https://
kubernetes.io/docs/concepts/overview/what-is-kubernetes/.

[20] 2021 The Kubernetes Authors. Minikube Documentation. Accessed: 2021-05-04. URL: https:
//minikube.sigs.k8s.io/docs/.

46

https://doi.org/10.1145/1190095.1190129
https://doi.org/10.1145/1190095.1190129
https://doi.org/10.1145/1190095.1190129
https://doi.org/10.1145/3437984.3458831
https://doi.org/10.1145/3437984.3458831
https://doi.org/10.1145/3437984.3458831
https://doi.org/https://doi.org/10.1002/9780470400531.eorms0385
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470400531.eorms0385
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470400531.eorms0385
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470400531.eorms0385
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470400531.eorms0385
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://doi.org/10.1109/IC2E.2015.74
https://arxiv.org/abs/1501.02967
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/

REFERENCES

[21] Redislabs. Introduction to Redis. Accessed: 2021-07-10. URL: https://redis.io/topics/
introduction.

[22] MongoDB Inc. Introduction to MongoDB. Accessed: 2021-07-10. URL: https : / / docs .
mongodb.com/manual/introduction/.

[23] Abhishek Verma et al. “Large-scale cluster management at Google with Borg”. In: Proceedings
of the European Conference on Computer Systems (EuroSys). Bordeaux, France, 2015.

[24] 2021 The Kubernetes Authors. Kubernetes Components. Accessed: 2021-07-10. URL: https:
//kubernetes.io/docs/concepts/overview/components/.

[25] Redislabs. Replication. Accessed: 2021-05-03. URL: https://redis.io/topics/replication.

[26] Krzysztof Rzadca et al. “Autopilot: Workload Autoscaling at Google Scale”. In: Proceedings
of the Fifteenth European Conference on Computer Systems. 2020. URL: https://dl.acm.
org/doi/10.1145/3342195.3387524.

[27] 2021 The Linux Foundation. What is Prometheus? Accessed: 2021-07-12. URL: https://
prometheus.io/docs/introduction/overview/.

[28] 2021 The Kubernetes Authors. Assign CPU Resources to Containers and Pods. Accessed: 2021-
05-05. URL: https://kubernetes.io/docs/tasks/configure- pod- container/
assign-cpu-resource/.

[29] Charles C. Holt. “Forecasting seasonals and trends by exponentially weighted moving aver-
ages”. In: International Journal of Forecasting 20.1 (2004), pp. 5–10. ISSN: 0169-2070. DOI:
https://doi.org/10.1016/j.ijforecast.2003.09.015. URL: https://www.
sciencedirect.com/science/article/pii/S0169207003001134.

[30] Toader Sebastian. Vertical Pod Autoscaler. Accessed: 2021-07-16. URL: https://banzaicloud.
com/blog/k8s-vertical-pod-autoscaler/.

[31] 2021 The Kubernetes Authors. Kubernetes Monitoring Architecture. Accessed: 2021-05-05.
URL: https://github.com/kubernetes/community/blob/master/contributors/
design-proposals/instrumentation/monitoring_architecture.md.

[32] Google. cAdvisor. Accessed: 2021-05-05. URL: https://github.com/google/cadvisor.

[33] 2021 The Kubernetes Authors. Kubelet. Accessed: 2021-07-10. URL: https://kubernetes.
io/docs/reference/command-line-tools-reference/kubelet/.

[34] kubernetes-sigs. Kubernetes Metrics Server. Accessed: 2021-05-05. URL: https://github.
com/kubernetes-sigs/metrics-server.

[35] 2021 The Kubernetes Authors. Metrics-API. Accessed: 2021-05-05. URL: https://github.
com/kubernetes/metrics.

[36] 2021 The Kubernetes Authors. Assign Memory Resources to Containers and Pods. Accessed:
2021-05-05. URL: https://kubernetes.io/docs/tasks/configure-pod-container/
assign-memory-resource/.

47

https://redis.io/topics/introduction
https://redis.io/topics/introduction
https://docs.mongodb.com/manual/introduction/
https://docs.mongodb.com/manual/introduction/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://redis.io/topics/replication
https://dl.acm.org/doi/10.1145/3342195.3387524
https://dl.acm.org/doi/10.1145/3342195.3387524
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/
https://doi.org/https://doi.org/10.1016/j.ijforecast.2003.09.015
https://www.sciencedirect.com/science/article/pii/S0169207003001134
https://www.sciencedirect.com/science/article/pii/S0169207003001134
https://banzaicloud.com/blog/k8s-vertical-pod-autoscaler/
https://banzaicloud.com/blog/k8s-vertical-pod-autoscaler/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/monitoring_architecture.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/monitoring_architecture.md
https://github.com/google/cadvisor
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes/metrics
https://github.com/kubernetes/metrics
https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource/

REFERENCES

[37] Vinay Kulkarni. In-Place Update of Pod Resources. Accessed: 2021-07-16. URL: https://
github.com/kubernetes/enhancements/issues/1287.

[38] Sara Casolari, Mauro Andreolini, and Michele Colajanni. “Runtime prediction models for Web-
based system resources”. In: 2008 IEEE International Symposium on Modeling, Analysis and
Simulation of Computers and Telecommunication Systems. 2008, pp. 1–8. DOI: 10.1109/
MASCOT.2008.4770556.

[39] I. J. Davis et al. “Regression-Based Utilization Prediction Algorithms: An Empirical Investiga-
tion”. In: Proceedings of the 2013 Conference of the Center for Advanced Studies on Collabo-
rative Research. CASCON ’13. Ontario, Canada: IBM Corp., 2013, pp. 106–120.

[40] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. “Efficient Autoscaling in the Cloud
Using Predictive Models for Workload Forecasting”. In: 2011 IEEE 4th International Confer-
ence on Cloud Computing. 2011, pp. 500–507. DOI: 10.1109/CLOUD.2011.42.

[41] Laurens Versluis, Mihai Neacşu, and Alexandru Iosup. “A Trace-Based Performance Study of
Autoscaling Workloads of Workflows in Datacenters”. In: Proceedings of the 18th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. CCGrid ’18. Washington,
District of Columbia: IEEE Press, 2018, pp. 223–232. ISBN: 9781538658154. DOI: 10.1109/
CCGRID.2018.00037. URL: https://doi.org/10.1109/CCGRID.2018.00037.

[42] Alexey Ilyushkin et al. “An Experimental Performance Evaluation of Autoscalers for Complex
Workflows”. In: ACM Trans. Model. Perform. Eval. Comput. Syst. 3.2 (Apr. 2018). ISSN: 2376-
3639. DOI: 10.1145/3164537. URL: https://doi.org/10.1145/3164537.

[43] Anshul Jindal, Vladimir Podolskiy, and Michael Gerndt. “Autoscaling Performance Measure-
ment Tool”. In: Companion of the 2018 ACM/SPEC International Conference on Performance
Engineering. ICPE ’18. Berlin, Germany: Association for Computing Machinery, 2018, pp. 91–
92. ISBN: 9781450356299. DOI: 10.1145/3185768.3186293. URL: https://doi.org/10.
1145/3185768.3186293.

[44] Tao Chen, Rami Bahsoon, and Xin Yao. “A Survey and Taxonomy of Self-Aware and Self-
Adaptive Cloud Autoscaling Systems”. In: ACM Comput. Surv. 51.3 (June 2018). ISSN: 0360-
0300. DOI: 10.1145/3190507. URL: https://doi.org/10.1145/3190507.

[45] Zhiheng Zhong and Rajkumar Buyya. “A Cost-Efficient Container Orchestration Strategy in
Kubernetes-Based Cloud Computing Infrastructures with Heterogeneous Resources”. In: ACM
Trans. Internet Technol. 20.2 (Apr. 2020). ISSN: 1533-5399. DOI: 10.1145/3378447. URL:
https://doi.org/10.1145/3378447.

[46] Brandon Thurgood and Ruth G. Lennon. “Cloud Computing With Kubernetes Cluster Elastic
Scaling”. In: Proceedings of the 3rd International Conference on Future Networks and Dis-
tributed Systems. ICFNDS ’19. Paris, France: Association for Computing Machinery, 2019.
ISBN: 9781450371636. DOI: 10.1145/3341325.3341995. URL: https://doi.org/10.
1145/3341325.3341995.

48

https://github.com/kubernetes/enhancements/issues/1287
https://github.com/kubernetes/enhancements/issues/1287
https://doi.org/10.1109/MASCOT.2008.4770556
https://doi.org/10.1109/MASCOT.2008.4770556
https://doi.org/10.1109/CLOUD.2011.42
https://doi.org/10.1109/CCGRID.2018.00037
https://doi.org/10.1109/CCGRID.2018.00037
https://doi.org/10.1109/CCGRID.2018.00037
https://doi.org/10.1145/3164537
https://doi.org/10.1145/3164537
https://doi.org/10.1145/3185768.3186293
https://doi.org/10.1145/3185768.3186293
https://doi.org/10.1145/3185768.3186293
https://doi.org/10.1145/3190507
https://doi.org/10.1145/3190507
https://doi.org/10.1145/3378447
https://doi.org/10.1145/3378447
https://doi.org/10.1145/3341325.3341995
https://doi.org/10.1145/3341325.3341995
https://doi.org/10.1145/3341325.3341995

REFERENCES

[47] Hamoun Ghanbari et al. “Optimal Autoscaling in a IaaS Cloud”. In: Proceedings of the 9th In-
ternational Conference on Autonomic Computing. ICAC ’12. San Jose, California, USA: Asso-
ciation for Computing Machinery, 2012, pp. 173–178. ISBN: 9781450315203. DOI: 10.1145/
2371536.2371567. URL: https://doi.org/10.1145/2371536.2371567.

[48] Gourav Rattihalli et al. “Exploring Potential for Non-Disruptive Vertical Auto Scaling and Re-
source Estimation in Kubernetes”. In: 2019 IEEE 12th International Conference on Cloud Com-
puting (CLOUD). 2019, pp. 33–40. DOI: 10.1109/CLOUD.2019.00018.

[49] Gourav Rattihalli et al. “Two stage cluster for resource optimization with Apache Mesos”. In:
CoRR abs/1905.09166 (2019). arXiv: 1905.09166. URL: http://arxiv.org/abs/1905.
09166.

[50] Gourav Rattihalli. “Exploring Potential for Resource Request Right-Sizing via Estimation and
Container Migration in Apache Mesos”. In: 2018 IEEE/ACM International Conference on Util-
ity and Cloud Computing Companion (UCC Companion). 2018, pp. 59–64. DOI: 10.1109/
UCC-Companion.2018.00035.

[51] Thanh-Tung Nguyen et al. “Horizontal Pod Autoscaling in Kubernetes for Elastic Container
Orchestration”. In: Sensors 20.16 (2020). ISSN: 1424-8220. DOI: 10.3390/s20164621. URL:
https://www.mdpi.com/1424-8220/20/16/4621.

[52] Abdul R. Hummaida, Norman W. Paton, and Rizos Sakellariou. “Adaptation in Cloud Resource
Configuration: A Survey”. In: J. Cloud Comput. 5.1 (Dec. 2016). ISSN: 2192-113X. DOI: 10.
1186/s13677-016-0057-9. URL: https://doi.org/10.1186/s13677-016-0057-9.

49

https://doi.org/10.1145/2371536.2371567
https://doi.org/10.1145/2371536.2371567
https://doi.org/10.1145/2371536.2371567
https://doi.org/10.1109/CLOUD.2019.00018
https://arxiv.org/abs/1905.09166
http://arxiv.org/abs/1905.09166
http://arxiv.org/abs/1905.09166
https://doi.org/10.1109/UCC-Companion.2018.00035
https://doi.org/10.1109/UCC-Companion.2018.00035
https://doi.org/10.3390/s20164621
https://www.mdpi.com/1424-8220/20/16/4621
https://doi.org/10.1186/s13677-016-0057-9
https://doi.org/10.1186/s13677-016-0057-9
https://doi.org/10.1186/s13677-016-0057-9

	Introduction
	Background
	Cgroup
	Virtual Machines & Containers
	Docker & Kubernetes
	Redis & MongoDB
	YCSB Benchmark

	Methods
	Vertical Pod Autoscaler Recommender
	HW and LSTM Recommender
	Holt-Winters (HW) exponential smoothing
	Long short-term memory (LSTM)

	Our Contribution: SMA-based and EMA-based recommender
	Load trackers
	Load predictor

	System Architecture
	Monitor
	Vertical Pod Autoscaler

	Experiments
	Redis and YCSB Pods Validation
	Vertical Pod Autoscaling Validation
	SMA-based vs EMA-based recommender
	Comparison with HW and LSTM Recommender

	Related Work
	Predicting trend of workloads
	Autoscaling in the cloud
	Autoscaling containers
	Vertical autoscaling of VMs

	Conclusions
	Answers to the Research Questions

	Appendices
	Environment Setup
	Minikube Setup
	YCSB Setup
	Redis Setup
	MongoDB Setup
	Vertical Pod Autoscaler Setup
	Docker Image

	References

