
Master Computer Science

Multi-Agent Cooperation and Information
Exchange in Partially Observable Games

Name: Hainan Yu
Student ID: S2505762

Date: 31/07/2021

Specialisation: Data Science: Computer Science

1st supervisor: Dr. Mike Preuss
2nd supervisor: Dr. Tessa Verhoef

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract
As robotic agents become widespread in our daily life these years, inter-agent and
agent-human cooperation remain a challengeable problem. Combining multi-agent

reinforcement learning and evolutionary linguistics, we contemplate the robotic agents
can take advantage of the messages sent from partners to perform better in partially
observable games. To examine the assumption, we divide this goal into four subtasks,
containing the experiments on different levels of information to adaptive information
exchange, and partly conduct experiments. Our experimental results show the agents
cooperation emerges on sufficient observations of both Atari Cooperative Pong and

card game Thegame environments. Meanwhile, Thegame agents with hard-coded fuzzy
information exchange perform much better than partial information. These results
indicate the potential of additional information to aid agent training with limited

observation and show the possibility for flexible information expression learning, which
we set as our future work.

2

Contents

1 Introduction 5

2 Background 7
2.1 Reinforcement Learning . 7

2.1.1 Deep Q-Learning . 8
2.1.2 Proximal Policy Optimization . 10

2.2 Multi-Agent Reinforcement Learning . 11
2.3 The Agent Relation in Multi-Player Cooperative Game 12
2.4 Language Game . 13

3 Approach 15

4 Experiments 19
4.1 Environments . 19

4.1.1 Cooperative Pong . 20
4.1.2 Thegame . 22

4.2 Training Setups . 25
4.2.1 Cooperative Pong . 26
4.2.2 Thegame . 26

5 Results 28
5.1 Cooperative Pong . 28

5.1.1 Cooperative Player with Competitive Partner 28
5.1.2 Two-player Cooperative Pong . 29

5.2 Thegame . 31

6 Discussion 35
6.1 The Goal and Subtasks . 35
6.2 Possible Improvements on Experiments 36

3

7 Conclusion 37

Bibliography 38

4

1 Introduction

Cooperation commonly happens in human society. According to the specific conditions
and purposes, humans can freely form teams, cooperate with teammates, and commu-
nicate within teams to tackle tasks that are very difficult or even impossible for a single
person or a group without neat coordination. With the development of science and
technology, robotic agents are gradually playing a significant role in various fields to
assist humans. The scenarios of humans and robots working together or multiple agents
working as a team are also getting popular.

This raises a meaningful question: is it possible to form a human-agent team or even a
pure agent-agent team for the aforementioned tough tasks which each participant cannot
complete on its own? How do agents share valuable information with their teammates
to cooperate, similar to human team collaboration and communication in related tasks?
Agents may find a suitable communication mode for the current task via interactions
with each other. Will this also help us learn how human communicative language emerges
during cooperation?

We start with two collaborative games: Cooperative Pong and Thegame [25]. We first
try to examine if multi-agent cooperation is feasible with relative complete information
in such environments. We deploy the DQNs model [24] and check whether the agent
can cooperate with the partner and how the model performs. Both experiments show
agents can cooperate with the partner using deep reinforcement learning algorithms.

Taking inspiration from Steels’ Language Game [35, 34] method and corresponding
behavioral cognitive basics [8], we assume the agent may utilize language signals to co-
ordinate the task. The adaptive language for a specific task may emerge during their
interactions. Like in Language Game experiments, the communication signal needs to
have a direct impact on the game score. We design a hard-coded communication signal
for Thegame to examine its importance. The experimental results show the communi-
cation signal a positive role in the agents’ cooperation. This implies we can leverage the
potential of the communication during the cooperative task. This could influence how we
build a human-agent team based on possible communication or information exchange.

5

In next chapters, we are going to first review the requisite background in section 2;
second, we describe the approach we design to explore how cooperative agents work in
partially observable game and the potential of information exchange in section 3; third,
we list the experimental environments and setups in section 4 and show the experimental
results in section 5; fourth, we discuss the possible improvement and future plan in
section 6 then conclude the work of this thesis in section 7.

6

2 Background

In this chapter, we provide the relevant background knowledge that helps go through
the thesis. The content involves classic and deep reinforcement learning, multi-agent
system, agents relations in team works, and evolutionary linguistics.

2.1 Reinforcement Learning

Reinforcement learning (RL) is a type of computational approach that optimizes the
state-action pairs to maximize reward returns during interacting with the environment
[38, 39]. Sutton and Barto define RL problem leveraging Markov Decision Process
(MDP) with three elements: states, actions, and goals with returns. It implies the
formalization tuple for MDP: (S,A,P ,R, �), where S stands for state space, A for
action space, P as the probability of state-action transition, and R for instant rewards.
Discount factor � is used to calculate the discounted final return because we usually
regard the future reward that is closer to the present are more significant than the later
ones. This definition indicates the essential features of MDP: the learner, as known as
the agent, observes the environment, takes action based on the observation, and tries to
achieve the final goal. Based on the current state st 2 S at time step t, the agent makes
decision to select an action at 2 A. After the action taking, the state st transits into
st+1 2 S, and the agent obtains a instant reward rt+1 2 R from the environment (here
we adopt the representation similarly from Sutton and Barto [39]). In this case, what
the agent needs to do is not always select an action that brings the maximum instant
reward. Instead, it selects actions step by step that could lead to the maximum final
return G =

PT
i=t+1 �

i�t�1ri+1.
Markov decision process has an important property: the state and reward are decided

only by the closest former state-action pair. Mathematically, the probability p of the
state st at time step t and corresponding reward rt is defined as follows:

p(s0, r | s, a)
.
= Pr{st = s0, rt = r | st�1 = s, at�1 = a}, (2.1)

7

where s, s0, r and a denotes a random state, next state, reward, and action, respectively.
Meanwhile, we can calculate the expected reward using the state-action pair by this

way,

r(s, a)
.
= E[rt | st�1 = s, at�1 = a] =

X

r2R

r
X

s02S

p(s0, r | s, a). (2.2)

In some cases, we also make use of state-action-next_state pair to determine the
reward, especially when the agent cannot obtain the true next state immediately based
on its turn state-action pair in the multi-agent turn-based scenario. Here the reward is
represented as,

r(s, a, s0)
.
= E[rt | st�1 = s, at�1 = a, st = s0] =

X

r2R

r
p(s0, r | s, a)

p(s0| s, a)
. (2.3)

Based on the updating approaches, we can categorize RL algorithms into two types:
value-based (learning the value, i.e., expected return from the state-action pair) and
policy-based (learning to update the policy directly). There are also methods combining
these two types, e.g., Deep Deterministic Policy Gradient (DDPG) [18], which makes
use of a critic network (value-based) with an actor-network (policy-based). According
to the policy used during learning, there are on-policy methods (e.g., policy gradient)
and off-policy methods (e.g., Q-learning).

2.1.1 Deep Q-Learning

Deep Q-networks (DQNs) are proposed by Minh et al. in their seminal work Human-level
control through deep reinforcement learning [24]. It is the combination of a classic rein-
forcement learning Q-leaning and functional approximation with deep neural networks.
To understand what DQN is doing, we can first go through the tabular Q-learning.

The classic tabular value-based reinforcement learning has two directions: 1) dynamic
programming that exploits bootstrapping and full information of the transitions (model),
2) Monte Carlo method that uses the real final return to predict the value. Temporal
Difference (TD) unites the advantages of these two methods: it bootstraps with updating
the value prediction by the way Monte Carlo methods do, i.e., calculating the difference
of estimated values and real returns based on the experience. TD methods do not need
the final returns. Instead, they bootstrap with the value of the next step as dynamic
programming does.

8

Generally, with the help of the Bellman equation in dynamic programming, the ex-
pected return (i.e., the value v) under policy ⇡ is defined as follows:

v⇡(s) = E⇡[rt+1 + �v⇡(st+1)|st = s], (2.4)

where v⇡(s) denotes the value of a certain state s under the policy ⇡.
Similarly, the estimated q-value of a state-action pair under policy ⇡ turns to be:

Q⇡(s, a) = E⇡[r + �max
a0

Q⇡(st+1, a
0)|st = s, at = a], (2.5)

where the Q⇡ indicates the q-value under the policy ⇡.
Accordingly, the optimality Bellman equation for the optimal policy ⇡⇤ is set as v⇤(s) =

maxE[rt+1 + �v⇡(st+1)] for the value and Q⇤(s, a) = E[rt+1 + �maxa0 Q⇤(st+1, a0)] for q-
value. Utilizing the iterative Bellman equation as an updating manner, the value and
q-value of of policy ⇡i+1 for i + 1th iteration updating can bu calculated as vi+1(s) =

maxE[rt+1 + �vi(st+1)] and Qi+1(s, a) = E[rt+1 + �maxa0 Qi(st+1, a0)], respectively. As
i!1, the policy ⇡i will converge to the optimal policy ⇡⇤.

Sutton and Barto [39] give the simplest TD a Monte Carlo style updating approach
as follows,

v(st) v(st) + ↵[rt+1 + �v(st+1)� v(st)], (2.6)

where the v(st) and v(st+1) indicates the expected value of state st and st+1, and ↵ is
the learning rate. This method is also known as TD(0) because it only looks one step
reward forward.

Q-leaning [43] is a value-based off-policy TD method. It updates the q-value as follows:

Q(st, at) Q(st, at) + ↵[rt+1 + �max
a

Q(st+1, a)�Q(st, at)] (2.7)

This method makes use of ✏-greedy policy to select actions. It means, during action
selection, the agent has a probability ✏ to take a random move. Otherwise, it will comply
with the estimation of state-action values on the table. As an off-policy method, it uses
the maximum q � value of the next state (i.e., max

a
Q(st+1, a)) to update the q � value

of the current state-action pair.
Since most RL tasks in our real life are difficult to train (e.g., due to the long run and

enormous possible states), we cannot always use tabular methods on them. The deep
Q-network upgrades the classic Q-learning with non-linear functional approximation.

9

Recall the Bellman equation for q-value (see Eq. 2.5) and the update method for
classic Q-learning (Eq. 2.7): we need the complete episodes of agent trails and errors
from the environment as i!1 to obtain a ⇡i that converges to the optimal policy ⇡⇤.
Whereas this is unrealistic for most real-life tasks. DQN uses deep convolutional neural
networks as a functional approximation of the value function. To compensate for the
instability of non-linear approximation, DQN utilizes experience replay [19] and a target
network for q � value updating to reduce the impact of correlation.

Nonetheless, DQN is still a simple model and has some defects in terms of stability,
such as over-optimistic estimated Q-value, sampling inefficient. There are models, e.g.,
Double DQN [13], Deuling DQN [42], Rainbow [15], as enhancements for DQNs.

The usage of DQN involves a few important hyperparameters tuning and settings,
varying from task to task. We will elaborate on the details we use in our experiments
in chapter 4.

2.1.2 Proximal Policy Optimization

Proposed by Schulman et al. [31], proximal policy optimization (PPO) belongs to policy
gradient (PG) in the RL methods family. It is an enhancement from the pure PG from
Mnih et al. [23] and trust region policy optimization (TRPO) by Schulman [32].

Different from value-based methods updating value function to select the action, the
policy-based method policy gradient updates the policy ⇡(a|s; ✓) directly. Due to this
reason, PG is also more suitable for tasks with continuous action space. The basic PG
makes use of the objective

LPG(✓) = Ê[log⇡✓(at|st)Ât], (2.8)

which is derived from the policy estimator

ĝ = Ê[r✓log⇡✓(at|st)Ât], (2.9)

where the Ât is the advantage function Â(st, at) = Q(st, at) � v(st), and ⇡✓ is the
stochastic policy. Ê[·] indicates the estimated expectation with the given parameters.
Both Q(st, at) and v(st) are exactly what we use in the explanation of value-based TD
methods.

TRPO uses probability ratio rt(✓) =
⇡✓(at|st)

⇡✓old
(at|st) in the objective and the updating range

limitation penalty (e.g. KL divergence) to prevent the policy gradient from updating
with big rt(✓). Whereas the penalty approaches are much difficult and less efficient for

10

training, PPO makes use of a simpler clip manner to achieve to similar or even better
performance. In our experiments we exploit PPO with the RLlib package [17] using the
default parameters. The details will be described in the chapter 4.

2.2 Multi-Agent Reinforcement Learning

Multi-agent reinforcement learning (MARL) is a series of RL methods that tackle tasks
involving multiple agents. In other words, compared with single-agent reinforcement
learning that is discussed more frequently in the RL industry, MARL has an agent space
N = {1, ..., N} with the cardinality n = |N | (i.e., there are n = |N | agents involved in
the task).

Gronauer and Diepold [12] summarize the formalized definition of (simultaneous and
joint) multi-agent (MA) MDP from Littman [20]: similar as the formalization tuple for
single-agent MDP in Chapter 2.1, the tuple of MA MDP is set as (N ,S, {A}

i, P, {R}
i, �),

where i indicate the index of a participating agent. Compared with general MDP, the
definition of MA MDP distinguishes from a few points: 1) state space S stands for the
set of states that consist of the states from each individual agent in the task; 2) action
space A = A

1
⇥ · · ·⇥A

N represents the joint actions taken by each agent at the same
time step; 3) reward space {Ri} is the connected reward of all agents after taking the
joint actions.

For MDP, we usually make use of “fully observable” which indicates the agent is aware
of all information of the state to compare with “partially observable” which indicates
the agent can only get access to a part of the state. Here we use observation space
O collected from individual observation spaces {Oi} for agent i to indicate the limited
visible zone in partially observable environment [12]. Thus for an agent, the input
becomes ‘observation’ rather than ‘state’, and the MDP converts into partially observable
MDP (POMDP) [16]. Despite the solutions such as Nash equilibrium, each agent taking
action still makes MARL suffer from the complex simultaneous learning process and the
non-stationary environment dynamics [5, 44].
Training and Execution The term training process indicates the learning process when
the agent makes use of the environment information (e.g., observation), and execution
denotes the process of action selection, according to the definition in Gronauer and
Diepold’s MARL survey [12]. Both training and execution can be centralized or decen-
tralized. In decentralized training, each agent can only get access to its own observable
zone and update based on the local information, while centralized learning allows the

11

agent to get additional information from its partner(s). During the execution process,
centralized execution refers to using one joint policy to select associated actions for all
participating agents. By contrast, decentralized execution means that each agent uses
its own policy to choose the independent action.

The overall training and execution procedure has three types: [12]:

• Decentralized training and decentralized execution. Each participant trains the
independent policy with the local observation that is usually partial and limited
compared with the full information of the state. The agents then select their
actions themselves;

• Centralized training and centralized execution: agents are trained by one cen-
tral joint policy. The policy selects actions for each agent and based on the full
information of the state [5];

• Centralized training and decentralized execution: each agent trains its policy us-
ing additional information (e.g., centralized value function [21]) by information
exchange that will be discarded during testing, and select the action for itself.

2.3 The Agent Relation in Multi-Player Cooperative
Game

There should be a certain relationship between the participants in multi-agent tasks.
For instance, competitive, cooperative, or mixed relation (competitive and cooperative
co-existing). From the perspective of cooperation (video/board) games, there are two
kinds in general:

• Cooperative and competitive game: containing more than one team. The agents
inside one team collaborate. Competitions happen among different teams. Multi-
player games that need to battle for a winning team belong to this type, e.g.,
multiplayer online battle arena3 (MOBA) games (see Figure 2.1a);

• Pure cooperative: usually there is only one team involved. Agents cooperate with
their partners in the task, e.g. building mode Minecraft; cooperative Platform
game (see Figure 2.1b); card game Hanabi [2, 27], Thegame [25].

1The screenshot attributes to Wikipedia: https://en.wikipedia.org/wiki/League_of_Legends
2The screenshot attributes to BlockBattle Theater official Steam store: https://store.
steampowered.com/app/238460/BattleBlock_Theater/

3In MOBA games, two teams compete for a winner.

12

https://en.wikipedia.org/wiki/League_of_Legends
https://store.steampowered.com/app/238460/BattleBlock_Theater/
https://store.steampowered.com/app/238460/BattleBlock_Theater/

(a) League of Legends (b) BlockBattle Theater

Figure 2.1: Instances of MOBA game and Platform game. (a): A Screenshot of MOBA
game League of Legends. There are two teams - red team and blue team - competing,
two players in each team involved in this screenshot1. (b): A Screenshot of platform
game BlockBattle Theater. One team with three members is involved in this screen-
shot2.

No matter in which type of cooperation game, the agents within the same team have
one common goal to achieve, where certain strategies of the agent coalition might emerge.
Although in real-life cases it also could be competitive among teammates, we only con-
sider cooperation for simplicity here.

2.4 Language Game

Language Game is a paradigm for agent-based modelling of language evolution in Evo-
lutionary Linguistics (EL) purposed by Steels [35, 34]. Inspired from Wittgenstein’s
Language Game [45], it focuses on agents language evolution and consensus emergence
during interactions in the same generation (horizontal transmission) [3].

(a) Action Game (b) Quantifier Language Game

Figure 2.2: (a): Two embodied robots playing Action Game [36]. The speaker robot
(right) requests the hearer (left) to raise the left arm. (b): The interaction process of
two embodied robots for quantifier emergence [29]. Both of them face several boxes
(square-shaped with black and white colors) and blocks (small yellow cuboids).

13

Steels points out the meaning of a word or phrase emerges from interactions, and a
word may have different meanings in different situations. To accomplish the negotiation
task that contains words with ungrounded meanings, the participants have to adjust
the communication signal to make the consensus of expressions [34]. For example, the
meaning of a body gesture verb can be clarified during the Action Game [36] played
between the speaker (who speaks a body gesture verb to request a body gesture) and
hearer (who receives that word and performs a gesture), shown in Figure 2.2a.

Figure 2.3: The scalable quantifier in Pauw and Hilferty’s work [29].

Another instance is the emergence of quantifiers proposed by Pauw and Hilferty [29].
A certain number of boxes and blocks are placed in front of two embodied agents (see
Figure 2.2b). During interactions, the speaker makes use of fuzzy quantifier (e.g. some
and many, etc.) [46] to describe a scene out of two. The hearer needs to interpret
the meaning of fuzzy quantifiers and point out its answer to the speaker. Based on the
feedback given by the speaker, the hearer modifies its interpretations. Since the meaning
of fuzzy quantifiers changing in different scenarios, e.g., many can describe two when the
object norm is 3, but cannot be convincible when the norm is 10, a normalization scale
of fuzzy quantifier can be learned for different norms (see Figure 2.3). In the same way,
agents can even invent quantifiers and make a consensus of the usage of newly invented
words [29].

14

3 Approach

In this chapter, we are going to elaborate on our idea and approach in detail. The
central issue we are concerned about is how to help the cooperative agents work together
in partially observable environments. As learning tools, the multi-agent reinforcement
learning methods have shown their potential for the agent training in the cooperative
tasks [9, 40, 7], whereas the partially observable collaborative environments are still
hard to be solved using basic RL methods [14]. We find evolutionary linguistics and
Steels’ Language Game in particular affords an implementation approach for multi-
agent collaborative negotiation: the agents can learn how to express the observation
and interpret the communication signal themselves throughout the course of interactions.
Reinforcement learning methods fit this idea very well: the agent can act (game playing,
cooperating, and information exchanging), collect rewards (e.g., environment rewards,
communication feedback from partners), then update its policy. Therefore, we assume
the information exchange can assist agent cooperation, and the exchanged signals can
be adapted to different environments and become more efficient through this trial and
error progress. To verify our assumption step by step, we divide it into four subtasks in
practice:

1 Train the cooperative agents with sufficient (relatively full) information;

2 Train the cooperative agents with partial information;

3 Add hard-coded fuzzy signal;

4 Train learnable fuzzy signal.

First, we check whether the cooperation emerges using RL methods on sufficient in-
formation environments (information provided as full as possible) for multiple agents.
Compared with the mathematical definition in MDP, we regard our sufficient informa-
tion as the information adequate to a certain extent that can be used for training. It is
out of the considerations that 1) the emulated environments could provide global details

15

that contain all information we need, 2) it is not restricted within “full information”
rather “sufficient”, because we want our task settings as realistic as possible. Second, we
exploit the same algorithms in the partial information environment, where the agent can
only get access to its limited observation without information from partner(s). Third,
we design a type of hard-coded fuzzy information that can be sent from an agent to its
partner(s) and examine whether this kind of exchangeable message helps agents learn.
Fourth, the agents are endowed to learn how to use appropriate fuzzy expressions ac-
cording to the specific situation they meet.

This order is dependent on the rationale as follows: to evaluate whether agents can
learn a way to cooperate and get help from partners, we need first examine whether the
RL methods work for the target cooperation task, and second, analyze the role of possible
communication. Regarding the first problem, sufficient information of the state is the
best for training, because it serves nearly everything the agents have to know, e.g., the
position and speed of every member. But this plentiful information is usually impossible
to obtain. Compared with it, partial information is easy to get, whereas hard to train.
Therefore, we utilize the fuzzy signal that acts as the tunnel for communication when
full information is hard to get for every team member, and partial information is neither
enough nor efficient for training. If sufficient information observation works better than
partial information, we can use the handcrafted fuzzy signal to assist the agent get useful
messages from partner(s) and ease the training. If the fuzzy signal helps the training
process, we may expect to set a neural network for agents to learn how to express the
situation and interpret the partner’s messages based on the concrete circumstances that
are more flexible for communication. For example, the agent may learn the scale of the
word small as an indicator for the number size to describe how large a number is more
precisely.

To have a clear view, imagine two players Alice and Bob are playing a number game
(see Figure 3.1): there is one card placed on the table, and Alice and Bob also have one
card in their hands, respectively, within the range (0, 100). Their goal is to decide the
order of these three cards. How could they do?

This game is cooperative: 1) the game cannot be played by only one of the players;
2) two participants need to help each other to achieve a better result (to figure out the
numbers’ order), where communication plays its role. There are two direct situations: 1)
If they do not talk, the solution is a random guess; 2) If they can talk the exact numbers,
the task is solvable one hundred percent. However, usually, we are seldom permitted to
talk about the exact numbers in real-life tasks but instead allowed with limited com-

16

Figure 3.1: Possible dialogues of Alice (red text) and Bob (blue text) playing number
sorting under environments of subtask 1 to 4. Number sorting is a simple cooperative
task: two players are sorting three cards: their hand cards and one table card. Ideally,
they want to know the exact numbers of cards. If that is not allowed, they need to
know how large each hand card is. In this circumstance, communication is necessary
to help them play better than a random guess.

munication. It leads to this situation: 3) they could talk vaguely with the hard-coded
messages: if one hand card is smaller than 50, it is the smallest. Otherwise, it is the
largest. Expectable, by this way, if the table card is 50, and two players’ cards are on
both sides of the table number, they can perform as well as exact number exchange. But
if the table number changes or their cards lie on the same sides, this information might
get useless. There is a more efficient way for the vague talk: 4) communicating based
on the current situation using scalable expressions. During interactions, the players can
learn the card number range and realize how large their cards are, compared with the
table card. Their perception of the number is no longer limited to the hard-coded rules
but becomes adaptive according to the situation, i.e., the table card and messages and
feedback from the partner. If two hand cards are larger than the table card, they may
express how large the number is in different intensities (see Figure 3.1). When the table
card changes, Alice and Bob can use the same scale to describe their cards. Meanwhile,
compared with hard-coded information, this ‘learn expression by interactions’ approach
is more flexible and convenient to extend to other similar tasks, instead of handcrafting

17

new rules for information exchange every time. It reflects our assumption of communi-
cation emergence: during training, agents could learn how to describe their observations
(e.g., the relative position of a target or agent, or relative size of a number) based on
their knowledge and the current situation.

These four situations correspond to the four subtasks we design in this section. In
particular, the procedure of subtask 3 to 4 follows the ‘scalability’ conception in Language
Game evolution and Pauw and Hilferty’s scalable quantifier [29]. We will describe the
experimental setups for different environments in section 4.

18

4 Experiments

In this chapter, we describe the experimental design. We first discuss the game envi-
ronments: what are the criteria, how do we customize the existing game or create the
emulator for new games that fit our goal and subtasks? Second, we list the model and
hyperparameter setups in detail for two selected environments.

4.1 Environments

According to our goal described in chapter 3, we need to carry out the experiments in
cooperative environments with multiple agents. Thus, the game environments selected
complies with the following criteria:

1. Player size � 2 (i.e. multiple players);

2. Cooperative game. The participants in it help each other to achieve the final goal;

3. The environment provides sufficient information in terms of the state, and can be
cast as partial observation as well;

4. The game allows communication to a certain extent.

We select two games: cooperative Pong and Thegame as the experimental playgrounds.

Figure 4.1: Left: Atari Pong. Right: NSV Thegame.

19

4.1.1 Cooperative Pong

Cooperative Pong is a two-player adaption of Atari 2600 Pong, proposed by Tampuu et
al. [40]. In this game, two players (left and right) form a team. Each player holds one
racket and keeps passing the table tennis ball. During playing, they need to prevent the
ball from flying outside of the frame. There are four actions for one player: UP, DOWN,
STAY, and FIRE. Tampuu et al. neatly design a reward function (see Tab. 4.1) for
cooperation emergence: if one player loses the ball, both players get a �1 reward, and
the game turns to be done; if not done, then every time step, both players get 0 points.

Left player scores Right player scores No one scores
Left player reward -1 -1 0

Right player reward -1 -1 0

Table 4.1: Reward scheme of Cooperative Pong [40].

Before the experiment on the two-player environment, we first adopt the single-player
game OpenAI Gym Pong [4] partly to test the cooperative emergence: we train a co-
operative agent to play with the competitive partner. As a single-agent task, this pre-
experiment is easier for training. The reward scheme is set as Table 4.2. Note that
because in single player Pong the ball is automatically fired, the agent only has three
actions: UP, DOWN, and STAY.

Agent scores Competitive partner scores No one scores
Agent reward -1 -1 0

Table 4.2: Reward scheme of single player Cooperative Pong.

Since a single player cannot hold the ball constantly, both single-player and multi-
player versions are strictly cooperative games. As discussed by Minh et al. [24], one
single screen frame in the original Atari Pong contains partial information since the
action and speed are not known. By frame stack from the preprocessing of original DQN,
the Atari Pong task becomes fully observable. Hausknecht and Stone also mention this
discussion in their work [14] of customized partially observable Atari game. To test
partially observable Pong, they cast the game frames as flickering screens.

We make use of the original two-player Pong with Pettingzoo Python API [41] to be
the environment for the first subtask (sufficient information). we also design a partially
observable version of this game for subtasks 2 to 4: we split the frame into two parts (see
Figure 4.2). Each part of the frame contains one player who is not aware of the partner’s

20

Figure 4.2: Split frame Pong

position and speed. If the frame stack is used, the observation of each player retains
partial. This version allows the agent to exchange its position or action information that
is essential for training but not accessible with the partner. We do the experiments on
sufficient information version and set the partial version in the future plan, while here
we provide the possible design regarding the adaptive information exchange.

(a) (b)

Figure 4.3: Two situations of cooperative Pong with the split frame. The vertical brown
line indicates the split wall, which is the borderline of the player’s visible area. The
olivine arrow indicates the direction of the ball. The dashed horizontal grey line is the
hard-coded position boundary. (a) The left and right players are distributed on both
sides of the position boundary. (b) Two players are on the same side.

As we mentioned before, in the split frame Pong, each player does not know the
position of the partner and sometimes the velocity of the ball either, which hinders
the decision making. For the hard-coded fuzzy signal exchange, we can handcraft a
boundary for agents to describe their positions, shown as the dashed horizontal grey
line in Figure 4.3. There are two kinds of situations these two players may encounter:
both players are on the different sides or the same side of the position boundary (e.g.,
Figure 4.3b). When players are on both sides, our hard-coded border can work as the
indicator of positions. For example, in Figure 4.3a, the left player is facing the ball and
going to conduct an action. It may perform UP successively to capture the ball. But

21

to help the partner catch the ball without struggle, the left player may send a message
to the partner about the upcoming direction of the ball. When the partner (the right
player) receives this message, it can utilize this information and take necessary actions
(e.g., going up) before the ball flying into its visible zone when it might be too late for
the right player to take the right actions.

In contrast, if the situation is the second one, e.g., two players are on the same side,
the agent may get confused by the hard-coded information. For instance, the left player
tells the partner that the ball will be below the boundary on the next time step. This
message comes from the direction of the ball and the handcrafted information. But it
is inefficient because it does not convey the relative position of the left player. If this
signal turns to be learnable, the agent may send the indications with the ball’s direction
based on its prediction of the partner’s position (dashed olivine lines in Figure 4.4).

(a) (b)

Figure 4.4: Two situations in cooperative Pong with the split frame and predicted part-
ner’s positions from the perspective of the left player.

4.1.2 Thegame

Thegame - Quick and Easy [25] (hereinafter refers to Thegame) is a cooperative card
game designed by Nürnberger-Spielkarten-Verlag (NSV). It is usually played by 2 to 5
players, containing 50 cards total, with five colors and ten cards in one color. It has two
ordering stacks indicated by two sequence cards (ascending and descending stacks, see
Figure 4.5 left). Players need to lay their cards on these two stacks according to the
orders. In the two-player version we use, each player has two cards at most in hand. At
each turn, one player can lay one or two cards or wait on this turn. If the player lays out
one or two cards on the ordering stack(s), it needs to draw the same number of cards
from the card stack, unless there are no cards to draw anymore. The goal of the team is
to lay as many cards as possible on two ordering stacks. During gameplay, players can

22

Figure 4.5: Left: sequence cards (indicating ascending and descending stacks) and number
cards (5 colors ⇥ 10 cards per color) in Thegame; Right: reverse trick: order limits
of the stack can be ignored when the hand card and the topmost stack card have the
same color. E.g., card green 8 has the same color as the topmost card (green 2) on
descending stack, one can ignore the order limit and lay green 8 on top of green 2 on
the descending stack.

only get access to the topmost ordering stack cards. Logically speaking, the maximum
number of cards a team can lay out on these two stacks is 20 in total, but there is a
reverse trick (see Figure 4.5 right): if the hand card one wants to lay on a stack (e.g.,
card green 8 in the right subfigure of Figure. 4.5) has the same color with the topmost
card on that stack, then one can ignore the order limit.

There is a rule of import that increases the difficulty of this game: players can talk
about the color(s) of their hand card(s), whereas they are not allowed to speak the exact
number(s). While the hint messages are permitted, players can give hints like “I have a
big blue” to indicate owning a blue card with a large number. As it forces the players
to communicate with each other, this rule makes fuzzy information exchange possible.
Due to the high dynamics of the card initialization and player actions, the sensation of
each player on the number size will change based on different situations. For example,
the player will think of the hand card four as a small card when one stack card is seven,
and consider it as a big card when one stack card is three, which allows the training of
adaptive fuzzy signals (subtask 4). These features all fit our environment-design criteria.

We set the player size as 2 in our experiments. For each player, the action space A

contains |A| = 11 different actions. Specifically, this space size comes from playing two
hand-cards to different order stacks (playing single card on the same stack (4) + playing
two cards on the same stack (4) + playing two cards on different stacks (2), and stay (1)).
We make use of a two-dimension tuple to represent a card: the first dimension for color c

23

Figure 4.6: An illustrative state of Thegame and the corresponding vectorized observa-
tions of three environments in the point of view of player B.

(digitally depicted by 1 to 5 for five colors red, yellow, blue, green, and grey, respectively)
and the second dimension for the digit number x, where 1  x  10, x 2 N+. Refer to
Figure 4.6 as an gameplay example. According to our subtasks 1 to 3 and environment
design criteria, there are three types of agent observation:

1. sufficient information version, each agent is aware of the topmost cards of two
stacks, together with its two hand-cards and two partner’s cards. This version
is also called the absolute-quantifier (AQ) version since the exact numbers, a.k.a.
absolute quantifiers from partners are known. Because players are not aware of
the card history, this version is not fully observable;

2. partial information version, each agent only knows the two topmost stack cards
and their two hand cards. The player has no idea of what number(s) the partner
has. This version is also known as the no-communication version;

3. hard-coded fuzzy communication signal version, where each agent can get access
to the two topmost stack cards, its hand cards, and the hint sent from the partner
player. One hint is a two-bit signal and constituted by handcrafted rules: {5 <

x  10}, which means if the partner’s card number x 2 {X|1  X  5, X 2 N+
},

x is a low number and the hint is 0. Otherwise, x is a large number and the hint

24

turns to be 1. This version is named the hard-coded fuzzy-quantifier (FQ) version
as well.

As a multi-agent game, Thegame has its specialties compared with cooperative Pong :
it is a turn-based game, i.e., only one agent takes action in a single time step. It
means the agent cannot obtain its next-state immediately (for a two-player game, the
state agent A gets after taking a certain action is the real next-state for after agent B
taking its last action). In other words, the reward is not instantly obtained after the
agent taking action. We can make use of state-action-next_state pair (see Eq. 2.3) we
discussed in Sec. 2.1 to describe it more conveniently (also see discussion from RLlib
Github issue [30]). This ‘delayed’ next-state often happens on multi-player turn-based
games. Usually the multi-agent RL environment treats it with cumulative reward (agent
A obtains reward after all partners taking actions and the environment returns the real
next-state for A), e.g., Pettingzoo introducing Agent Environment Cycle (ALE) [41],
OpenAI Five [26]. Metz et al. treat the reward in a similar way, and they also propose
a state composition representation to mathematically describe turn-based states [22].

Player who finishes the game A B No one
Player A reward 1 1 0
Player B reward 1 1 0

Table 4.3: Reward scheme of Thegame.

Regarding the reward scheme, we set it similar to the reward schemes of Cooperative
Pong (see Table 4.3). If the team wins the game, i.e., two players lay all 50 cards, no
matter who finished the game (who is the last one to lay card(s)), each player obtains 1
point as a reward. Otherwise, the reward is 0. It endows Thegame to be a sparse reward
task. The game emulator has a max_step = 200 parameter. If two players do not lay
out all cards and the time limit is reached, the game round will be forced to end and
remains undone.

4.2 Training Setups

We use DQN [24] for both games. Especially, according to the work of Tampuu et al.
[40], we deploy independent DQN for Cooperative Pong. For Thegame, we utilize DQN
self-play for subtask 1 to 3, and we also try PPO [31] for subtask 1.

25

4.2.1 Cooperative Pong

As an attempt, we first start from single-agent Pong to check the DQN model for coop-
eration emergence. We set the number of training steps as 10M and the hyperparameters
for DQN similar as Minh et al. [24], except the ones in Table 4.4. The training procedure
contains four epochs, 250000 time steps within one epoch. We are going to discuss the
hyperparameter selection in the next chapter.

Hyperparameter Value
minibatch size 64

final exploration frame 100000
learning rate 0.0001

update frequency 1
target network update frequency 1000

Table 4.4: Hyperparameter values of single player Cooperative Pong that differ from
Nature DQN [24].

For the two-player Cooperative Pong, the training procedure of subtask 1 is as same
as Independent DQN [40], containing 50 epoch and 250000M time steps in one epoch.
Each agent is treated as an individual. These hyperparameters are set as Nature DQN
[24] as well. Here we list the values we use that are different from Nature DQN in the
experiments:

Hyperparameter Value
minibatch size 64

final exploration frame 100000
learning rate 0.0001

target network update frequency 1000

Table 4.5: Hyperparameter values of two-player Cooperative Pong that differ from Nature
DQN [24].

4.2.2 Thegame

Since Thegame emulator is a brand new environment, we first design a heuristic agent
as a benchmark test. The heuristic method does not share information between agents,
and it does not contain the learning process of cooperation. It is directly based on
the distance: according to the game’s rule, each player has two hand cards at most
in one time step (note that only there are not enough cards from the card pale, can

26

one player holds less than two cards), and we want to lay as many cards as possible,
which means after one turn playing, the topmost card on ascending stack is favorable
to be small, and on descending stack is better to be large. Recall that the agent has
11 different candidate actions. For heuristic agents, we discard the STAY action and
enforce agents select one ‘real’ action during playing. For one turn, we list all the results
of ten actions and calculate the distance for each stack. For instance, if the topmost
cards are “Ascending: 3, Descending: 5” after taking a certain action, the distance of
this action is (3�1)+(10�5) = 7. We compare ten distances and select the action with
the shortest distance (if there are multiple such actions, the agent picks one randomly).

We use DQN self-play for subtasks 1 to 3. Each agent takes action based on its own
observation, while agents share the learning models (both behavioral and target models)
together. We run the experiments for 1000 epochs, with 100 complete games within one
epoch, using three different random seeds. Because the input is digit number as state,
rather than RGB color, the approximation function we use is the multi-layer perceptron
with a single hidden layer. Since there is no previous work for hyperparameter settings,
we test the influence of the number of hidden units, learning rate, minibatch size. We
are going to analyze the results in section 5. Besides, we select the best hyperparameter
setting and list the differences compared with Nature DQN as follows:

Hyperparameter Value
minibatch size 64
discount factor 0.95
final exploration 0.02

target network update frequency 40000
learning rate 0.0001

update frequency 16

Table 4.6: Important DQN hyperparameters for Thegame.

As comparison of value-based models, we also train our absolute-quantifier agent
using default PPO model from RLlib pytorch API [17]. The environment are built
with Pettingzoo and RLlib customized environment wrappers. Except the learning rate
↵ = 0.0001, discounting factor � = 0.99 and horizon hz = 200 (horizon is equivalent
to max_step we set for DQN agents), all hyperparameter we used are the default ones
from the API.

27

5 Results

In this chapter, we describe the results of these two games. First, we show the cooper-
ation emergence of single-player and two-playerCooperative Pong. Second, we compare
the results of three environment settings of Thegame and analyze the importance of
information exchange between players for cooperation and how does it provide the po-
tential of adaptive signals learning.

5.1 Cooperative Pong

With the help of the collaborative reward scheme, experiments on both single and two-
player Pong show the emergence of cooperative behaviors. Guided by the reward scheme,
the agent has learned how to behave to prevent a minus reward, reflecting on the learned
skillful actions for catching the ball and helping the partner.

5.1.1 Cooperative Player with Competitive Partner

As shown in Table 4.4, we use replay buffer = 100000 rather than replay buffer = 1M

for training under the restriction of computing resources. Meanwhile, other hyperparam-
eters also need to be tuned. Figure 5.1a shows how we determine the hyperparameters
for single cooperative Pong experiments (the results are averaged from 5 different ran-
dom seeds). We illustrate the performances of different settings for 180 game rounds
training. The Y-coordinate indicates the length of each game round. A higher round
length means the cooperative agent learned better skills to keep the ball with the ag-
gressive partner. As shown, the batchsize, targetupdatefrequency, learningrate, and
updatefrequency from the original DQN settings [24] do not work on this task, therefore
we manage them as the values for regular player, listed in Table 4.4.

The results show regular player has the best average performance and the earlier
convergence. Before around 50 game rounds of training, the agent is unskillful to keep
the ball and unable to extend the length of a game round. As the training process

28

(a) (b)

Figure 5.1: (a): The game length (total time steps) of one game during training. (b):
An instance screenshot in single-player Cooperative Pong. The olivine arrow indicates
the direction of the ball passing from the cooperative agent to the competitive preset
partner.

gets longer, the agent has learned to catch the ball and pass it tenderly to the partner.
Figure 5.1b is a screenshot of regular player during test 1). The exploration probability is
✏ = 0.01, which means it has the probability of 0.01 to choose a random action, otherwise
using the action selected by the behavior policy. Playing with a competitive player who
tries the best to win, our (regular) cooperative agent finds a way to help the partner
and behave gently. When the aggressive partner passes the ball at an acute angle and
high speed, our cooperative agent catches the ball easily and lowers the speed of the
ball, and changes it into the horizontal direction to help the partner catch it (see Figure
5.1b. After 150 rounds of training, sometimes the agent forgets what it has learned and
performs worse than before (see the curve of regular player that suddenly drops after
around 170 rounds of training).

5.1.2 Two-player Cooperative Pong

We train the independent DQN models for the two-player environment utilizing similar
hyperparameters compared to the single-agent player (we tune the update frequency
value equals to four, which is as same as the original DQN setup [24]. Contrasted with
the cooperative agent playing with the aggressive partner in the single-player version,
two cooperative players learn to work together from scratch in this task.

Figure 5.2 shows the experimental plots and a screenshot after 50 epochs training for
two-player Cooperative Pong with full-screen inputs. During training, two cooperative

1The rendered video: https://drive.google.com/file/d/1M1x1NjktJBzcpy1K3joAVoeQGE1SdhsP/
view?usp=sharing

29

https://drive.google.com/file/d/1M1x1NjktJBzcpy1K3joAVoeQGE1SdhsP/view?usp=sharing
https://drive.google.com/file/d/1M1x1NjktJBzcpy1K3joAVoeQGE1SdhsP/view?usp=sharing

(a) The length of one game during training. (b) Times of ball losing in one epoch (250000
time steps)during training

(c) Q-value of player A and B during training. (d) Screenshot of two-player Cooperative Pong.

Figure 5.2: Experimental results of two-player Cooperative Pong.

players have learned skills to keep passing the ball for a long time. Graphically, this
is manifested by the increase in the duration of one game round (see Figure 5.2a), the
decrease of ball losing times (Figure 5.2b), as well as the change of mean max Q-value
(Figure 5.2c). We monitor the mean max Q-value in the same way as Tampuu et al.
[40] to present the learning process. Before the training begins, we randomly save 500
states. After each epoch, we calculate the maximum Q-value of these 500 states using
the behavioral network to store the average value for both players. Because we set
the reward function as Table 4.1 (the maximum reward our agents can get is 0), the
behavioral mean max Q-value shows the reliability of keeping the ball calculated by
agents and the possibility to select the good action on a certain state. As the training
progresses, the Q-values of the best moves estimated by two players approach zero. It
indicates that both players are aware of how to cooperate with the partner and avoid
losing the ball.

The screenshot in Figure 5.2d is taken from the rending video2 during testing phase
using the models after training 50 epoch. In the test stage, we set ✏ = 0.01 for ex-
ploration. Therefore, the agent still has probability = 0.01 to select a random action.

2https://drive.google.com/file/d/1ohCbe-KqpCgRfasPGQa-LaBcneyQ_OOH/view?usp=sharing

30

https://drive.google.com/file/d/1ohCbe-KqpCgRfasPGQa-LaBcneyQ_OOH/view?usp=sharing

To pass the ball continuously, and avoid the influence of random action efficiently, two
players find the best position to collaborate: getting stuck at the top of the screen frame.

These results indicate the DQN works well on our first subtask with fully observable
Pong. The agent also shows cooperative behaviors on both single and multi-player
versions. Due to limited game API and computing resources, subtasks 2 to 4 on this
environment are planned as future works.

5.2 Thegame

Before training the deep neural network models, we test our heuristic players with 100000
game rounds, i.e., 100000 different random initial card stacks. Figure 5.3 shows the
heuristic player performance. The game win rate in the plot is the percentage of game
wins. A higher rate implies the agent is more proficient at playing and cooperating.
According to the result, the heuristic players finish 37.0% of the game rounds.

Figure 5.3: Heuristic team’s performance on Thegame. The Y-coordinate indicates the
percentage of wins. A higher rate implies the agent is more proficient at playing and
cooperating.

We try to find a suitable hyperparameter setting for sufficient information (absolute-
quantifier) version. The hidden unit size hd and learning rate ↵ are two important ones.
Therefore we start from these two hyperparameters.

The hyperparameter selection plot for absolute quantifier version (see Figure 5.4)
shows hd = 512 and learning rate ↵ = 0.0001 works best among all candidate ones.
Especially, a higher learning rate greatly spoils the model performance after 100 to 200
epochs of training. Figure 5.4b also implies that DQN is not stable. The higher learning

31

(a) Variable: hidden unit size (b) Variable: learning rate

Figure 5.4: Hyperparameter selection for Thegame sufficient information ver. The results
are averaged using three different random seeds.

rate ↵ makes the model fail to maintain the learned behaviors (a.k.a., Catastrophic
Forgetting) and get damaged.

Figure 5.5 presents the parameter comparison for the hard-coded fuzzy quantifier
agents and no-communication agents. Similar as absolute quantifier version, hidden
unit size hd = 512 is the best value for fuzzy quantifier as well (see Figure 5.5a). For the
no-commu agent, hd = 512 shows a slight advantage (see 5.5c). Regarding the learning
rate, lr = 0.0001 works the best in both environments. Therefore we use hd = 512

and lr = 0.0001 for fuzzy quantifier and no-communication versions as well. Figure
5.5a shows the model performance would fluctuate using hidden unit size hd = 64 and
hd = 256 in fuzzy quantifier agents. Meanwhile, different hidden unit sizes do not
present many differences for no-communication agents. It may be due to the limitation
of the inputs. The experiments on the learning rate for these two versions (Figure 5.5b
and 5.5d) also indicate the harms of an overhigh learning rate: agents get stuck in the
local optima with it.

The experiments of three environment settings (see Figure 5.6) show all of the trained
agents work better than the random players, and both absolute quantifier and hard-coded
fuzzy quantifier agents outperform no-communication agents. It indicates additional in-
formation exchange helps agents to gain a better understanding of the current situation.
Similar to the Number Sorting game in the chapter 3, the agent may also learn the scales
of fuzzy quantifiers to describe their cards when the stack card number changes. Based
on this indirect information, one player can take advantages of action STAY to give the
partner opportunity to act more beneficially for the team (e.g., perform reverse trick),
which is the purpose of our subtask 4 in future work.

32

(a) Hard-coded fuzzy quantifier, variable: hid-
den unit size

(b) No-communication, variable: hidden unit
size

(c) Hard-coded fuzzy quantifier, variable:
learning rate

(d) No-communication, variable: learning rate

Figure 5.5: Parameter (hidden unit size and learning rate) comparison for fuzzy quantifier
and no-communication Thegame agents. The results are averaged using three different
random seeds.

Figure 5.6: Game win rates of three Thegame environment settings.

In Figure 5.6, we also notice the fuzzy quantifier observation gives a comparable
performance contrasted with the absolute quantifier version. However, this does not

33

directly demonstrate absolute and hard-coded fuzzy quantifiers have equivalent effects
generally. Because there are a few possible reasons: 1) this might be an environment
specialty, which means in Thegame, fuzzy quantifier information is enough for training;
2) model limitations: as we discussed before, DQN is a simple model which might limit
the performance of the agent. Besides, we also notice best DQN results among the three
types of agents are still not as good as the heuristic agent.

Figure 5.7: The game mean reward (double of game win rate) on sufficient input Thegame
using PPO. The customized cooperative environment made by Pettingzoo with RLlib
counts the total rewards of all team members. Therefore, the game mean reward is
two times of game win rate we used before.

In comparison to DQN models, the PPO model with default hyperparameters does
not work in our environments (see Figure 5.7): the model performs similarly as the
random player. It has multiple possible causes as well. First, default PPO from RLlib
needs hyperparameter tuning. Second, our environment is designed with sparse reward,
whereas PPO is an on-policy method that trains agents with full trajectories. If the
team does not hit the final point to get a positive reward, the model struggles with all
zero rewards and can hardly obtain any useful information for updating.

34

6 Discussion

In this section, we are going to discuss the distinctive characteristics of our tasks, the
unfinished part of our work, and the potential future plan.

6.1 The Goal and Subtasks

Our current experimental results show the positive effect of reinforcement learning and
information exchange for cooperative tasks. The experiments for Thegame also present
the potential of fuzzy information and the prospect of fuzzy quantifier emergence. As
mentioned before, we divide our goal - the communication emergence - into four sub-
tasks. We verify the first subtask for Cooperative Pong and the first three for Thegame.
Recall in chapter 3 we discuss that, if hard-coded fuzzy information helps the agents
perform better than non-communication agents, it indicates the possibility of learnable
fuzzy information, where agents could become more flexible in expressing the situation
to partners and interpret partners’ messages. As a part of the concept in Steels’ Lan-
guage game for the human linguistic evolution model and the language acquirement of
embodied robots, this ability (we call it the situation expression module) can be learned
during interactions between agents. In the perspective of reinforcement learning, this
expression module might be deployed by a neural network with reinforcement learning
algorithms as well, for example, Foerster et al.’s DIAL agent [11], and Cao et al.’s Cheap
Talk agent [6]. Whereas compared with other tasks that focus on adaptive communica-
tion emergence, our subtask 4 is slightly different: the agents need to tackle two tasks
during training in the long run: 1) learn how to play the basic game (e.g., how to use
the racket in Pong, or learn the rule in Thegame); 2) learn how to communicate with the
partner(s). These two missions might be learned at the same time. Otherwise, we can
utilize transfer learning methods to train these two abilities in different learning stages
then equip them for every agent.

Second, the communication in our task is ideally designed task-free. Contrasted with
other works [6, 11, 37] that constrain the signal range into task-specific limited spaces,

35

the learnable fuzzy signal in our experiment design is expected to be formed by the
agents themselves and can be reused for similar tasks, based on the idea of formation
experiments in Language Game [29]. It also endows the agents to be autonomous and
can self-organize the communication approaches according to different partners and even
different tasks. Furthermore, the decentralized procedure may help agents learn to
cooperate and exchange information in a human-understandable way [10], which may
be used in human-computer interaction tasks.

6.2 Possible Improvements on Experiments

Except the reward scheme modification can be a direction for improvement, for Thegame,
there are some potential ways as well, such as global environment information and input
encoding: for Thegame, although the agent can become aware of the partner’s cards, it
is still a partially observable game, due to the lack of information regarding the card
history. This history can be a part of input together with the observation. Besides, we
can make use of the time limitation [28] as well to inform the agent how long it has
taken in a game round. Similar to Silver et al.’s AlphaZero [33] and Bard et al.’s Hanabi
agent [1], we can also encode the agent’s observation together with helpful information
to help it make decisions.

36

7 Conclusion

In this thesis, we propose a task flow for multiple cooperative agents training in the
partially observable environment with information exchange. Inspired by Steels’ Lan-
guage Game, we assume agents can learn how to use signals to convey information by
interactions with the partner(s) during game playing. To achieve this goal step by step,
we divide it into a series of subtasks: first, compare the performance of relatively full and
limited information input to check the potential of information exchange, then utilize
hard-coded and even adaptive signals to help the agent learning. We exploit the sub-
task 1 on Cooperative Pong and Thegame and subtask 2 and 3 for the latter game with
DQN. In the first subtask, the experiments of these two games with sufficient inputs both
show cooperation emergence within a team. The results on the hard-coded fuzzy signal
(subtask 3) of Thegame show the agents take advantage of the valuable information of
fuzzy quantifiers and outperform the partially limited information agents (subtask 2).
Though we do not test Cooperative Pong on subtask 2, 3, 4, and Thegame for subtask 4,
we provide the possible environmental and experimental design for them and analyze the
structure of the adaptive communication learning model for subtask 4. These subtasks,
especially the subtask for adaptive communication signal learning, together with RL
models comparison, agent input encoding, and other possible improvement approaches
are set as future works.

37

Bibliography

References

[1] N. Bard et al. “The Hanabi Challenge: A New Frontier for AI Research”. In: Artif.
Intell. 280 (2020), p. 103216.

[2] A. Bauza. Hanabi & Ikebana | Board Game | BoardGameGeek. https://www.
boardgamegeek.com/boardgame/70918/hanabi-ikebana. 2010.

[3] B. D. Boer. “Computer modelling as a tool for understanding language evolution”.
In: 2006.

[4] G. Brockman et al. OpenAI Gym. 2016. eprint: arXiv:1606.01540.

[5] L. Buşoniu, R. Babuška, and B. D. Schutter. “A Comprehensive Survey of Mul-
tiagent Reinforcement Learning”. In: IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 38 (2008), pp. 156–172.

[6] K. Cao et al. “Emergent Communication through Negotiation”. In: ArXiv
abs/1804.03980 (2018).

[7] Y. Chen et al. “Decentralized non-communicating multiagent collision avoidance
with deep reinforcement learning”. In: 2017 IEEE International Conference on
Robotics and Automation (ICRA) (2017), pp. 285–292.

[8] H. H. Clark and S. Brennan. “Grounding in communication”. In: Perspectives on
socially shared cognition. 1991.

[9] C. Claus and Craig Boutilier. “The Dynamics of Reinforcement Learning in Co-
operative Multiagent Systems”. In: AAAI/IAAI. 1998.

[10] P. V. Eecke and K. Beuls. “Re-conceptualising the Language Game Paradigm in the
Framework of Multi-Agent Reinforcement Learning”. In: ArXiv abs/2004.04722
(2020).

[11] J. N. Foerster et al. “Learning to Communicate with Deep Multi-Agent Reinforce-
ment Learning”. In: NIPS. 2016.

38

https://www.boardgamegeek.com/boardgame/70918/hanabi-ikebana
https://www.boardgamegeek.com/boardgame/70918/hanabi-ikebana
arXiv:1606.01540

[12] S. Gronauer and K. Diepold. “Multi-agent deep reinforcement learning: a survey”.
In: Artificial Intelligence Review (2021), pp. 1–49.

[13] H. V. Hasselt, A. Guez, and D. Silver. “Deep Reinforcement Learning with Double
Q-Learning”. In: AAAI. 2016.

[14] M. Hausknecht and P. Stone. “Deep Recurrent Q-Learning for Partially Observable
MDPs”. In: AAAI Fall Symposia. 2015.

[15] M. Hessel et al. “Rainbow: Combining Improvements in Deep Reinforcement
Learning”. In: AAAI. 2018.

[16] L. Kaelbling, M. Littman, and A. Cassandra. “Planning and Acting in Partially
Observable Stochastic Domains”. In: Artif. Intell. 101 (1998), pp. 99–134.

[17] E. Liang et al. “RLlib: Abstractions for Distributed Reinforcement Learning”. In:
ICML. 2018.

[18] T. Lillicrap et al. “Continuous control with deep reinforcement learning”. In: CoRR
abs/1509.02971 (2016).

[19] L. Lin. “Reinforcement Learning for Robots Using Neural Networks”. UMI Order
No. GAX93-22750. PhD thesis. USA, 1992.

[20] M. Littman. “Markov Games as a Framework for Multi-Agent Reinforcement
Learning”. In: ICML. 1994.

[21] Ryan Lowe et al. “Multi-Agent Actor-Critic for Mixed Cooperative-Competitive
Environments”. In: NIPS. 2017.

[22] L. Metz et al. “Discrete Sequential Prediction of Continuous Actions for Deep RL”.
In: ArXiv abs/1705.05035 (2017).

[23] V. Mnih et al. “Asynchronous Methods for Deep Reinforcement Learning”. In:
ICML. 2016.

[24] V. Mnih et al. “Human-level control through deep reinforcement learning”. In:
Nature 518 (2015), pp. 529–533.

[25] NSV. THE GAME – QUICK & EASY. https://nsv-games.com/the-game-
quick-easy/. 2021.

[26] OpenAI. OpenAI Five. https://blog.openai.com/openai-five/. 2018.

[27] H. Osawa. “Solving Hanabi: Estimating Hands by Opponent’s Actions in Cooper-
ative Game with Incomplete Information”. In: AAAI Workshop: Computer Poker
and Imperfect Information. 2015.

39

https://nsv-games.com/the-game-quick-easy/
https://nsv-games.com/the-game-quick-easy/
https://blog.openai.com/openai-five/

[28] F. Pardo et al. “Time Limits in Reinforcement Learning”. In: ArXiv abs/1712.00378
(2018).

[29] S. Pauw and J. Hilferty. “The Emergence of Quantifiers”. In: Experiments in
Cultural Language Evolution. Ed. by Luc Steels. Vol. 3. Advances in interaction
studies. Philadelphia: John Benjamins Publishing Company, 2012, pp. 277–303.

[30] rusu24edward. [rllib] turn-based multi-agent environments usage #9029. https:
//github.com/ray-project/ray/issues/9029. 2020.

[31] J. Schulman et al. “Proximal Policy Optimization Algorithms”. In: ArXiv
abs/1707.06347 (2017).

[32] J. Schulman et al. “Trust Region Policy Optimization”. In: ArXiv abs/1502.05477
(2015).

[33] D. Silver et al. “Mastering Chess and Shogi by Self-Play with a General Reinforce-
ment Learning Algorithm”. In: ArXiv abs/1712.01815 (2017).

[34] L. Steels. “Language games for autonomous robots”. In: IEEE Intelligent Systems
16 (2001), pp. 16–22.

[35] L. Steels. “The synthetic modeling of language origins”. In: Evolution of Commu-
nication 1 (1997), pp. 1–34.

[36] L. Steels and M. Spranger. “How Experience of the Body Shapes Language about
Space”. In: IJCAI. 2009.

[37] S. Sukhbaatar, A. D. Szlam, and R. Fergus. “Learning Multiagent Communication
with Backpropagation”. In: NIPS. 2016.

[38] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. Cam-
bridge, MA, USA: MIT Press, 1998. isbn: 0-262-19398-1. url: http://www.cs.
ualberta.ca/%7Esutton/book/ebook/the-book.html.

[39] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. Cam-
bridge, MA, USA: A Bradford Book, 2018. isbn: 0262039249.

[40] A. Tampuu et al. “Multiagent cooperation and competition with deep reinforce-
ment learning”. In: PLoS ONE 12 (2017).

[41] J. K. Terry et al. “PettingZoo: Gym for Multi-Agent Reinforcement Learning”. In:
arXiv preprint arXiv:2009.14471 (2020).

[42] Z. Wang et al. “Dueling Network Architectures for Deep Reinforcement Learning”.
In: ArXiv abs/1511.06581 (2016).

40

https://github.com/ray-project/ray/issues/9029
https://github.com/ray-project/ray/issues/9029
http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html
http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html

[43] C. J. C. H. Watkins. “Learning from Delayed Rewards”. PhD thesis. King’s College,
Oxford, 1989.

[44] R. P. Wiegand and K. A. Jong. “An analysis of cooperative coevolutionary algo-
rithms”. In: 2004.

[45] L. Wittgenstein. Philosophical Investigations. Oxford: Basil Blackwell, 1953. isbn:
0631119000.

[46] L. Zadeh. “A Computational Approach to Fuzzy Quantifiers in Natural Lan-
guages”. In: Computational Linguistics (1983), pp. 149–184.

41

	Introduction
	Background
	Reinforcement Learning
	Deep Q-Learning
	Proximal Policy Optimization

	Multi-Agent Reinforcement Learning
	The Agent Relation in Multi-Player Cooperative Game
	Language Game

	Approach
	Experiments
	Environments
	Cooperative Pong
	Thegame

	Training Setups
	Cooperative Pong
	Thegame

	Results
	Cooperative Pong
	Cooperative Player with Competitive Partner
	Two-player Cooperative Pong

	Thegame

	Discussion
	The Goal and Subtasks
	Possible Improvements on Experiments

	Conclusion
	Bibliography

