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Abstract

Observational data have been used increasingly in the study of cancer for the evalua-
tion of the efficacy of therapies. However, without proper experimental design especially
randomization, all kinds of bias may appear when exploring observational data.

In this thesis, we focused on treatment selection bias. We explored the impact of selec-
tion bias on therapeutic effect of localized prostate cancer using data from the Netherlands
Cancer Registry between 2005 and 2014. To begin with, Cox proportional-hazards models
were constructed before and after the adjustment of propensity score. Both of them indi-
cated active treatment decreased the risk of death (hazard ratio = 0.79, 95% confidence
interval = [0.73,0.85]). We also found the role of adjustment was limited: the Cox model
after the adjustment was almost the same as the unadjusted one. Then we constructed
a hybrid Bayesian Network (BN) combining our prior knowledge with structure learning.
After that, the parameter learning was finished with the EM algorithm. Active treat-
ment was associated with a survival benefit in both the Cox model and the BN model.
However, this positive association was much weaker in the BN model compared with Cox
proportional-hazards models. We also found that age was a factor that could partly ex-
plain the difference in outcome between active treatment group and non-active treatment
group. Older patients had a higher risk of death.

In comparison between the survival rate of male residents in the Netherlands, survival
rate of non-active treatment group visualized by Kaplan–Meier estimator and survival
rate of active treatment group visualized by Kaplan–Meier estimator, we got improbable
results: after adjusting for age and year of diagnosis for active treatment group, the
survival rate of the general male population was lower than the survival rate of active
treatment group. If adjusted for age and year of diagnosis for non-active treatment group,
the survival rate of general male population was lower than non-active treatment group.
It was a glance of the strong effect of selection bias. An explanation was patients who
underwent active treatment had better underlying health, which could partly be indicated
by a younger age. We also suspected that there were some other unmeasured confounders
that related to baseline health.

Our experiment was a reproduction of Giordano’s paper [32]. Our experiment was
not the only one to find selection bias in observational dataset and the adjustment of
propensity score had little impact on these irrational results. In the paper of Giordano,
they also found that localized prostate cancer patients who received active treatment had
a lower risk of death compared with noncancer control and the propensity score adjust-
ment played little rule to alter the findings [32]. So when analysing observational data,
researchers have to be cautious and the results should be viewed critically.

Keywords: Selection bias, Propensity score adjustment, Cox proportional-hazards model,
Bayesian Network
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1 Introduction

Clinical research can be divided into two categories: observational research and experimental
research. Data obtained by them are known as observational data and experimental data,
respectively. The main difference between the two types of data is whether or not study
design and intervention are applied in the data collection step [31]. In an experimental study,
the data is produced by an experimental design and test method. Researchers will set some
intervention factors artificially to acquire the right type of data which is available to answer
their research questions as clearly as possible [28]. The missing step of experimental design
may introduce bias. Bias is a systematic error in which the results obtained by analysing the
samples do not necessarily reflect the true results of the target population.

A randomized controlled trial (RCT) is one of the common methods of experimental study.
A well-organized RCT is the gold standard in treatment evaluation in clinical trails [39]. RCT
is accomplished by randomization, which means dividing patients into two or more groups
randomly. One of the groups is called the control group and the others are the experimental
groups. The former receives no intervention or a standard intervention with a known effect and
the latter undergo different therapies, one for each group. If the sample size is big enough, the
random allocation will ensure that there is no relation between the covariates and treatment
allocation. In other words, the distribution of covariates between different groups are similar.
To further reduce the bias, RCT can be blinded or double-blinded. In a blinded RCT, patients
in control and treatment groups are unaware of the group they are in. Giving a placebo to
patients in the control group is a common way to do that. This is to reduce performance bias,
which is introduced by the awareness of the applied intervention [59]. In the article by Henry
K. Beecher [16], he concluded that the symptoms of 35% patients were relieved by placebos
compared with no intervention. Other papers from Turner et al. and Roberts et al. also
proved that placebos played an incredible role in symptoms alleviation [68] [61].

In addition to the use of the placebo, the information that may influence the participants
(both subjects and researchers) will be withheld until the end of the experiment in a double-
blinded RCT. This is to reduce the risk that researchers may know which intervention was
received. This prior knowledge might make researchers behave differently and affect outcome
measurement [41].

Nevertheless, RCT is not always feasible due to the high cost of time and money. Compared
with an observational study, it is more expensive to acquire a dataset with large sample sizes.
Take our experiment as an example: the 5-year survival rate of patients who diagnosed with
localized prostate cancer is about 90%, and the 10-year survival rate is about 75% [11]. It is
expensive and unrealistic to design an experiment for such a long time. Regardless of the high
cost, RCT is still not perfect. The ethical issues ranging from privacy protection informed
consent and risk minimization [60] make RCT not always possible. Information about the
procedures, the risk and benefits of the treatment should be informed to participants. This is
sometimes contradictory to blindness. Besides, according to the Declaration of Helsinki, “the
well-being of the individual research subject must take precedence over all other interests” [13].
Ethically, patients should receive the best-proven therapy if it is feasible [13]. But for some
patients, the well-performed randomization and blinding approach may lead to the missing
opportunity for the most suitable treatment. Another issue is that in many cases, patients in
control group would be more painful [54]. Finally, except the biases mentioned above, there
are many other kinds of biases in reality. It is hard to reduce or eliminate all of them. All of
these make RCT not always possible.

On the other hand, Observational data, which refer to the dataset that collected directly by
observation without manipulation or intervention, have the advantages such as large sample
sizes, low cost and long-term follow-up. Thus they are increasingly used to evaluate the
effectiveness of therapies and cancer outcomes [40] [32]. One of the biases that would be
introduced by the missing steps of randomization is known as Selection bias. It will cause
the differences in sample’s characteristics between groups. When assessing the effectiveness of
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therapies, the discrepancies of outcomes may be caused by these difference in characteristics
rather than the therapies itself. If researchers compare the outcome of different treatment
groups directly, they would be misled and come to the wrong conclusion. Treatment selection
bias is a type of selection bias that introduced when doctors are predisposed to select a specific
treatment based on different characteristics of patients without realizing it. For instance, when
comparing two treatments with potential difference in effect, patients who are in better health
(considered more likely to tolerate the treatment) would have a higher tendency to receive
the more toxic treatment [32]. If that is the case, it is difficult to determine if and how much
the difference in outcome and survival time is caused by the treatment.

In summary, a well-organized RCT is the gold standard for effectiveness research in clinical
traits [39]. The experimental designs for RCTs aim to reduce bias and guarantee that the
different outcome will more relate to different therapies, rather than patient’s characteristics
like their age, health, the prior reasoning or any other unrelated stuff. But the limitations make
RCTs not always feasible. And sometimes, the advantages of observational data including
large sample sizes and long time follow-up are considered more important. So observational
data is sometimes a good choice to assess the effectiveness of different therapies. However, if
observational data is used, researchers should be careful about bias.

1.1 Related work

Investigators have already been aware of impact of the potential bias on observational
dataset. In the paper of Wong et al. [69], they concluded that for patients who have low- or
intermediate-risk prostate cancer and aged between 65 and 80 years, active treatment may
have a positive effect on survival time. However, under the assumption that multivariate
methods like propensity score adjustment can not fully eliminate selection bias and confound-
ing, they recommended that these results should be validated in RCTs. Under a similar
assumption that selection bias can not be adjusted for covariates like stage, grade, region and
no. of PSA tests completely, Giordano et al. [32] reanalysed three published datasets sepa-
rately using Cox proportional-hazards model after propensity score adjustment. The three
cases were: 1. Androgen-deprivation therapy versus none after primary radiation therapy
for locally advanced prostate cancer, 2. Active treatment versus none for men with localized
prostate cancer, which is a reproduction of Wong’s experiment, and 3. 5-FU based adjuvant
chemotherapy versus none for lymph node-positive colon cancer. Giordano et al. concluded
that for all the three cases, little changes can be found in the outcome of Cox model before
and after reducing the effect of confounders with propensity score methods. What’s more, two
out of the three cases showed that the observational data produced improbable and incorrect
results, which was a small glance of the strong effect of selection bias. Realizing this, Giordano
et al. suggested that the conclusion from observational data should be viewed critically as
they may result from an interaction of a selection bias [32]. When assessing the effectiveness
of therapies using observational data, researchers should be cautious and modest.

1.2 Project overview

This thesis aims to check the presence of treatment selection bias and how it would influence
the outcome. Therefore, we reanalysed NCR data of localized prostate cancer using propensity
score adjustment and Cox proportional-hazards models just as described in Giordano’s paper
[32] to compare the outcome of active treatment group and non-active treatment group for men
aged 65 to 80 years. Because our experiment used observational data rather than RCT data,
the average treatment effect (ATE) can not be recognised from the dataset due to the effect of
confounders. To get an unbiased estimate of ATE, propensity score adjustment was applied
and the dataset was stratified into 5 subgroups according to the quintiles of propensity score.
The stratification can remove 90% of the bias caused by the confounders [22]. After that, we
used Cochran-Mantel-Haenszel (CMH) test to test if the adjustment works. CMH test is a
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hypothesis testing method to test the association between two variables when stratifying data
with a third variable [48]. If the third variable is not taken into account, Simpson’s paradox
may be observed. Simpson’s paradox is a phenomenon in which the association between a
pair of variables may disappear, increase, decrease or change direction in these two cases: 1.
Study the whole population and 2. Study the subpopulation that stratified according to the
categories of the third variable. There are some other methods for test like calculating the
standardized mean difference (SMD). But as a reproduction of Giordano’s paper, we applied
the CMH test.

After the adjustment, Cox proportional-hazard model was applied. It is one of the com-
monly used models in survival analysis. Survival analysis is a branch of statistics that analyses
the correlation between survival time, the outcome and a number of variables. In an ideal sit-
uation, if the dataset is non-censored, a series of analysis methods are available. But the exact
survival time of patients are sometimes unknown due to the death of the patient, the refusal
of follow-up or the event of interest does not happen at the end of the experiment. Compared
with other methods, survival analysis is able to make the most use of the right-censored data
instead of removing them. We constructed two Cox proportional-hazard models, one per-
formed propensity score adjustment, and the other did not. By comparing the two models,
we could explore how much the propensity score adjustment helped to eliminate the effect of
confounders. After the adjustment, another five Cox models were established, one for each
age group to examine the relations between age and outcome associated with treatment.

Next, as an extension, we constructed a Bayesian Network (BN) to study treatment
selection bias from a perspective of causal inference. The BN model is a type of probabilistic
graphical model (GM) [17], which combines principles from probability theory and graph
theory. Each node in this network acts as a random variable and the edges are the relations
between the nodes. The quantitative parameter are represented by the conditional probability
distribution (CPD) of the nodes. The graphic structure makes it a good tool for visualizing the
relations among variables. It is easy to follow every step and understand how the change of one
or more variables will influence other ones. This transparency distinguishes the BN model
from other ”black box” machine learning approaches such as neural network [58]. What’s
more, compared with the Cox model, some prior knowledge can be added to make the results
easier to explain.

To evaluate our BN model, we applied sensitivity analysis with AUC-ROC curves. It is
a commonly used approach to test the performance of a binary classifier. But apart from
the capability of classification, what we are more interested in when studying the association
between survival and a series of covariates is the probability distributions estimated by our
model. We would like to test the relations between the predicted survival probabilities and
the observed survival probabilities. For instance, doctors will ask: what is the probability that
a patient with certain characteristics still being alive two years after diagnosis? Therefore,
in our experiment, a model that fits the dataset well, or in other words, provides predicted
probabilities close to the observed probabilities, is more meaningful in practical application
for predicting and decision making. This comparison between predicted and observed proba-
bilities is visualized by a calibration plot.

Finally, we compared the survival rate of the active treatment group, non-active treatment
group and the weighted survival rate of general male residents in the Netherlands [1] adjusted
for age and year of diagnosis. If the survival rate of active treatment group was even higher
than general population, as the same with Giordano’s paper [32], we could reasonably suspect
that selection bias can be found in our dataset.

1.3 Thesis structure

The remaining part of the paper is as follows: Chapter 2 is about the background knowledge
of prostate cancer and the cancer staging system. The mathematical principles of propensity
score approaches, survival analysis, Cox proportional-hazards model and BN model will be
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comprehensively explained in chapter 3. Chapter 4 describes the steps we took in detail. The
results will be illustrated in chapter 5. Discussion, conclusion and future work are shown in
chapter 6.
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2 Clinical background

2.1 Development, detection and prognosis of prostate cancer

Prostate cancer is one of the most common cancers diagnosed in men; prostate cancers are
often classified as belonging to adenocarcinomas (“adeno” means gland-like) histological type
[50] as they originate in a glandular cell or the cancer cells look similar to gland cells, or
both. As often in cancer, the cumulative exposure to particular risk factors, such as specific
hormones (for example, testosterone) and unrepaired DNA damage due to wear and tear,
implies to elderly people have cancer more frequently. This rule also applied to prostate
cancer. Therefore, the incidence of prostate cancer will increase with age. Eight out of ten
prostate cancers are diagnosed in men over their 65s [36], and they are seldom diagnosed in
men under their 40s. Other primary risk factors of prostate cancer include race and family
history, i.e., genetic factors may be involved. There are also some less clear factors, such as
diet and obesity (probably also through hormonal influences) that will affect the incidence of
prostate cancer.

Early prostate cancer is symptomless [38]. As it develops further, symptoms such as
frequent urination, urgency of urination and a slow urine stream may appear. Most of the
patients are only diagnosed with prostate cancer after the appearance of symptoms [38].
But there are also some screening tests to find prostate cancer in its early stage before the
symptoms have been developed. Prostate-specific antigen (PSA) blood test is one of an
important screening tests and is usually the first step in diagnosing prostate cancer. It can
decrease the risk of diagnosing with advanced prostate cancer and lead to a lower prostate
cancer mortality [43] [14]. PSA is a protein produced by epithelial cells of the prostate gland,
whose function is believed to be liquefying the seminal fluid [47]. An abnormal increase of
PSA level in blood may indicate prostate diseases. However, PSA level can also rise due to
some benign prostate diseases. So PSA test by itself can not indicate the presence of prostate
cancer. Generally speaking, a traditional threshold PSA level of 4 ng/ml is applied since the
level of PSA in blood is under 4 ng/ml for most of the men without prostate cancer [2]. Other
important thresholds of PSA value including 10 ng/ml and 20 ng/ml, as described in the
7th edition of the American Joint Committee on Cancer (AJCC) cancer staging manual [29],
which is an international standard that decides the extent of tumor. Additionally, another
screening method is digital rectal exam (DRE). In a DRE, the doctor will insert a lubricated,
gloved finger into one’s rectum [3]. By feeling for any hard spots or bumps, the doctor will
determine the state of one’s prostate.

If a man is suspected to have prostate cancer after the screening tests, a prostate biopsy
may be needed to confirm the diagnosis. In a prostate biopsy, a core needle is used to collect
a very small sample from the prostate gland, after which the sample will be looked at under a
microscope by a pathologist. Normally, doctors will take more than six samples from different
places of prostate to increase the detection rate and decrease the false negative rate [49].

In the advanced stage, prostate cancer cells may metastasize to other parts of the body,
through the lymphatic route to the lymph nodes (common is that the inguinal lymph node is
involved), and the hematogenous route to bones (in particular the vertebral column). How-
ever, aggressive or metastatic prostate cancer is less common. Most prostate cancers grow
slowly. The 5-year, 10-year and 15-year relative survival rates for patients diagnosed with
regional or local (non-metastatic) prostate cancer is 99%, 95% and 82% respectively, whereas
only 33% men with metastatic prostate cancer survive longer than five years [20].

2.2 TNM classification of malignant tumors

The TNM classification of malignant tumors (TNM) is a globally recognized standard classi-
fication method developed by the Union for International Cancer Control (UICC). Today the
TNM staging system is fully described in the American Joint Committee on Cancer (AJCC)
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manual [29]. It is used to characterize the prognosis of cancer in terms of its spread to other,
often distant parts of the body. In this staging system, tumor stage is described by means of
three aspects: T, N and M, where [4]:

• T describes the size and extent of the primary (i.e., where the tumor started) tumor;

• N describe whether or not nearby lymph nodes are involved;

• M describes if the cancer is metastasized, i.e., whether cancer has spread to other parts
of the body, such as bone, liver, and lungs.

The categories that can be assigned to each descriptors T, N and M traditionally start
with a number and are written behind the descriptors, eg., T1, N0, M0. Sometimes the cate-
gories are subdivided into subcategories like T1a and T1b to tell more detailed information.
These categories are tumor-specific and defined in the AJCC staging manual [29]. They are
usually ordered from good prognosis (limited disease) to bad prognosis (extensive disease).
For prostate cancer, the following category of descriptor T can be 1,1a,1b,1c,2,2a,2b,2c,3,3a,3b
and 4. For descriptor N, the category is either 0 (lymph nodes not affected) or 1 (lymph nodes
affected). For descriptor M, the category is also 0 (no metastasis) and 1 (distance metastasis
present). The smaller the number, the less aggressive the tumor is. When the numbers are
the same, the aggressiveness is in alphabetical order. To characterize tumors that can not be
measured or assessed, the letter ”X” is used. In the end, cases of cancer with similar prognosis
are grouped into a roman numeral according to the categories of T, N and M [29]. This roman
numeral is known as aggregated stage group or anatomic stage group and ranges from I to
IV. Depending on the tumor and histologic type [29], the grouping rule can be different. The
grouping rule of prostate cancer can be found in AJCC manual [29].

Depending on whether or not radical prostatectomy has been performed, the staging can
be either clinical or pathological. They are distinguished with a prefix to the descriptor, eg.,
cT or pT. Some less common prefixes include yc, yp and a. Prefix y denotes clinical (yc) or
pathological (yp) state after radiation therapy and a represents cancer found at autopsy [29].
Clinical staging is decided before surgery using the information of physical examinations, lab
results, medical imaging, and tumor biopsies. Thus clinical staging is possible for all the
patients. However pathological staging (histological staging), in most cases, is only possible
for those who have undergone prostatectomy. This is because the sample of the tumor and
some regional lymph nodes removed from the area around the tumor are needed for pathologic
classification and will be examined under a microscope. These tissues can only be resected
by the operator [29]. The test results of the tissues, combined with the clinical information
are used to determine the pathological stage. Therefore, pathological staging is more precise
than clinical stage.

2.3 Gleason scoring system

Apart from the TNM staging system, some other grading systems may be available for special
types of cancer. For prostate cancer, the Gleason score indicates how aggressive the prostate
cancer is. It distinguishes between primary and secondary Gleason grade. The Gleason grade
ranges from 1 to 5, where a lower grade means the cancer cells are better differentiated and
resemble normal prostate tissue [56], thus less aggressive. On the contrary, a higher grade
means that the cancer cells are worse differentiated and looks more abnormal. Figure 1 [23]
shows the different patterns in Gleason grade.

To determine the primary Gleason grade and secondary Gleason grade, the tissue removed
from the biopsy will be looked at under a microscope. The primary grade refers to the most
frequent pattern observed in the tissue. This pattern should be larger than 50% of the whole
pattern. The secondary grade refers to the second most common pattern and should be less
than 50%. The sum of the two Gleason grades is the final Gleason score. Thus the Gleason
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Figure 1: Different patterns in Gleason grade [23]

score has a range of two to ten. However, there will be some information lost if doctors only
record the final Gleason score. For instance, the aggressiveness of cancer may be different
between the two cases: one patient has a primary grade of four and a secondary grade of
three. The other one has a primary grade of three and a secondary grade of four. But they
share a value of 7 in the final Gleason score.
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3 Methodology

3.1 Propensity score adjustment

3.1.1 Estimation of Average Treatment Effect (ATE) in an RCT dataset

Suppose there are n units or cases in a dataset D = {(xi, ti, yi) ∣ i = 1, . . . , n}, where X = xi =
(x1i , . . . , x

m
i ) represents covariates or baseline characteristics (pretreatment variables), T = ti

is a binary variable indicates treatment, with ti = 0 if the i-th unit received control treatment
and ti = 1 if the i-th unit received experimental treatment under study [63]. Y = yi stands for
treatment effect with yi = 0 the effect is absent and yi = 1 the effect is present.

Let P (X,T,Y ) be the joint probability distribution defined using data from dataset D,
with P (X = xi, T = ti, Y = yi) the probability of the occurrence of a particular instance in the
dataset. If D is obtained from an RCT of high quality, the following properties will hold:

First, treatment allocation T is independent of X and will not be affected by X:

X ⊧pT ∣ ∅

hence
P (T ∣X) = P (T )

It should be noted that this statement only holds for pretreatment patient characteristics X
because treatment may affect particular physiological mechanisms in the patient.

Second, the randomization also guarantee a similar distribution of all covariates X between
groups

P (X ∣ T = 1) ≈ P (X ∣ T = 0)

This corresponds to the condition of lack of discimination between patients irrespective of
treatment, but now after marginalisation out the effect variable:

∑
Y

P (X,Y ∣ T = 0) ≈∑
Y

P (X,Y ∣ T = 1)

Finally, treatment allocation is said to be strongly ignorable given a subset of variables
V ⊆X if

Y ⊧pT ∣ V (1)

This means the effect of T to Y should be mediated through V . According to the properties
of conditionally independent, we have

P (Y ∣ V ) = P (Y ∣ T,V ) (2)

Note that P (Y ∣ T,V ) is what we can observed from the dataset D. Under the strongly
ignorable assumption, it is possible to estimate the average treatment effect (ATE) as the
measure of the effect of different therapies when comparing outcomes of different treatment
groups directly, i.e.,

ATEk =
1

n

n

∑
i=1
∑

j∈{0,1}

P (Y = k ∣X = xi, T = j)

with k ∈ {0,1} and
ATE = ATE1 −ATE0

However, in an observational dataset, the strongly ignorable assumption is usually not
known to hold without the randomization step. But if the assumption holds in a non-
randomized dataset and V is a discrete variable with M levels, ATE can be estimated. For
instance, we can divide the data into M subgroups according to the level of V and estimate
ATEm in each level m, then the overall ATE can be written as the weighted average of ATEm.
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Although we can do the same stratification when V is a high dimensional variable, the number
of subclasses will explode. Suppose V consists of p binary variables, the number of subclasses
will be 2p. Therefore, the cases allocated to each stratum will be reduced. Most strata will
not contain both treated and control cases [62]. Subclassification based on the propensity
score is a dimensionality reduction approach to avoid that.

3.1.2 Using propensity score adjustment to estimate ATE in observational dataset

Defined by Rosenbaum and Rubin [62], the propensity score e(xi) is the conditional probability
of the intended treatment T = 1 given the evidence X = xi, i.e,

e(xi) = P (T = 1 ∣X = xi) = E(T ∣X = xi)

The treatment variable T is Bernoulli distributed, Therefore, by definition P (T = 1 ∣ X = x)
equals to the mean or expectation, E(T ∣ x). In observational studies, the variables T and
X are not independent and the true propensity score is generally unknown. A practical and
common way to estimate the propensity score P (T = 1 ∣X = x) is by logistic regression:

e(x) = e(x1, . . . , xm) =
⎛

⎝
1 + exp−

m

∑
j=0

ajxj
⎞

⎠

−1

(3)

Where aj (j = 0, . . . , n) are the coefficients computed by fitting the equation to the data D,
a0 is the baseline and x0 = 1.

A propensity score e(X) is a type of balancing score b(X), which is defined as a function
that has the property

X ⊧pT ∣ b(X)

with b(X) = X is the finest balancing score and e(X) = f(b(X)) is the coarsest balancing
score for some function f , and we have the following theorems [62]:

Theorem 1. Let b(X) be a function of the random variable X, then b(X) is a balancing score,
i.e.,

X ⊧pT ∣ b(X)

iff b(X) is finer than the propensity score e(X) if e(X) = f(b(X)) for some function f.

The most important point to prove theorem 1 is that b(X) does not contain more infor-
mation than X, therefore,

P (T ∣ b(X),X) = P (T ∣X))

and by the definition of balancing score b(X), we have

P (T ∣ b(X),X) = P (T ∣ b(X))

Therefore,
P (T ∣ b(X)) = P (T ∣ b(X),X) = P (T ∣X))

It implies that allocating treatment based on patient characteristics X or its function b(X)
will lead to the same results.

Theorem 2. If treatment allocation is strongly ignorable given X, it is strongly ignorable
given any balancing score b(X) [62], i.e,

Y ⊧pT ∣X given that 0 < P (T = 1 ∣X) < 1

similar for
Y ⊧pT ∣ b(X)

13



As propensity score e(X) is a type of balancing score b(X), theorem 2 is also hold for
e(X). Therefore, adjusted for a balancing score b(X) can produce an unbiased estimate of
ATE.

After the computation of propensity score, cases are stratified into 5 equal-size subgroups.
The cutting points are quintiles of the estimated propensity score. In the paper of [22],
they concluded that stratifying the cases into 5 groups is sufficient to remove 90% of the bias
caused by confounders. A larger number of subgroups may reduce the number of cases in each
subgroup and increase variance, while a smaller number of subgroups would be insufficient to
remove the bias.

3.2 Cochran-Mantel-Haenszel (CMH) test

Begin with the simplest case. Suppose two binary variables A and B are stratified based on
the third variable C, which has r categories. The stratification will result in r contingency
tables of 2 × 2. The i-th contingency table can be written as

B = 1 B = 0

A= 1 ai bi
A= 0 ci di

In the paper of Richard Landis et al. [45], the null hypothesis H0 of the CMH test is
expressed as follows. H0: For each of the i-th table (1 ≤ i ≤ r), the variable is distributed at
random with respect to the another variable [45], i.e., no association can be found between the
two variables (after taking the confounders into account). The CMH test actually transformed
the problem into a sampling problem.

Conditional on the row and column totals, the distribution of the frequencies of ai follow
the hypergeometric distribution. So it is sufficient to compare the observed and expected
counts in one cell per table [37]. To construct the CMH test statistic, one of the four cells
(normally ai) from each stratum is taken as pivotal. Choosing other cells will not affect the
value of statistics or the conclusion.

According to the properties of the hypergeometric distribution, the expectation E of ai is

E(ai) =
(ai + bi)(ai + ci)

ai + bi + ci + di

the variance V can be written as

V (ai) =
(ai + bi)(ai + ci)(bi + ci)(bi + di)

(ai + bi + ci + di)2(ai + bi + ci + di − 1)

The statistics is constructed as follows:

X2
0 =

(∣
r

∑
i=1
ai −

r

∑
i=1

E(ai)∣ −
1
2)

2

r

∑
i=1

V(ai)
(4)

The statistics X2
0 follows a χ2 distribution with 1 degree of freedom.

For a more complex case, when the contingency table has a 2 × n shape, where n is the
number of categories of variable B (n>2). If the number of strata is still r, the i-th contingency
table can be written in matrix form as:

(
a11i a12i a13i ... a1ni
a21i a22i a23i ... a2ni

)

To estimate the association between [a11i, a12i, a13i, . . . , a1ni] and [a21i, a22i, a23i, . . . , a2ni]
across the r strata (1 ≤ i ≤ r), the null hypothesis is the same, and the pivotal cells for the
i-th strata ai is a (n − 1) row vector (n>2):
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aTi = (a11i, a12i, a13i, . . . , a1(n−1)i)

Where aTi is the transpose of ai, which is assumed to follow the multivariate hypergeometric
distribution. If we let

rTi = (a⋅1i, a⋅2i, a⋅3i, . . . , a⋅(n−1)i)

be the column sum of the i-th contingency table,

(a1⋅i, a2⋅i)

be the row sum of the i-th contingency table, and a⋅⋅i be the sum of the i-th contingency table.
According to the properties of multivariate hypergeometric distribution, the expectation of ai
can be written as

E(ai) =
a1⋅iri
a⋅⋅i

and the covariance matrix vi can be written as

vi = a1⋅ia2⋅i
a⋅⋅idiag(ri) − rir

T
i

(a⋅⋅i − 1)a2
⋅⋅i

with diag(ri) is an (n − 1) × (n − 1) diagonal matrix with element ri. The statistics can be
written as

(a − e)T v−1(a − e) (5)

Where a =
r

∑
i=1
ai, e =

r

∑
i=1
ei and v =

r

∑
i=1
vi

Statistics 5 follows a χ2 distribution with (n − 1) degrees of freedom.
Note that CMH test can also be used for the most general case when the contingency

table has a m×n shape (m,n> 2), where m and n are the number of categories of variable A
and B, respectively. In this situation, the statistics is much more complex and follows a χ2

distribution with (m − 1)(n − 1) degree of freedom.

3.3 Survival analysis

In survival analysis, The outcome is usually known as the event of interest. The survival time,
which is always positive, reflects the time from the beginning of observation to the occurrence
of the event of interest. Dataset can be classified into two categories according to the outcome
of populations. They are:

• Complete data The specific time of the event (the event of interest) is known and
recorded at the time of follow-up.

• Censored data The event did not (yet) happen at time of follow-up, which means the
actual survival time is not the same as the recorded value. There are three types of
censored data:

– Right censored is the most common type of censored data. In right censored data,
survival time is underestimated compared with the record value, but it is unknown
by how much [5]. Reasons for this can be: the loss/refusal of follow up or the event
of interest does not happen at the end of the experiment.

– Left censored means survival time is overestimated compared with the record value,
but it is unknown by how much [5]. In this way, the event of interest happened
before the time of record.
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– Interval censored Similar, interval censored means the event of interest happens
between a period, but it is impossible to figure out the exact time. One common
example that will cause interval censored is the periodic follow-up [42]. Researchers
only know the event of interest happened between two follow-ups, but the actual
time is unknown. Right censored data is a special case of interval-censored data [42].

We will focus on survival analysis for right censored data. Suppose the event of interest is
death. Let T ≥ 0 be a non-negative variable which has density function f(t) and distribution
function F (t), the survival function S(t) can be written as [51]

S(t) = P (T ≥ t) = 1 − F (t) = ∫
∞

t
f(x)dx (6)

which represents the probability being alive by duration t.
Mortality at any time t (instantaneous death rate) mt is the slope of survival function

S(t) at time t, denoted as

mt = lim
δt→0
(S(t) − S(t + δt)) = lim

δt→0

P (t ≤ T < t + δt)

δt
(7)

The hazard function h(t) at any time t is the mortality mt divided by patients at risk at time
t

h(t) =
mt

S(t)
=

lim
δt→0
(S(t) − S(t + δt))

S(t)
(8)

Epidemiologically, the hazard rate h(t) describes the instantaneous death rate of partic-
ipant who survived at time t. In survival analysis, different models will be constructed to
represent h(t) as a combination of time t and some functions of covariates x.

3.3.1 Kaplan-Meier estimator

The Kaplan-Meier estimator is an nonparametric approach to visualize the survival proba-
bility. Let di be the number of deaths at time ti, ni be the number of cases at risk at time
ti, where at risk means individuals being alive at time ti [21]. The cumulative survival rate
S(ti) can be written as

S(ti) = S(ti−1) (1 −
di
ni
) (9)

Where t0 = 0, S(0) = 1. The variance of the survival function is calculated as:

V (S(t)) = S(t)2∑
ti≤t

di
ni(ni − di)

and the pointwise 95% confidence interval of the survival function is S(t)± 1.96×
√
V (S(t)).

3.3.2 Cox proportional-hazards model

In the Cox model, the distribution of the hazard function h(t ∣ x) is represented as a combi-
nation of the baseline hazard at time t and a function of the covariates x:

h(t ∣ x) = h0(t) exp(b1x1 + b2x2 +⋯ + bpxp) (10)

where x1, x2, . . . , xp represents the covariates, b1, b2, . . . , bp are coefficients that measure the
effect size of the covariates and h0(t) is the baseline hazard function; it is the risk function
when all covariates equal to 0.
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Moving h0(t) to the left, equation 10 can be written as:

h(t ∣ x)

h0(t)
= exp(b1x1 + b2x2 +⋯ + bpxp) (11)

To comparing the hazards between different groups. The hazard ratio (HR) is introduced. It
is the effect estimate of Cox model [66]. The HR of two participants i, j is the ratio of their
hazard functions

HR =
hi(t ∣ x)

hj(t ∣ x)
=
h0(t) exp(b1x11 + b2x2 +⋯ + bpxp)

h0(t) exp(b1x12 + b2x2 +⋯ + bpxp
(12)

If all the covariates x2, x3, . . . xn are the same except for x1, they can be eliminated. Then
we have HR of covariate x1 to estimate the association between x1 and mortality risk. HR > 1
indicates a increasing risk of death. On the contrary, HR < 1 indicates a decreasing risk of
death.

There are three basic assumptions in the model. First, survival time of every participant
should be independent. Second, the relationship between hazard and predictors should be
multiplicative. And most importantly, the proportional Hazard assumption: for each of the
covariate, HR should stay constant over time. In other words, if the death risk of patient k
in treatment group is twice that of patient k′ in control group at time t, the death risk of k
at any other time should be twice of k′ as well. This makes the survival curve of different
groups can never cross.

3.4 Bayesian networks

Bayesian network (BN) is a type of probabilistic graphical model (PGM) [17], which combines
principles from probability theory and graph theory. Formally, a BN is defined as a pair
B = (G,P ), with G = (V (G),A(G)) a directed acyclic graph, where V (G) is a set of nodes
corresponding to random variables, and A(G) ⊆ V (G) × V (G) a set of directed edges or
arcs, representing dependence and independence information amongst variables. The network
structure G models the relations among multiple variables, and the relations are quantified by
a joint probability distribution (JPD) P . Though usually used for representing causality, the
BN model is not necessarily causal. Mathematically, the dependency X → Y is equivalent to
Y →X for two random variables X and Y . But the direction of the arrow can not be reversed
in causal inference, which aims to analyze the response of the effect as the cause changed.

3.4.1 Basics of probability theory

The joint probability distribution P follows the basic rules of probability theory, except that
the graph structure G enforces particular independence constraints on P , as discussed below.

• Conditional independence

Let X,Y,Z ⊆ V (G) be a set of variables. X and Y are said to be conditionally indepen-
dent given Z:

X ⊧pY ∣ Z

if and only if
P (X,Y ∣ Z) = P (X ∣ Z)P (Y ∣ Z)

or equivalently,
P (X ∣ Y,Z) = P (X ∣ Z)
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• Chain rule

The conditional probability of X1 given X2,X3, . . . ,Xn is defined as:

P (X1 ∣X2, . . . ,Xn) =
P (X1,X2, . . . ,Xn)

P (X2, . . . ,Xn)
(13)

which can be also written as

P (X1,X2, . . . ,Xn) = P (X1∣X2, . . . ,Xn)P (X2, . . . ,Xn) (14)

This formula (14) can be applied recursively, giving rise to the chain rule:

P (X1,X2, . . . ,Xn) = P (X1 ∣X2, . . . ,Xn)P (X2 ∣X3, . . . ,Xn)⋯P (Xn) (15)

=
n

∏
i=1

P (Xi ∣Xi+1, . . . ,Xn) (16)

In a BN model, The joint probability distribution (JPD) P can be expressed by the chain
rule. When taking into account the conditional independence, each individual variable
Xv ∈ V (G) only needs to be conditioned on its associated parents Xπ(v). So the JPD
can be written as:

P (Xv(G)) = ∏
v∈V (G)

P (Xv ∣Xπ(v))

Specifically, if Xv has no parent, P (Xv ∣Xπ(v)) = P (Xv)

Finally, if all variables Xv are mutually independent, we have that

P (xv ∣Xπ(v)) = P (Xv)

hence the joint probability distribution equals the product of the individual probabilities

P (Xv(G))) = ∏
v∈V (G)

P (Xv)

However, this is a completely uninteresting situation.

Take figure 2 as an simple example of the BN model again. In this model,

V (G) = {Difficulty, Intelligence,Grade,SAT,Letter}

and

E(G) = {Difficulty→ Grade, Intelligence→ Grade, Intelligence→ SAT,Grade→ Letter}

and the joint probability distribution is defined as:

P (Difficulty, Intelligence,Grade,SAT,Letter) =

P (Difficulty)P (Intelligence)P (Grade ∣ Difficulty, Intelligence)

⋅P (SAT ∣ Intelligence)P (Letter ∣ Grade) (17)
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Figure 2: An example Bayesian network. This network is a reproduction of student network
in [44]

3.4.2 Basics of causal diagrams

• D-separation is a criterion to identify conditional independence from a causal graph.
The independence that follows from the graph structure G is written as ⊧G. Given three
nodes A,B and C with associated variables XA,XB and XC , we have that if

A ⊧GB ∣ C

then
XA ⊧pXB ∣XC

But the other way around does not always hold.

In the causal diagram, there are three kind of basic junctions:

(1) mediation: (A→ B → C): In this junction, B is referred to as mediator that transmit
the effect of A to C [58]. When the state of B is known, B blocks A and C, thus
no information could pass from A to C. An example of this junction in figure 2 is
Difficulty → Grade → Letter. The difficulty of a course by itself does not influence
the probability of getting a reference letter, but it does have an effect on the score.
Therefore, if the student’s grade is not known, the difficulty of the course will affect
the probability of getting a reference letter by changing the state of grade. However,
if the grade is known, the probability of obtaining a reference letter will only depend
on the grade rather than course difficulty. Formally, it can be expressed by conditional
dependency: A ⊧GC ∣ B

(2) fork : (A← B → C): In this junction, B, the common cause of A and C is also known as
a confounder. A confounder B can make A and C statistically correlated even if there are
no direct causal relations between them [58]. In figure 2, Grade← Intelligence→ SAT
is a fork. Sometimes, experience tells us that the grade and the SAT score are positively
correlated. But this is not a causal relationship, i.e., a higher grade will not cause a
higher SAT score. Instead, both of the two variables can be explained by intelligence,
the third variables. When the state of intelligence is decided, the spurious correlation
between grade and SAT score will be eliminated. So the conditionally independent
relation here is A ⊧GC ∣ B

(3) Collider : (A→ B ← C): In this junction, B is a common effect of A and B. If A and C
are independent in the beginning, conditioning on B will make them dependent [58]. One
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of the example of this junction in figure 2 is Difficulty → Grade← Intelligence. Both
the course difficulty and the student’s intelligence will have an effect on the student’s
grade. If the grade is not given, the course difficulty and the intelligence of the student
seems to be unrelated. But when the grade of the student is known, the difficulty of the
course and the student’s intelligence will be correlated. i.e., Given two students with
the same grade, the one who took a more difficult course tend to be smarter than the
other one. The conditionally independent relation here is A áG C ∣ B

We can explore causal relations and non-causal relations using a causal diagram. Suppose
we want to investigate the causal relation from Grade to Letter in figure 2. In this case, we
don’t care how difficulty and intelligence are associated with getting a letter. In contrast, these
potential statistically correlations (Difficulty → Grade → Letter, Intelligence → Grade →
Letter) are what we want to get rid of. Therefore, we need to set the evidence grade = g.
After that, edges pointing towards Grade, i.e., Difficulty → Grade, Intelligence → Grade
need to be removed as well.

On the other hand, statistically associations can be allowed if we want to explore non-
causal relations. Thus all we need to do is to set evidence Grade = g, then check how the
changes in Grade will influence the probability of getting a letter.

3.4.3 Structure learning and parameter learning for Bayesian networks

Learning a BN model from a dataset consists of two steps. The first step is called structure
learning, which aims to identify the graph structure of the network. The next step is referred
to as parameter learning. It is to estimate the conditional probability distribution of the nodes
in the BN model. Both of the two steps can be done manually with the domain knowledge of
an expert [53]. If researchers have not done that, some algorithms are available to learn the
structure as well.

3.4.4 Structure learning algorithm

Strategies of structure learning There are two types of methods for structural learning
algorithm: constrained-based methods and score-based methods, where:

• Constrained-based methods focus on identifying DAG structure that can represent
a set of conditional independence in the best way.

• Score-based methods treat structure learning as an optimization problem. Score-
based approaches aim to search and select the best BN that fits or explains the dataset.
The searching step is usually achieved by general heuristic optimization algorithms like
hill climbing or tabu search. The goodness of fit can be reflected with a network score.

Constraint-based approaches may be more efficient when given a large sample size as the
power of identifying conditional independence relationships may be limited by small sample
sizes. Also, constraint-based approaches define the direction of edges by conditional inde-
pendence relations. Some edges may remain undirected in this step [67]. So score-based
approaches are more preferred in general, especially for a small or noisy dataset. For the
reasons discussed above, we chose the score-based approach for structure learning.

Network scores The network score is a criterion used for model selection in score-based
approach. The accuracy of the model can be continuously improved when the model gets closer
to fit the training set. But raising accuracy may also lead to overfitting. It may result in a
much more complex model that is less generalized. Therefore, network scores are introduced to
find a balance between the accuracy and complexity of the model. Many information criteria
have been developed, two of them are commonly used: The Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC). Closely related, both of them work by
introducing a penalty term to balance model’s accuracy and complexity.
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• Akaike Information Criterion (AIC) Developed by Hiruji Akaike [10] is defined as:

AIC = 2k − 2 ln(L) (18)

Where k represents the number of parameters in the model and L represents the maxi-
mum value of the likelihood function. It is based on the concept of information entropy.

• Bayesian Information Guidelines (BIC) was developed by Gideon Schwarz [64].
The formula of BIC is

BIC = k ln(n) − 2 ln(L) (19)

Where L and k are similarly defined as AIC, and n denotes the number of samples in
the dataset. Slightly different from AIC, it takes the sample size into account as well.

Formula 18 and 19 demonstrate that model with lower value of AIC/BIC is preferred.

Tabu search Tabu search algorithm [33] was applied to learn the structure of the network.
It is a variant of hill-climbing algorithm [46]. The tabulist in Tabu search algorithm stores the
shortly visited solutions, which are forbidden to access in a short time. But as the iteration
goes on, solutions in a tabulist can be popped up and accessed again. This algorithm can
prevent repeated search around the local optimum and perform more extensive exploration
[18]. Pseudocode of Tabu search is shown in algorithm 1.

Algorithm 1 Tabu search algorithm

1: Generate an initial network structure G randomly
2: Gbest ← G
3: Calculate scoreG
4: i = 0
5: Tabulist ← φ
6: while ScoreG decreasing do
7: Generate a modified network G∗
8: Calculate scoreG∗
9: if G∗ ∉ Tabulist then

10: if scoreG∗ <scoreG then
11: Gbest ← G∗
12: end if
13: end if
14: i = i + 1
15: Update Tabulist
16: end while
17: return Gbest

Model averaging Model averaging is an approach to avoid a local optimum. To start with,
Tabu search algorithm will be repeated n times to build n (globally suboptimal) networks [53],
among which the frequency of each edge is regarded as the strength of the edge. The averaged
network, which is believed to be more robust, contains only the edges that have a higher
strength than a threshold t.

3.4.5 Parameter learning algorithm

After learning the structure of BN from the data, parameter learning will be applied to
estimate and update the conditional probability distributions of each node. Expectation-
maximization (EM) algorithm is the most commonly used algorithm for parameter learning
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when the data is incomplete. This algorithm aims at computing maximum-likelihood of
parameters by iteration. It alternates between E-step: guess a probability distribution given
the current model [27] and calculate the expectation of the log-likelihood and M-step: update
the model parameter that can increase the expected log-likelihood until parameter converge
[6]. Specifically, it can deal with incomplete data or latent variables [26]. The missing value
in the dataset will be filled with possible values when the EM algorithm is running.

3.5 BN model validation

3.5.1 Sensitivity analysis

The sensitivity analysis is performed using Receiver Operating Characteristics (ROC) and
Area-under-the-curve (AUC). In a binary classification model, the 2 × 2 confusion matrix
consists of true positives (TP), false positives (FP), false negatives (FN) and true negatives
(TN), as shown in figure 3.

Actual class
Positive Negative

Predicted class
Positive TP FP
Negative FN TN

Figure 3: Example of a confusion matrix

The true positive rate (TPR) is defined as

TPR =
TP

TP + FN

which is also referred to as sensitivity and the false positive rate (FPR) is defined as

FPR =
FP

FP + TN

Both TPR and FPR have a value between 0 and 1. But they will change when varying the
classifier threshold. The ROC curve is used to show TPR and FPR at different classifier
thresholds. It is summarized by AUC, which is a value from 0 to 1. AUC indicates how well
the measure of separability a classifier has.

Shown in figure 4(a) [55] is an example of the ROC curve. The x-axis is FPR and the
y-axis is the TPR. ROC is the green curve and AUC is the grey area under ROC. In a perfect
classifier, TPR = 1, FPR = 0 and AUC = 1, as shown in figure 4(b). A random guess will
lead to a point along the dotted line with slope 1 (also AUC = 0.5). Therefore, a curve close
to the dotted line indicates the classifier fails to separate the two classes. Generally speaking,
points above the dotted line represent good classification results as they are better than a
random guess. In contrast, points that below the dotted line are bad classification. For most
cases, a higher AUC indicates a better predictor, but this is not always true. If most of the
points are below the line and the value of AUC is quite low, it is a good classifier to some
extent because we can reverse the predicted results to obtain a good prediction as well, as
shown in figure 4(c).

3.5.2 Calibration plot

In a calibration plot, the x-axis represents the predicted probability and the y-axis represents
the observed conditional probability.

Let C = i be the i-th state of class variable C and x are the patient’s characteristics that
have been observed, the observed conditional probability of C = i can be written as

Pobs(C = i ∣ x) =
P (C = i, x)

P (x)
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(a) (b) (c)

Figure 4: left: an example of ROC curve; middle: a perfect classifier (AUC = 1); right: AUC
= 0 but it is still a good predictor as we can reverse the predicted value [55]

Each dot (Ppred, Pobs) in this plot represents the predicted and observed probabilities that
a subpopulation with certain characteristics x classified into i−th state of class variable C.
A line with a slope of 1 will denote a perfect prediction (predicted probability = observed
probability). Therefore, dots closer to the line are preferred.
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4 Experiments

4.1 Data

Prostate cancer data were obtained from the Netherlands Cancer Registry (NCR), which
covers the information of more than 95% of Dutch cancer patients [7]. In the dataset, patients
diagnosed with prostate cancer between 2005 and 2014 were included. It consists of 104,324
cases. After removing the cases with missing values, the number of cases were 101,467. To
reproduce Giordano’s second experiment, which was a reproduction of Wong’s paper [69], we
also read Wong’s paper [69] for more detail. Wong et al. investigated the association between
active treatment and survival for localized prostate cancer patients [69].

The survival rate of the general male population for men aged 65-80 from 2005 to 2014
in the Netherlands was found on the website of Statistics Netherlands (CBS) [1], which is
an independent government-funded organization established in 1899 responsible for collecting
and maintaining population statistics of the Netherlands. People can acquire the data for free
by viewing the CBS website and clicking on the filter button. The explanation of the data is
also available on this website.

4.2 Preprocessing

The population being studied included men aged between 65 and 80 years and diagnosed with
localized prostate cancer between 2005 and 2014. They received either active treatment or
observation (non-active treatment).

Active treatment was defined as being either radical prostatectomy, radiation implants, or
external-beam radiation therapy. Non-active treatment was defined as consisting of only ob-
serving a patient, i.e., no treatment. Although one of the therapies defined as active treatment
was surgery (radical prostatectomy), we still chose to use clinical staging (cT, cN and cM)
in our research rather than pathological staging (pT, pN and pM), since pathological staging
was usually not available if a patient was only observed, although pathological staging when
it is done offers usually more reliable information. The definition of localized prostate cancer
was: tumor stage cT = cT1 or cT2, well to moderately differentiated (Gleason score of 2-7),
cN = cN0 (no lymph nodes affected) and cM = cM0 (no metastasis).

In the paper of Wong [69], patients that died within one year of diagnosis were excluded.
This was to remove patients died of other causes considering the low mortality rate of localized
prostate cancer (the 5-year mortality rate of localized prostate cancer is 10% [11]).

Table 1 shows detailed information about the exclusion criteria and the number of samples
left after each step. In the end, The dataset contained 8 features and 8480 cases, among which
6197 patients received active treatment and 2283 patients were observed only.

Next, we mapped some of the variables as mentioned in Wong’s paper [69], Firstly, they
used the differentiation grade provided by The Surveillance, Epidemiology, and End Results
(SEER) Program, which is an authoritative source for cancer statistics run by the United
States [8]. This differentiation grade mapping system is different from what normally used
in the Netherlands: it is decided from the Gleason score. Gleason score of 2-4, 5-7, 8-10
were classified as well-differentiated, moderately differentiated and poorly differentiated, re-
spectively. We did the same mapping to our dataset. The mapped value was recorded in a
new column tumor grade, where “0” denoted well-differentiated and “1” denoted moderately-
differentiated. Poorly-differentiated cases were not included since we excluded cases with a
score of 8-10 previously. In Wong’s paper [69], they also reclassified the cT into two categories:
tumors that classified as T2a or lower were one category. Tumors that are classified as T2b
and T2c were classified as another category. We followed their description and created a new
column tumor stage, in which “0” denoted cT ≤ cT2a. “1” denoted cT ∈ {cT2b, cT2c}. Fur-
thermore, they discretized the age at diagnosis into five bins: [65,67], [68,70],[71,73],[74,77]
and [78,80]. Finally, the discretization was applied to feature PSA, which resulted in four
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Table 1: Selection criteria for localized prostate cancer
Criteria Number of Cases Left

age: 65 - 80 61539
Gleason score : 2 - 7 44414

tumor stage cT are classified as cT1 or cT2 36341
nonmetastatic (cM = cM0) 28050

not a lymph node-positive tumor (cN = cN0) 12077
Died after one year of diagnosis 11833

treatment that fit in criteria (active treatment and observation) 8480

Table 2: The variables in the dataset after preprocessing
Variable Values Descriptions

tumor stage
≤ T2a

size and extension of tumor
T2b and T2c

tumor grade
(differentiation)

well-differentiated (Gleason score of 2-4)
differentiation grade of tumor

moderately-differentiated (Gleason score of 5-7)

incjr(incidence year) integer year of diagnosis

age

65-67

age at diagnosis
68-70
71-73
74-77
78-80

PSA value

[0,4)

PSA value when diagnosis
[4,10)
[10,20)
[20,)

treatment
active treatment

indicating if active treatment was applied
observation (non-active treatment)

vitstat
0 indicating whether patient were

dead at the end of the follow-up1

vitfup integer time of following up

bins: [0,4), [4,10), [10,20) and [20, +∞). The cut-off points were decided according to the 7th
edition of AJCC manual [29], which has been mentioned in the introduction section.

After the selection process, the features were discretized. The features left are listed in
table 2, together with short descriptions and their variable’s domains. The distribution of the
variables in the active treatment group and non-active treatment group are visualized in figure
5.

4.3 Propensity score adjustment

After preprocessing, we applied Pearson’s chi-square test for statistical independence between
treatment allocation and the other covariates. Next, propensity scores were calculated using
logistic regression. We followed the suggestion of Jill et al. [9] to include all the variables
that related to the outcome even though they were unrelated to the exposure (treatment).
Therefore, incidence year, age, tumor stage, tumor grade and PSA were all included to com-
pute the propensity score. Finally, the dataset was subdivided into five strata according to
the quintiles of the computed propensity score. The stratum that each case belonged to was
stored in a new column quintiles. The CMH test was applied to check whether the baseline
characteristics were similar within the strata.

4.4 Cox model

The last step of reproducing Giordano’s experiment was the Cox model. This was done using
the Python package lifelines [25]. Two Cox model were constructed to make a comparison
before and after the adjustment of propensity score. (With or without the column quintiles
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(a)

(b)

(c) (d)

(e)

Figure 5: Baseline characteristics of patients: age, tumor grade, tumor stage, incidence year
and PSA. For all the variables, distinct difference can be found between active treatment
group and non-active treatment group (P <0.05) according to the Pearson’s chi-square test of
statistically independence between treatment allocation and the variables as shown in table 4
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as one of the input variables). Additionally, reproducing the result of Wong’s paper [69], we
constructed another five Cox models, one for each age group.

4.5 Bayesian network

The BN model were produced using the bnlearn R package [65]. All the variables have
been discretized except for survival time in preprocessing. As the discrete network has
better interpretability, We then mapped the survival time into three new features: sur-
vival less than 2 years, survive GE 2 years (survival greater than 2 years or 2-year survival)
and survive GE 5 years (survival greater than 5 years or 5-year survival) before applying
structure learning to construct a discrete BN model. These features would be the nodes indi-
cating survival in the BN model. Values of them were binary, where ”0” means ”no” and ”1”
means ”yes”. Noted that for censored data, missing values, i.e., NA would be introduced in
the mapping step. For instance, if a patient was last observed to be alive after four years of di-
agnosis, value of the feature survive GE 2 years would be ”1” and value of survive GE 5 years
would be missing. The same issue would not happen for non-censored data, since the survival
time was known.

In the BN model, there was no node survive GE 10years as no enough data were available.
If this node had been added to the network, it would introduce too many missing values: for
all the patients who did not die at the end of follow-up and whose time of following up was
less than 10 years, the value of the node would be missing. Nearly three-quarters of the cases
were as this type.

The structure of the BN model was identified by the hybrid approach, i.e., a combination
of structure learning and prior knowledge. First, our knowledge and our understanding of
this experiment helped to define a blacklist. Edges in the blacklist could never be included
in the model. They were: (1). Edges started from the nodes that indicating survival to the
rest of the nodes and (2). edges from a longer survival to a shorter one. For example, edge
survive GE 5 years → survive GE 2 years was forbidden, but the reversed one was not. For
(1), the nodes indicating survival were the outcome of the model. We would like to investigate
the causality from other variables to survival, but not the other way around.

Second, model averaging with Tabu search algorithm was applied to learn the structure
of the network from the data. The number of candidate networks was set to 2000 to use the
methods of model averaging. The network score we used in Tabu search was BIC.

After the structure of the BN model have been identified by model averaging, some edges
were added manually. This was the second application of prior knowledge. We have tried
to add the same edges before structure learning, but it led to a worse AUC value when we
evaluate the BN model. Therefore edges were added after structure learning. By adding an
edge A→ B, we assume there was a causal relation from A to B based on our understanding
for prostate cancer. Edges that we added were listed in table 3.

Once the structure of the network has been decided, the EM algorithm was used for
parameter learning, which resulted in a set of conditional probability distribution tables, one
for each node. Five-fold cross-validation and calibration were then applied to evaluate the
performance of the network. To do the calibration, 80% of the cases were selected randomly
as the training set, and the rest of 20% cases were the test set. In the training set, missing
values were allowed as they would be filled by EM algorithm. But missing values were not
allowed in the test set. So the cases with missing values were removed from the test set.

Finally, to do the causal and non-causal reasoning, our BN model was imported into
SamIam [24], which provides a graphical user interface (GUI) for uses to visualize, edit and
analyse the BN model. In causal reasoning, edges pointed toward to treatment were removed
and the evidence of treatment = i (i ∈ {0,1}) was set to investigate the causal relations
between treatment and survival. In non-causal reasoning, no edges would be removed, only
the evidence treatment = i (i ∈ {0,1}) was set.

27



Table 3: Edges added to the BN model that obtained by model averaging
From To

tumor stage survive GE 2 years
tumor stage survive GE 5 years
tumor stage survival less than 2 years

PSA survive GE 2 years
PSA survive GE 5 years
PSA survival less than 2 years
PSA treatment group

treatment survive GE 2 years
PSA tumor stage

4.6 Visualization and comparison between survival rates of general male
population, active treatment group and non-active treatment group

In the visualization step, to make it comparable, the weighted survival rates of general male
residents adjusted for age and year were used. As the patients who died within the first year
of diagnosis were excluded in preprocessing, we also computed the one to n year survival rate
of general male population in the Netherlands P (1 to n year survival) as

P (1 to n year survival) = P (0 to n year survival ∣ 1 year survival)

=
P (0 to n years survival)

P (1 year survival)

(20)

Then the one to n year survival rate of male resident in the Netherlands was visualized,
together with the Kaplan-Meier curve of active treatment group and non-active treatment
group.
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Table 4: Tests for independence between treatment allocation and other variables

Name of Variate
p-value

before adjustment *

p-value

after adjustment **

year of diagnosis <0.005 0.99
tumor stage <0.005 0.28

age <0.005 <0.05
tumor grade <0.005 0.30

PSA <0.005 0.66
* Pearson’s chi-square test
** Cochran Mantel-Haenszel Chi-square test

5 Results

5.1 Description of patient’s baseline characteristics

Figure 5 shows the baseline characteristics of patient after preprocessing. For all the variables
(age, tumor stage,tumor grade, incidence year and PSA value), distinct difference can be
found between active treatment and observation group (p-value <0.05 as shown in table 4).
Generally speaking, patients in treatment group were younger, had a worse tumor stage or a
higher PSA value compared with patients in non-active treatment group.

5.2 Propensity score adjustment

Table 5 shows the quintiles of propensity score and the distribution of every variable. It
indicates that patients who were younger, had a higher PSA value or worse tumor stage were
more likely to receive active treatment as they are in higher propensity score quintile compared
with patients who were older, had a lower PSA value or better tumor stage.

Table 4 shows results of CMH tests between treatment allocation and other covariates.
When stratified by quintile of propensity score, the p-value for covariates incidence year,
tumor stage, tumor grade and PSA were 0.99, 0.28, 0.30 and 0.66, respectively. Therefore,
these four covariates were balanced within strata after propensity score adjustment. However,
the covariate age could not be balanced even after the adjustment (p-values <0.05).

5.3 Cox model

The association between variables in the dataset and survival is shown in table 6 and 7,
respectively. Both of the Cox models were statistically significant (p-value <0.05) and they
were similar: the variables in the two models shared similar parameters. The two models only
differed in whether or not the covariate age met the proportional hazard assumption, i.e., if
the HR for age stayed constant over time. Before the adjustment, HR of all the covariates
stayed constant except for age, and the adjustment made the HR for age stayed constant.

Considering the two Cox models are too similar, the Cox model we are referring to in
further interpretation and discussion is the Cox model after the propensity score adjustment
if not specifically mentioned.

Shown in figure 6(a) and 6(b) are the survival curves for the Cox models before and after
the propensity score adjustment, respectively. The red and blue curve represent survival rates
of active treatment group and non-active treatment group, respectively.

In figure 6(b), the red curve is above the blue curve, indicating that active treatment
decreases the risk of death. The gap between the two survival rates becomes larger over
time. In the first three years (1095 days), the active and non-active treated groups share
high survival rate of about 95%. In the 10-th year (3650 days), the survival rates of active
and non-active treated groups are about 80% and 75%, respectively. At the end of the x-axis
(5000 days), the survival rate of the two groups are about 58% and 45%.
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Table 5: Distribution of covariates stratified by propensity score quintiles. All data in the
table are percentages.
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(a) (b)

Figure 6: Survival curves obtained by Cox models left: before the adjustment of propensity
score and right: after the adjustment of propensity score Blue curve (treatment = 0) denotes
non-active treatment group and red curve (treatment = 1) denotes active treatment group

As shown in table 7, active treatment decreased 21% risk of death (HR = 0.79, 95% CI =
[0.73,0.85], p <0.005) compared with observation. Furthermore, age, PSA and tumor stage
were also statistically associated to survival (p-value <0.05). Patients who were older or had
a worse tumor stage would have a higher risk of death (HR > 1). Risk of death was not
associated with the incidence year, except for the year of 2006 and 2013 (p-value <0.05).

Figure 7 shows the survival curves stratified by treatment for each of the age groups
([65,67], [68,70], [71,73], [74,77], [78,80]). Overall speaking, figure 7 indicates a decreasing
trend of survival rate with increasing age both for active treatment group and non-active
treatment group. Take the active treatment group (red curve) as an example. Compare
the five red curves, at any time t, the survival rate of younger patients were higher than
older patients. This was the same when comparing the five blue curves (observation). When
focusing on the differences in survival rates between the treatment and the observation within
each age group, the HR of treatment for the five age groups were 0.91, 0.93, 0.82, 0.72 and
0.84, respectively, as shown in table 8. Therefore, active treatment decreased the mortality
among all age groups. But the effect of treatment was only statistically significant in the age
group of 71-73 and 74-77 years (with p-value <0.05).

5.4 Bayesian network

The network obtained by model averaging is shown in figure 8(a). It consists of 9 nodes and
10 edges. All of the edges presented at least 80% among the 2000 candidate networks. The
frequencies of edges among the candidate networks were also known as strength. The width
of the edges represents the strength of the relations: the edge becomes thicker if it occurs in
more of the models generated from the data obtained from sampling with replacement from
the original dataset. There are two undirected edges in figure 8(a): incjr – PSA and age –
PSA. This was because the frequencies of the forward and reverse edges were about the same.
We defined the direction of the two undirected edges as incidence year → PSA and age →
PSA. It was odd to set an edge PSA → incjr, so the direction of the first undirected edge was
set to incjr → PSA. For the second undirected edge, age → PSA was set as it was more likely
to indicate a meaningful causal relation compared with the reversed direction.

The loglikelihood of the network obtained by model averaging was -54008.5. The average
AUC were 0.59, 0.62 and 0.66 for survive GE 2 years, survive GE 5 years and treatment,
respectively. The parents of treatment were age and tumor stage. The parents of survival
were age, tumor stage and group.

The structure of the final network, which has 19 edges, is shown in figure 9. The edges
that we added were mentioned in the previous section and listed in table 3. The parents of
node treatment were PSA, age and tumor stage, the parents of survival were treatment,tumor
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(a) 65-67 years old (b) 68-70 years old

(c) 71-73 years old (d) 74-77 years old

(e) 78-80 years old

Figure 7: Survival curves (obtained by Cox model) stratified by different therapies across five
age groups, where blue curve (treatment = 0) denotes non-active treatment group and red
curve (treatment = 1) denotes active treatment group
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Table 6: Association between variates in the dataset and mortality obtained by Cox regres-
sion before propensity score adjustment. All the covariates met the proportional hazards
assumption except for age.

Coef HR for Death 95% CI lower bound 95% CI upper bound z p

treatment -0.25 0.77 0.72 0.84 -6.22 <0.005

diffgr map 0.07 1.07 0.84 1.37 0.58 0.56

tumor stage 0.08 1.08 0.99 1.17 1.82 0.07

incjr 2005 - 1(Ref) - - - -
incjr 2006 0.11 1.12 1 1.26 1.93 0.05
incjr 2007 0.08 1.09 0.96 1.23 1.34 0.18
incjr 2008 0.05 1.05 0.92 1.2 0.7 0.49
incjr 2009 0.06 1.06 0.92 1.21 0.82 0.41
incjr 2010 -0.04 0.96 0.85 1.09 -0.62 0.53
incjr 2011 -0.05 0.95 0.84 1.07 -0.84 0.4
incjr 2012 -0.11 0.9 0.79 1.02 -1.66 0.1
incjr 2013 -0.14 0.87 0.77 0.99 -2.12 0.03
incjr 2014 -0.09 0.92 0.8 1.05 -1.25 0.21

age 65-67 - 1(Ref) - - - -
age 68-70 0.06 1.06 0.97 1.16 1.29 0.2
age 71-73 0.21 1.23 1.12 1.35 4.23 <0.005
age 74-77 0.55 1.74 1.59 1.91 11.7 <0.005
age 78-80 0.8 2.23 1.96 2.55 11.91 <0.005

PSA 0-4 - 1(Ref) - - - -
PSA 4-10 -0.14 0.87 0.79 0.96 -2.85 <0.005
PSA 10-20 0 1 0.91 1.1 0 1
PSA >20 0.22 1.25 1.12 1.39 4.12 <0.005

Abbreviations: HR = hazard ratio; CI = confidence interval, Ref = reference level

stage, age and PSA. Loglikelihood of this network was -53787.8, a little higher than the
previous one obtained by model averaging. The average AUC was 0.63, 0.62 and 0.70 for
survive GE 2 years, survive GE 5 years and treatment. The average AUC increased slightly
after adding the edges.

Figure 10 shows the ROC curve of five-fold cross-validation of the final network. The blue,
red and green curve represent the ROC curve of survive GE 2 years, survive GE 5 years and
treatment, respectively. To make a better comparison, table 9 shows the characteristics of the
two networks (network obtained by model averaging and the final network) such as average
AUC, the number of edges and the loglikelihood.

Calibration of the final network for survive GE 2 years, survive GE 5 years and treatment
were visualized in figure 11(a), figure 11(b) and 11(c), respectively. The x-axis denotes the
predicted probability and y-axis denotes the observed probability. The line with slope 1
indicates a perfect calibration (predicted = observed). In figure 11(c), each dot defines a
unique combination of the parents of treatment (i.e., age, PSA and tumor stage). Similarly,
in figure 11(a) and figure 11(b), each dot defines a unique combination of the parents of dots
that indicate survival. The size of the dot denotes the size of the subpopulation. Although
some of the small dots were far from the line, most of the dots were close to it. The calibration
plot indicates the estimated probabilities are close to the observed frequencies. The BN model
fit the dataset well.

The calibration plot of treatment (figure 11(c)) shows that patients between ages 78 and 80
were least likely to receive active treatment compared with younger patients: less than half of
them received active treatment. Patients between 74 and 77 years were the second least likely
group to receive active treatment. However, the effect of age one treatment allocation was
weaker in younger groups, in which tumor stage seemed to be a stronger factor instead. Dots
that represent age group of 65-67 (red), 68-70 (brown-green) and 71-73 (green) are mixed at
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Table 7: Association between variates in the dataset and mortality obtained by Cox regression
after propensity score adjustment. All the covariates met the proportional hazards assump-
tion.

Coef HR for Death 95% CI lower bound 95% CI upper bound z p

treatment -0.24 0.79 0.73 0.85 -5.83 <0.005

diffgr map 0.14 1.16 0.9 1.48 1.15 0.25

tumor stage 0.12 1.13 1.04 1.24 2.76 0.01

incjr 2005 - 1(Ref) - - - -
incjr 2006 0.12 1.13 1 1.26 2 0.05
incjr 2007 0.08 1.08 0.96 1.22 1.25 0.21
incjr 2008 0.06 1.06 0.92 1.21 0.8 0.42
incjr 2009 0.05 1.06 0.92 1.21 0.78 0.44
incjr 2010 -0.05 0.95 0.84 1.08 -0.77 0.44
incjr 2011 -0.07 0.94 0.83 1.06 -1.02 0.31
incjr 2012 -0.12 0.89 0.78 1.01 -1.79 0.07
incjr 2013 -0.15 0.86 0.75 0.97 -2.38 0.02
incjr 2014 -0.11 0.9 0.78 1.03 -1.54 0.12

quintiles lv 1 0.2 1.22 1.09 1.37 3.45 <0.005
quintiles lv 2 0.07 1.07 0.97 1.19 1.35 0.18
quintiles lv 3 0.02 1.02 0.93 1.13 0.44 0.66
quintiles lv 4 0 1 0.91 1.1 -0.01 0.99
quintiles lv 5 - 1(Ref) - - - -

age 65-67 - 1(Ref) - - - -
age 68-70 0.07 1.07 0.98 1.17 1.44 0.15
age 71-73 0.19 1.21 1.09 1.33 3.79 <0.005
age 74-77 0.5 1.64 1.49 1.81 9.85 <0.005
age 78-80 0.71 2.04 1.77 2.35 9.88 <0.005

PSA 0-4 - 1(Ref) - - - -
PSA 4-10 -0.15 0.86 0.78 0.94 -3.12 <0.005
PSA 10-20 0.01 1.01 0.92 1.11 0.26 0.8
PSA >20 0.24 1.27 1.15 1.42 4.48 <0.005

Abbreviations: HR = hazard ratio; CI = confidence interval, Ref = reference level

Table 8: HR estimates of the association between treatment and survival in different age
groups

Table 9: Characteristics of the BN model obtained by model averaging and the final BN
model

Model
AUC for 2-year

survival rate
AUC for 5-year

survival rate
AUC for treatment Edges Loglikelihood

BN model obtained by model averaging 0.59 0.62 0.66 10 -54008.5

Final network 0.62 0.62 0.7 19 -53787.8
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(a) (b)

Figure 8: left: Network generated by the methods of model averaging, in which the candidate
networks were generated by Tabu search. Note that there are two undirected edges and right:
After define the directions of the undirected edges manually.

Figure 9: The structure of the final BN model
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Figure 10: Average ROC curve for treatment allocation, 2-year survival rate and 5-year
survival rate of the final network after 5-fold cross validation. The red, blue and green curve
represent ROC curve for 2-year survival rate, 5-year survival rate and treatment, respectively.

the top and the middle of the line. But subpopulations represented by triangular dots (worse
tumor stage) are concentrated at the top of the line, which means they have a higher observed
probability of getting active treatment compared with circular dots (better tumor stage) in
the middle of the diagonal.

In figure 11(a), most of the dots are on the top-right. It indicates that most of the patients
were alive after two years regardless of their characteristics. Even the elderly (age group of
78-80) had an observed 2-year survival rate larger than 80%.

But things are slightly different when it comes to the 5-year survival rate (figure 11(b)). In
this figure, active treatment groups (triangular dots) and younger groups (65-67 that presented
in red, 68-70 that presented in brown-green) have a better 5-year survival rate (≥ 85%) at
the very top of the line. Furthermore, the survival rate of younger age groups were better
predicted. Most dots that less close to the line were purple or blue.

The changes of survival rate when setting difference treatment are listed in table 10. Doing
non-causal reasoning using the final network by setting the evidence treatment = 1, the 2-
year and 5-year survival rate was 98.7% and 91.3%, respectively. Changing the evidence to
treatment = 0, the 2-year and 5-year survival rate would be 97.0% and 87.7%. Doing causal
reasoning by removing all the edges that pointed towards treatment (tumor stage→ treatment,
age → treatment and PSA → treatment) and setting an evidence treatment = 1, the predicted
2-year and 5-year survival rate would be 98.8% and 91.5%, respectively. Alternatively, setting
the evidence treatment = 0, the 2-year and 5-year survival rate would change to 97.2% and
87.6%. Doing causal and non-causal reasoning, the effect of treatment on survival presented
by the BN model was quite similar, and the effect was much weaker than presented in Cox
model (HR = 0.79).
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(a) Calibration plot for 2-year survival rate

(b) Calibration plot for 5-year survival rate

(c) Calibration plot of treatment

Figure 11: Calibration plot of survival and treatment of the final BN model (figure 9). To
better investigate the relations between predicted and observed probabilities in detail, the
axis of figure (a) starts from 0.7 rather than 0, which is different from figure (b) and (c)

Table 10: Results of causal and non-causal reasoning when setting difference evidence of
treatment in the final BN model

Survival time
non-causal reasoning causal-reasoning

treatment = 1 treatment = 0 treatment = 1 treatment = 0

survive GE 2 years 98.7 97 98.8 97.2

survive GE 5 years 91.3 87.7 91.5 87.6
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Figure 12: Survival curves for man with localized prostate cancer and for the general male
population in the Netherlands. The survival rates of active and non-active treatment group
are visualized by Kaplan–Meier estimator.

5.5 Visualizing the survival rate general male population in the Nether-
lands and the survival rate of active and non-active treatment group

The survival curves of active treatment group and non-active treatment groups were visual-
ized by Kaplan–Meier estimator in figure 12. Figure 12 also includes the survival rates of
the general male population that was treatment-corrected for age and year of diagnosis. The
correction results in two dotted curves in figure 12: the magenta curve that represents the
survival rate of general male population adjusted for age and year of diagnosis for active treat-
ment group and the black curve that represents the survival rate of general male population
adjusted for age and year of diagnosis for non-active treatment group. Note that all curves in
the figure are kept constant in the first 365 days, during which the survival rates were 1. For
the cancer-specific survival rate, this was due to the exclusion of patients that died within the
first year of diagnosis. For survival rate of general male population, this was because we were
using P (1 to n year survival).

At any time t, patients in active treatment group had a lower risk of death compared with
patients in non-active treatment group and the general male population adjusted for age and
year of diagnosis for active treatment group. Before 4000 days (about 11 years), the survival
rate of general male population adjusted for non-active treatment group is slightly lower than
survival rate of non-active treatment group. But the latter decline sharply and is lower than
the former after 4000 days.

Adjusting the survival rate of general male population for age and year of diagnosis for
active treatment or non-active treatment group would not cause a big difference as the magenta
and black curves are close to each other.

To make it more detailed, table 11 shows the 2-year (730 days), 5-year (1825 days) and 10-
year (3650 days) survival rates of (1.)general male population that was treatment-corrected
by age and year of diagnosis, (2.) active and non-active treatment group visualized by
Kaplan–Meier estimator and (3.) active and non-active treatment group estimated by Cox
model and the BN model. Please note that the BN model didn’t predict the 10-year survival
rate as there were no enough cases.
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Table 11: The 2-year, 5-year and 10-year survival rates obtained by different approaches.
Numbers in the table are percentages. Please note that the BN model didn’t predict the
10-year survival rate as there were no enough cases to make a prediction

Treatment Model 2-year survival rate 5-year survival rate 10-year survival rate

Active treatment group

data from CBS (adjusted weight based on
age and years distribution of active treatment group)

97.5 88.8 70

Kaplan-Meier 98.7 91.4 72.6
Cox model 98.5 92 74

BN model(causal reasoning) 98.8 91.5 -
BN model(non-causal reasoning) 98.7 91.3 -

Non-active treatment group

Data from CBS (adjusted weight based on
age and years distribution of non-active treatment group)

96.9 86.3 64.6

Kaplan-Meier 97.0 87.7 62.4
Cox model 97.5 88.0 65.0

BN model(causal reasoning) 97.2 87.6 -
BN model(non-causal reasoning) 97.0 87.7 -

6 Discussion and conclusion

6.1 Summary

During the experiment, we reanalysed an NCR dataset: active treatment versus observation
for men who were diagnosed with localized prostate cancer. We suspected that the outcome
of patients would be influenced by treatment selection bias. A longer survive time may
be explained by active treatment and better baseline health condition. In our dataset, the
only variable that could partly indicate baseline health was age. So do not rule out other
unmeasured confounders like self-rated health or measure physical function, though they were
not provided in the dataset we had.

Our analysis showed that active treatment (radical prostatectomy, radiation implants or
external-beam radiation therapy) decreased the risk of death for localized prostate cancer
patients. In the Cox model after propensity score adjustment, active treatment decreased
20% risk of death compared with observation (HR = 0.79, 95% CI = [0.73, 0.85], p <0.05)
for patients with localized prostate cancer. This conclusion, which was similar to the results
obtained by Wong [69] and Giordano [32], was also comparable to the only published random-
ized trial investigating the outcome of radical prostatectomy versus observation for localized
prostate cancer (relative risk: 0.74, 95% CI = [0.56, 0.99]) [19]. Furthermore, a series of Cox
models for different age groups proofed the benefit of active treatment in all the age groups
(table 8). This treatment survival advantage was more pronounced in age groups of 71-73
and 74-77 years (p <0.05). In the final BN model shown in figure 9, although both causal and
non-causal inference indicate a survival benefit for active treatment as shown in table 10, this
positive association was much weaker than the results of Cox model (HR = 0.79). Finally, the
calibration plot for 5-year survival rate (figure 11(b)) also indicates actively treated patients
had a higher probability of being alive 5 years after diagnosis.

Our study also found age was a factor that could partly explained the difference in outcome
between active treatment group and non-active treatment group. In the Cox model, older
patients, especially patients in the two oldest age groups, had a higher risk of death compared
with the youngest age group (p <0.005, HR = 1.64 for ages 74-77 years, HR = 2.04 for ages
78-80 years as shown in table 7). In the BN model, the calibration plot of 2-year survival
rate (figure 11(a)) shows that except for patients ages 78-80 years, all other patients had a
2-year survival rate larger than 90%. The calibration plot of 5-year survival rate (figure 11(b))
also indicates that younger patients had a better 5-year survival rate. The two youngest age
groups (65-67 years, 68-70 years) had a similar 5-year survival rate (≤ 85%). Patients in the
oldest age group had the worst 5-year survival rate. Though age in itself is not a risk factor,
older age may be linked to a higher risk of other chronic diseases like hypertension, asthma
and congestive heart failure [30], thus poorer health and a worse prognosis. In the paper of
Seth et al., they found that the age at diagnosis would have a stronger influence on treatment
compared with cancer risk for prostate cancer. If the clinical characteristics of the patient
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have been carefully selected to be similar, the life expectancy of the older man who received
active treatment will increase to a level that is comparable with younger patients [15].

In figure 12, the survival rate of the general male population in the Netherlands was
treatment-corrected for age and year of diagnosis. We compared (1.)the survival rate of
active treatment group visualized by Kaplan–Meier estimator and the survival rate of general
male population corrected for active treatment group for age and year of diagnosis and (2.)
the survival rate of non-active treatment group visualized by Kaplan–Meier estimator and the
survival rate of general male population corrected for non-active treatment group for age and
year of diagnosis. Both of the two cases produced incredible results: general male population
in the Netherlands had a lower survival rate than localized prostate cancer patients even after
the treatment-correlation for age and year of diagnosis. An explanation is that unmeasured
confounders are responsible for this effect that we observed. The survival rate of general male
population corrected for non-active treatment for age and year of diagnosis (black curve) was
lower than the survival rate of non-active treatment group (orange curve) before 4000 days.
But after 4000 days, the latter decreased rapidly and became lower than the former. However,
the survival rate of general male population corrected for active treatment group for age and
year of diagnosis (magenta curve) was always lower than survival rate of active treatment
group (blue curve). They never crossed. Therefore some unmeasured confounders that would
affect the 10-year survival were likely to persist in the dataset.

In Cox model, other important factors related to mortality were tumor stage (HR = 1.13,
95% CI = [0.9,1.48]). Men who had a better tumor stage had a lower mortality. In the BN
model, we believed there were causal relations from variables like tumor stage, PSA value
towards survival rate and treatment allocation. Therefore, we added some edges manually
to the BN model which was obtained by model averaging (shown in figure 8(b)) and came
up with the final BN model (shown in figure 9). After adding the edges, the increasing of
loglikelihood indicated the final network fit the dataset better. The sensitivity analysis using
AUC-ROC curve indicated our final BN model performed poor in predicting the survival with
an average AUC of 0.62. It was better in predicting treatment with an average AUC of 0.7,
but still not competitive for classification. However, this model was not simply used as a
classifier. The calibration plot shown in figure 11 indicates that the most of the probabilities
predicted by the final model are close to observed frequencies. So our BN model is meaningful
in practical application for predicting and decision making when investigating the association
between survival and a series of covariates.

In conclusion, all the three models (Kaplan-Meier estimator, Cox model and BN model)
indicated that active treatment had a positive impact on survival. They also indicated that age
could be a factor that partly explained the difference in outcome between active treatment
group and non-active treatment group. Younger age was linked to a lower risk of death.
Finally, the comparison between the weighted survival rate of general male population and
the survival rate of cancer patients (active treatment group and non-active treatment group)
implied the presence of unmeasured confounders which may affect the outcome of patients. If
researchers simply attribute the differences to treatment when accessing the effectiveness of
therapies using observational data, it will lead to misguided or even wrong conclusion. Our
experiment was not the only one to report this issue [32] [15] [35]. Therefore when assessing the
effectiveness of different therapies using observational data, researchers need to be cautious,
and the results should be viewed critically.

6.2 Limitations and future work

Limits of propensity score adjustment In our experiment, the propensity score ad-
justment did not substantially modify the findings of Cox model. Although the adjustment
removed the imbalance in all the variables except for age, it had little effect on the HRs. the
Cox model before and after the adjustment were almost the same.

40



The reason could be that in a strongly ignorable assumption

Y ⊧pT ∣X

X should be a set of measured covariates [57]. However, when we made a comparison between
the survival rate of active and non-active treatment group obtained by Kaplan–Meier estima-
tor and the adjusted survival rate of general male population, we have suspected unmeasured
confounder persisted in the prostate cancer dataset.

If the strongly ignorable assumption does not hold, there is no way to say the treatment
assignment is strongly ignorable after adjusted for propensity score, nor can we estimate
the unbiased ATE. However, it is very difficult to prove this assumption in an observational
dataset. We can keep finding new covariates that have distinct differences between treatment
and control group, but we can hardly know if there are still some unmeasured confounders.
Therefore, when propensity score adjustment would be used to balance the dataset, researchers
need to be cautious and aware that the adjustment may not always effective as some unmea-
sured confounders could persist in the observational dataset.

One way to make the propensity score adjustment work and also make better use of
observational data is to collect more variables, even when they seem to be inrelevant to
the topic we are investigating. For instance, Mustafa et al. found some factors that are
common to the localized prostate cancer treatment decision-making literature [12] including
treatment type, some socioeconomic factors like personal income and education level and
personal reasons like urinary function and ability to work. Therefore, before an observational
study, it is good to consult experts in various fields and discuss which variable may be needed
to collect.

No enough variables Variables in our dataset may be too few. The dataset that Wong [69]
used had 13 variables. But our dataset from NCR consists of only 7 variables. In their dataset,
some variables that indicate the patient’s baseline health or sociological characteristics that
seemed less relevant to the tumor, such as information on self-reported health, region, race
and income were included. As mentioned above, these ”irrelevant” variables may be needed
to check how they would cause the potential bias of treatment selection without patients’ or
doctors’ attention. The insufficient number of feature also led to a simple network, which is
too hard to find some more complex patterns or information.

In some other researches in Canada and America, some of the sociodemographic variables
are associated with the frequencies of PSA testing. In a research project in Canada, Gorday
et al. found that higher education level and higher household income were associated with
higher frequencies of PSA testing. What’s more, men in the age group of 60-69 years had
a higher testing rate than men aged above 70 years old [34]. A similar conclusion was ob-
tained by Mitchell et al. in a study of prostate cancer screening in urban African-American
men. In this study, increased education level and higher income were positively correlated to
prostate cancer screening [52]. Some references had already found the association between
the frequencies of receiving a PSA test and education level or personal income. A higher
education level and household income may lead to increased access to health care compared
to other population. Especially for localized prostate cancer, which is of low- or intermediate
risk with an average 5-year survival rate of 90%, the better quality of health care may play a
more important role for survival. In summary, the unmeasured differences in education level
or personal income might explain why the survival rate of general male population was lower
than cancer patients after adjusted for age and year of diagnosis. However, considering the
difference in medical system between America and Europe, this statement remained unclear.
Some more studies or experiment may be needed to prove that.

RCT is needed for reference Although it is difficult to conduct an RCT with long-term
follow-up, and RCT like this may be needed. In our experiment, using different models would
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lead to different conclusions. Analysing the same dataset with other methods would also
lead to other conclusions. What’s more, the weak association between active treatment and
survival obtained by the BN model may only true for the low- to intermediate-risk prostate
cancer we were investigating, rather than advanced or metastatic prostate cancer, which has
a higher risk of death. Therefore, when analysing observational data, researchers need to
view these conclusions critically, and an RCT would help to prove less unbiased results, which
could be more reliable for reference.
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[18] Stefano Beretta, Mauro Castelli, Ivo Gonçalves, Roberto Henriques, and Daniele Ramaz-
zotti. Learning the structure of bayesian networks: A quantitative assessment of the
effect of different algorithmic schemes. Complexity, 2018, 2018.

43

https://www.cbs.nl/
https://www.cancer.org/cancer/prostate-cancer/detection-diagnosis-staging/tests.html
https://www.cancer.org/cancer/prostate-cancer/detection-diagnosis-staging/tests.html
https://www.cancer.net/navigating-cancer-care/diagnosing-cancer/tests-and-procedures/digital-rectal-exam-dre
https://www.cancer.net/navigating-cancer-care/diagnosing-cancer/tests-and-procedures/digital-rectal-exam-dre
https://www.cancer.gov/about-cancer/diagnosis-staging/staging
https://en.wikipedia.org/wiki/Censoring_(statistics)
https://en.wikipedia.org/wiki/Bayesian_network
https://www.iknl.nl/en/ncr/
https://seer.cancer.gov/


[19] Anna Bill-Axelson, Lars Holmberg, Mirja Ruutu, Michael Häggman, Swen-Olof Ander-
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A Strength of all the possible arcs obtained by model averag-
ing

No. From To Strength Direction

1 incjr diffgr map 1 1
2 tumor stage group 1 1
3 age group 1 1
4 survival less than 2 survive GE 5 years 1 1
5 survive GE 2 years survival less than 2 1 1
6 PSA age 1 0.5
7 age PSA 1 0.5
8 PSA incjr 1 0.5
9 incjr PSA 1 0.5
10 age survive GE 5 years 0.963 1
11 group survive GE 2 years 0.896 1
12 diffgr map tumor stage 0.831 1
13 PSA group 0.113 1
14 PSA survive GE 2 years 0.0405 1
15 age survive GE 2 years 0.04 1
16 PSA survive GE 5 years 0.018 1
17 tumor stage PSA 0.011 0.5
18 PSA tumor stage 0.011 0.5
19 group survive GE 5 years 0.0075 1
20 diffgr map survive GE 2 years 0.0015 1
21 tumor stage survive GE 2 years 0.001 1
22 tumor stage survive GE 5 years 0.0005 1

If the value of direction is 1, the edge is an directed edge. If the value
of direction is 0.5, this edge is an undirected edge.
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