
Master Computer Science

Count-Based Exploration for Multi-Agent Learning

Name: Jianing Wang
Student ID: s2434938

Date: 29/07/2021

Specialisation: Data Science:Computer Science

1st supervisor: Aske Plaat
2nd supervisor: Matthias Müller-Brockhausen

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

Two-dimensional navigation is a common task in reinforcement learning. To find the
target and learn the task, the agent needs to explore the environment thoroughly
and gather enough information. In comparison with single-agent tasks, collaborative
multi-agent environments contain more complex information that necessitates effec-
tive exploration strategies. Inspired by the human’s curiosity to explore the novelty,
the Count-Based method counts the number of the occurrences of each state-action
pair and encourages the agent to probe the less-visited states. In this thesis, we pro-
pose two adaptions of the Count-Based method for multi-agent learning, which we call
Distributed Multi-Agent Count-Based (Dis-MACB) and Centralized Multi-Agent Count-
Based (Cen-MACB). The Dis-MACB strategy focuses on individual exploration, while
the Cen-MACB strategy takes into account both the exploration of individuals and co-
operation with teammates. In the continuous state and action space environments, both
Distributed and Centralized exploration strategies will encounter a problem, where each
state-action pair only appears one time. To address this problem, we use a hash function
to map similar states and actions to the same hash value. Our results show that with
the help of the Distributed and Centralized MACB strategies, the agents only require
less than half of the training episodes to master the tasks. In addition, the methods
we propose are easy to implement with already existing multi-agent learning algorithms
since there are only two main hyper-parameters that influence the performance.

i

Contents

Abstract i

1 Introduction 1

2 Problem Statement 2
2.1 N-Agent Navigation . 3
2.2 Communicative Navigation . 3

3 Related Work 4
3.1 Basic exploration strategies . 4
3.2 Intrinsic reward strategies . 5
3.3 Multi-Agent Environments . 5

4 Methods 6
4.1 Markov Decision Process (MDP) . 6
4.2 Markov Games (MGs) . 7
4.3 Action-Value Function . 8

4.3.1 Deep Q-network (DQN) . 8
4.4 Policy Gradient (PG) . 9

4.4.1 Deep Deterministic Policy Gradient (DDPG) 9
4.4.2 Distributed MADDPG . 10
4.4.3 Centralized MADDPG . 11

4.5 Count-based Exploration . 12
4.5.1 Count-Based exploration for multi-agent learning 13
4.5.2 Hash Function . 13

5 Experimental design 16
5.1 Measurements . 16

5.1.1 Success Rate . 16
5.1.2 Time Complexity . 17
5.1.3 Count-1 Percentage . 17
5.1.4 Number of Collisions . 17

5.2 Experiments . 17
5.2.1 Count-Based with 1-Agent Navigation 17
5.2.2 MACB with Fully Observed Environment 18
5.2.3 MACB with Partially Observed Environment 18
5.2.4 Exploration and Exploitation . 18

6 Results 19
6.1 Count-Based Exploration with DDPG . 19
6.2 MACB Strategies with Dis-MADDPG . 20
6.3 MACB Strategies with Cen-MADDPG . 22
6.4 Exploration and Exploitation . 25

7 Discussion 26
7.1 From single-agent to multi-agent exploration 26

ii

7.2 Intrinsic Reward and Extrinsic Reward . 27
7.3 Drawback of MACB . 28

8 Conclusion 28

Bibliography 29

A Appendix 33
A.1 Training Detailed . 33
A.2 Reproduction . 33

iii

1 Introduction

Learning can be associated with exploration and exploitation. Exploration refers to gaining
new information and focusing on long-term gains. Exploitation utilizes current information to
maximize short-term benefits. In reinforcement learning (RL), the trade-off between exploration
and exploitation is a critical challenge. To make an optimal decision, the RL agents must
thoroughly probe the environment to gather sufficient information. If we want the agents
to find the best strategy as fast as possible, the speed and effectiveness of the agents to
explore the environment play a decisive role. A certain amount of exploitation can also help
to reduce useless exploration by providing the searching direction. In this thesis, we focus on
two problems: how to effectively explore an environment, and how to balance the trade-off
between exploration and exploitation. We study these two problems in 2-dimensional multi-
agent navigation environments, where the agents need to cooperate in order to solve the
tasks.

Efficacious exploration is crucial, especially in hard to explore environments. The agents in
these environments, with random exploration, barely achieve the tasks and receive learning
signals, which is known as the sparse reward problem. One of the well-known methods for this
problem uses intrinsic reward as a bonus to encourage the agents to explore, which has been
studied a lot in single-agent environments. The intrinsic reward comes from intrinsic motivation
[31, 40, 41]: humans are intrinsically motivated to explore something they are curious about.
Inspired by this, some studies quantify the uncertainty [33], novelty [30, 46], and information
gained [14, 27] as the intrinsic rewards and show that with the intrinsic bonuses, the agents
can find optimal solutions faster.

Since using intrinsic reward works well in single-agent problems, we are interested in its perfor-
mance in the multi-agent domain. Multi-agent reinforcement learning (MARL) has intrigued
the interest of many researchers in recent years because many real-world applications are nat-
urally modeled as multi-agent learning problems, such as team sport [20], multi-robot control
[47] and autonomous vehicles [37], etc. The agents in cooperative tasks need to explore the
environment, just like in single-agent tasks. Moreover, they need to seek possible collaboration
with their teammates [7]. For complex multi-agent environments, some studies have proposed
different intrinsic reward methods to encourage exploration. Jaques et al. [16] strengthen team
coordination and communication by encouraging agents to choose actions with more social
impact. Böhmer et al. [4] introduce a centralized agent for exploration, and other agents can
share its exploration results. Iqbal et al. [15] use a hierarchical structure to select one of the
five intrinsic reward methods to help multi-agent learning. In this thesis, we extend a classic
but effective method, Count-Based strategy to address multi-agent exploration problems. This
method is inspired by the tendency that humans have, which is being intrinsically interested
in novelty. It uses the inverse-square-root state-action-visitation count as the intrinsic reward.
The agents receive a higher bonus when visiting the less-visited states which encourages them
to explore new states. The idea behind Count-Based is that agents that can visit more different
states in a limited time have a higher chance to find an optimal policy.

The idea of the Count-Based method is straightforward, but to apply it in the multi-agent task
has the problem of non-stationarity, as well as high-dimensional state and action space problem.
We aim to find a suitable method to apply Count-Based strategy for two multi-agent problems:
N-Agent Navigation and Communicative Navigation. The multi-agent learning algorithms we
use are Distributed Multi-Agent Deep Deterministic Policy Gradient (Dis-MADDPG) [21] and

1

Centralized Multi-Agent Deep Deterministic Policy Gradient (Cen-MADDPG) [23]. For the
Distributed MADDPG, each agent only considers its local information for both evaluation and
execution. However, in cooperative multi-agent tasks, the reward received by an agent is not
only based on the performance of its own policy, but also considers the performance of other
agents’ policies. At the same time, the policy of other agents is changing during the training
process, causing the environment to become non-stationary. A policy that only considers local
information cannot explain the change in rewards. For the Centralized MADDPG, the agent
takes other agents’ observations and actions into account for evaluation while only using local
information for execution. This is known as centralized training and decentralized execution,
which can solve the non-stationarity problem since each agent knows the information of other
agents. Inspired by these two methods, we extend the Count-Based method to work with these
two learning algorithms and propose Distributed Multi-Agent Count-Based (Dis-MACB) and
Centralized Multi-Agent Count-Based (Cen-MACB). The high-dimensional state and action
space causes all state-action pairs to only occur once, which makes it impossible to determine
which state is relatively novel based on counting methods. This further leads to high memory
storage and large search time issues, because Count-Based method uses a table to store the
counts. To solve this problem, we consider using a hash function [46] to map the similar
state-action pairs to the same hash code before counting.

The main contribution of this thesis is to adapt the Count-Based strategy to effectively explore
the collaborative multi-agent environments. We provide solutions for the problems that hap-
pen during the adaption. The non-stationarity problem does not only happen in the learning
algorithm, exploration strategies for multi-agent tasks also have this problem. The Centralized
MACB strategy solves this problem by taking the state-action pairs of all agents into account,
similar to the centralized learning algorithms. In addition, by using centralized exploration,
agents can simultaneously explore the environment and different ways of cooperation with
their teammates. We solve the high-dimensional state and action space problem using a hash
function to map the similar pairs into the same hash value. In addition, we do a lot of empirical
evaluation of our methods in two multi-agent navigation tasks. Our results show that both
Distributed and Centralized MACBs can reduce the total training episodes that the agents
need to master the task by at least half.

The structure of this thesis is as follows. First, we introduce two multi-agent tasks and explain
why the agents in these two environments need an effective exploration strategy in section 2.
Next, we summarize some basic exploration strategies and the intrinsic reward methods for
both single-agent and multi-agent scenarios in section 3. In section 4, we gradually introduce
from RL basic knowledge, to learning algorithms, and then the exploration methods we propose.
In section 5, we conclude the measurements we used to evaluate our methods and the plan of
our experiments. We empirically show the results of our methods in section 6. Lastly, we give
a high level discussion of the exploration in multi-agent tasks in section 7 and a conclude in
section 8. The detailed hyper-parameters we choose for experiments and the steps to reproduce
this thesis can be found in Appendix A.

2 Problem Statement

In this thesis, we study how to effectively explore two cooperative multi-agent environments,
N-Agent Navigation (Figure 1a) and Communicative Navigation (Figure 1b) [28]. Both of the

2

Agent

Landmark

(a) N-Agent Navigation

Listener

Landmark

Speaker

(b) Communicative Navigation

Figure 1: We study
how to effectively ex-
plore these two multi-
agent environments. (a)
N agents aim to coverN
landmarks without col-
lision. (b) One of the
landmarks is the target
landmark. The speaker
utters signals to guide
the listener to cover the
target landmark.

environments are 2-dimensional with a continuous state and action space.

2.1 N-Agent Navigation

There are N number of agents and N landmarks in this environment. In Figure 1a, N is
equal to 2. The agents need to cooperate together in order to cover all the landmarks without
collision. If an agent moves to a landmark, the other agent is expected to move to the other
landmark. The observation of each agent includes the location of the other agents as well
as the position of the landmarks. Based on this information, they decide which direction to
move toward. Before learning, they do not know what their task is. They learn about the task
once they start receiving rewards under different scenarios. For example, the agents receive
a positive reward when all the landmarks are covered and negative otherwise. They move to
different positions to gather information (reward) under different states and learn to move
to the positions that provide positive rewards. The more information they get, the better
decisions they can make. As the agents explore all the scenarios, they can make the optimal
decision, meaning that the learning time depends on the effectiveness of exploration. If an
agent repeatedly explores negative reward states that have been seen before, it will slow down
the learning process. In a sparse reward setting, only by quickly finding the positive reward
scenarios, the agent can learn the task faster. One solution to this issue is to reduce the
exploration for states that have already been visited.

An environment is harder to explore if it has many different states. In comparison with the
1-Agent navigation task, in the multi-agent task the agent needs to explore more complex
scenarios, including N landmarks and N − 1 teammates. The problem we address in this
thesis is how to effectively explore such complex multi-agent environments.

2.2 Communicative Navigation

In the N-Agent Navigation task, the agents can fully observe the environment, which means
that each agent can finish the task based solely on their observation (the position of land-
marks and teammates). However, some multi-agent environments are partially observable
which means that the observation of each agent only holds part of the information. The
partially observable environments require more cooperation between the agents in order to
complete the task.

3

Communicative Navigation is a partially observed environment. As shown in the Figure 1b,
there are 2 agents (a speaker and a listener) and 3 landmarks in 3 different colors. A specific
color landmark is chosen to be the target landmark for each episode. In this task, the listener
needs to go to the target landmark. However, only the speaker knows which landmark is the
target. The speaker needs to guide the listener to navigate to the target landmark by uttering
a communication signal to the listener. The listener decides where to move based on the
positions and the colors of the landmarks, and the communication signal. By receiving the
signal from the speaker, the listener learns which landmark is the target. For this task, the
speaker needs to learn how to utter the correct signal to show which landmark is the target,
and the listener needs to understand the signal and move to that target.

Since the speaker and listener have different tasks, what they need to explore is different.
The speaker needs to explore how to utter signals to receive positive rewards. The exploration
for the listener is more complicated, because one part of its observation comes from the
environment and the other part comes from the speaker, which may provide a wrong signal.
This leads to a complex and unstable environment for the listener to explore. To address this,
we utilize Centralized MADDPG algorithm [23] for learning and propose Centralized MACB
strategy for exploration.

3 Related Work

In the introduction, we explained the importance of exploration in the learning process. In this
section, we summarize some basic exploration strategies and some more powerful exploration
methods that utilize intrinsic rewards, for both single-agent and multi-agent environments. In
addition, we show the difference between our method and other existing methods.

3.1 Basic exploration strategies

In some simple RL problems, the basic exploration strategies guarantee finding the optimal
decision [54]. The ε-greedy method [25, 50] uses a probability of ε to randomly select an
action for exploration and a probability of (1 − ε) to choose an optimal action. Its extension
is the decay ε-greedy method, which starts with a large probability for ε in the beginning of
the training process to emphasize exploration, and gradually reduces it as training progresses
to emphasize to exploitation. Instead of choosing a random action with a certain probability,
the noise-based methods [54] add random noise to action or parameter space directly [10, 34].
The common noise functions for action are Gaussian noise and Ornstein Uhlenbeck (OU) noise
[49]. Random exploration is easy to apply, but it is the least efficient strategy [24, 47]. Another
method for the multi-armed bandit problem [17] is the Upper Confidence Bound (UCB). To
reduce the uncertainty of the environments, it utilizes an upper confidence bound function
U(a) to encourage the agent to choose the less performed action. Based on this idea, the

UCB1 method [1] uses U(a) =
√

2 log t
n(a)

, and at = arg maxa∈A(ra +U(a)) to choose an action

a at time t, where n(a) is the number of times this action was selected before t, and ra is the
average reward for taking action a.

4

3.2 Intrinsic reward strategies

Intrinsic reward strategies are commonly used in hard to explore environments, where the
agents barely receive learning signals. The intrinsic reward strategies provide bonus rewards
as learning signals to the agents through other criteria and therefore boost the progress of
learning. Since most of the hard to explore environments are high-dimensional, most of the
intrinsic reward methods use deep neural networks. Burda et al. [6], Stadie et al. [42] and
Pathak et al. [33] use the prediction error of different feature spaces to encourage the agents
to visit the uncertain parts of the environment. Variational Information Maximizing Exploration
(VIME) encourages the agents to visit the states which can minimize the uncertainty of the
environment dynamics distribution [14, 27]. Count-based methods such as MBIE [43] and
MBIE-EB [44] encourage the agent to discover novel states by using the state and action
count. In the continuous state and action space, some extension of this method in order
to solve the high-dimensional state and action space problem include [3, 30], where they
propose using a density model to generate pseudo-count and Tang et al. [46], where they use
a hash function to decrease the dimension. Instead of the hash function, they also propose a
learned hash model (an autoencoder [29, 18]) to extract features from the state and reduce
the dimensionality. Besides autoencoders, a convolutional neural network which can recognize
pattern of high-resolution images to solve classification tasks from Krizhevsky et al. [19] can
also be used to extract the features.

As people raise interest in multi-agent problems, intrinsic reward methods that encourage
multi-agent exploration have emerged. Böhmer et al. [4] use an extra centralized agent to
receive intrinsic rewards for exploration and the other agents share the replay buffer with this
agent in order to share the exploration results. The intrinsic reward for the centralized agent
is the largest uncertainty over all the agents. The uncertainty is the variance of Bayesian
posterior distribution over Q-values [32]. Wang et al. [52] and Jaques et al. [16] introduce the
use of social influence as the intrinsic reward. In Jaques et al. [16], the agents are encouraged
to select the action which can influence the behavior of the other agents the most. The
influence is calculated by how much the selected action can change the distribution over other
agents’ next actions. In Wang et al. [52], the agent is encouraged to visit the states where that
influence the transition distribution of other agents the most. Iqbal et al. [15] use a hierarchical
policy where the top-level agent chooses the best among 5 intrinsic reward functions, and the
low-level agents follow this bonus to learn. Baker et al. [2] apply count-based strategy in a
different problem: hide-and-seek. The hiders can get use of tools like boxes or walls to block
the way of the seekers. The seekers can also use ramps to jump across obstacles. They let two
teams compete against each other (self-play) to create a self-supervised autocurriculum and
that results in emergent cooperation and tool usage. They show that the count-based strategy
encourages the movement of the agents and the tool usage, but the performance of the count-
based strategy decreases when the state includes more information (high-dimension). This is
also the problem we address in this thesis.

3.3 Multi-Agent Environments

The environments in our experiments are N-Agent Navigation and Communicative Navigation
environments which are introduced by [28]. Lowe et al. [23] use these environments to evaluate
their centralized actor-critic learning algorithm which we also use to apply our exploration
strategy on. Ryu et al. [35] also evaluate their exploration strategy on the N-Agent Navigation

5

environment. They propose an end-to-end encoder-decoder model that generates the initial
state from easy to hard which form a curriculum for agents. In comparison to their environment
where the position of the landmarks is static, we randomly initialize the landmarks and the
agents’ positions for each episode, which is harder for agents to learn. We did not find any
work that aims at effectively explore the Communicative Navigation environment.

In this thesis, the two exploration strategies we use are noise-based methods and an adaption
of the Count-Based method. The noise function in our experiments is a Gaussian action noise
strategy. We extend the Count-Based strategy to Distributed and Centralized Multi-Agent
Count-Based exploration (Dis-MACB and Cen-MACB). The Centralized MACB strategy is
inspired by the centralized learning algorithm, in which all the agents’ states and actions
are joint together into a new observation for evaluation. With the joint observations, the
Centralized strategy encourages the agents to visit the joint observations that have not been
visited before which encourage the cooperation. The main problem is that the dimensionality
of the joint observations becomes larger as the number of agents increases. To address this,
inspired by Tang et al. [46], we use a hash function to decrease the dimension of the joint
state-action before counting. There are other models that can reduce the dimensionality, but
our environments contain up to 2 agents, and a simple hash function has good results.

4 Methods

Reinforcement learning (RL), a type of machine learning, is a paradigm where the RL agents
learn a task by constantly interacting with the environment [45]. At each time step t, the agent
decides an action at based on the current state st. The action is performed on the environment
and leads to a new state st+1. Afterwards, the environment returns a reward rt based on this
new state. In practice, the environment is episodic and each episode consists of a number of
time steps from t = 0 to T . So each episode can be captured as a sequence of states, actions
and rewards (st=0, at=0, rt=0, . . . , st=T , at=T , rt=T), where st=0 is the initial state.

4.1 Markov Decision Process (MDP)

An RL problem can be modelled as a Markov Decision Process (MDP) [45] using a 5-tuple
(S,A, P,R, γ). A finite-MDP is defined by a set of finite states S and actions A. The state
captures all the information about the environment. For example, the state of a board game
can be an array, where each element uses a specific number to represent a different entity.
In Atari games from the OpenAI gym framework [5], the states are represented by pixels.
Navigational tasks include the location of the target in the environment as well as the agent’s
information, such as the velocity and position. Depending on the environment, the action
space can either be discrete or continuous. For example, we can use four different numbers to
represent moving up, down, left, and right as discrete actions. In robotic environments, the
actions are usually continuous, such as the angle of the joints of the robot’s hand or leg in
MuJoCo environments [48]. In navigation tasks, actions include moving direction and velocity,
both of which are continuous.

Choosing an action at in state st, produces the next state st+1 according to the state transition
probability function P (st+1|st, at). The important thing about MDPs in RL is that the current
state can completely characterise all the history states, which means that agent can only base

6

its decision on the current state. The reward rt = R(st, at) based on how well for choosing
action at in the state st. The goal of the RL problem is to maximise the cumulative reward
R =

∑T
t=0 γ

trt where γ ∈ [0, 1] is the discount factor. We use γ to control the effect that
future rewards have on current decisions. Small values of γ focus on the near-term gains while
larger values emphasize far-sighted rewards.

4.2 Markov Games (MGs)

The framework of Markov Games (MGs) [22] is an extension of MDP for multi-agent systems.
For an N agent RL problem, MGs are defined by a set of states S for all agents, sets of actions
A1, ..., AN and sets of observations O1, ..., ON for each agents. In comparison with MDP, the
state transition function for MGs considers actions from all the agents P (st+1|st, at1, ..., atN).
Each agent i receives its own reward rti = R(st, a

t
i) which only considers their action ai. They

aim to maximize their own expected reward Ri =
∑T

t=0(γtrti).

N-Agent Navigation
In the N-Agent Navigation problem, each state st corresponds to the concatenated observations
of all the agents ot1, ..., o

t
N at time-step t. For each agent i, their observation oi includes

the position of all the landmarks, teammates’ positions, and the velocity and the position
of themselves. Based on the observation oti, the agent i needs to decide the best moving
direction and velocity as its action ati in order to maximize their own cumulative reward Ri

over an episode. Each value in the observations and the actions are in range of −1 to 1. The
reward function considers the number of landmarks that are covered and whether the agents
have collided with each other. Specifically, the reward function is rti = R(st, a

t
i) = −(n+m)/N

where n is the number of landmarks that are not covered and m is the amount of collisions
happened at time t. The rewards returned by the environment are called extrinsic rewards. In
section 4.5, we cover intrinsic rewards from the exploration method.

Communicative Navigation
Similar to the N-Agent Navigation, each state of the Communicative Navigation task is the
concatenated observations of all the agents in the environment, but the observations of the
speaker and the listener are different. The observation of the speaker is the color of the target
landmark and its action is a communication signal. The signal is an array that consists of
3 continuous entries which represent the RGB value of the color. The listener’s observation
consists of the positions and the colors of the 3 landmarks. The observation of the listener also
includes the communication signal from the speaker. The listener is movable and its action is
the direction and the velocity. We use two different reward functions for this environment in
our experiments. The first reward setting is sparse, meaning that it returns 0 when the listener
covers the target landmark and −1 otherwise. The second reward setting uses the negative
distance between the listener and the target landmark. The maximum reward is 0 when the
listener exactly cover the target landmark. More specifically, the distance between them is
measured by Euclidean distance between the position of their centers.

These two environments have no boundaries, which makes learning difficult because there’s no
limit for the maximum distance between the agents and the landmarks. The further the agents
move away from the landmarks, the probability of never reaching them grows exponentially.
Therefore, to simplify the learning tasks, we set a time-step horizon for each episode. After
limited time-steps, the environment resets, and the position of the agents go back to an
acceptable range. The episode doesn’t terminate if the agents reach the landmarks. Therefore,

7

if the agents succeed before the episode termination, it is expected that they remain on the
landmarks in order to maximize their rewards.

4.3 Action-Value Function

In the MDP and MGs sections, we showed how to model an RL problem with a 5-tuple
(S,A, P,R, γ). In this section, we talk about the learning process using this tuple. Before
moving to the multi-agent tasks, we first introduce some popular methods that are used for
single-agent learning.

Recall that the goal of the RL problem is to maximize the cumulative reward, which requires
the agent to make the best decisions throughout an episode. In practice, the best decision
corresponds to the best action at a given time-step. A decision can be decomposed into two
parts, evaluating all the actions for a current state and choosing the one with the best result
[38].

The agent’s behavior is controlled by a policy π(a|s), which returns a probability distribution
over the actions given a state. The action-value function Qπ(st, at) for policy π is used to
evaluate an action at on a state st at time t:

Qπ(st, at) = E[Rt|st, at] (1)

where Rt =
∑T−t

k=0(γkrt+k) is the accumulated reward from time t to T . Since the action is
chosen by following the policy π, the RL problem can be seen as finding the optimal policy π∗

which maximizes the cumulative expected reward. The action-value function can be rewritten
in a recursive form known as the Bellman Equation. The Bellman equation decomposes the
action-value function into two parts, the current reward and the discounted future expected
return [45]:

Qπ(st, at) = E[Rt|st, at]
= E[rt + γrt+1 + γ2rt+2 + ...+ γT−trT |st, at]
= E[rt + γ(rt+1 + γrt+2 + ...+ γT−t−1rT)|st, at]
= E[rt + γRt+1|st, at]
= E[rt + γE[Rt+1|st+1, at+1]|st, at]
= E[rt + γEat+1∼π[Qπ(st+1, at+1)]|st, at]

(2)

After evaluating each action a ∈ A at state s with Qπ(s, a), we can apply a greedy policy to
choose the action with the maximum Q value:

π(a|s) = arg max
a∈A

Qπ(s, a) (3)

To conclude, we first use the action-value function Qπ(s, a) to do the evaluation, and then
use the greedy policy to choose the action with the maximum Q value. At each time step, we
choose the greedy action which can lead to the maximum cumulative reward.

4.3.1 Deep Q-network (DQN)

Deep Q-network (DQN) [26] is a well-known algorithm that uses the action-value function. It
utilizes a deep convolutional network [11] to approximate the action-value function Q(·|θQ)

8

with parameters θQ. They optimize the function by minimizing the loss:

L(θQ) = Est,at,rt,st+1 [(Q(st, at|θQ)− yt)2],where yt = rt + γmax
at+1

Q̄(st+1, at+1|θQ̄), (4)

where yt is the target value calculated using the Bellman equation. To stabilize the learning
process, the DQN method utilizes a target network Q̄(·|θQ̄) to calculate the target yt. The
target network is a copy of Q(·|θQ) with a delayed update. Another stabilization method
that DQN uses is the experience replay. During episode simulations, we store the transitions
(st, at, rt, st+1) in the replay buffer. During training, a batch size of transitions is sampled at
random and used for optimization. Sampling randomly from the experience replay buffer, the
correlation between the samples breaks, which reduces the variance of the updates. In addition,
the data can be reused which makes DQN sample efficient.

4.4 Policy Gradient (PG)

Greedy policy is not applicable when facing continuous action spaces. Equation 3 shows that
a full-scan of actions is required in order to make a decision, which is impossible when the
number of actions is infinite. To address this, we can use a parameterized function instead of
a greedy policy to directly choose an action with a method called Policy Gradient (PG).

Policy Gradient directly models the agent’s behavior using function πθ(a|s) with parameters
θπ [45]. We can use πθ(a|s) to directly predict an action given a state. The goal is to find the
best parameters θπ that maximize the objective function which calculates the average reward
per time-step [53, 38]:

J(θπ) =
∑
s∈S

pπ(s)
∑
a∈A

πθ(a|s)Rs,a (5)

where pπ(s) is the state distribution for πθ and Rs,a is the instantaneous reward of taking
action a in state s. We maximize the objective function J(θπ) by gradient ascent:

5θπJ(θπ) ∝
∑
s∈S

pπ(s)
∑
a∈A

5θππθ(a|s)Rs,a

= Es∼pπ ,a∼πθ [5θπ logπθ(a|s)Rs,a]

(6)

There are different ways to calculate Rs,a. The REINFORCE method [55] uses the discounted

reward Rt =
∑T−t

k=0(γkrt+k) as Rs,a. The Actor-Critic method [9] introduces a parametarized
action-value function Q(s, a|θQ) (critic) that estimates Rs,a. In the actor-critic framework, the
update direction of the actor πθ(a|s) is provided by the critic. The gradient of the objective
function for the Actor-Critic method can be written as Equation 7. More ways to calculate
Rs,a can be found in [36].

5θπ J(θπ) = Es∼pπ ,a∼πθ [5θπ logπθ(a|s)Q(s, a|θQ)] (7)

4.4.1 Deep Deterministic Policy Gradient (DDPG)

The policy in Equation 7 is stochastic πθ(a|s) → [0, 1] which assigns a probability to each
action given a state s. The Deterministic Policy Gradient (DPG) [39] utilizes a deterministic
policy µ(s|θµ)→ a which directly maps a state to an action. The gradient of the deterministic
policy µ(s|θµ) is:

5θµ J(θµ) = Es∼pµ,a∼µθ [5aQ
µ(s, a)|a=µ(s|θµ)5θµ µ(s|θµ)] (8)

9

where pµ is the state distribution following the policy µ. Deep DPG (DDPG) [21], is a method
that combines techniques of DPG and DQN in order to extend DQN method to continuous
action space environments. In contrast with DPG, the DDPG parameterized the action-value
function Qµ(s, a|θQ) with the deterministic policy µ. The update of it can be written as:

L(θQ) = Est,at,rt,st+1 [(Q
µ(st, at|θQ)− yt)2],where yt = rt + γQ̄µ(st+1, µ̄θ(st+1)|θQ̄). (9)

DDPG also utilizes a replay buffer and target networks to stabilized learning. There are 4
function approximators in the DDPG method, the policy µ(s|θµ), the action-value function
Qµ(·|θQ) and their corresponding target networks µ̄(s|θµ̄) and Q̄µ(·|θQ̄). After collecting a
number of transitions, the critic and the actor update after each time-step. The targets copy
the parameters of the main networks every few time-steps. DDPG uses a soft update to slowly
change the actor and critic networks:

θ′ ← τθ + (1− τ)θ′ (10)

where τ � 1 is the hyper-parameter that controls the update amount. Since the policy is
deterministic, DDPG adds noise to the policy as shown in Equation 11 in order to maintain
exploration. The noise is sampled from a noise process N which can be Gaussian action noise
or Ornstein Uhlenbeck action noise.

a = µ(s|θµ) +N (11)

4.4.2 Distributed MADDPG

So far we explained how a single agent learns. In this section, we explain a simple method
that adapts DDPG into multi-agent tasks. The first way to extend the DDPG algorithm for
multi-agent learning is to simply treat each agent in the environment as an individual agent,
which is known as distributed training [12]. It means that each agent i has its own actor
µi(oi) and critic Qµ

i (oi, ai) networks and only considers their local information (observation oi
and action ai). We refer to it as Distributed Multi-Agent Deep Deterministic Policy Gradient
(Dis-MADDPG, Algorithm 1). Another way is to use a shared actor and critic that control all
the agents’ behaviors, but this requires the structure of the agents’ observation and action to
be the same. For example, the agents in the N-Agent Navigation use the same information and
actions, so sharing an actor and a critic can be applicable. In the Communicative Navigation,
the speaker and the listener observe different information and have different type of actions.
For the Dis-MADDPG method we initialize an actor and a critic for each agent for both
environments.

Before training the networks µ = {µ1, ..., µN} and Q = {Qµ
1 , ..., Q

µ
N}, the agents interact

with the environment and store training data in the replay buffer. The environment provides an
initial state s0 which consists of N local observations (o0

1, ..., o
0
N) for each agent. At time-step

t, each agent i selects an action ati that corresponds to the output of its current policy µi given
local observation oti and exploration action noise. Next, a list of actions xt = (at1, ..., a

t
N) from

all the agents is executed on the environment, and the environment returns a reward rt and
a new state st+1 = (ot+1

1 , ..., ot+1
N). Here the reward is not a list because we only consider the

cooperation tasks, where all the agents receive the same reward. In the case of competitive
tasks, the environment would return a list that contains the rewards for each agent. The
transitions (st, xt, rt, st+1) are stored in a shared replay buffer B.

10

Since the Distributed MADDPG algorithm only considers the local information of agents, we
can extend the loss of the action-value function in Equation 9 to multi-agent learning. For
each agent i, the loss function can be written as:

L(θQi) = Eoti,ati,rt,ot+1
i

[(Qµ
i (oti, a

t
i|θQi)− yt)2],where yt = rt + γQ̄µ

i (ot+1
i , µ̄i(o

t+1
i)). (12)

When calculating yt, the target networks Q̄µ
i and µ̄i with parameters θQ̄i and θµ̄i are used

for stabilizing the training. Extending Equation 8, the gradient of the expected return of each
agent i can be written as:

5θµi J(θµi) = Eoi∼ρµi ,ai∼µi [5aiQ
µ
i (oi, ai)|ai=µi(oi)5θµi µi(oi)] (13)

We use µi(oi) instead of µi(oi|θµi) for simplification.

Algorithm 1: Distributed Multi-Agent DDPG algorithm (Dis-MADDPG)

for agent = i to N do
Randomly initialize critic Qµ

i (oi, ai|θQi) and actor network µi(oi|θµi)
Initialize the target networks Q̄µ

i and µ̄i with weights θQ̄i ← θQi , θµ̄i ← θµi

Initial replay buffer Bi

end
for episode = 1 to M do

Initialize a random process N for action exploration
Receive initial observation state s0 = (o0

1, ..., o
0
N)

for t = 0 to T do
Each agent selects action ati = µi(o

t
i|θµi) +Nt using current policy and exploration

Execute actions xt = (at1, ..., a
t
N) and observe reward rt and new state st+1

Store the transition (oti, a
t
i, rt, o

t+1
i) in the replay buffer Ri

for agent i = 1 to N do
Sample a random minibatch of S samples (oj, aj, rj, oj+1) from Bi

Set yj = rj + γQ̄µ
i (oj+1

i , µ̄i(o
j+1
i |θµ̄i)|θQ̄i)

Update critic by minimizing the loss: L(θi) = 1
S

∑
j(Q

µ
i (oji , a

j
i |θQi)− yj)2

Update actor using the sampled policy gradient:
5θµiJ ≈ 1

S

∑
j5aQ

µ
i (o, a|θQi)|o=oji ,a=µi(o

j
i)
5θµi µi(o|θµi)|o=oji

end
Update target network for each agent i:
θQ̄i ← τθQi + (1− τ)θQ̄i

θµ̄i ← τθµi + (1− τ)θµ̄i

end

end

4.4.3 Centralized MADDPG

One problem of the Dis-MADDPG algorithm is that the agents only use their local information
which causes the agents to neglect cooperation with their teammates. If the environment is
fully observable, like the N -Agent Navigation task, the Dis-MADDPG algorithm may work.
For the communication navigation task (partially observable), since the policies of other agents
change during the training process, an agent that only considers its local information cannot
learn based on the reward it receives. This is also known as non-stationarity problem. An

11

example is that the speaker can utter the same signal given the same observation but receive a
different reward. This can be caused if the listener moves to different positions given the same
signal by the speaker as a result of its policy change. In this scenario, a learning algorithm that
considers all the agents’ information is required.

Inspired by the framework of centralized training and decentralized execution, the Centralized
MADDPG [23] algorithm utilizes the information from other agents when training the action-
value function (centralized training) but only uses the local information when choosing actions
(decentralized execution). Same as the Distributed MADDPG, each agent has its own actor
and critic networks in the Centralized MADDPG algorithm. This also allows it to be applied
in both collaborative and competitive environments.

More specifically, the centralized action-value function Qµ
i (st, xt) now considers the states

st = (ot1, ..., o
t
N) and actions xt = (at1, ..., a

t
N) from all the agents. Each state st and action

xt can simply be the concatenated observations and actions of all agents. We can change
Equation 12 to the update of the centralized action-value function as follows:

L(θi) = Est,xt,rt,st+1 [(Q
µ
i (st, xt|θQi)− yt)2],where yt = rt + γQ̄µ

i (st+1, µ̄1(ot+1
1), ..., µ̄N(ot+1

N))
(14)

, where µ̄1, ..., µ̄N are the target policies of the agents and they only consider the local obser-
vations o1, ..., oN . The gradient of the policies given as:

5θµi J(θµi) = Es∼ρµ,x∼µ[5aiQ
µ
i (s, a1, ..., ai, ..., aN)|ai=µi(oi)5θµi µi(oi)], (15)

where only ai is predicted by the policy µi, other agents’ actions are from the replay buffer
transitions.

4.5 Count-based Exploration

Exploration is important for learning because it can help to find an optimal policy faster. The
DDPG method adds random action noise to achieve exploration. When the environment is
complex, we can not rely on random noise to help us find an optimal reward. Intrinsic reward
methods add a bonus to the extrinsic reward to encourage the agent to explore more states
and actions. The criteria of the intrinsic reward is different from the extrinsic one. Instead of
requiring the agents to complete a task, intrinsic rewards may be given to the agents if they
visit some new states or gather effective information. When training the policy, r′t is used to
calculate the loss function of the action-value function. It includes the extrinsic reward rt from
the environment and the intrinsic bonus r+

t [54]:

r′t = rt + βr+
t (16)

where β > 0, is the bonus coefficient that balance exploration and exploitation. We can use
β = 0 to represent the baseline. The Count-based exploration strategy uses the state-action
count to encourage the agent to visit new state-action. At time t, the bonus r+

t equals to the
inverse square root count of the state-action pairs:

r+
t (st, at) =

1√
n(st, at)

(17)

where n(st, at) is the number of times this state-action pair has appeared before. With the
inverse count bonus, the agent is encouraged to visit the less-visited states. This helps the

12

agent reduce the uncertainty of the environments with fewer interactions and therefore learn
an optimal policy faster. The count is stored in a tabular C. In practice, the table is a dictionary
in which the key is the state-action pair and the value is its total number of appearances.

4.5.1 Count-Based exploration for multi-agent learning

Similar to the Dis-MADDPG method where each agent is regarded as an individual agent in a
multi-agent environment, the simplest way to apply Count-Based method is to keep a count
table Ci for each agent i and use its local information n(oi, ai) for counting (Distributed Multi-
Agent Count-Based). If we want to explore the environment and encourage cooperation using
the Distributed MACB method, the environments need to be fully observable. For example,
the observation of each agent in the N -Agent Navigational task includes the position of the
landmarks and the teammates.

But some of the multi-agent environments are partially observed. The Dis-MACB strategy has
the same drawbacks as the Dis-MADDPG learning method. The agents may focus on individual
exploration and neglect the search of different types of cooperation with the teammates. For
example, in the Communicative Navigation task, we suppose that the signal of the speaker is
an array with 3 values where (1, 0, 0) is the signal that shows that the target landmark is the
red color, (0, 1, 0) is the green, (0, 0, 1) is the blue. The agents receive an extrinsic reward of
−1 when the listener has not covered the landmark. One possible scenario is that the speaker
utters (1, 0, 0) 100 times when it observes the red landmark, but the listener never covers the
red landmark. Applying Dis-MACB bonus on Equation 16, the reward r′ for the speaker to
utter (1, 0, 0) when the landmark is red is small (−1 + β 1√

100
). This will result in encouraging

the speaker to utter other signals when the target landmark is red again which is not what we
expect.

Inspired by the Centralized MADDPG method, we propose a Centralized Multi-Agent Count-
Based (Cen-MACB) strategy, which takes the joint observations of all the agents for counting
n(o1, ..., oN , a1, ..., aN). The joint observation covers all the information about the environment
and the cooperation. With the Centralized MACB, if the listener chooses different actions
during the 100 times in the above example, the reward r′ for the speaker to utter (1, 0, 0)
signal is (−1 + β 1√

1
) which will not decrease the probability of speaker to utter (1, 0, 0) when

it observes the red landmark next time.

Both Distributed and Centralized MACB exploration strategies have the high-dimensional space
problem in the continuous state and action space environments. The Count-Based method
becomes meaningless if all the state-action pairs only appear one time. The count of each
state will always be 1. This further causes higher storage memory and searching time problems.
In order to apply Dis-MACB and Cen-MACB, we need to find a method to solve the high-
dimensional space problem.

4.5.2 Hash Function

Learning from [46], we utilize a hash function to discretize the concatenated state and action
s||a into a k length hash code in the form of {−1, 0, 1}k which is used for counting. The main
idea is to alleviate the one-time appearance problem by mapping similar state-action pairs into
the same hash code. At the same time, the non-similar pairs should map to different hash
code. The hash function used in [46] is called SimHash [8], which discretizes the states by the

13

(a) 2000 points (b) k = 8 (c) k = 16 (d) k = 32

Figure 2: Using a SimHash function to group 2000 points with k = 8, 16, 32. The points
that map to the same hash code are given the same color. With k increasing, there are
more groups and fewer points that map to the same code.

angular distance. The SimHash function φ(s||a) returns a k length hash code of the states
and actions by:

φ(s||a) = sgn(A · s||a) ∈ {−1, 0, 1}k, (18)

where A is a predefined k×D matrix with i.i.d. entries which sample from a standard Gaussian
distribution, D is the size of the state-action s||a and k is the length of the hash code which
controls the granularity. With a larger k, the hash code becomes longer which leads to less
state-action pairs mapping to the same code. The function sgn() is used to map a real number
into {−1, 0, 1}:

sgn(x) =

−1 if x < 0,

0 if x = 0,

1 if x > 0.

(19)

Following Equation 18, the SimHash function returns a {−1, 0, 1}k code. To demonstrate how
the SimHash function maps similar states into the same code, we randomly draw 2000 points
in range (−1, 1) and show the grouping results with k = 8, 16, 32. The points that map to the
same hash code are grouped with the same color. Figure 2 shows how the SimHash function
groups 2-dimensional points angularly. If the size of the concatenated state is large, a smaller
k can be used to map similar state-action pairs into the same code. However, if the hash code
is too short, useful information can be lost which can affect the learning process negatively.
For example, if the agent’s task is to navigate to the star position in Figure 2b as fast as
possible, a Count-Based strategy can help the agent avoid exploring areas that have been
visited before. In our example, the problem that occurs when k = 8 is that the area with the
star covers a large portion of the states. If the agent visits this area and doesn’t find the star,
it becomes less probable to visit that area again as a result of the Count-Based exploration
strategy. Therefore, a suitable k needs to be chosen for optimal results.

After decreasing the scale of state-action pairs using the SimHash function, we can use the
corresponding hash code in the MACB strategy. The intrinsic reward is calculated by:

r+
t (st, at) =

1√
n(φ(st||at))

(20)

The pseudo-code of Centralized MACB with the SimHash function is shown in Algorithm 2.
After initializing the learning algorithm, we prepare the empty count table. Instead of initializing
N tables for each agent, only 1 table is initialized and shared by all the agents to count the

14

joint state-action pairs. The benefit of sharing only 1 table is that all the agents can utilize
it to share information. This ensures that the exploration progress of each agent is consistent
and finds the best cooperation method more effectively.

Next, we set the hyper-parameters β for the exploration and exploitation trade-off and k
for the granularity of the hash code. With k and D we can initialize the matrix A. After
the initialization, we can begin the learning process. For each time-step, after collecting a
transition, we update the count of the joint state-action pair in the table. During the training
process, we randomly sample a batch of transitions and then map the sj||xj of each sample
to a hash code. Next, we use the count of this hash code to calculate the new reward r′j for
each sample. The new reward is used to update the critic and actor networks. The MACB
strategy may fail if the update of the count and the calculation of the intrinsic rewards are
not separated. This means that we have to update the count after collecting a transition, not
when sampling this transition during training. A transition can be sampled many times during
training, which results into increasing the count of the corresponding state-action pairs too
fast, making the intrinsic bonus vanish after the first few episodes. In addition, the intrinsic
reward of a state-action pair should be calculated after sampling a transition, rather than
including them in the transitions in the replay buffer. The latter would cause identical state-
action transitions in the replay buffer to have different rewards. When the random samples
have earlier transitions, the reward does not correspond to the count. This would result into
inaccuracies during training, as earlier transitions would not have the corresponding rewards
for the current situation.

Algorithm 2: Centralized Multi-Agent Count-based strategy (Cen-MACB)

Initialize multi-agent learning algorithm (e.g. Cen-MADDPG)
Initialize an empty hash tables C where the new key initialize with value 0
Initialize hyper-parameters β for trade-off and k for hash code granularity
Initialize matrix A ∈ IRk×D with i.i.d. entries sample from a normal distribution
for episode = 1 to M do

for t = 0 to T do
Collect transition (st, xt, rt, st+1) and store in the replay buffers
Compute hash code using SimHash function
φ(st||xt) = sgn(A · st||xt) ∈ {−1, 1}k

Update the count in the table C, n(φ(st||xt)) = n(φ(st||xt)) + 1
for agent i = 1 to N do

Sample a random minibatch of S samples (sj, xj, rj, sj+1) from replay
buffers

Compute hash code of each state-action pair φ(sj||xj)
Calculate the new reward r′j = rj + βr+

j where r+
j = 1√

n(φ(sj ||xj))
Update critic and actor using the new reward r′j

end

end

end

We conclude all the methods introduced above in Table 1. There are two types of multi-agent
learning algorithms: Distributed and Centralized MADDPG. The Distributed MADDPG only

15

considers the local observations and actions while Centralized MADDPG utilizes the framework
of Centralized training (update actor and critic with a joint state-action for evaluation) and
decentralized execution (only use local observation to choose action). We also have two types
of multi-agent exploration strategies: Distributed and Centralized MACBs. The Distributed
MACB strategy uses N count table for each agent to record their local observation-action.
Before updating the count, a SimHash function φ is applied to the pairs. The same as the
centralized training, the Centralized MACB strategy counts the joint state-action of all the
agents. But in this case, we only initialize 1 table for all the agents to share information.

Table 1: This table concludes the learning algorithms and exploration strategies we intro-
duced above. The description is the main difference between them.

Methods Description
Learning
Algorithm

Dis-MADDPG Update with oi and ai
Cen-MADDPG Update with s and x

Exploration
Strategy

Dis-MACB Count φ(oi||ai) using N tables
Cen-MACB Count φ(s||x) using 1 table

5 Experimental design

So far, we have introduced two multi-agent learning algorithms (Distributed MADDPG and
Centralized MADDPG) and two adaptions of the Count-Based strategy for multi-agent explo-
ration (Distributed MACB and Centralized MACB). Note that in the following sections, when
we mention Distributed MACB and Centralized MACB, they include the SimHash function.
We use ”without Hash” for not including the SimHash function. Recall that the two main
problems we study in this thesis are 1) how to effectively explore an multi-agent environment
and 2) how to balance the exploration and exploitation. Rather than relying on random action
noise, we propose Dis-MACB and Cen-MACB in order to achieve a more effective exploration.
In this section, we explain in detail how we investigate the impact of using MACB strategies
with multi-agent learning algorithms for the first problem. The trade-off between exploration
and exploitation is controlled by hyper-parameter β and also correlates to k. The detail of
the experiments for finding the suitable parameters to balance exploration and exploitation are
included in section 5.2.4. Our code can be found in Github 1 and the reproduction details can
find in Appendix A.

5.1 Measurements

5.1.1 Success Rate

The success rate is the most direct measurement to evaluate an exploration strategy. With a
better exploration strategy, the agents can probe the environments faster and therefore find
optimal solutions with fewer episodes. For the navigational task, success means that all the
landmarks are covered by the agents before an episode finishes. After each episode of training,
we run 10 more episodes for evaluation. In the evaluation episodes, the actions applied to

1https://github.com/JianingWang99/CentralizedCountBased

16

https://github.com/JianingWang99/CentralizedCountBased

the environment are without random noise. The success rate of an episode we use in all the
experiments is the number of times that the agent succeeded over 10 evaluation episodes
#success

10
. We can measure the effectiveness of an exploratory strategy from the trend of the

success rate and the speed at which it converges.

5.1.2 Time Complexity

Additional exploration methods require more time to process and the time complexity differs
between different strategies. We cannot say that an exploration strategy is effective when it
helps the success rate converge with fewer episodes but each episode requires much more time
to process. We measure the time complexity with the average time-step being processed per
second. If this value is high, it means that there are more time-steps that can be processed in
a second, and each episode costs less time. In comparison to the success rate where the data
is from the episode evaluation, the time complexity records the speed of the algorithms during
training. All of the experiments run on the same machine with the same version of software.

5.1.3 Count-1 Percentage

For the Count-Based strategy, we are also interested in the performance of the SimHash
function to alleviate the high-dimensional space problem. Therefore, Count-1 Percentage is
used to calculate the percentage of key s||a in the count table that only appears one time
(value = 1) over all the pairs.

5.1.4 Number of Collisions

In the N -Agent Navigation task, we want the agents to cover all the landmarks without
collision. If a collision occurs, the agent gets punished by receiving a negative reward. Besides
the success rate, we can also use the number of collisions to reflect the performance of agents.
The number of collisions for an episode is the accumulated collisions from episode 0 up to the
current episode.

5.2 Experiments

The general plan of our experiments is to evaluate the exploration strategies from simple to
complex environments. For each experiment, we mention what exploration strategy we evaluate
with which learning algorithm and environment. In addition, we include the expected results
for some of the experiments.

5.2.1 Count-Based with 1-Agent Navigation

Before moving to the multi-agent tasks, we first test the Count-Based strategy with the
DDPG learning algorithm on the N -Agent Navigation environment where N = 1. This ex-
periment aims to find a general idea of how to choose β for the multi-agent tasks. We
compare the success rate of the agent with a different amount of exploration where β =
{0.0, 0.2, 0.4, 0.6, 0.8, 1.2}. When β = 0.0, the agent only uses random action noise to ex-
plore the environment, which provides a baseline for the Count-Based strategy. According to
[46] using Count-Based and SimHash function for single-agent exploration, when β is too
large, the intrinsic reward will overwhelm the extrinsic reward. Recall that the extrinsic reward

17

for this environment is 0 when the agent covers the landmark and −1 otherwise. As noted
in [46], β should be smaller than 1.0. We increase β with 0.2 intervals from 0.2 to 0.8 in
our experiment and compare their performances. In [46], they also show that β = 0.2 has a
better performance. We want to see if this is true in our experiments. We also want to see the
performance of the Count-Based method when the intrinsic reward overwhelms the extrinsic
reward and choose β = 1.2 to evaluate.

5.2.2 MACB with Fully Observed Environment

In this experiment, the environment is N -Agents Navigation where N = 2. This environment
is fully observable by the agents. We first evaluate MACB with the Distributed MADDPG
learning algorithm. We evaluate whether the MACB can help accelerate the learning process
and whether it is effective according to the time complexity. In addition, to show the effective-
ness of the SimHash function, we compare the performance of Dis-MACB with and without
Hash function. In paper [46] they run experiments with k = {64, 128, 256}. Regardless of the
value of k, their method always outperforms the random noise exploration strategy. For our
experiments, we use k = 64 for this experiment.

The second experiment on this environment is to evaluate MACB with the Centralized MAD-
DPG learning algorithm. We want to evaluate whether our exploration strategies can improve
the performance of different learning algorithms. In addition, according to [46], only using
states for counting has almost the same result as using state-action pairs. We also run experi-
ments to compare these two cases, because if using states to count has the same performance,
we can further reduce the dimensionality. The parameters are the same as the experiments
with Distributed MADDPG.

5.2.3 MACB with Partially Observed Environment

The experiments we explained so far aim to evaluate the performance of our MACB strategies
with different leaning algorithms. We also want to know their performance in a partially
observed environment, therefore we evaluate the effect of MACB with Centralized MADDPG
in the Communicative Navigation environment. This environment is partially observed and
the Distributed MADDPG method does not show learning tendency [23], therefore we do not
include Dis-MADDPG in this experiment. An exploration strategy can only help a learning
algorithm perform better, but can not help a learning algorithm that cannot learn at all. Recall
that this environment has two types of reward functions, so in this experiment we evaluate
whether the MACB strategies can accelerate the learning of Centralized MADDPG with sparse
and dense reward settings. To do so, we modify the original dense reward function into a sparse
reward function that returns 0 if the task is achieved and −1 otherwise.

5.2.4 Exploration and Exploitation

The second problem of this thesis is to balance the trade-off between exploration and ex-
ploitation. Learning from [46], a large β emphasizes exploration and may lead the agent to
neglect the extrinsic reward from the environment. A small β may cause the agent to not
explore enough, leading to never obtaining a positive reward. The minimum value of β is 0 in
our experiments which means that the algorithm completely neglects the advantage of MACB
exploration.

18

In order to address the high-dimensional space problem, we utilize a SimHash function that
maps the pair with continuous value into a k length binary code. With a bigger k, there are
more possible φ(s||a) that need to be visited and this may require a larger β to encourage
more exploration. So the exploration and exploitation trade-off correlates to both β and k. In
our final experiment, we would like to see how different β = {0.05, 0.2, 0.4, 0.8} with different
k = {32, 64, 256, 512} influence the performance of Cen-MACB with Cen-MADDPG on the
Communicative Navigation problem. We want to see if our results can prove that with the
same β, a higher k leads to a better result [46]. We use a table to conclude the average success
rate after 4× 104 episodes of training for a different combinations of β and k.

6 Results

In this section, we show the results of our experiments. For visibility purposes, all the graphs
are smoothed and averaged over 3 random seeds with standard deviation and 75% confidence
interval. We include the parameters for the learning algorithms in Appendix A.

Figure 3: The success rate of DDPG algorithm on the 1-Agent Navigation problem with
and without Count-Based exploration strategy. β = 0.0 is DDPG without Count-Based
strategy. When 0 < β < 1, the maximum value of intrinsic reward is less than the
maximum value of extrinsic reward. When β > 1, the maximum intrinsic reward is larger
than the maximum extrinsic reward.

6.1 Count-Based Exploration with DDPG

Figure 3 shows the average success rate (details in section 5.1.1) of the Count-Based explo-
ration strategy with the DDPG learning algorithm on the 1-Agent Navigation problem. We
compare the success rate of the Count-Based strategy with β = {0.0, 0.2, 0.4, 0.6, 0.8, 1.2}.
The agent randomly explores the environment with β = 0.0 which provides a baseline for the
Count-Based strategy. As we see, the success rate of β = 0.0 starts to increase steadily from
around 1000 episodes and converges at around 4000 episodes. When β becomes larger than

19

0.0 and smaller than 1.0, the success rate increases faster than β = 0.0 before 1000 episodes
and converges faster, especially when β = 0.6 and β = 0.8. Our results are different than
[46], where they conclude that the agents’ performance peaked at around β = 0.2 in the
single-agent Atari game: Frostbite. In our experiment, a higher value of β can help the agent
effectively probe the environment and find the landmark quickly. However, when β = 1.2,
the agent shows no learning. This is because the exploration bonus overwhelms the extrinsic
reward, which makes the agent always focus on exploring new areas, rather than reaching the
landmark. The results of this experiment show us that the Count-Based strategy can help
the agent find the landmark and converge faster, as long as the maximum intrinsic reward is
smaller than the maximum of the extrinsic reward.

6.2 MACB Strategies with Dis-MADDPG

In this experiment, we show the results of the MACB strategies with Distributed MADDPG
algorithm on the 2-Agent Navigation problem (fully observable). Figure 4 shows the success
rate of the Dis-MADDPG algorithm with 3 different Count-Based strategies but has the same
amount of exploration (β = 0.7). First, we notice that by only increasing 1 agent in the
navigation task, the number of episodes that the agents need to tackle the task increases
dramatically. For the single-agent task, the DDPG algorithm itself can converge before 5×103

episodes. For the 2 agents problem, although the Dis-MADDPG algorithm increases steadily,
it requires around 5× 104 episodes to converge, 10 times more than the single agent problem.
This is because there are more states that need to be explored in the multi-agent environment.
The length of the state is increasing from 4 for one agent to 18 for two agents and each value
in the state is continuous. Since multi-agent environments have more states that need to be
explored, it needs an effective exploration strategy.

Figure 4: The success rate of Dis-MADDPG learning algorithm on the 2-Agent Navigation
problem with 3 different MACB exploration strategies. All 3 exploration strategies can
help to accelerate the learning, and the Dis-MACB has the most stable effectiveness when
we apply it on the Dis-MADDPG algorithm comparing to the other two MACB.

20

When we add multi-agent count-based strategies on the Dis-MADDPG, from Figure 4 we see
that with the help of 3 different MACBs the success rate increases faster and converges with
much less training episodes. Specifically, they only require around half of the episodes to reach
the same success rate as the Dis-MADDPG. Furthermore, we can see that the trend of the
success rate of these 3 MACB strategies is almost the same. The surprising result is from the
Dis-MACB without Hash, because it shows that it performs almost the same as the Dis-MACB
despite the fact that there is no grouping of similar states, which makes the Count-Based
strategy meaningless. We believe this may be because of different extrinsic reward settings.
The extrinsic reward in this environment is calculated by −(n+m)/2 where n is the number
of landmarks that are not covered, m is the number of collisions. We normalize the reward by
dividing the result with the number of total agents, which is 2 in our case. Since n ∈ {0, 1, 2}
and m ∈ {0, 1} for 2 agents, the extrinsic reward is [0,−0.5,−1.0,−1.5]. By adding a bonus
of 0.7 to all the scenarios, the reward becomes [0.7, 0.2,−0.3,−0.8]. We change the extrinsic
reward setting to the later. The Dis-MADDPG with the later reward as extrinsic reward has
the same performance as the Dis-MACB without Hash. The Dis-MACB without Hash method
improves the performance because of the different extrinsic reward settings, not because of the
Count-Based strategy. We also notice that with Cen-MACB, the performance is slightly worse
than the Dis-MACB and converges at around 80% success rate. This may be because the loss
function of the action-value function (Equation 12) in the Dis-MADDPG only considers the
local observation and action, but the intrinsic reward considers the joint pairs of all the agents,
which leads to a mismatch of information. So when using the Dis-MADDPG learning algorithm
in the 2-Agent Navigation problem, Dis-MACB is the most stable strategy that stimulates the
learning over these 3 MACB strategies.

(a) Time Complexity (b) Count-1 Percentage

Figure 5: The time complexity of MACB strategy. Figure (a) shows the number of steps
that a method can process per second over the training episodes. Figure (b) shows the
percentage of φ(s||a) that only appears one time in the count table which can reflect the
effect of SimHash function.

Before moving to the second learning algorithm, we want to talk about the time complexity
of these 3 exploration strategies. Additional exploration requires more time to process. If a
strategy requires much more time than simply using random exploration, it is not considered
effective. Figure 5a shows the average time steps processed in a second of each methods.
The large drop for all the methods at the beginning is because the agents only collect data

21

and do not train the policies during the first 100 time steps. It is understandable that the
Dis-MADDPG without any MACB strategies can process more time steps in a second. The
time efficiency of the Dis-MACB and Cen-MACB are close to each other. Most importantly,
without the hash function, it spends more time processing each time-step. Therefore, the hash
function does not only alleviate the states that only appear one time, but also improves the
time efficiency.

For a more obvious comparison, we calculate the required time for Dis-MADDPG and Dis-
MACB without Hash by combining the success rate and the time-step per second together. If
the lowest time-efficient method costs less time to converge, we can say that all 3 MACB are
effective based on the success rate and the time efficiency. To calculate that, the agents use
around 2.5 × 104 episodes to handle the task with MACB, and around 5 × 104 without the
help of MACB. The minimum time steps that are processed for the Dis-MACB without Hash
is around 12, and 18 for the Dis-MADDPG. Each episode has 20 time steps. So the time for
Dis-MACB without Hash is 2.5×104×20

12
≈ 41666 seconds, which is less than 5×104×20

18
≈ 55555

for the Dis-MADDPG. Therefore, we can say that the MACB are effective based on the success
rate over the episodes and the time it takes to process extra exploration.

The reason why the hash function can improve the time efficiency of the MACB strategy is
that it helps to map similar state-action pairs to the same key. This decreases the number
of items in the table and saves searching time. The count-1 percentage in the Figure 5b
also reflects this. With a higher count-1 percentage (Dis-MACB without Hash > Cen-MACB
> Dis-MACB), there are fewer steps that can be processed per second (Dis-MACB without
Hash < Cen-MACB < Dis-MACB). Without the hash function, all the state-action pairs only
appear one time and less steps be processed per second. With a hash function and the same
k, the possible combinations of state-action pairs of the Cen-MACB is more than those of the
Dis-MACB, and therefore the count-1 percentage of Cen-MACB is higher than Dis-MACB.

6.3 MACB Strategies with Cen-MADDPG

In the previous section, we evaluate the performance of MACB with the Dis-MADDPG algo-
rithm. In this section, we show the results of them when applied to the Centralized MADDPG
learning algorithm. We first evaluate on the 2-Agent Navigation (fully observed environment)
and then on the Communicative Navigation (partially observed environment).

2-Agent Navigation

Figure 6 shows the success rate of the MACB methods on the 2-Agent Navigation problem. We
first observe that the Cen-MADDPG agents learn gradually over episodes and fully grasp the
problem after around 4× 104 episodes, which slightly outperforms the Dis-MADDPG agents.
All of the MACB strategies can promote the speed of learning and converge before 3 × 104

episodes. Because the MACB converges at different episodes over 3 random seeds, the average
success rate does not reach to 100% in Figure 6. In addition, if we continue training after
convergence, the success rate gradually decreases. Therefore, it is better to use Early Stopping
when training the agents using MACB strategies. Since 2-Agent Navigation environment is fully
observable, Dis-MACB and Cen-MACB have almost the same performance when counting the
state-action pairs. Furthermore, in comparison to [46] where the state-action pairs counting
has almost the same result as only counting the state, our results show that counting the
state-action pairs has a better performance. The count with actions include a more detailed

22

information that describe the current exploration situation, which may be the reason for a
slightly better performance.

Figure 6: The success rate of the Cen-MADDPG learning algorithm on the 2-Agent Nav-
igation problem with 3 different MACB exploration strategies. We compare the perfor-
mance of Distributed MACB, Centralized MACB strategies, and the difference perfor-
mance of counting the state-action pairs and only the states. All the MACB strategies
can accelerate the learning of the Cen-MADDPG algorithm.

Figure 7: The accumulated number of collisions during episodes on the 2-Agent Navigation
environment. With the help of MACB strategies, the agents with both Distributed and
Centralized MADDPG learn how to cooperation faster and avoid colliding.

Except the success rate, we compare the accumulated number of collision between Distributed
and Centralized MADDPG with the MACB strategies in Figure 7. According to [23], their result
shows that the position of the Cen-MADDPG agents is a little closer to the landmarks than the

23

Dis-MADDPG agents. Although we do not have the policy ensembles as they do, our results
are the same as theirs. The success rate of the Cen-MADDPG agents slightly outperforms the
Dis-MADDPG. The policy ensembles can improve the stability of the Centralized MADDPG.
In addition, [23] also mentions that the Cen-MADDPG agents only have half of the number
of collisions. As shown in Figure 7, our result shows that the number of collisions of the Cen-
MADDPG is more than that of Dis-MADDPG, which is contrary to their results. However,
after we apply the MACB strategies, the accumulated number of the collisions after 5 × 104

episodes vastly decreases, especially for the Cen-MACB, which decreases the number to less
than half. These results reflect that the MACB exploration can help the agents find the optimal
cooperation strategies with less episodes and therefore the total number of collisions becomes
less.

Communicative Navigation

In section 2.2 we introduce the Communicative Navigation environment which is partially ob-
served. In this environment, the agents require a centralized method that takes the information
of other agents into account to solve the non-stationarity problem. Figure 8 shows the success
rate of MACB strategies in 2 different reward settings.

Figure 8: The success rate of Cen-MADDPG learning algorithm and MACB strategies on
the Communicative Navigation problem with sparse reward and distance reward settings.
In the sparse reward environment, the Cen-MACB strategy can help the agents find the
optimal solution faster. It’s success rate converges to 100% with less than 2×104 episodes.

In the sparse reward environment, the Centralized MADDPG agents learn slowly and only
surpass 40% success rate after 4× 104 episodes of training. While with the help of Dis-MACB
the success rate increases to around 70% at 4 × 104 episodes, the agents with Cen-MACB
strategy can reach 100% success rate with only 1.5 × 104 episodes. Both MACB strategies
have the same β (0.8) and k (512). This proves that in the partially observed environment, a
centralized method is required to achieve a better performance. In addition, with the help of
both MACB strategies, the success rate starts to rapidly increase at around 1× 104 episodes.
This shows that the Count-Based strategy requires a number of episodes to encounter many

24

different scenarios, and once the agents receive positive rewards, the success rate starts to
increase rapidly.

In the environment with distance reward, the agents start to learn when the training begins, and
the success rate increases steadily until converge. Under the sparse reward setting, the agents
receive the same negative reward at the start of training and have no learning signal until the
speaker covers the target landmark. Once the agents in the sparse reward environment receive
the non-negative reward, the success rate increases faster than the agents in the distance
reward environment. If the agents have an effective exploration strategy which can help them
to find the optimal solution with less episode, their success rate can converge at almost the
same episode as the agents in the distance reward environment. We believe this is a very
important feature, as it can be applied in many sparse reward environments without the need
of reward shaping. We also observe that after tuning the parameters, the learning process
for the agents in the sparse reward setting with an effective exploration strategy (Sparse +
Cen-MACB) can even outperform the agents in the dense reward (Distance). In addition, we
apply Cen-MACB on the Distance reward. Following the finding that the intrinsic reward has
to be smaller than the extrinsic reward, we use β = 0.1 to control the amount of intrinsic
reward. The results show that the Cen-MACB strategy makes Cen-MADDPG slightly worse in
the dense reward setting. Both distance and count bonus confuse the agent. Most importantly,
if an environment does not have a sparse reward setting, it does not need an intrinsic reward
to boost learning.

6.4 Exploration and Exploitation

In this section, we show the results of the trade-off between exploration and exploitation with
Centralized MACB and Centralized MADDPG algorithms. We evaluate on the Communicative
Navigation problem. Table 2 concludes the average success rate and the count-1 percentage (sr,
c-1) after 4×104 episodes of training with different combinations of β and k. With the help of

Table 2: The table concludes the success rate (sr) and count-1 percentage (c-1) of the
Cen-MACB with Cen-MADDPG on the Communicative Navigation with different ratio
of exploration β and length of hash code k.

k
β 0.0 0.05 0.2 0.4 0.8

sr, c-1 sr, c-1 sr, c-1 sr, c-1 sr, c-1

- 47%, - - - - -
32 - 59%, 67% 60%, 68% 56%, 71% 53%, 74%
64 - 72%, 91% 60%, 91% 34%,91% 72%, 94%
256 - 25%, 99% 82%, 99% 43%,99% 81%, 99%
512 - 75%,100% 48%,100% 75%,100% 100%,100%

random noise exploration (β = 0.0), the agents reach around 47% success rate. From the table
we see that the MACB method can help the agent obtain a higher success rate in most of the
parameter combinations. When k = 32, the performance of MACB just slightly outperforms
random noise method. As we discuss in section 4.5.2 with the star example when k = 8, if the
hash code is too short, useful information can be lost which affects the performance of MACB.
When k ≥ 64, the success rate has at least two peaks with different values of β. The peaks

25

are highlighted in a bold style. When k increases, there are more different hash codes which
requires a larger β to emphasize exploration. Therefore, the first peak is at a relatively larger
β when k is bigger. For three different k, they all have a peak when β = 0.8. This is contrary
to [46] where their agent reaches a higher success rate when β = 0.2. This means that the
best combination of β and k is different in different environments. We also observe that the
count-1 percentage increases when k increases and converges to 100% with k = 512 in this
environment. Importantly, when c− 1 = 100%, the success rate can surpass 75% in most of
the time. With the help of count-1 percentage, we can know whether we need to increase k
or not. Note that the count-1 percentage here is the one after 4× 104 episodes of training. It
is not always at 100% as the MACB without hash function we show above.

In conclusion, when tuning k, we can increase the value of k until its count-1 percentage
converges at 100%. When k is too big, the hash function may loose its meaning and the
search time and storage memory becomes high. With a larger value of k, the agents need
to explore more state-action pairs and require a larger β. When choosing β, we also need to
make sure that the maximum value of the intrinsic reward is smaller that the maximum value
of extrinsic reward.

7 Discussion

In this section, we discuss the problems we encountered in adapting the single-agent exploration
method to the multi-agent exploration method. In addition, we further discuss how to balance
the trade-off between exploration and exploitation based on our experimental results. We also
summarize the weakness of the MACB method, as well as our future work.

7.1 From single-agent to multi-agent exploration

Count-Based is an effective method in single-agent exploration. The main purpose of our thesis
is to adapt it to multi-agent exploration strategy. In addition to Count-Based method, there are
many other single-agent exploration methods that can be adapted to multi-agent exploration,
such as VIME [14, 27] and prediction error of feature encoder [33, 42], which we mention in
the related work section (section 3). We encountered two problems in the process of adapting
the Count-Based method. These two issues are also worth noting in the adaptation process
of other methods. These issues include the high-dimensional state and action space problem,
and the non-stationarity caused by the multi-agent environment.

The causes of high-dimensional space problem are different in fully observable environments and
partially observable environments. In a fully observable environment, an observation includes
all the information the agent needs in order to make a decision. The observation of a multi-
agent environment needs to include information about teammates, which leads to the problem
of high-dimensional space. If we can solve this problem, we can easily apply the single-agent
exploration method to the multi-agent problem. A fully observable multi-agent problem can
be simply broken down into multiple independent single-agent tasks. We only need to treat
each agent as a single agent and design their learning algorithms and exploration strategies,
just like Distributed MADDPG and Distributed MACB.

Partially observable environments do not only have the high-dimensional space problem, they
also face the problem of environmental non-stationarity. Different from the fully observable

26

environment, the observation of the partially observable environment does not need to include
all the information that the agents need to make decisions. The high-dimensional space problem
arises when we address the problem of the non-stationarity environment. The Centralized
MADDPG method uses a centralized evaluation framework to solve this problem. Inspired
by them, we extend the exploration method to a centralized one. For each agent in the
partially observable environment, in order to solve the non-stationarity problem, they consider
the observations and actions of their teammates, which causes the high-dimensional space
problem. In addition to addressing the non-stationarity problem, considering the information
of other agents makes Count-Based a method that can explore environment and come up with
different ways of cooperation with their teammates at the same time, which is important for
the collaborative multi-agent tasks.

The non-stationarity problem has been solved through centralized framework and there are
many ways to address high-dimensional space problems. In this thesis we utilize a SimHash
function that maps similar state-action pairs to the same code. However, if the state is in pixel
space (such as StarCraft II [51]), another method is required (such as autoencoder) to extract
the important features from the pixels. A simple hash function can not appropriately map
similar pixel states into the same code [46]. Besides the methods to decrease the dimensionality
for the Count-Based method, in the related work section (section 3) we also summarized other
methods that utilize neural networks to predict intrisic reward for the high-dimensional space
environments.

After addressing these two problems, our MACB methods effectively promote the agent’s learn-
ing speed, whether it’s in a fully observable environment or a partially observable environment.
Our results show that Distributed MADDPG with the help of our Distributed MACB can re-
duce the number of episodes required for convergence by half in the 2-Agent Navigation task.
In Communicative Navigation tasks, the Centralized MACB method increases the success rate
of the Centralized MADDPG from around 47% (with 4 × 104 episodes of training) to 100%
(with only 1.75× 104 episodes of training).

7.2 Intrinsic Reward and Extrinsic Reward

In the intrinsic reward method, the trade-off between exploration and exploitation is controlled
by the ratio of intrinsic reward and extrinsic reward. We use β to control this ratio as shown
in Equation 16. If we have a clear goal, the maximum value of intrinsic reward cannot exceed
the maximum value of extrinsic reward, otherwise the agent pays too much attention to the
intrinsic reward and ignores the original task. From [33] we learn that we can also use intrinsic
rewards for training even without extrinsic rewards from environment. Their results show that
the agent can learn to play Super Mario game with only intrinsic rewards. Another rule for
choosing β is based on the number of different states that your tasks have. If the agent needs
to explore a particularly large number of states, then it needs a large β to focus on more
exploration.

In section 4.5.2 we discuss about the bonus vanishing problem when explain Algorithm 2.
When we apply the Count-Based method on the multi-agent learning algorithms which utilize
a replay buffer, the best time to update the count for a state-action pair is after collecting
them during the simulation as shown in the Algorithm 2. The intrinsic reward vanishes if we
update the count after sampling transitions during training. When using a replay buffer for
sample efficiency, a transition may be sampled a lot of times during training and the count of

27

this sample gets incremented too fast. Therefore, when using intrinsic rewards for exploration,
we should pay attention to the vanishing problem. Check the update speed of the intrinsic
reward, and avoid all of the intrinsic reward approaching to zero in the first few episodes of
training.

7.3 Drawback of MACB

The main drawback of our MACB methods comes from the use of the SimHash function that
address the high-dimensional space problems. Due to limited computing power, we did not
experiment with more than two agents to evaluate our methods. We are not sure whether the
hash function can summarize the information well after increasing the number of agents. In
addition, the hash function cannot extract information well when the state is represented by
raw pixels [46]. For future work, an autoencoder can be used to decrease the dimensionality of
the state-action pairs. What’s more, we use a table to store the count which greatly increases
the computational time of the MACB methods. For future work, a neural network can be
used to predict the pseudo-count [3, 30] of a state-action pair. Combining the above two
future work, we can extend MACB methods to multi-agent exploration in pixels. In that case,
a possible approach can be that the state-action pair gets passed to the autoencoder and
the output code gets passed to a neural network that predicts its pseudo-count. We use this
pseudo-count to calculate the intrinsic reward.

Recall that Cen-MACB is not stable in the 2-Agent Navigation task. The success rate of using
Cen-MACB decreases after converging in Figure 6. We suggest that we can use Early Stopping
to solve this problem. Another possible solution to address this can change the MACB method
with a decaying β.

Another disadvantage is that the exploration method can only help the learning method learn
faster. If computing power is not a problem, we only need to choose a good learning algorithm
to solve the task. However, Count-Based is easy to implement and only needs to tune two
parameters. Finding the best parameters is not difficult, k can be adjusted according to count-
1 percentage, and β can be selected according to the number of the state-action pairs and
the extrinsic reward.

8 Conclusion

In order to effectively explore the multi-agent environments with sparse reward setting, we ex-
tend the Count-Based method to Distributed and Centralized Multi-Agent Count-Based. We
use the SimHash function to solve the high-dimensional space problem, and at the same time
use a centralized method to solve the non-stationarity problem of the multi-agent environ-
ment. The centralized method also helps the Count-Based strategy to achieve simultaneously
exploring the environment and the cooperation in the cooperative multi-agent task. After se-
lecting suitable parameters β and k, both Distributed and Centralized MACB methods can
dramatically promote the learning process of the multi-agent learning algorithm in fully and
partially observable environments, respectively. However, we only evaluate our methods in en-
vironments with a maximum of 2 agents where the states are not represented by pixels. Our
future work is to extend the MACB to work for environments whose states are represented
by pixels using an autoencoder instead of SimHash and a neural network instead of table to
predict the count.

28

References

[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2):235–256, 2002.

[2] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew, and I. Mordatch.
Emergent tool use from multi-agent autocurricula. arXiv preprint arXiv:1909.07528,
2019.

[3] M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos.
Unifying count-based exploration and intrinsic motivation. arXiv preprint
arXiv:1606.01868, 2016.

[4] W. Böhmer, T. Rashid, and S. Whiteson. Exploration with unreliable intrinsic reward in
multi-agent reinforcement learning. arXiv preprint arXiv:1906.02138, 2019.

[5] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. Openai gym, 2016.

[6] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

[7] L. Busoniu, R. Babuska, and B. De Schutter. A comprehensive survey of multiagent
reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 38(2):156–172, 2008.

[8] M. S. Charikar. Similarity estimation techniques from rounding algorithms. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages
380–388, 2002.

[9] T. Degris, M. White, and R. S. Sutton. Off-policy actor-critic. arXiv preprint
arXiv:1205.4839, 2012.

[10] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih,
R. Munos, D. Hassabis, O. Pietquin, et al. Noisy networks for exploration. arXiv
preprint arXiv:1706.10295, 2017.

[11] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1. MIT
press Cambridge, 2016.

[12] S. Gronauer and K. Diepold. Multi-agent deep reinforcement learning: a survey.
Artificial Intelligence Review, pages 1–49, 2021.

[13] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal,
C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and
Y. Wu. Stable baselines. https://github.com/hill-a/stable-baselines, 2018.

[14] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel. Vime:
Variational information maximizing exploration. arXiv preprint arXiv:1605.09674, 2016.

[15] S. Iqbal and F. Sha. Coordinated exploration via intrinsic rewards for multi-agent
reinforcement learning. arXiv preprint arXiv:1905.12127, 2019.

[16] N. Jaques, A. Lazaridou, E. Hughes, C. Gulcehre, P. Ortega, D. Strouse, J. Z. Leibo,
and N. De Freitas. Social influence as intrinsic motivation for multi-agent deep

29

https://github.com/hill-a/stable-baselines

reinforcement learning. In International Conference on Machine Learning, pages
3040–3049. PMLR, 2019.

[17] M. N. Katehakis and A. F. Veinott Jr. The multi-armed bandit problem: decomposition
and computation. Mathematics of Operations Research, 12(2):262–268, 1987.

[18] A. Krizhevsky and G. E. Hinton. Using very deep autoencoders for content-based image
retrieval. In ESANN, volume 1, page 2. Citeseer, 2011.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems,
25:1097–1105, 2012.

[20] K. Kurach, A. Raichuk, P. Stańczyk, M. Zajac, O. Bachem, L. Espeholt, C. Riquelme,
D. Vincent, M. Michalski, O. Bousquet, et al. Google research football: A novel
reinforcement learning environment. arXiv preprint arXiv:1907.11180, 2019.

[21] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[22] M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pages 157–163. Elsevier, 1994.

[23] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch. Multi-agent actor-critic
for mixed cooperative-competitive environments. arXiv preprint arXiv:1706.02275, 2017.

[24] R. McFarlane. A survey of exploration strategies in reinforcement learning. McGill
University, 2018.

[25] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In
International conference on machine learning, pages 1928–1937. PMLR, 2016.

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[27] S. Mohamed and D. J. Rezende. Variational information maximisation for intrinsically
motivated reinforcement learning. arXiv preprint arXiv:1509.08731, 2015.

[28] I. Mordatch and P. Abbeel. Emergence of grounded compositional language in
multi-agent populations. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[29] A. Ng et al. Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19, 2011.

[30] G. Ostrovski, M. G. Bellemare, A. Oord, and R. Munos. Count-based exploration with
neural density models. In International conference on machine learning, pages
2721–2730. PMLR, 2017.

[31] P.-Y. Oudeyer and F. Kaplan. What is intrinsic motivation? a typology of
computational approaches. Frontiers in neurorobotics, 1:6, 2009.

30

[32] B. O’Donoghue, I. Osband, R. Munos, and V. Mnih. The uncertainty bellman equation
and exploration. In International Conference on Machine Learning, pages 3836–3845,
2018.

[33] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by
self-supervised prediction. In International Conference on Machine Learning, pages
2778–2787. PMLR, 2017.

[34] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen, T. Asfour,
P. Abbeel, and M. Andrychowicz. Parameter space noise for exploration. arXiv preprint
arXiv:1706.01905, 2017.

[35] H. Ryu, H. Shin, and J. Park. Remax: Relational representation for multi-agent
exploration. arXiv preprint arXiv:2008.05214, 2020.

[36] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

[37] S. Shalev-Shwartz, S. Shammah, and A. Shashua. Safe, multi-agent, reinforcement
learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

[38] D. Silver. Lectures on reinforcement learning.
url: https://www.davidsilver.uk/teaching/, 2015.

[39] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic
policy gradient algorithms. In International conference on machine learning, pages
387–395. PMLR, 2014.

[40] S. Singh, A. G. Barto, and N. Chentanez. Intrinsically motivated reinforcement learning.
Technical report, MASSACHUSETTS UNIV AMHERST DEPT OF COMPUTER
SCIENCE, 2005.

[41] S. Singh, R. L. Lewis, A. G. Barto, and J. Sorg. Intrinsically motivated reinforcement
learning: An evolutionary perspective. IEEE Transactions on Autonomous Mental
Development, 2(2):70–82, 2010.

[42] B. C. Stadie, S. Levine, and P. Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

[43] A. L. Strehl and M. L. Littman. A theoretical analysis of model-based interval
estimation. In Proceedings of the 22nd international conference on Machine learning,
pages 856–863, 2005.

[44] A. L. Strehl and M. L. Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences,
74(8):1309–1331, 2008.

[45] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press,
2018.

[46] H. Tang, R. Houthooft, D. Foote, A. Stooke, X. Chen, Y. Duan, J. Schulman,
F. De Turck, and P. Abbeel. # exploration: A study of count-based exploration for deep

31

https://www.davidsilver.uk/teaching/

reinforcement learning. In 31st Conference on Neural Information Processing Systems
(NIPS), volume 30, pages 1–18, 2017.

[47] S. B. Thrun. Efficient exploration in reinforcement learning. 1992.

[48] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033. IEEE, 2012.

[49] G. E. Uhlenbeck and L. S. Ornstein. On the theory of the brownian motion. Physical
review, 36(5):823, 1930.

[50] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30,
2016.

[51] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo,
A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser, et al. Starcraft ii: A new
challenge for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

[52] T. Wang, J. Wang, Y. Wu, and C. Zhang. Influence-based multi-agent exploration.
arXiv preprint arXiv:1910.05512, 2019.

[53] L. Weng. Policy gradient algorithms. lilianweng.github.io/lil-log, 2018.

[54] L. Weng. Exploration strategies in deep reinforcement learning.
lilianweng.github.io/lil-log, 2020.

[55] R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

32

A Appendix

A.1 Training Detailed

The networks for actors and critics are with two hidden layers with the size of 400 and 300. The
activation function for both actor and critic is ReLU. After collecting 100 transitions, we begin
updating the network parameters at each time step. An episode consists of 20 time steps. After
an episode of training, we evaluate the algorithms with 10 more episodes without exploration
action noises. All the results are averaged over 3 random seeds. The hyper-parameters used in
the experiments are summarized in Table 3.

Table 3: Hyper-parameters used in experiments

Hyper-parameter Value

Buffer size 106

Batch size 100
Time-step per Episode 20

Learning rate for optimizer 0.001
γ 0.99
τ 0.005

A.2 Reproduction

We conclude all the information to reproduce the learning algorithms and exploration strate-
gies in this thesis. Before that, we talk about the changes we made in the environment. The
description of the environments is in the problem statement (section 2) and the Markov Games
sections (section 4.2). The code for environments are in the ”ma env/” folder. Communica-
tive Navigation environment uses ”simple speaker listener” file. The original extrinsic reward
function is the minus distance of the listener to the target landmark. We change the reward
to sparse based on whether the listener covers the target landmark or not. Both agents and
landmarks in the environment are represented with a circle. If the distance between the center
of the listener and the center of the target landmark is smaller than the sum radius of them,
reward function returns 0 and −1 otherwise. The distance here is the euclidean distance. To
calculate the success rate, we add a function to return 1 if the listener covers the target and
0 otherwise. The code to show the communication signals can be found in ”environment.py”
file. We use 3 small circles to represent the signals, and the signal that has the maximum value
is showed in a darker color. For example, if the signals are with values [0.99, 0.5, 0.4], the first
circle is shown in a darker color. To simplify the task, we also change the size of the agents
and landmarks.

For the learning algorithms, we do not write our code from scratch. Instead, we start by using
the code of DDPG algorithm from Stable-Baselines3 [13]. Our first step is applying this DDPG
algorithm on 1-Agent Navigation environment which is provided together with other multi-
agent environments in [28]. They name this single-agent environment ”simple”. We do not
change the default hyper-parameters settings of DDPG method from Stable-Baseline3.

33

After DDPG algorithm learns the single-agent task, we adapt it to Distributed MADDPG fol-
lowing Algorithm 1. The basic 3 parts of code we need to change from DDPG are initialization,
transitions collection, and training. During initialization, we need to initialize actors, critics,
and their target networks for all the agents. Each agent has a replay buffer. During transitions
collection, the multi-agent environments return a list of states, next states, actions, rewards,
dones which includes the data for all the agents. When executing actions in the environment,
we need to collect all of the actions from the agents first, and then execute them together in
the environment. Since each agent has its own replay buffer, we store the transitions of each
agent in their own replay buffer. During training, we train the critics and the actors of each
agent one by one. For the Centralized MADDPG, we joint all the observations and actions of
all the agents together for training following the update Equation 14 and 15. The MADDPG
authors [23] also provide the code, where they use TensorFlow packages for their neural net-
works. The code of Baselines3 we adapt from uses Pytorch. We only reproduce the centralized
training and decentralized execution part from the MADDPG paper [23]. They also come out
with Policy Ensembles which we have not reproduced. Besides, we assume that the agents can
know the observations and policies of other agents.

The code of Count-Based also includes 3 parts: initialization, update count and calculation
of intrinsic reward. The table we use is ”defaultdict” which value’s format is integer. When a
new key gets store in this dictionary, the default value of this key is 0. The key in our case
is s||a array and the value is the number of times that this pair appears. In addition, before
using s||a as the key we convert it to bytes. When updating a count, the update function
receives a state-action pair, converts it to bytes format, searches this key in the dictionary and
adds 1 on its value. When calculating the intrinsic reward of a state-action pair, we convert it
to bytes format first, and then search the value of this key, and apply it in Equation 16. The
SimHash function receives a pair and converts it to hash code using Equation 18 and then the
intrinsic reward is calculating by 20. In practice, before using SimHash function, we round the
continuous value of pair to decimal 2.

All of the code are using Python programming language. We plot our results with the help of
NumPy, Matplotlib, SciPy and seaborn packages. SciPy is used to smooth the line plot and
seanborn helps us plot the results over 3 random seeds.

34

	Abstract
	Introduction
	Problem Statement
	N-Agent Navigation
	Communicative Navigation

	Related Work
	Basic exploration strategies
	Intrinsic reward strategies
	Multi-Agent Environments

	Methods
	Markov Decision Process (MDP)
	Markov Games (MGs)
	Action-Value Function
	Deep Q-network (DQN)

	Policy Gradient (PG)
	Deep Deterministic Policy Gradient (DDPG)
	Distributed MADDPG
	Centralized MADDPG

	Count-based Exploration
	Count-Based exploration for multi-agent learning
	Hash Function

	Experimental design
	Measurements
	Success Rate
	Time Complexity
	Count-1 Percentage
	Number of Collisions

	Experiments
	Count-Based with 1-Agent Navigation
	MACB with Fully Observed Environment
	MACB with Partially Observed Environment
	Exploration and Exploitation

	Results
	Count-Based Exploration with DDPG
	MACB Strategies with Dis-MADDPG
	MACB Strategies with Cen-MADDPG
	Exploration and Exploitation

	Discussion
	From single-agent to multi-agent exploration
	Intrinsic Reward and Extrinsic Reward
	Drawback of MACB

	Conclusion
	Bibliography
	Appendix
	Training Detailed
	Reproduction

