
Master Computer Science

[Using ensemble models with structural information

in social media to aid rumour stance classification]

Name: [Chen Wang]
Student ID: [s2230496]

Date: [04/06/2021]

Specialisation: [Advanced Data Analytics]

1st supervisor: [Suzan Verberne]
2nd supervisor: [Stephan Raaijmakers]

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

In previous research, using structural information to address stance classification
in conversational social media has been limited to a single sequential model. In
this work, we explore the benefit of constructing ensemble models with sequen-
tial and non-sequential models to aid rumour stance classification. This is a multi-
classification task that aims to predict user’s attitudes towards a rumour post. Dur-
ing the research process, we successfully adapt the original BranchLSTM method to
make it able to receive various sizes of tweet conversations and make it available to
the public. We experiment with combining the sequential model BranchLSTM and
the pre-trained model DistilBERT by merging their predicting probabilities to the
same tweet and using one-step and two-step voting classifiers to classify the new
probability features. Through single-model experiment analysis, we find out that
DistilBERT has advantages in addressing a more balanced dataset comparing to
BranchLSTM, but BranchLSTM could perform better in predicting the large cate-
gories of the imbalanced dataset. Through ensemble experiment analysis, we prove
that the ensemble model could learn both features of BranchLSTM and DistilBERT
with the help of a voting classifier, but is not able to keep advantages from both
deep learning models. Finally, through comparison between sequential voting clas-
sifier and non-sequential classifier, we find out that sequential voting classifier could
make use of the context but may have less strength in classifying a single simple
tweet comparing to the non-sequential classifier.

1 Introduction

Social media platforms play an essential role in modern society. People frequently visit social
media for news consumption (Hermida et al., 2012), and some media specialists also increas-
ingly collect news from social media (Zubiaga et al., 2013). Twitter, one of the most influential
social media platforms, which has hundreds of millions of users, is gradually replacing the status
of traditional news outlets (Hamidian and Diab, 2016). As a result, various data mining and
text mining methods have been developed to discover news from social media (Dong et al.,
2015; Stilo and Velardi, 2016). On the one hand, social media are very convenient for getting
information easily and quickly; On the other hand, misinformation has become a serious prob-
lem (Ferrara, 2015). The spreading of rumours could confuse users and cause much potential
damage to the public. Therefore, identifying misinformation on social media has become a
widely discussed topic when it comes to text mining.
It is necessary to define rumour correctly before addressing rumours on social media. According
to a survey on the detection and resolution of social media rumors (Zubiaga et al., 2018a),
some previous studies incorrectly defined rumors as information that is considered false (Cai
et al., 2014; Liang et al., 2015). The survey gives the prevailing definition of rumour as “an item
of circulating information whose veracity status is yet to be verified at the time of posting”
by referring to the majority definition in other literature and authoritative dictionaries.
A number of methods have been proposed to identify rumours on social media platforms (Jin
et al., 2016; Rubin et al., 2016; Rubin and Lukoianova, 2015; Schifferes et al., 2014; Tacchini
et al., 2017; Volkova et al., 2017). A complete rumour resolution process is defined as a
complex task (Zubiaga et al., 2018a), but it always receives a piece of information that may
constitute a rumour and outputs the actual truth value of the rumour. A rumour resolution
system has been defined to consist of four steps (Zubiaga et al., 2018a): (1) rumour detection,

2

to identify whether a piece of the information constitutes a rumour; (2) rumour tracking, to
monitor social media to find posts discussing the rumour and eliminating irrelevant posts; (3)
rumour stance classification, to determine how each post is orienting to the rumour’s veracity;
(4) rumour veracity classification, which attempts to determine the actual truth value of the
rumour. By determining the types of attitudes expressed in different tweets discussing the
same rumour, the third task could help to the verification process (Qazvinian et al., 2011). As
a key component in the rumour resolution system, rumour stance classification has attracted
a lot of interest.
Since Zubiaga’s original work of utilizing structural information from conversations to address
rumour stance classification (Zubiaga et al., 2016a), the four-categories scheme including
supporting, denying, querying and commenting has been adopted by subsequent research. In
this research, we also adopt this scheme to build up a multi-class classification task. Figure 2
is an example of the tree-structure conversation, including each class of the label. The task of
rumour stance classification can be defined as follows: Given a set D of Twitter conversations
Ti, each conversation is a collection of rumourous tweets ti which are discussing about a rumour
Ri. Therefore, each Twitter conversation Ti = {t1, ..., t|Ti|}; given a new tweet tj belonging
to a new conversation Ti which is discussing about an unseen rumour Rj, the trained model
M needs to determine the stance of tweet tj as one of the four categories. In this task, the
rumour Ri is the source tweet of the conversation.

User1: Getting vaccinated is useless to the coronavirus. [support]

User4: @User1
Keeping social dis-
tance is important
nowadays. [com-
ment]

User3: @User1
Why do you
think so?
[query]

User2: @User1
You are totally
wrong. [deny]

Figure 1: Example of a tree-structure Twitter conversation.

Previous research made considerable contribution to this task, but most of these methods use
a single sequential model which co-operates with complex features, and they don’t have much
difference in their overall strategy. In other words, there are still other types of models that
can be explored, and the model architecture can be designed in more ways. Having BERT
(Devlin et al., 2018) as one of the representative pre-trained language models that made
great success, we give the research questions: (1) how does DistilBERT compare to the single
sequential model in rumour stance classification? (2) how does the combination of a sequential
model and a pre-trained language model help to rumour stance classification?
In response to these two research questions, we conduct the following work and get corre-
sponding findings:

• We adapt the original BranchLSTM classification method as the single sequential model
for this task. The adapted BranchLSTM method can train and predict on the different
dataset with various sizes of conversations. We publish the source code of adapted
BranchLSTM as well as the random split experiment, which could help later researchers
to use BranchLSTM more easily.

3

• We apply DistilBERT on the rumour stance classification task as another single model.
We analyze the difference between two single models on the same task and find out Distil-
BERT has advantages in addressing a more balanced dataset comparing to BranchLSTM,
but BranchLSTM could perform better in predicting the large categories of the imbal-
anced dataset.

• We explore how the combination of two single models and various voting classifiers work
together on rumour stance classification task. We prove that the ensemble model could
learn both features of BranchLSTM and DistilBERT with the help of a voting classifier,
but is not able to keep advantages from both deep learning models.

• We build four sets of voting classifiers to classify the connected probability vectors from
two single models, including two one-step voting classification models and two two-step
voting classification models. We find out that sequential voting classifier could make use
of the context but may have less strength in classifying a single simple tweet comparing
to the non-sequential classifier.

Our work will be detailed in the remaining sections. In section 2, we review some previous
research about rumour stance classification. In section 3, we introduce the split of the dataset
and the creation of the probability dataset for voting classifiers. In section 4, we explain the
structure of our ensemble model with graphical illustration. In section 5, we give the detailed
experiment settings of single-model experiment and ensemble experiment, and then offer our
experiment results and analyze these results. In section 6, we discuss our findings and give
some ideas for the shortcomings and future work. Finally, in section 7, we give our conclusion
of this work.

2 Related work

In this section, we first review the previous work of rumour stance classification, including
original and subsequent work of utilizing structural information in conversations. We also sum-
marize the development of rumour stance-related competitions and introduce the appearance
of pre-trained language models.

2.1 Early work addressing rumours

Early work of rumour stance classification for tweets only performed 2-way classification of
each tweet as supporting the rumour or denying the rumour, and the classifier is trained and
predicted on single tweet units (Qazvinian et al., 2011). After this, some rule-based methods
were suggested to improve the performance of this early work. In 2015, Liu et al. (2015)
introduced a simple rule-based method to find whether there are positive or negative words in
a tweet. However, these methods are not able to predict new and unseen rumours once rumours
come out in a new format which is not described in these rules. Similar to this, Hamidian and
Diab (2016) have examined how a model trained from seen tweets perform on classifying new
tweets discussing the same rumour. These studies provided some ideas in dealing with rumour
stance classification in Twitter but still rely on manual participation to some extent which may
cost more time and energy. Zhao et al. (2015) shows that tweets that raise questions are likely
to report controversial rumors, which motivated the proposal of a new approach considering
conversational structure as assistance (Zubiaga et al., 2016a).

4

2.2 Early research utilizing conversational structure

A new way to take advantage of the conversion sequence observed in the conversation thread of
the Twitter tree-structure was proposed by Zubiaga et al. (2016a). They separate the Twitter
conversation into branches, and use branches as the input of the sequential models. In this
work, two sequential classifiers were applied to addressing the rumour stance classification task:
One is Linear-Chain CRF, regarding the conversational threads as separate linear branches;
another is Tree-CRF, viewing the conversational threads as a tree structure. According to
the experiment results, linear CRF and Tree-CRF both have significant advantages in macro-
average F1 score comparing to traditional classifiers, including SVM and Random Forest, and
the improvement varies from 9 percent to 24 percent. Besides, comparing with the similar
sequential model Hawkes Processes which explored the same task before (Lukasik et al.,
2016), the Tree CRF has much better performance in macro-average F1 score (Zubiaga et al.,
2016a), which has averaged 10 percent improvement in every single event data set. The result
shows the ability of Tree CRF to better predict labels in tasks where the label distribution
is highly imbalanced, so it is advantageous to use the dialogue structure in the classification
process (Zubiaga et al., 2018a). After the proposal of Zubiaga’s original research of utilizing
conversational structure, some subsequent work has explored other sequential models on the
same task. BranchLSTM (Kochkina et al., 2017) was applied on RumourEval-2017 Task 8
Subtask-A and got top performance among all participating teams. These two methods are
different in many aspects. The BranchLSTM relies on an LSTM instead of CRF, and it has
different inputs with CRF: BranchLSTM uses the representation of a single tweet as input for
each time step, while CRF trains and predicts a branch of tweets at the same time. Apart from
this, BranchLSTM also adds seven extra features in preprocessing part to help to represent
the tweets as vectors. These two methods have very close performance in Macro-average F1
score, with less than 1 percent difference. The authors that utilized conversational structure
(Zubiaga et al., 2016a) continued their research in 2018 to explore how other sequential models
perform on the same task (Zubiaga et al., 2018b), including Hawkes Processes, linear CRF,
Tree CRF, and LSTM. In this research, different types of local and contextual features are
compared. It shows that sequential classifiers that use discourse attributes and only use local
features in social media conversations are better than non-sequential classifiers (Zubiaga et al.,
2018b). More recent research is by Kumar and Carley (2019), it proposes a new method of
representing dialogue as a binary constituency tree, which can effectively compare the features
in the source post and its replies. By applying this new representation of conversation threads
to Tree LSTM, the BCTree LSTM model outperforms the previous best model (Kochkina
et al., 2017; Zubiaga et al., 2018b) by 12% and 15% on Macro-average F1 for rumor-veracity
classification and stance classification tasks respectively. However, as BranchLSTM is the
baseline for most subsequent competitions and researches, we still use BranchLSTM as our
single model.

2.3 Development of rumour stance related competitions

Some semantic understanding competitions have been held to improve the performance of
semantic analysis systems, and a series of interesting ideas were proposed in these competitions.
SemEval is a series of evaluations of computational semantic analysis systems, and it also paid
attention to rumour veracity detection. SemEval-2016 task 6 has addressed stance classification
towards a target on Twitter (Mohammad et al., 2016). Task A considered a 3-way stance
classification, and the dataset did not provide any relations between tweets, which treated

5

tweets as individual instances. RumourEval-2017 is a shared SemEval task to identify and
deal with rumors and reactions to them (Derczynski et al., 2017), and Task 8 Subtask A is a
stance classification task that tries to predict users’ attitudes based on their tweets. Inspired by
(Zubiaga et al., 2016a), BranchLSTM (Kochkina et al., 2017) was proposed to addressing task
A by utilizing the conversational structure. They use the branches of Twitter conversations
as the input of the LSTM, and add more structural information to the representation of
the branches. It was the only method that considers the whole thread structure as a feature
among all participating methods in RumourEval-2017, which got considerable performance.
It was then regarded as a baseline system in RumourEval-2019 and was outperformed by 3
submitted systems (Gorrell et al., 2018).

2.4 Blossoming of pre-trained language models

In recent years, a series of pre-trained language models were proposed to address natural
language processing tasks, some of them well updated the performances on nearly all NLP
tasks (Devlin et al., 2018; Howard and Ruder, 2018; Radford et al., 2019). They are first
trained on a huge corpus and then be saved as a pre-trained model(weights). BERT (Devlin
et al., 2018) is one of the representative pre-trained language models that made great success,
got state-of-the-art results in eleven nature language processing tasks. After that, a lighter
version of BERT called DistilBERT (Sanh et al., 2019) was proposed, it reduces the size
of a BERT model a lot while retaining almost all of its language understanding capabilities
and being much faster. Having these state-of-the-art language models, it seems interesting to
compare DistillBERT and BranchLSTM on stance classification task to see how they perform
on the same task. As they have different model structure and differs in utilizing conversational
structure, it is conceivable that they have different advantages and weakness when facing the
same task. BranchLSTM is a sequential model which makes use of structural features, which
could have a better understanding of relations among different posts; While DistilBERT is pre-
trained with a huge amount of corpus, which can have a better understanding of words and
sentences. In RumourEval-2019 (Gorrell et al., 2018), an ensemble of BERT models achieved
the second best performing system in the rumour stance classification task.

3 Data

We use the dataset from RumourEval-2017 (Derczynski et al., 2017) Task 8 Subtask-A, which
is expanded from the PHEME dataset by annotating additional conversation threads. The
PHEME rumour dataset contains eight breaking news data sets (Zubiaga et al., 2016b),
which was used by a series of research about using conversational structure in rumour stance
classification.
We first make 5 random splits of the RumourEval-2017 Task 8 Subtask-A dataset as our
dataset. Concerning the dataset splits with different sizes of conversations, we evaluate two
types of deep learning models as single models and develop a series of ensemble models in
addressing the rumour stance classification task. In the single-model experiment, we adapt
the original BranchLSTM classification method to make it able to work on a flexible size of
conversations. BranchLSTM (Kochkina et al., 2017) and DistilBERT (Sanh et al., 2019) are
compared in the same splits of the dataset, and their differences in addressing the same task
are explored in detail. As for the ensemble models experiments, we use the same dataset splits
as single-model experiment.

6

3.1 Dataset description

Figure 2 is an example of the tree-structure Twitter conversation from the dataset, and it
gives the definition of depth in a conversation. The source tweet is the root of the tree which
locates on depth 0, and a series of replies can be nested on each other. As the discussion of
the rumour goes further, the depth of the conversation thread also increases.

User1:France: 10 people dead after shooting at HQ of satiri-
cal weekly newspaper #CharlieHebdo, according to witnesses
http:t.coFkYxGmuS58[support]

User4:MT
@euronews
France: 10 dead
after shoot-
ing at HQ of
satirical weekly
#CharlieHebdo.
If ZionistsJews
did this they’d
be nuking Is-
rael[comment]

User5: @j0nathandavis They who? Stupid
and partial opinions like this one only add
noise to any debate.[deny]

User6: @nanoSpawn Socialists, An-
tisemites, anti zionists - usual sus-
pects[comment]

User3: @eu-
ronews @Trad-
eDesk Steve A
French crime of
passion or an-
other heathen
moslem atroc-
ity?[query]

User2: @eu-
ronews LOL.
5 million Mus-
lims in France,
what a disgrace.
the french worm
president and
politicians killed
them. tine
for croissants
now[comment]

Depth 0

Depth 1

Depth 2

Depth 3

Figure 2: Example of a tree-structure conversation thread.

There are nine events in the PHEME dataset, but only eight events are used because tweets
in the ninth event are in German. This dataset was collected, identified, and annotated with
the method proposed by Zubiaga et al. (2016b), and the crowdsourcing method was proposed
by Zubiaga et al. (2015). In RumourEval-2017 Task 8 Subtask-A, this dataset was expanded
through annotating additional conversation threads. The annotated 28 additional threads for
the test set, including 20 threads extracted from the same events as the training dataset, and
8 threads from two newly collected events. There are 297 rumourous threads and 4519 tweets
in their training set, and 28 threads and 1080 tweets in the test dataset. The distribution of
labels in the training and test dataset is summarised in Table1.

7

S D Q C
Train 910 344 358 2,907
Test 94 71 106 778

Table 1: Label distribution of training and test dataset in RumourEval-2017 Task 8
Subtask-A. S, D, Q, C represent “Support”, “Deny”, “Query” and “Comment” respec-
tively.

3.2 Dataset split

The dataset is taken from RumourEval-2017 which is expanded from eight breaking news
items in the PHEME dataset (Zubiaga et al., 2016b). The data has been used by a series of
sequential models and shared tasks to explore rumour stance classification. To evaluate the
models more accurately, we make 5 random splits of the RumourEval-2017 Task 8 Subtask-A
dataset. Different from the dataset in RumourEval-2017 which only has one spit, each split
of our development dataset and test dataset is extracted from their training dataset. We split
up the RumourEval training dataset 5 times stratified, each split creates one test dataset and
one develop dataset which has the same number of threads as the RumourEval test dataset
and develops dataset. In order to keep the completeness of the whole dataset, and makes
the training dataset diverse, the rest of the threads of each split for the training dataset are
combined with the original test dataset to be used as a new training dataset.
Figure 3 shows the 5 random splits process to original dataset. The grey, orange and red areas
represent training, development, and test data respectively. First, we shuffle the conversations
in the original training dataset to reduce the bias of different conversation sizes, because
different conversations have a different number of tweets and depth. Then, the training dataset
is split 5 times based on the number of development and test conversations. From split 0 to
split 4, the proportion of conversations in the training, development, and test dataset is always
272:25:28, which is the same as the proportion in the original dataset. Therefore, the dataset
is not split based on the number of tweets or branches but uses conversation as the basic unit.

Split 0
Original
dataset

Split 1

training data
development
data

test data

Figure 3: The split of dataset

8

4 Methods

We design a single-model method and an ensemble-model method for our search. In the single-
model experiment, we adapt the original BranchLSTM classification method to make it be able
to receive a more flexible input format, which successfully works on 5 splits of the dataset. We
apply another single model DistilBERT on the same split of the dataset as BranchLSTM by
using different preprocessing methods and conduct a series of comparisons and analyses.
By changing the output format of trained deep learning models, they can predict each tweet’s
expected probability towards each stance. Therefore, in the ensemble method experiment, we
design a series of voting classifiers to classify each tweet’s feature built with the probabilities
predicted by two deep learning models. We build up a pipeline for the ensemble classification
system, the complete pipeline consists of a series of steps, including original dataset split,
conversation preprocessing, stance probabilities prediction, probabilities preprocessing, feature
dataset construction, voting classification, and evaluation.
The ensemble method experiment uses the same dataset split as single-model experiment, and
also uses the same data preprocessing methods as single-model experiment because the two
deep learning models in the single-model experiment are also used in predicting the stance
probabilities. Concerning the dataset of tweets’ probability features, we design two one-step
and two two-step voting classifiers. We explore linear SVM and linear CRF two kinds of
statistical classifiers in one-step voting classification and use CRF-SVM and CRF-CRF as
two combinations of classifiers in two-step voting classification. Similar to the single-model
experiment, the voting classifiers also differ in whether to use conversation structure. CRF
voting classifier is a sequential model which can utilize structural information, but SVM treats
each tweet’s probability feature as a single unit. The ensemble method architecture and pipeline
working process will be introduced in this section, and related experiment details will be
introduced in later sections.
In subsection 4.1, we introduce the classification systems of two single models and describe
the method of adapting the BranchLSTM script to receive a more flexible input format. In
subsection 4.2, we introduce the ensemble model architecture and classification pipeline with
an illustration. In the last 4.3 subsection we introduce the strategy of voting classification,
including the preprocessing method for probabilities.

4.1 Single-model methods

We adapt the BranchLSTM (Kochkina et al., 2017) classification method in RumourEval-
2017 task 8 Subtask-A as our first single model and use DistilBERT (Sanh et al., 2019)
with different preprocessing steps as our second single model. We will first introduce the
original BranchLSTM and the structural features that it uses, and then introduce adapted
BranchLSTM as well as DistilBERT.

4.1.1 Original BranchLSTM Method

Figure 4 shows an example of the branches in a tree-structure Twitter conversation thread.
The source tweet is the root of the tree that receives a series of replies, and these replies can
be nested on each other. A branch starts at the source tweet and ends at the last reply on
this branch. The sequential models in both single-model experiment and ensemble method
experiment need to use the tree structure in conversations.

9

The model architecture of BranchLSTM is the same as LSTM, which is a sequential model
that receives an input at each time step. The name ”BranchLSTM” means the neural net-
work uses layers of LSTM units to process the whole branch of tweets, thus incorporating
structural information of the conversation. Through preprocessing to each tweet, the input for
BranchLSTM at each time step is formatted as a fixed-length vector. At each time step, the
output of the LSTM unit is recorded as a label attached to the tweet belonging to the branch.
To process the whole branch of tweets with layers of LSTM, each branch is represented by a
list of tweet features.
In the original BranchLSTM method, each branch is used as a basic sample during the training
process. The whole branches in the training dataset are represented as an array of 2d arrays,
where each 2d array represents a branch. Every 2d array representing a branch is initialized
with a fixed shape, which the row number is the maximum branch length in this dataset, and
the column number is the number of features for each tweet.
In the preprocessing steps of original BranchLSTM1, non-alphabetic characters are removed,
all words are converted to lower case, and texts are tokenized. A tweet is represented with
an average of word2vec representations of individual words, and then concatenating with the
additional features to a fixed-length vector. All the preprocessing actions are implemented by
Python 2.7 with the NLTK package. Once tweet texts are pre-processed, the following features
are extracted:

• Word vectors: A word2vec (Mikolov et al., 2013) model pre-trained on the Google
news dataset(300d) is used, implemented by gensim package

• Tweet lexicon: (1) count of negation words and (2) count of swear words.

• Punctuation: (1) presence of a period, (2) presence of an exclamation mark, (3) pres-
ence of a question mark, (4) ratio of capital letters.

• Attachments: (1) presence of a URL and (2) presence of images.

• Relation to other tweets: (1) Word2Vec cosine similarity wrt source tweet, (2)
Word2Vec cosine similarity wrt preceding tweet, and (3) Word2Vec cosine similarity
wrt thread.

• Content length: (1) word count and (2) character count.

• Tweet role: whether the tweet is a source tweet of a conversation.

4.1.2 Adapted BranchLSTM method

In the original BranchLSTM script, the maximum branch length is assigned with a fixed value
regarding the original dataset, which could cause errors while training on a new dataset with
a different maximum branch length. Because the array of branch arrays is saved as a numpy
file, to solve this, we use a regular expression package to extract the shape of the branch array
recorded at the beginning of the numpy file and assign the second value of 3d array shape
to the maximum branch length before training. After that, the adapted BranchLSTM method
could work well on a flexible dataset with different size of conversations.2

1The original BranchLSTM : https://github.com/kochkinaelena/branchLSTM
2The adapted BranchLSTM is published in GitHub: https://github.com/blcuwc/branchLSTM_

Cross_Validation

10

https://github.com/kochkinaelena/branchLSTM
https://github.com/blcuwc/branchLSTM_Cross_Validation
https://github.com/blcuwc/branchLSTM_Cross_Validation

User1:France: 10 people dead after shooting at HQ of satiri-
cal weekly newspaper #CharlieHebdo, according to witnesses
http:t.coFkYxGmuS58[support]

User4:MT
@euronews
France: 10 dead
after shoot-
ing at HQ of
satirical weekly
#CharlieHebdo.
If ZionistsJews
did this they’d
be nuking Is-
rael[comment]

User5: @j0nathandavis They who? Stupid
and partial opinions like this one only add
noise to any debate.[deny]

User6: @nanoSpawn Socialists, An-
tisemites, anti zionists - usual sus-
pects[comment]

User3: @eu-
ronews @Trad-
eDesk Steve A
French crime of
passion or an-
other heathen
moslem atroc-
ity?[query]

User2: @eu-
ronews LOL.
5 million Mus-
lims in France,
what a disgrace.
the french worm
president and
politicians killed
them. tine
for croissants
now[comment]

Source

Response 1

Response 2

Response 3

Response 3.1

Response 3.2

branch 1

branch 2

Figure 4: Branches in a tree-structure conversation thread.

The preprocessing step in adapted method is the same as the original method. However, after
random splits to the original dataset, the training dataset’s maximum branch length will change
because of the different sizes of conversations. This leads to the failure of training because the
maximum branch length is fixed in the original script. To match the preprocessed data correctly,
we adapt the original BranchLSTM scripts for receiving changeable preprocessed data. By
recognizing the shape of preprocessed data automatically, the modified script could train
and predict various types of conversations. Therefore, the baseline BranchLSTM classification
method could work well on a 5 random split dataset successfully.
The BranchLSTM is implemented by Python libraries Theano (Bastien et al., 2012) and
Lasagne (Dieleman et al., 2015). In the original paper, the optimal set of hyperparameters
were determined through testing the performance of BranchLSTM on the development set for

11

different parameter combinations. In our single-model experiment, we adopt the best hyper-
parameters from the original paper directly. The hyperparameters for the LSTM model and
training process are as follows:

• number of LSTM units: 100;

• number of LSTM layers: 2;

• number of dense ReLU layers: 2;

• number of dense ReLU units: 500;

• number of epochs: 30;

• learning rate: 0.001;

• mini-batch size: 100;

• L2 regularization: 0.0;

4.1.3 DistilBERT method

In contrast to BranchLSTM, DistilBERT is a pre-trained language model which has a good
text understanding ability but does not consider conversational structure. The DistilBERT is
upgraded from BERT (Devlin et al., 2018), which made much state-of-the-art performance in
NLP tasks. The object of pre-training is to learn a powerful language representation capability,
and a pre-trained model can be applied to downstream tasks through fine-tuning all pre-trained
parameters. DistilBERT is more lightweight and fast than BERT, and needs less resource and
time to be pre-trained and can retain most of its language understanding capabilities.
In the DistilBERT single model, we use the same dataset split as in the BranchLSTM exper-
iment. We use Python library ktrain to implement DistilBERT, including the preprocessing
step, training, and prediction process. The conversation preprocessing step in DistilBERT is
different from BranchLSTM. In BranchLSTM, each branch of tweets is considered as a whole
part for training and predicting, because it utilizes the information of conversation structure.
However, DistilBERT does not consider the relationship between tweets and does not need to
keep the complete conversation structure during data preprocessing. Therefore, all the conver-
sations are broken into single tweets and then be fed to preprocessing function in the ktrain
package. The preprocessing step is simply finished by texts from array() function in ktrain
package, which converts the raw texts to training data array and development data array. The
related hyperparameters for the training process are as follows, and they are chosen from the
most common hyperparameter settings:

• batch size: 6;

• learning rate: 0.00003;

• number of epochs: 4;

12

4.2 Ensemble methods

The ensemble modeling means combining multiple base models to obtain a better predictive
performance than any of the base models. There are usually two families of ensemble models,
one is averaging methods while another is boosting methods. In averaging methods, every
single base model is built independently and the prediction is averaged to reduce variance;
However, in the boosting method, base model are constructed sequentially and attempts to
reduce the bias of the combined estimator.
We use the voting classifier which is one of the boosting methods for this task (Bartlett
et al., 1998). Here, BranchLSTM and DistilBERT are built as the first-step base models in
our ensemble method, and voting classifiers are built as the second-step base models which
try to reduce the bias of the combined deep learning models. Figure 5 shows the ensemble
method classification pipeline. In the above part of the pipeline, after 5 random splits to the
original dataset, 5 splits are preprocessed respectively and fed to BranchLSTM and DistilBERT.
By changing the output format of two deep learning models, each deep learning model will
predict each tweet’s expected probabilities towards each stance. For every tweet, the sum of
every stance probability is 1. Having the predicted probabilities from deep learning models,
the below part of the pipeline shows the process of connecting probabilities to an eight-length
vector. This vector is the feature of the corresponding tweet and will be the input for the
subsequent voting classifier.
The idea of using a voting classifier is to take both of their advantages in predicting rumour
stance. As BranchLSTM is a sequential model and can make use of conversational structure,
and DistilBERT has more advantages in understanding the text itself, we hope to combine
their predicted probabilities and let voting classifiers justify.

Original
dataset

Split 0

Split 1

split 2

Split 3

Split 4

Random-
split

BranchLSTM

DistilBERT

Preprocessing

Predict

Predict

p1 p2 p3 p4

p5 p6 p7 p8

p1 p2 p3 p4 p5 p6 p7 p8

merge

p4p3p2p1 p5 p6 p7 p8 Voting classifier
Input

Evaluation
Output

S C Q D S C Q D

Figure 5: The ensemble method classification pipeline. S, D, Q, C represent ”Support”,
”Deny”, ”Query” and ”Comment” respectively.

13

4.3 Voting strategies

There are two strategies of voting classification: hard voting and soft voting. In hard voting
(also called majority voting), the predicted class label for a particular tweet is the class label
that represents the majority of the class labels predicted by each classifier. It is rather useless
in the case of two classifiers because it can’t decide if two classifiers have different predictions.
We use the soft voting strategy in our method, and it offers a more reasonable solution. In
soft voting, classifiers can provide weights to each label. After the weights are assigned, the
predicted class probability of each classifier will be collected, multiplied by the classifier weight,
and then averaged. Then the final class label is derived from the class label with the highest
average probability.
Through changing deep learning models’ output from predicted labels to probabilities, voting
classifiers can receive the probabilities as input features, and predict the corresponding stance
of rumour. As we have four labels “Support”, “Deny”, “Query” and “Comment”, and each
label should be equal while being classified, so we assign each label a 25% weight in soft
voting.
In this method, we develop four voting classifiers, including two one-step voting classifiers and
two two-step voting classifiers. The two one-step voting classifiers are Support Vector Machine
and linear CRF 3 (Lafferty et al., 2001), and the two-step classifiers are CRF-SVM and CRF-
CRF. The voting classifiers follow the deep learning models and use their output probabilities
as input. As a result, voting classifiers also enjoy the same 5 random splits as deep learning
models.
The one-step voting classifier is rather simple, which is either an linear SVM classifier or a linear
CRF classifier. However, there is a difference between them in classifying these probabilities.
SVM treats each probability vector and its corresponding label as a unit, and linear CRF is
trained and predict in all probabilities of every branch of the conversation thread. This is the
difference in their classifying strategy, which can cause a difference in their classification results.
We use a simple grid search algorithm for both voting classifiers, to find better parameters in
classification, which can contribute to the performance.
The two-step voting classification process is illustrated in figure 6. In both two-step voting
classifiers, the first classifier is linear CRF but not linear SVM. This is because of the difference
between linear CRF and linear SVM in the training and predicting process. Linear SVM uses a
single tweet as the basic unit for classification, while linear CRF trains and predicts a complete
branch of tweets at each time. Therefore, linear CRF needs complete branches for training
which always contain four kinds of labels, but linear SVM can be trained and predict on only
three kinds of labels. Once we use linear SVM in the first step for two-step voting classification,
linear CRF can not be applied in the second step because the complete conversation structure
will be broken. On the contrary, after using linear CRF for the first step classification, linear
SVM can be trained with only three labels in the second step, which will also only predict
three small classes in the second step.
Because of the imbalance of the class labels where many “comment” occurrences, in the
first step, the true labels of tweets are all modified to comment and non-comment. After the
first step classification, for CRF-SVM, the predicted non-comment tweets will be sent to the
second voting classifier. However, in the CRF-CRF voting classifier, the second CRF classifier
also predicts four labels on a complete dataset as in the first step. This is because the training
of linear CRF needs the complete structure of conversations, thus it can only be trained with

3We use sklearn-crfsuite package: https://github.com/TeamHG-Memex/sklearn-crfsuite/

14

https://github.com/TeamHG-Memex/sklearn-crfsuite/

complete labels but not part of the classes. The second step could help to re-classify those
tweets misclassified from comment to non-comment.

CRF

Comment Non-comment

SVM

Support Query Deny

CRF

Comment

Non-comment

CRF

Support Query Deny

step 1

step 2

step 1

step 2

Figure 6: Two-step voting classification structure.

5 Experiments

In this section, we introduce the experiment settings and experiment results of single models
and ensemble models. In subsection 5.1, we give the detailed experiment settings of both
single-model experiment and ensemble experiment. In subsection 5.2 and 5.3, we introduce and
analyze the experiment results of the single-model method and ensemble method respectively.
In the analysis both single-model and ensemble experiment result, we use the same evaluation
metrics, including macro-average F-score, precision, recall, and F-score for per class. The
macro-average F-score is the most important evaluation method in this research because our
dataset is small and the labels are imbalanced, while the evaluation based on the macro-average
F-score takes into account the classifier’s ability to produce an output that is more suitable
for the class distribution. We also give the micro-average and accuracy of classification results
as a reference.
For some specific comparisons, we analyze their error cases to find out their similarities and
differences in this task. We also show confusion matrix and depth analysis in some cases, to
better understand the distribution of the error cases in a different class and different depth.

5.1 Experiment settings

In subsection 5.1.1, we introduce the single-model experiment code structure and potential
problem during the experiment. In subsection 5.1.2, we introduce the voting classifiers’ pa-
rameters search space and optimization strategy in detail.

5.1.1 Single-model experiment

There are three Python scripts in the original BranchLSTM classification method, the first is
the preprocessing script, the second is the training and predicting script, and the last one is for
results evaluation and analysis. It is rather simple to run the original BranchLSTM classification
pipeline. However, after 5 random splits to the original dataset, we need to run the pipeline 5
times and every time the model needs to be initialized.

15

The code structure in the DistilBERT single-model experiment is similar to BranchLSTM, the
difference is that DistilBERT merges preprocessing and training/predicting in one script.

5.1.2 Ensemble experiment

There are four sets of voting classifiers in the ensemble experiment, with two one-step and
two two-step voting classifiers. Although the number of voting classifiers seems a lot, we only
have two kinds of basic classifiers which are linear SVM and linear CRF. All sets of the voting
classifiers are one of these two models or combined with two of these two models.
To analyze the contribution of deep learning models, linear kernel and one-versus-one strategy
are used in SVM. To achieve the better performance of the voting classifier, the penalty
parameter C is optimized by grid search. The search space of C is defined in table 2. The
search space capacity of C is 9, thus we have 9 combinations of parameters. As we have one-
step voting and two-step voting which both contain SVM classifier, SVM in both ensemble
models use the same configuration.

Parameters Minimum value Maximum value step size
C 0.1 1 0.1

Table 2: Linear SVM parameters’ search space

The gradient descent using the L-BFGS method is applied in the training process of CRF, and
the coefficients for L1 and L2 regularization are optimized with random search. The search
space of coefficients for L1 and L2 regularization is defined with the exponential continuous
random variable, with scales 0.5 and 0.05.

5.2 Single-model Experiment Results

In following subsections, we first compare two single models’ performance from an overall view,
and then give an analysis by depth. Finally, we conduct a dependent error analysis for their
error cases.

5.2.1 Model performance comparison

To compare the performance of two single models, we give their macro and micro average
performance in table 3, and accuracy and F-score for individual class in table 4. In table 3,
DistilBERT has a 4.8 percent higher macro-average F-score than BranchLSTM. As we use
macro-average F-score as the most important metric, DistilBERT is believed to have a better
performance in this dataset. However, by looking at micro-average metrics in the table, there is
no obvious difference between them. In table 4, the difference between their F-score in “Deny”
class is large, but other difference are very limited. To verify whether there is a significant
difference between BranchLSTM and DistilBERT is their performance, we use Wilcoxon test
(Wilcoxon, 1992) to test both performance in two tables. The P value is much bigger than 0.05,
thus we accept the null hypothesis that there is no significant difference between BranchLSTM
and DistilBERT’s performance. Therefore, the advantage of DistilBERT over BranchLSTM is
limited.
Figure 7 shows the BranchLSTM’s and DistilBERT’s confusion matrix for test dataset predic-
tions. The overall predictions are quite similar, but there are also some differences. The figure

16

XXXXXXXXXXXXModel
Metrics Macro-average Micro-average

Precision Recall F-score Precision Recall F-score
BranchLSTM 0.525 0.459 0.457 0.704 0.704 0.704
DistilBERT 0.530 0.497 0.505 0.688 0.688 0.688

Table 3: BranchLSTM and DistilBERT average performance.

XXXXXXXXXXXXModel
Metrics

Accuracy
F-score per class

S D Q C
BranchLSTM 0.704 0.809 0.072 0.405 0.541
DistilBERT 0.688 0.788 0.229 0.469 0.533

Table 4: BranchLSTM and DistilBERT’s accuracy and F-score per class. “S”, “D”, “Q”,
“C” represent “Support”, “Deny”, “Query” and “Comment” respectively.

shows that BranchLSTM has more comment tweets correctly classified, while DistilBERT has
more other three classes of tweets correctly classified. At the same time, BranchLSTM misclas-
sified more true other three classes of tweets to comment than DistilBERT, while DistilBERT
misclassified more comment tweets to the other three classes. As this dataset is not balanced,
we can know that BranchLSTM has better capability in classifying big class comment, while
DistilBERT is better at classifying other small classes.

(a) BranchLSTM Confusion matrix (b) DistilBERT Confusion matrix

Figure 7: Comparison of BranchLSTM’s and DistilBERT’s confusion matrix for test
dataset predictions

5.2.2 Performance at different depths of the threads

Figure 2 illustrates the definition of the depth in a tree structure, and this will be used to help to
evaluate the model’s performance from another perspective. Table 5 shows the macro-average
F-score and accuracy of BranchLSTM and DistilBERT on different depths. The left part of
the table is the number of tweets on different depth, and the right part is the performance of
the two models. Most of the source tweets are support, which is imbalanced in the dataset

17

and more likely to cause discussions around it. There is the most number of tweets in depth
1, and the number of tweets gradually goes down with the increase of depth until depth 5.
The performance of BranchLSTM and DistilBERT differs a lot on different depths. As for
macro-average F-score, BranchLSTM only has a higher macro-average F-score than Distil-
BERT on depth 0, but DistilBERT performs better on all other depths except depth 5. On the
contrary, DistilBERT has higher accuracy than BranchLSTM on depth 1, while BranchLSTM
has higher accuracy than DistilBERT on other depths. As we use macro-average F-score as
the main metric, this table proves that DistilBERT performs better than BranchLSTM in most
situations. It is also believed that DistilBERT performs better than BranchLSTM on the bal-
anced dataset. For example, on depth 1 with more numbers of small class tweets, DistilBERT
has both higher macro-average F-score and accuracy than BranchLSTM. Oppositely, on depth
0 and depth 5 with very imbalanced class labels distribution, DistilBERT performs not as good
as BranchLSTM on both macro-average F-score and accuracy.
Therefore, we can conclude that DistilBERT has advantages in addressing tweets with more
balanced labels comparing to BranchLSTM, and has better performance than BranchLSTM
on small classes. However, BranchLSMT performs better in predicting the large class.

Depth tweets S D Q C
BranchLSTM DistilBERT

Accuracy MacroF Accuracy MacroF

0 140 132 4 0 4 0.9430 0.6220 0.9142 0.4698
1 1271 220 88 110 853 0.6502 0.4136 0.6564 0.4762
2 276 28 14 26 208 0.7398 0.2534 0.6900 0.3312
3 157 10 10 5 132 0.8460 0.2918 0.7486 0.3622
4 96 8 8 11 69 0.7444 0.2594 0.6992 0.3198
5 52 5 2 3 42 0.8322 0.4660 0.7174 0.4602
6+ 205 16 26 16 147 0.7618 0.3928 0.7422 0.4832

Table 5: Number of tweets per depth and performance at each of the depths of
BranchLSTM

5.2.3 Error analysis

From the comparison between BranchLSTM and DistilBERT experiment results, we know that
they have close performance and respective advantages. To uncover how the models can best
be combined and whether they have the potential to compliment each other, we conduct an
in-depth error analysis for two models.
As the multi-classification task can be regarded as a set of binary classification problems,
evaluation methods in binary classification can be used to analyze error cases here. False-
positive and false-negative are two types of errors in binary classification. False-positive is
defined as the proportion of actual negatives that are wrongly identified as positives, and
false-negative is defined as the proportion of actual positives that are wrongly identified as
negatives. In this research, each class’s false-positive error cases are those tweets wrongly
classified from the other three classes to this class, and each class’s false-negative error cases
are those tweets wrongly classified from this class to the other three classes. In this and also
later error analysis part, we will count and analyze two model’s unique and common error cases
for each class will be counted. However, we only consider false-negative error cases, because

18

they show the model’s disadvantage in misclassifying tweets belonging to this class. Besides,
it is complex to analyze all kinds of error cases.
The goal of this error analysis is to discover the similarities and differences between BranchLSTM’s
and DistilBERT’s error cases and to conclude their features in misclassifying tweets. There
is a difference between error analysis and confusion matrices, confusion matrix only shows
the distribution of error cases in different classes, but error analysis concern the content of
misclassified tweets.
Table 6 shows the common and unique error cases of BranchLSTM and DistilBERT on three
classes. From this table, it can be seen that the number of common errors for support and deny
is several times of the sum of unique errors, and BranchLSTM has several times error cases
than DistilBERT. That means two models have many similarities in misclassifying support and
deny to the other three classes, but BranchLSTM is more likely to misclassify other classes
to comment than DistilBERT to some extent. For comment error cases, the sum of unique
mistakes is much more than common mistakes, and DistilBERT has nearly twice amount of
mistakes than BranchLSTM. This shows that there is not a lot of overlap in the mistakes,
which means there exists an obvious difference in misclassifying comment class between them.
Combining the table with the confusion matrices, they prove that DistilBERT is not as good
as BranchLSTM in classifying big class while facing imbalanced dataset, and it is more likely
to make unique mistakes in the big class.

``````````````̀Error type
Class comment support deny

LSTM BERT LSTM BERT LSTM BERT
Unique 74 159 40 17 26 4

Common 93 202 125

Table 6: Single models’ unique and common error cases

It is also necessary to analyze error cases from support to denying and from denying to support
which containing bright attitudes. Once a tweet is misclassified like that, the subsequent
rumour verification task can be deeply influenced, even cause the opposite result for rumour
classification.
Through checking two models’ error cases from denying to support, we know that BranchLSTM
has 10 denying tweets misclassified to supporting in total, while DistillBERT has 13, and
there are 7 in common. We check 9 representative error cases, including 3 BranchLSTM
unique mistakes, 3 DistilBERT unique mistakes, and 3 common mistakes. In BranchLSTM
unique error cases, these tweets express negative attitudes without using negative words. In
DistilBERT unique error cases, these tweets use negative words to deny the original post.
This can be understood as DistillBERT has a better understanding of the text meaning than
BranchLSTM, but it is not sensitive to negative words which can express the negative attitudes
comparing to BranchLSTM.
The confusion matrices in figure 7 show that only DistillBERT has error cases from support
to deny but BranchLSTM doesn’t. Thus, here we show some representative unique error cases
which are misclassified from denying to support by DistilBERT.

• 0. Banksy gets it right. “@juliamacfarlane: #Banksy’s take on #CharlieHebdo. #JeSu-
isCharlie #NousSommesCharlie http://t.co/Y51AAQ6DRm”

• 1. Store owner told @FOX2now Monday that there was a theft, but said it was not
MichaelBrown; said it was someone else #Ferguson

19



• @TroyBramston Source from Ray Hadley shows confirmed same report of gunman claim-
ing there are four packages around Sydney

As for the no.0 error case, only the first sentence is written by the author, and the rest of the
tweet is retweet content. The original sentence is much shorter than the retweeted content,
and this is probably the main reason for DistilBERT’s unique mistake. As for second and
third error cases, it’s hard to judge their true labels because we need to check the original
post to know what they are talking about. This is also confusing to DistilBERT because it
lacks context information. This could probably be the reason that only DistilBERT has such
errors while BranchLSTM doesn’t. The DistilBERT has advantages in understanding the text
content while BranchLSTM is more good at utilizing thread structure, this difference makes
it harder for DistillBERT to classify this kind of text, but BranchLSTM can perform better.

5.3 Ensemble model Experiment Results

Having the error analysis result between two single models, we know that they have their
advantages in addressing rumour stance classification task. BranchLSTM could make use of
the structural information to understand context, and is better in classifying large categories.
DistilBERT is good at understanding text itself and performs better in a more balanced dataset.
To explore whether they can cooperate and aggregate their advantages, we design and test
a series of ensemble models to combine them with voting classifiers. By applying two one-
step and two two-step voting classifiers to the combination of two single models, we get
abundant experiment results. In this section, we show and analyze these experiment results in 3
subsections. At the beginning of each subsection, we introduce the motivation for this analysis.
Through various analyses of ensemble models’ results, we hope to investigate the feasibility and
effectiveness of constructing ensemble models with BranchLSTM and DistilBERT to address
rumour stance classification task and to find out the difference between sequential and non-
sequential, one-step and two-step voting classifiers.

5.3.1 Performance best ensemble model

After adding a series of voting classifiers to the combination of BranchLSTM and DistilBERT,
the most pressing question is whether the ensemble models help to improve the performance on
rumour stance classification. In this section, we show the overall performance of all ensemble
models and compare the performance best ensemble model with single models. We also analyze
their macro-average F-score by the depth and analyze the similarities and differences of error
cases between single models and the best ensemble model.
Table 7 shows all ensemble models’ overall performance, it is believed that all models perform
roughly equally. As for the other two macro-average metrics, they also perform very simi-
larly, which can also be seen as roughly equally. As a result, choosing the best ensemble is
meaningless because no one ensemble model could perform better than others.
Comparing them with single models, we find out that all ensemble models have higher macro-
average F-score than BranchLSTM but lower than DistilBERT. We think ensemble models
could successfully merge both the features of BranchLSTM and DistilBERT, but can not
avoid the shortcomings of single models.
Figure 8 shows the comparison of macro-average F score per depth between single models
and one-step SVM ensemble model. In the comparison between BranchLSTM and SVM, SVM
has the same trend as BranchLSTM except for source tweets; in the comparison between

20



XXXXXXXXXXXXModel
Metrics Macro-average

Precision Recall F-score
SVM 0.531 0.470 0.489
CRF 0.532 0.468 0.488

CRF+SVM 0.515 0.473 0.486
CRF+CRF 0.531 0.467 0.486

Table 7: All ensemble models’ performance on test dataset

DistilBERT and SVM, SVM is almost the same as DistilBERT from depth 0 to depth 4. The
macro-average F score of SVM can be seen as the combination of two deep learning models’
performance because it has many similarities with both single models in certain depth.
Comparing BranchLSTM and one-step SVM, SVM performs better than BranchLSTM in all
depths except for source tweets. The advantages of SVM over BranchLSTM in macro-average
F-score could be benefit from DistilBERT, according to the non-source depth performance
in the graph. However, the disadvantages to BranchLSTM in source tweets might also be
inherited from DistilBERT, because it has the same performance as DistilBERT in source
tweets.
For DistilBERT and one-step SVM, SVM almost has the same performance as DistlBERT
except depth 5 and depth 6+. The performance of SVM in depth 5 and depth 6+ could be
regarded as the inheritance of BranchLSTM, which also has an increase from depth 4 to depth
5 and a decrease from depth 5 to depth 6+.
It appears that the ensemble model takes advantages and disadvantages from both single
models, and these features reflected in the comparison of macro-average F score between the
best ensemble model and single models. On one hand, the SVM has a better performance
than BranchLSTM in deeper depth; on the other hand, it keeps the insufficient performance
of DistilBERT for source tweets.

Figure 8: Comparison of single model and one-step SVM ensemble model’s Macro-F1
scores by depth of tweet.

Table 8 and table 9 are comparison of unique and common error cases between single models
and one-step SVM ensemble model. As for the comparison between BranchLSTM and SVM,
there are not many different unique error cases in support and deny classes, and common error
cases are multiple times of their unique error cases. On the contrary, SVM has more unique

21



comment error cases than both BranchLSTM and their common error cases. Therefore, they
have similar disadvantages in misclassifying small classes’ tweets, but one-step SVM ensemble
model is more likely to misclassify comment tweets to other classes than BranchLSTM.
As for DistilBERT and SVM in table 9, the situation is similar in small classes but different
in big class. For support and deny, DistilBERT and SVM have many common error cases
like BranchLSTM and SVM. Different from table 8, they have more common error cases in
commnet class. This means DistilBERT and SVM have similar disadvantages in misclassifying
small classes’ tweets than big class, but SVM has more similarities in misclassifying large
categories with DistilBERT than BranchLSTM.

``````````````̀Error type
Class comment support deny

LSTM SVM LSTM SVM LSTM SVM
Unique 90 157 42 21 25 65

Common 82 200 126

Table 8: BranchLSTM and one-step SVM ensemble’s unique and common error cases

``````````````̀Error type
Class comment support deny

BERT SVM BERT SVM BERT SVM
Unique 88 70 21 23 6 8

Common 169 198 123

Table 9: DistilBERT and one-step SVM ensemble’s number of error cases

5.3.2 Sequential vs non-sequential voting classifier

To investigate the difference between sequential voting classifiers and non-sequential voting
classifiers, we compare and analyze CRF’s and SVM’s classification results in this section. We
hope to figure out to what extent can structural information help classifying the predicted
probabilities from two single deep learning models. Through error analysis of two voting clas-
sifiers, we conclude the advantage and disadvantages of their voting strategy while receiving
probabilities from deep learning models.
Table 10 shows the performance of the one-step SVM ensemble model and one-step CRF
ensemble model in overall and per class metrics. From this table, we can see that they have
very close performance in every macro-average and single class metric. The gap between
any two of them is less than 2 percent. Therefore, SVM and CRF have almost the same
performance in classifying the concatenated probabilities from deep learning models as input
features. While SVM treats every tweet as a single unit, and CRF makes use of structural
information of conversation and treats every branch as a unit, it is interesting that they have
such a close performance in overall metrics.
Table 11 is the accuracy and macro-average F-score performance of SVM and CRF on each
depth. For each depth, they still have a very close macro-average F-score except for depth 0
and depth 5. For source tweets, CRF has a 3 percent higher macro-average F-score than SVM,
while in depth 5, SVM has a 7 percent higher macro-average F-score than CRF. For accuracy,
the only obvious difference is that CRF has 3 percent higher accuracy than SVM in depth 4.
Since there is no substantial difference between SVM and CRF in overall and per class metrics,
error analysis could help to show the difference in voting strategies. Similar to table 6, table

22



XXXXXXXXXXXXModel
Metrics Macro-average

S D Q C
Precision Recall F-score

SVM 0.531 0.470 0.489 0.791 0.218 0.414 0.532
CRF 0.532 0.468 0.488 0.791 0.234 0.403 0.524

Table 10: Ensemble models’ performance with SVM and CRF voting classifiers on test
dataset

Depth tweets S D Q C
SVM CRF

Accuracy MacroF Accuracy MacroF

0 140 132 4 0 4 0.9214 0.4712 0.9216 0.5026
1 1271 220 88 110 853 0.6588 0.4650 0.6536 0.4586
2 276 28 14 26 208 0.6918 0.3488 0.6952 0.3536
3 157 10 10 5 132 0.7828 0.3574 0.7944 0.3808
4 96 8 8 11 69 0.6798 0.3122 0.7086 0.3292
5 52 5 2 3 42 0.7856 0.5422 0.7910 0.4796
6+ 205 16 26 16 147 0.7262 0.4598 0.7278 0.4594

Table 11: Accuracy and macro-average F-score of one-step SVM ensemble model and
one-step CRF ensemble model by depth

12 illustrates the number of unique and common error cases regarding to SVM and CRF.
This table has a distinctive distribution in the number of unique and common error cases,
on which the numbers of common error cases are much more than the numbers of unique
error cases. This distribution shows that SVM and CRF have quite a lot of similarities in
misclassifying these probabilities. However, such a few unique error cases make looking for
their own misclassifying patterns much easier.

``````````````̀Error type
Class comment support deny

SVM CRF SVM CRF SVM CRF
Unique 12 10 1 3 2 1

Common 227 220 129

Table 12: SVM and CRF’s unique and common error cases

Here are some representative unique error cases which are misclassified from small classes to
comment class, these error cases intuitively reflect the sequential and non-sequential voting
classifiers’ features.

• @WSJ had a description. (SVM, deny to comment)

• @CTVNews you guys ”confirmed” there were 3 shootings not long ago. How about you
wait for official reports before saying things. (SVM, support to comment)

• @CBCNews yessss!! (CRF, support to comment)

• @kristinpuhl If you don’t think there is clear motive in fighting or fleeing from police
after robbery, you are a fucking moron. #Ferguson (CRF, deny to comment)

23

The first unique error case shows the disadvantage of SVM without structural information
because the context is required to understand the attitude of the user. As CRF makes use of
structural information but SVM does not, it is reasonable that SVM misclassifies this deny
tweet to comment. As for the second error case, the author critiques a social media platform
for a fake report without confirming the truth and gives trust to the official report. The true
label of this tweet is supported, so we can predict that the previous tweet is about the official
report. However, SVM misclassified it as a comment tweet, which means it has no idea about
what it is talking about.
Another two are CRF’s unique error cases, their stance can be predicted intuitively because
they express their sentiment directly. Therefore, it can be known that CRF is not as good as
SVM in classifying straightforward tweets. In other words, utilizing structural information may
have less strength in classifying a single simple tweet comparing to SVM.

5.3.3 Comparing one-step and two-step ensembles

To improve the performance of ensemble models on our imbalanced dataset, we design two-
step voting classifiers to classify comment tweets in the first step and small classes in the
second step. In subsection 5.3.1, we already know that two-step voting classifiers don’t have
much improvement comparing to one-step voting classifiers in overall metrics. However, it is
worthwhile to figure out how one-step and two-step differ in classifying the rumour stance,
and how each classifier contributes to the voting process in two steps of the voting process. In
this subsection, we compare and analyze the best one-step voting classifier and best two-step
voting classifier.
Table 13 shows the performance of best single model, best one-step voting ensemble and best
two-step voting ensemble models. Both one-step and two-step voting ensemble models have
lower macro-average F-score than DistilBERT, but with a tiny difference. Therefore, there is
no much difference among these three models in overall metrics. Besides that, they also have
similar macro-average precision, recall, and per class F-score.

XXXXXXXXXXXXModel
Metrics Macro-average

S D Q C
Precision Recall F-score

DistilBERT 0.530 0.497 0.505 0.788 0.229 0.469 0.533
SVM 0.531 0.470 0.489 0.791 0.218 0.414 0.532

CRF+SVM 0.531 0.467 0.486 0.782 0.225 0.416 0.521

Table 13: Best single, one-step and two-step models’ performance

To better understand the effect of utilizing the sequential structure in ensemble models, and
also the difference between one-step and two-step voting classification, we compare the one-
step and two-step voting ensemble models’ macro-average F1 score by depth. Figure 9 shows
ensemble models’ macro-average F-score from depth 0 to depth 6+. There is no obvious
difference between depth 1 to depth 4, but some gaps exist in source depth and depth 5+. For
the root part of the conversations, the two-step voting ensemble model performs better than
both DistilBERT and SVM with a nearly 3 percent advantage. The non-sequential DistilBERT
and one-step voting ensemble model with a non-sequential voting classifier perform worse in
source tweets. Most source tweets are supporting a rumour, this result shows that a two-
step voting ensemble model with CRF sequential voting classifier could learn this better. For
tweets with a depth deeper than 5, one-step voting ensemble and two-step voting ensemble

24

also have almost the same macro-average F-score in deeper depth. They both have a better
performance than DistilBERT in depth 5, but a worse performance than DistilBERT in depth
6+. Therefore, one-step SVM and two-step CRF+SVM don’t have much difference except for
CRF+SVM has a better performance in source tweets. This shows that the advantage of a
two-step voting ensemble model with a sequential voting classifier is limited than the one-step
voting ensemble model in identifying supporting tweets.

Figure 9: Macro-F1 scores by depth of tweet.

To figure out the same voting classifier’s preference to each dimension of the input probabil-
ity feature in one-step and two-step voting ensemble models, we analyze the SVM’s feature
weights in both one-step and two-step classification experiments. Interestingly, one-step and
two-step voting ensemble models have such close performance. However, because of the differ-
ent classification strategies, there could be much difference for the SVM’s feature preference
in two different voting processes. For one-step voting classification, SVM classifies four classes
directly, while in two-step voting it first classifies big class and then classifies three small
classes. Through this analysis, we hope to explore how BranchLSTM and DistilBERT’s pre-
dicted probabilities are utilized by voting classifiers.
Table 14 and table 15 show the average feature weights of linear SVM in one-step voting
and two-step voting classification respectively. As introduced before, the probability feature
predicted by two deep learning models is an eight-length vector. Therefore, to classify tweets’
stance based on these feature vectors, the SVM feature weights vector is also an eight-length
vector, where each weight offers the importance of a dimension of the probability feature.
Using the one-versus-one strategy in linear SVM, we have (n * (n - 1) 2 types of feature
weights, where n represents the number of classes. The one-versus-one strategy means every
tweet is classified by every pair of two candidate classes for (n * (n - 1) 2 times, and then
all the binary classification results are concluded to give the final prediction. As a result, each
type of SVM feature weight is an eight-length feature weights vector for dividing two classes.
In one-step voting classification, SVM has four classes. In two-step voting classification, SVM
works in the second step which only needs to classify three small classes. As a result, linear
SVM in one-step voting classification has (4 * 3) 2 = 6 types of feature weights, while in
two-step has (3 * 2) 2 = 3 types of feature weights.

25

As the SVM’s one-versus-one strategy classifies two classes in every binary classification, only
four dimensions of the SVM’s feature weights are correlated with input features in every binary
classification. Taking a quick glance at both table 14 and table 15, it is easily to find out that
the three biggest absolute values of correlated feature weights are all in DistilBERT part.
Besides, most of these feature weights are negative, which means DistilBERT has a largely
negative influence on corresponding classes in the certain binary classification process. Except
that, the variance of SVM’s correlated feature weights in the BranchLSTM part is much
smaller than DistilBERT’s part, which shows that BranchLSMT’s feature weights contribute
more equally to the classification process than DistilBERT.
In the two-step voting classification, there are only three types of SVM’s feature weights
because comment class is classified in the first step. It is worthwhile to compare the support
versus deny feature weights between one-step SVM and two-step SVM because support and
deny are very influential in the spreading of the information. The feature weights corresponding
to support class don’t change a lot in both BranchLSTM and DistilBERT part, but deny class’s
feature weights changed a lot in both BranchLSTM and DistilBERT from one-step to two-
step. The BranchLSTM part’s deny feature weight change from negative to positive, and
DistilBERT part’s deny feature weight decrease from -2 to -11. This means SVM’s feature
weights for BranchLSTM’s deny dimension is positively correlated to input feature in one-step
voting but negatively correlated in two-step voting, and SVM’s feature weight for DistilBERT’s
deny dimension has a more negative influence in two-step voting than one-step voting.

``````````````̀Feature type
Stance BranchLSTM DistilBERT

support comment deny query support comment deny query

(support, comment) 1.857840 -0.616074 -0.802722 -0.439044 -7.127957 -0.403323 -3.040130 10.571412
(support, deny) 1.362475 1.096037 -3.771393 1.312881 4.551692 -11.132948 -2.573309 9.154567
(support, query) 1.153870 -0.507858 0.221886 -0.867897 3.040023 2.323683 -10.943504 5.579799
(comment, deny) 0.306139 1.375730 -3.040178 1.358310 7.706208 -11.456274 0.360187 3.389879
(comment, query) -0.021349 -0.397831 0.798213 -0.379032 4.510649 2.292224 -9.664425 2.861553
(deny, query) 0.602523 -1.255049 2.157468 -1.504941 1.584350 5.780189 -10.496090 3.131550

Table 14: Average feature weights of SVM in one-step voting ensemble model

``````````````̀Feature type
Stance BranchLSTM DistilBERT

support comment deny query support comment deny query

(support, deny) 0.412595 -1.388387 2.587989 -1.612197 1.674947 6.008834 -11.168103 3.484323
(support, query) -1.540901 -1.318144 4.714231 -1.855185 -4.771620 11.233030 3.432492 -9.893904
(deny, query) -0.910160 0.617119 -0.351510 0.644551 -3.152053 -2.469326 11.690014 -6.068637

Table 15: Average feature weights of SVM on two-step voting ensemble model

6 Discussion

6.1 Results discussion

Firstly and most importantly, we adapt the original BranchLSTM classification method to make
it able to train and predict on the different dataset with the various sizes of conversations,
which could help later researchers to use BranchLSTM much easier.
In the comparison of sequential and non-sequential single models, we find that DistilBERT
has more advantages in classifying the balanced dataset than BranchLSTM. DistilBERT has

26

better performance than BranchLSTM on small classes, but BranchLSMT performs better in
predicting the big class. Through error analysis, it seems valid that DistilBERT has advantages
in understanding the text content while BranchLSTM is better at utilizing context information.
In the comparison of all single models and ensemble models, we know that they perform roughly
equally. Through depth analysis of single models and the best ensemble model, we find that the
ensemble model takes advantages and disadvantages from both the single models. Through
error analysis of the single models and the best ensemble model, we find that two single models
have similar disadvantages with SVM respectively in misclassifying small classes, but SVM has
more similarities in misclassifying big classes with DistilBERT than with BranchLSTM.
In the comparison of the sequential voting ensemble model and non-sequential voting ensemble
model, we find that SVM can’t make use of structural information to classify tweets that
need to be understood based on context, but CRF is not as good as SVM in classifying
straightforward tweets.
In the comparison of one-step and two-step voting classifiers in ensemble models, we find that
the advantage of the two-step voting ensemble model with a sequential voting classifier is
limited than the one-step voting ensemble model in identifying supporting tweets. Through
analyzing the SVM’s feature weights in both one-step and two-step voting classification, we
find that SVM’s feature weights for BranchLSTM’s deny dimension is positive correlated to
input feature in one-step voting but negatively correlated in two-step voting, and SVM’s feature
weight for DistilBERT’s deny dimension has a more negative influence in two-step voting than
one-step voting.

6.2 Shortcomings and analysis

There do exist some shortcomings in our experiments and models. First, the labels are imbal-
anced in the dataset but we didn’t take any actions to alleviate it. The imbalance of dataset
could limit the performance of the pre-trained model and voting classifiers. To avoid the influ-
ence caused by imbalanced dataset, we could try random oversampling to augment minority
classes in the pre-processing step. Second, the method of incorporating BranchLSTM and
DistilBERT probabilities seems oversimplified to some extent. We know that the ensemble
models could learn both advantages and disadvantages from BranchLSTM and DistilBERT
through error analysis, and this is the main reason that ensemble models don’t improve a lot
comparing to single models. We could change the way of combining two models like linear
transformation, but not simply connecting two probability vectors. Except that, what we think
may help to make the ensemble models more powerful is to attempt other ensemble methods
which may combine BranchLSTM and DistilBERT more effectively. The voting classifier is
just one of the ensemble methods, other ensemble methods with different ensemble strategies
could be applied to single models in the future.

7 Conclusion

We expect that the ensemble models combining sequential and non-sequential deep learning
models could make use of both their advantages and may improve the performance of single
models. We also expect that a two-step voting ensemble model with both sequential and non-
sequential voting classifier could utilize the structural information and text information from
the probabilities may have better performance than a one-step voting classifier. Although the

27

improvement of the ensemble model is limited, we reveal many regular patterns through ex-
haustive analysis. We prove the advantages and disadvantages of sequential and non-sequential
deep learning models through error analysis. We also show the different classifying strategies
of sequential and non-sequential voting classifiers in ensemble models. The analysis between
one-step voting and two-step voting reveals the voting classifier’s preference in a different
situation.

References

Peter Bartlett, Yoav Freund, Wee Sun Lee, and Robert E Schapire. Boosting the margin: A
new explanation for the effectiveness of voting methods. The annals of statistics, 26(5):
1651–1686, 1998.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian Goodfellow, Arnaud
Bergeron, Nicolas Bouchard, David Warde-Farley, and Yoshua Bengio. Theano: new features
and speed improvements. arXiv preprint arXiv:1211.5590, 2012.

Guoyong Cai, Hao Wu, and Rui Lv. Rumors detection in chinese via crowd responses. In 2014
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining
(ASONAM 2014), pages 912–917. IEEE, 2014.

Leon Derczynski, Kalina Bontcheva, Maria Liakata, Rob Procter, Geraldine Wong Sak Hoi,
and Arkaitz Zubiaga. Semeval-2017 task 8: Rumoureval: Determining rumour veracity and
support for rumours. arXiv preprint arXiv:1704.05972, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

Sander Dieleman, Jan Schlüter, Colin Raffel, Eben Olson, Søren Kaae Sønderby, Daniel Nouri,
Daniel Maturana, Martin Thoma, Eric Battenberg, Jack Kelly, Jeffrey De Fauw, Michael
Heilman, diogo149, Brian McFee, Hendrik Weideman, takacsg84, peterderivaz, Jon, instag-
ibbs, Dr. Kashif Rasul, CongLiu, Britefury, and Jonas Degrave. Lasagne: First release.,
August 2015. URL https://doi.org/10.5281/zenodo.27878.

Xiaowen Dong, Dimitrios Mavroeidis, Francesco Calabrese, and Pascal Frossard. Multiscale
event detection in social media. Data Mining and Knowledge Discovery, 29(5):1374–1405,
2015.

Emilio Ferrara. ” manipulation and abuse on social media” by emilio ferrara with ching-man
au yeung as coordinator. ACM SIGWEB Newsletter, (Spring):1–9, 2015.

Genevieve Gorrell, Kalina Bontcheva, Leon Derczynski, Elena Kochkina, Maria Liakata, and
Arkaitz Zubiaga. Rumoureval 2019: Determining rumour veracity and support for rumours.
arXiv preprint arXiv:1809.06683, 2018.

Sardar Hamidian and Mona Diab. Rumor identification and belief investigation on twitter. In
Proceedings of the 7th Workshop on computational approaches to subjectivity, sentiment
and social media analysis, pages 3–8, 2016.

28

https://doi.org/10.5281/zenodo.27878

Alfred Hermida, Fred Fletcher, Darryl Korell, and Donna Logan. Share, like, recommend:
Decoding the social media news consumer. Journalism studies, 13(5-6):815–824, 2012.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classifi-
cation. arXiv preprint arXiv:1801.06146, 2018.

Zhiwei Jin, Juan Cao, Yongdong Zhang, and Jiebo Luo. News verification by exploiting con-
flicting social viewpoints in microblogs. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30, 2016.

Elena Kochkina, Maria Liakata, and Isabelle Augenstein. Turing at semeval-2017 task 8:
Sequential approach to rumour stance classification with branch-lstm. arXiv preprint
arXiv:1704.07221, 2017.

Sumeet Kumar and Kathleen M Carley. Tree lstms with convolution units to predict stance and
rumor veracity in social media conversations. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 5047–5058, 2019.

John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data. 2001.

Gang Liang, Wenbo He, Chun Xu, Liangyin Chen, and Jinquan Zeng. Rumor identification
in microblogging systems based on users’ behavior. IEEE Transactions on Computational
Social Systems, 2(3):99–108, 2015.

Xiaomo Liu, Armineh Nourbakhsh, Quanzhi Li, Rui Fang, and Sameena Shah. Real-time
rumor debunking on twitter. In Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management, pages 1867–1870, 2015.

Michal Lukasik, PK Srijith, Duy Vu, Kalina Bontcheva, Arkaitz Zubiaga, and Trevor Cohn.
Hawkes processes for continuous time sequence classification: an application to rumour
stance classification in twitter. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pages 393–398, 2016.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Saif Mohammad, Svetlana Kiritchenko, Parinaz Sobhani, Xiaodan Zhu, and Colin Cherry.
Semeval-2016 task 6: Detecting stance in tweets. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016), pages 31–41, 2016.

Vahed Qazvinian, Emily Rosengren, Dragomir Radev, and Qiaozhu Mei. Rumor has it: Iden-
tifying misinformation in microblogs. In Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, pages 1589–1599, 2011.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners. OpenAI Blog, 1(8), 2019.

Victoria L Rubin and Tatiana Lukoianova. Truth and deception at the rhetorical structure
level. Journal of the Association for Information Science and Technology, 66(5):905–917,
2015.

29

Victoria L Rubin, Niall Conroy, Yimin Chen, and Sarah Cornwell. Fake news or truth? using
satirical cues to detect potentially misleading news. In Proceedings of the second workshop
on computational approaches to deception detection, pages 7–17, 2016.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Steve Schifferes, Nic Newman, Neil Thurman, David Corney, Ayse Göker, and Carlos Martin.
Identifying and verifying news through social media: Developing a user-centred tool for
professional journalists. Digital journalism, 2(3):406–418, 2014.

Giovanni Stilo and Paola Velardi. Efficient temporal mining of micro-blog texts and its appli-
cation to event discovery. Data Mining and Knowledge Discovery, 30(2):372–402, 2016.

Eugenio Tacchini, Gabriele Ballarin, Marco L Della Vedova, Stefano Moret, and Luca de Al-
faro. Some like it hoax: Automated fake news detection in social networks. arXiv preprint
arXiv:1704.07506, 2017.

Svitlana Volkova, Kyle Shaffer, Jin Yea Jang, and Nathan Hodas. Separating facts from fiction:
Linguistic models to classify suspicious and trusted news posts on twitter. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), pages 647–653, 2017.

Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in statistics,
pages 196–202. Springer, 1992.

Zhe Zhao, Paul Resnick, and Qiaozhu Mei. Enquiring minds: Early detection of rumors in
social media from enquiry posts. In Proceedings of the 24th international conference on
world wide web, pages 1395–1405, 2015.

Arkaitz Zubiaga, Heng Ji, and Kevin Knight. Curating and contextualizing twitter stories to
assist with social newsgathering. In Proceedings of the 2013 international conference on
Intelligent user interfaces, pages 213–224, 2013.

Arkaitz Zubiaga, Maria Liakata, Rob Procter, Kalina Bontcheva, and Peter Tolmie. Crowd-
sourcing the annotation of rumourous conversations in social media. 05 2015. doi:
10.1145/2740908.2743052.

Arkaitz Zubiaga, Elena Kochkina, Maria Liakata, Rob Procter, and Michal Lukasik. Stance
classification in rumours as a sequential task exploiting the tree structure of social media
conversations. arXiv preprint arXiv:1609.09028, 2016a.

Arkaitz Zubiaga, Maria Liakata, Rob Procter, Geraldine Wong Sak Hoi, and Peter Tolmie.
Analysing how people orient to and spread rumours in social media by looking at conversa-
tional threads. PloS one, 11(3):e0150989, 2016b.

Arkaitz Zubiaga, Ahmet Aker, Kalina Bontcheva, Maria Liakata, and Rob Procter. Detection
and resolution of rumours in social media: A survey. ACM Computing Surveys (CSUR), 51
(2):1–36, 2018a.

30

Arkaitz Zubiaga, Elena Kochkina, Maria Liakata, Rob Procter, Michal Lukasik, Kalina
Bontcheva, Trevor Cohn, and Isabelle Augenstein. Discourse-aware rumour stance classifi-
cation in social media using sequential classifiers. Information Processing & Management,
54(2):273–290, 2018b.

31

	Introduction
	Related work
	Early work addressing rumours
	Early research utilizing conversational structure
	Development of rumour stance related competitions
	Blossoming of pre-trained language models

	Data
	Dataset description
	Dataset split

	Methods
	Single-model methods
	Original BranchLSTM Method
	Adapted BranchLSTM method
	DistilBERT method

	Ensemble methods
	Voting strategies

	Experiments
	Experiment settings
	Single-model experiment
	Ensemble experiment

	Single-model Experiment Results
	Model performance comparison
	Performance at different depths of the threads
	Error analysis

	Ensemble model Experiment Results
	Performance best ensemble model
	Sequential vs non-sequential voting classifier
	Comparing one-step and two-step ensembles

	Discussion
	Results discussion
	Shortcomings and analysis

	Conclusion

