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PRELIMINARIES 
Conventions 

- This thesis is intended to be understandable for people with some background in 
bioinformatics and/or life sciences 

- Page numbers in in-line citations are numbered from the first page of the article/book 
- The inter-RNA interaction notation is as follows: 28 NP 670-712 MP 355-395 stands for: the 

interaction ranked 28+1=29th in the source dataset, between the NP segment at nucleotides 
670-712 and MP segment at 355-395, measured from the 5’ end. This can be abbreviated as: 
2 NP MP. The ranking is usually by reads-per-million (RPM) in (Dadonaite et al. 2019) 

Abbreviations 
- cf.: confer, meaning compare, or used to refer to relevant literature 
- w.r.t.: with respect to 
- vRNA: viral RNA 
- vRNP: viral ribonucleoprotein: an RNA-protein complex containing a particular vRNA 

segment, viral nucleoproteins and viral polymerase subunits 
- nt: nucleotide 
- inter-RNA interaction: intersegmental RNA-RNA interaction 
- strain names are sometimes abbreviated, e.g. A/California/07/2009  California/2009 
- vRNA segment abbreviations: 

  Segment common 
name/protein encoded 

Segment 
abbreviation 

Haemagglutinin HA 
Neuraminidase NA 
Polymerase A subunit PA 
Polymerase B1 subunit PB1 
Polymerase B2 subunit PB2 
Nucleoprotein NP 
Non-structural protein NS 
Matrix protein MP 



 
 
 

ABSTRACT 
Genome packaging is the process by which a virus loads its genome into newly produced viral 
particles. The unique nature of the influenza genome complicates genome packaging: its genome is 
divided into eight unique segments, each carrying genes crucial for the proper functioning of the 
virus. There is experimental evidence that most influenza virions carry all eight segments with low 
multiplicity, a fact that cannot be explained using a random model of incorporation of genome 
segments. It is not known how influenza viruses manage to selectively package the unique genome 
segments into new virions in this manner, but experimental evidence points to the involvement of 
direct inter-RNA base-pairing interactions between genome segments. This thesis aims to build upon 
existing datasets on these inter-RNA interactions in strains of influenza A in order to extract novel 
information. By extrapolating the interaction set from a reference strain to other strains of influenza A, 
insights were gained into the potential conservation and similarity of these interactions on the 
sequence- and inter-RNA structure level. Limited evidence was found for conservation of inter-RNA 
interactions in general. In-depth analysis of a few specific interactions indicated the potential 
existence of some partly conserved sequence- and structural elements. The degree of similarity was 
lower in general in more genomically distinct strains. The findings underline the plasticity of inter-
RNA interaction networks. This may have implications for selective packaging and reassortment 
processes in influenza. 

KEYWORDS 
Influenza, genome packaging, selective packaging, RNA structure, computational virology  



 
 
 

INTRODUCTION 
Overview of influenza 
Influenza, known colloquially as ‘the flu’, is a contagious disease caused by influenza viruses. 
Influenza is responsible for a high annual burden of disease in humans, including many deaths (CDC 
2020) (Iuliano et al. 2018). Besides humans, influenza viruses can cause disease in other animals, 
such as wild- and domesticated fowl and pigs. Influenza outbreaks in this context can have an impact 
on agriculture (Alders et al. 2014).  

The symptoms of influenza mainly affect the respiratory system (El Ramahi and Freifeld 2019). 
Severe complications are possible, including viral pneumonia resulting in acute respiratory distress 
syndrome (Short et al. 2014). In severe influenza, bacterial secondary pneumonia also poses a 
significant risk (Beigel 2008, Sect. Complications) (Morris, Cleary, and Clarke 2017). Influenza can 
also lead to non-respiratory symptoms, and exclusively non-respiratory presentations are possible in 
a minority of cases (Chow et al. 2020). Although antiviral agents exist that are at least somewhat 
effective against influenza (Dobson et al. 2015) (Hsu et al. 2012), there are no definitive treatments 
for influenza (Beigel 2008, Sect. Antiviral Treatments). Besides antivirals, treatments are supportive 
and symptomatic in nature, including mechanical ventilation for severe influenza-associated 
pneumonia (Ríos et al. 2011). Influenza vaccines are effective in preventing or controlling influenza, 
but challenges remain in the development and maintenance of influenza vaccines and vaccination 
strategies (Houser and Subbarao 2015). The evolution of resistance to antivirals is a growing 
problem in influenza treatment (Lampejo 2020). 

Owing to its respiratory-centric manifestations, influenza spreads mainly through respiratory droplets 
(Weinstein et al. 2003), and possibly through aerosols (Tellier 2006) (Cowling et al. 2013), although 
controversy exists about the latter (Lemieux et al. 2007). Transfer through fomites (objects or 
surfaces contaminated by virus) may also be possible (Weinstein et al. 2003) (Boone and Gerba 
2007). In the Western hemisphere, influenza in humans is most prevalent in winter months, but 
nearer to the tropics, outbreaks happen year-round (Viboud, Alonso, and Simonsen 2006) (Moura 
2010). Influenza has also been responsible for several pandemics, including the 1918 pandemic 
(also known as ‘Spanish flu’, although the term is now considered improper), which killed about 50 
million people globally (Taubenberger and Morens 2006). More recently, an influenza virus caused 
the 2009 swine flu pandemic. The propensity of influenza to cause recurrent outbreaks, both 
seasonally and in the context of pandemics, is due to several factors. Its relatively high mutation rate, 
multiplicity of variants and global spread in combination with maintenance in animal reservoirs in 
close proximity to humans and tendency towards ‘spillover’ events establishes this virus as one of 
the most persistent infectious disease threats to human health (Shao et al. 2017) (Lyons and Lauring 
2018). 



 
 
 
CLASSIFICATION AND NOMENCLATURE 
Influenza viruses are single-stranded, negative-sense RNA viruses (i.e. -ssRNA, or Class V in the 
Baltimore classification) (Bouvier and Palese 2008). This means that the influenza genomic viral 
RNA must first be transcribed to opposite sense (positive sense) mRNA in other to produce viral 
proteins. Influenza viruses are enveloped, meaning that the outer layer of the viral particles consists 
of host cell membrane lipids, with antigenic spike proteins protruding. Inside the virion, matrix 
proteins coat the viral envelope. Influenza viruses package a multi-subunit viral RNA polymerase 
which is capable of both transcribing mRNA from the viral genomic RNA, and replicating the genomic 
RNA via a ‘cRNA’ intermediate (te Velthuis and Fodor 2016) (Park et al. 2003). 

Influenza viruses belong to the family Orthomyxoviridae, which contains the influenza genera or 
species A, B, C and D (Su et al. 2017), along with a few other non-influenza viruses. Of these, 
influenza A and B are most common in humans (Belshe 2010). Influenza A is the main cause of 
influenza pandemics and is also common in seasonal/annual outbreaks (Layne, Monto, and 
Taubenberger 2009) and it will be the focus of this thesis. Influenza A is divided into serovars or 
subtypes based on the identity of its immunogenic haemagglutinin (HA) and neuraminidase (NA) 
spike proteins (Bouvier and Palese 2008), yielding the common notation of HxNy (e.g. H1N1 and 
H5N1), where x and y note the haemagglutinin and neuraminidase subtypes respectively. Each 
subtype is then further subdivided into various strains based on more precise genetic differences, 
yielding notations such as A/California/7/2009(H1N1)pdm for a particular strain of 2009 swine flu 
pandemic influenza A virus found in California. 

INFLUENZA GENETICS 
One particular aspect of influenza genomics drives the generation of new strains of influenza virus in 
a manner that is uncommon among viruses: its segmented genome. The influenza A genome, which 
encodes up to 14 genes depending on the specific strain (Eisfeld, Neumann, and Kawaoka 2015), is 
‘spread out’ across eight different single-stranded, negative-sense RNA segments (Bouvier and 
Palese 2008). Each of these segments is unique and does not share genes with other segments. 
This means that each of the segments is necessary for the correct functioning and replication of 
influenza virus (Bouvier and Palese 2008). A missing segment(s) means the virus is unable to 
produce one or more of its viral proteins, resulting in partially- or non-functional virus. The segmented 
nature of influenza genomes (which it shares with other members of the Orthomyxoviridae family) is 
not unique among -ssRNA viruses (Lowen 2018), but the multiplicity of segmentation (eight 
segments) in influenza viruses is high relative to most other segmented viral genomes (Chaitanya 
2019) (McDonald et al. 2016, Tab. 1), including Bunyavirales- and Arenaviridae segmented genomes 
which usually have two or three unique segments. The segmentation of influenza virus genomes 
complicates viral replication (Hutchinson et al. 2010), as each of the unique segments replicates 
independently, but all eight need to be packaged together into a new viral particle.  



 
 
 
Table 1: Overview of the eight influenza A viral RNA (vRNA) segments and known encoded proteins. The lengths in 
nucleotides of each vRNA segment is given based on the A/WSN/1933[H1N1] strain, available for example in the 
Influenza Research Database (fludb.org). Encoded proteins are based mostly on (Bouvier and Palese 2008), with 
additional citations to support in virio functions. An overview of the viral polymerase (with PA, PB1, PB2 subunits) is 
available in (te Velthuis and Fodor 2016), although the individual subunits may have other functions as well. The list 
of proteins encoded may not be exhaustive, as new viral protein functions are discovered occasionally. 

Segment 
abbreviation 

Length (nt) 
A/WSN/1933[H1N1] 

Proteins encoded Functions 

PB1 2341 PB1 (polymerase B1 
subunit) 
 

Viral polymerase basic subunit 1 
 

PB1-F2 Pro-apoptotic function and interferon 
inhibition (Varga et al. 2012) 

PB2 2341 PB2 (polymerase B2 
subunit) 

Viral polymerase basic subunit 2 

PA 2233 PA (polymerase A 
subunit) 

Viral polymerase acidic subunit (te 
Velthuis and Fodor 2016) 

PA-X Endonucleolytic activity, immune 
suppression? (Bavagnoli et al. 2015) 
(Hayashi, MacDonald, and Takimoto 
2015) 

HA 1775 HA (haemagglutinin) Surface antigen with receptor binding and 
cell entry functions (Kosik and Yewdell 
2019) 

NP 1565 NP (nucleoprotein) Binds viral RNA (Hu et al. 2017) 
NA 1409 NA (neuraminidase) Surface antigen with glycoprotein 

cleavage capabilities, viral release 
functions (Kosik and Yewdell 2019) 

MP or M 1027 M1 (matrix protein 1) Coats viral envelope. Involved in viral 
budding, viral ribonucleoprotein export, 
and other functions, cf. e.g. (Ruigrok et al. 
2000) (Bui et al. 2000) 

M2 (matrix protein 2) Proton channel. Regulates pH during cell 
entry/viral maturation (Pielak and Chou 
2011) 

NS 890 NS1 (non-structural 
protein 1) 

Blocking host immune response, 
interferes with host mRNA processing, 
promote viral mRNA, various other 
functions (Hale et al. 2008) 

NS2/NEP (nuclear 
export protein) 

Facilitates viral ribonucleoprotein export 
from nucleus (Neumann, Hughes, and 
Kawaoka 2000) 

 

The segmented nature of the influenza genome enables a particular mechanism of recombinational 
genetic transfer among different viral strains, known as reassortment (Lowen 2018). Reassortment in 
influenza occurs when two or more strains of influenza co-infect one cell, resulting in the co-
localisation of viral RNA (vRNA) segments from different strains. In this case, segments from these 
differing strains can blend to form new combinations of segments. These new recombinant strains 
may have properties different from the underlying strains, such as greater adaptability to the host and 
the ability to dodge host immune responses to existing strains due to the expression of a new 
combination of the two surface antigens HA and NA, a phenomenon known as antigenic shift (Lowen 
2018) (Webster and Govorkova 2014). Antigenic shift refers to a recombination event between 
different strains of a virus leading to the generation of a new combination of its antigens (in this case, 
the HA and NA antigens) (Webster and Govorkova 2014). Antigenic shift necessitates on one hand 

http://www.fludb.org/


 
 
 
the existence of multiple viral antigens, and on the other hand, a mechanism for such recombination 
events to occur. This contrasts with antigenic drift, which is the change such viral antigens may 
undergo as a result of normal mutational processes. Influenza A undergoes both antigenic shift and 
antigenic drift processes, the former through reassortment of the separate vRNA segments coding 
for the HA and NA antigens. Note however that reassortment of the HA- and NA-encoding vRNA 
segments are not the only relevant reassortment events, although such antigenic shift events are 
commonly focused on in literature. 

Such reassortment events may have been responsible for past outbreaks, including major 
pandemics such as the 2009 swine flu pandemic (Tao, Steel, and Lowen 2014), which likely first 
arose from reassortment events in farm pigs from what were originally avian-, swine- and human 
influenza strains of different serotypes (Smith et al. 2009). Another area where the potential for 
reassortment is a major concern are outbreaks of H5Nx avian influenza in fowl (Nuñez and Ross 
2019). H5Nx-serotype strains (including strains of the well-known H5N1 and H5N8 serotypes) cause 
outbreaks mainly in wild- and domesticated fowl and have spread globally. This includes so-called 
highly pathogenic avian influenza (HPAI) strains, which are thought to be much more deadly to 
humans than the widely circulating human influenza A strains. However, these strains are not 
currently known to be able to spread sustainably from human to human due to their generally low 
infectivity in humans. Fears exist that a highly infectious (among humans) novel strain of HPAI H5Nx 
influenza may arise from a reassortment of low-infectivity HPAI H5Nx with a strain that is more 
adaptable to human infection (Nuñez and Ross 2019). A more human-like intermediate host such as 
swine may serve as a ‘stepping stone’ in such reassortment processes (Ma, Kahn, and Richt 2008). 

Due in part to the recognised threat of reassortment in generating novel strains of influenza, 
monitoring systems for detecting such new strains have been put in place (WHO 2021). Predicting 
the likelihood of specific reassortment events happening between specific strains would be highly 
useful in contributing to such efforts, but our understanding of the mechanisms behind influenza 
reassortment and the consequences for reassortment probabilities is still quite basic (Gerber et al. 
2014) (Vijaykrishna, Mukerji, and Smith 2015). Many studies are now pointing to the influence of 
influenza genome packaging on the reassortment process, see e.g. (Essere et al. 2013) (Gerber et 
al. 2014) (Vijaykrishna, Mukerji, and Smith 2015) (Hutchinson et al. 2010). 

The process of ensuring that each unique influenza vRNA segment is represented in newly produced 
viral particles during replication is known as genome packaging (Hutchinson et al. 2010), although 
the term also refers more generally to the process of packaging viral genetic material into new 
particles (Sun, Rao, and Rossmann 2010). There has been much discussion about the nature of 
genome packaging in influenza (Shafiuddin and Boon 2019). The two main models proposed are 
random packaging and selective packaging. It is known that all influenza vRNA segments associate 
with viral nucleoprotein (NP) and polymerase units to form viral ribonucleoprotein (vRNP) complexes 
(te Velthuis and Fodor 2016) (Noda et al. 2012). In the random packaging model, vRNA segments 
are incorporated at random into new viral particles, i.e. the vRNA sequences themselves do not 
affect the packaging process or the probability of being included in a given constellation of vRNPs. In 
this model, genome packaging rests only on the ability to discern viral RNA to be packaged from 



 
 
 
non-viral RNA (i.e. native mRNA), and from opposite sense viral RNA transcripts which are created 
during RNA polymerisation. A simple calculation shows that random selection with replacement of 
eight such vRNPs would result in a probability of approximately 0.24% of correctly including all eight 
unique segments in the complex (Hutchinson et al. 2010): 

Equation 1: Naïve calculation of the probability of including all eight unique vRNA segments in a random selection 
with replacement of eight segments in e.g. cytoplasm of an infected cell. 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
8!
88

≈ 0.0024 

Although the applicability of this calculation is limited, this number seems implausibly low, and indeed 
the efficiency of generation of complete influenza particles has been found to be higher (Shafiuddin 
and Boon 2019) (Hutchinson et al. 2010). The probability of packaging at least one of each unique 
vRNA could in principle be increased by packaging a larger number of (random) segments into each 
virion (Hutchinson et al. 2010 p. 3). However, further evidence suggests that generally, just one of 
each unique vRNA is included in influenza particles (Shafiuddin and Boon 2019) (Gerber et al. 2014). 
This evidence includes direct observations of vRNPs in influenza particles using electron microscopy, 
see e.g. (Noda et al. 2012). Additionally, influenza is probably able to initiate infection at low 
multiplicity (few initial viruses), thus indicating that a model in which multiple partially complete virions 
infect a cell to complement missing segments (a multipartite virus model) is unlikely (Hutchinson et 
al. 2010, p. 3). This points to a model of selective packaging, in which the vRNAs/vRNPs themselves 
are involved in the packaging process. In this model, the vRNAs/vRNPs interact in order to ensure 
that each unique vRNA segment is incorporated (at least or only once) into budding virions. This 
selective packaging model is also thought to be critical in driving reassortment probabilities in the 
scenario of cell co-infection by different influenza strains (Gerber et al. 2014). Several mechanisms 
for selective packaging have been proposed. 

  



 
 
 

 

Figure 1: Organisation of influenza vRNP and virions. (A): The organisation of a viral RNA segment (vRNA) into viral 
ribonucleoprotein (vRNP). Nucleoprotein wraps the vRNA strand, which folds into a helical shape. The vRNA helix is 
held together at the 3’ and 5’ ends through base pairing, forming a ‘panhandle structure’. Viral polymerase subunits 
bind to this panhandle structure. A potential inter-RNA interaction with an external vRNA element is also shown. (B): 
The organisation of an influenza A virion. The viral envelope consists of host cell lipids and other membrane 
components, with viral M1 matrix protein coating the inside of the envelope. Not shown is that the M1 protein may 
also bind vRNA/vRNP during the budding process. Also shown are the M2 viral proton channel and neuraminidase 
(NA) and haemagglutinin (HA) spike proteins in the viral envelope. Inside the virion, the eight different vRNPs form 
an interacting network. Interactions between vRNPs are likely responsible for selective packaging in influenza A. 
The nature of these interactions is suspected to involve direct inter-RNA interaction. This network of vRNP 
interactions is thought to occur in a ‘7+1’-pattern, with one central vRNP. It is possible that each vRNP interacts with 
this central vRNP, shown as blue dotted lines. Another possibility is that the peripheral vRNPs interact with their 
neighbours, shown as crimson dotted lines. The precise identity of the vRNPs in this pattern is not known, and it is 
also not known whether this organisation is static. 

GENOME PACKAGING IN INFLUENZA 
In the selective packaging model of influenza genetics, the virus needs to be able to discern vRNA 
on two levels: firstly, to distinguish viral (negative sense) genomic vRNA from opposite sense viral 
RNA and other cellular RNAs, and secondly, to distinguish individual vRNAs from one another 
(Gerber et al. 2014 p. 6). Elements of the viral genomic sequences that enable these two levels of 
discrimination are called packaging signals. A general packaging signal required for recognition of 
the negative (genomic) sense vRNA during replication has been known for several decades, cf. 
(Hutchinson et al. 2010, p. 7). Partially complementary sequences are present in the 3’ and 5’ ends 
of all influenza A vRNA segments, which causes the ends to bond and the segment to adopt a 
‘panhandle structure’, i.e. the interior of the segment forms a large loop with the two ends binding 
through partial complementarity of the general packaging signals on both ends. This panhandle is 
known to associate with viral proteins even before the budding stage, mainly viral polymerase 
subunits (te Velthuis and Fodor 2016). The panhandle and the rest of the viral RNA also bind viral 
nucleoprotein (NP), which has many functions in replication (Hu et al. 2017), but is not known to bind 
specifically to certain vRNA elements (Williams et al. 2018). The resulting vRNP complex consisting 
of vRNA and viral proteins undergoes transport and changes in a complicated series of steps from 



 
 
 
initial replication to budding of new virions, and from cell entry to replication upon infecting a new cell, 
cf. e.g. (Eisfeld, Neumann, and Kawaoka 2015). 

The partial complementarity of the general packaging/panhandle formation signal means that the 
opposite (positive) sense complementary RNA which is synthesised from the viral genomic (negative 
sense) RNA by viral RNA polymerase during replication does not form the exact same panhandle 
binding interaction, which allows for discrimination of the correct sense viral RNA from both non-viral 
RNA and opposite sense viral RNA. The mechanism of exclusion for the wrong sense viral RNA is 
thought to be nuclear export, i.e. such wrong sense viral RNA material is not exported from the 
nucleus whilst the correct sense vRNA segments are. Note that this first level of discrimination is 
required in both the random packaging model and the specific packaging model, and such packaging 
signals are common among viruses in general (Coffin, Hughes, and Varmus 1997) (Masters 2019). 

Although evidence is mounting that selection on the basis of unique vRNA segments is crucial to 
influenza genome packaging, it is not known how exactly this happens. Panhandle recognition and 
prevention of nuclear export is likely the mechanism of discrimination for general packaging, but 
these mechanisms are not enough to explain the discrimination between individual segments, since 
the panhandle packaging region is highly conserved for all segments (even among different strains) 
(Gerber et al. 2014, p. 1), and all vRNPs are exported from the nucleus (Hutchinson et al. 2010, Fig. 
2). Non-sequence features that could affect selective packaging include discrimination on the basis 
of segment length (Shafiuddin and Boon 2019, p. 3), and self-repulsion (Venev and Zeldovich 2013). 
However, several of the influenza vRNA segments have similar lengths and corresponding vRNP 
sizes, so this alone would not be enough to explain selective packaging. Self-repulsion of identical 
segments is reported to have an effect on selective packaging (Venev and Zeldovich 2013), but it is 
not known how such self-repulsion would arise between these identical segments, but not between 
different segments (Gerber et al. 2014, p. 4). 

Protein-RNA interactions could drive selective packaging through selective binding of unique 
vRNAs/vRNPs, perhaps in different binding sites depending on vRNA sequence elements 
(Shafiuddin and Boon 2019, p. 3-4), which could form the basis of a supramolecular complex 
packaging such selective proteins with the different vRNAs. However, no such vRNA-discrimination 
selective viral protein is known in influenza (Gerber et al. 2014, p. 3). The most obvious choice, viral 
nucleoprotein (NP), is thought to bind to the vRNA in a non-specific and semi-regular manner 
(Williams et al. 2018). Recently, some evidence was found that nucleoprotein binding is probably not 
random and not uniform, leading to speculations that it might also play a role in (specific) packaging 
(Le Sage et al. 2018). Influenza NP also seems to possess only one RNA binding groove (Ye, Krug, 
and Tao 2006) (Tarus et al. 2012), although this is not completely certain (Labaronne et al. 2016). 
Other viral influenza proteins are either not known to bind to vRNA at all (Hutchinson et al. 2010, p. 
10), or bind non-specifically, such as the panhandle-structure-binding polymerase subunits. 

  



 
 
 
OPEN QUESTIONS 
It is becoming increasingly apparent, both through the elimination of other hypotheses and the 
appearance of new studies, that RNA-RNA interactions are involved in influenza selective packaging. 
Several reviews are available that deal with the lines of evidence and the RNA-genomic locations of 
selective packaging sites that may undergo such interactions, cf. e.g. (Hutchinson et al. 2010; Gerber 
et al. 2014; Shafiuddin and Boon 2019; Li et al. 2021). However, little is known about the nature of 
such interactions: does it involve direct binding between RNA nucleotides in different vRNAs, or does 
the interaction involve some kind of intermediate target, such as a protein or RNA structure? Some 
regions involved in the intersegmental RNA interactions are known, but would all of these be involved 
in such direct RNA-RNA interactions? At what stage of replication do interactions form, and how 
stable are they? Do the interactions constitute a network involving all eight unique vRNA segments, 
and if so, what kind of organisation underlies this network? Are these interactions, and the underlying 
RNA elements, conserved in different strains and different serotypes, or even in other influenza 
species? This is just a grasp from some of the open questions on the topic of selective packaging in 
influenza, the answers to which will provide key insights into the mechanisms of packaging and 
reassortment in influenza, yielding information on reassortment risks and potentially opening 
avenues for future therapies. 

With this thesis, I aim to provide some insight into recent data on RNA-RNA interactions in influenza 
packaging from a bioinformatics perspective. The novelty and rapidly developing nature of this field 
necessitate new approaches, and key insights may be hidden in data that is already available. 
Chiefly, I aim to use bioinformatics-based techniques to analyse in-depth the data on possible direct 
RNA-RNA interactions in influenza A that have recently been described. I will mainly be looking at 
possible conservation of these inter-RNA interactions among different strains and serotypes of 
influenza A, both in terms of sequence conservation of the RNA elements, and structural 
conservation of the interactions. Relevant research questions include: are the recently discovered 
direct inter-RNA interactions in influenza A conserved among different strains and serotypes? If so, is 
this conservation mainly sequence-based or structure-based? Are some interactions more or less 
conserved than other interactions, and does this imply that certain vRNAs are more important than 
others for maintaining selective packaging-involved RNA-RNA interactions? 

 

 

 

  



 
 
 

RNA-RNA interactions in influenza A 
RNA STRUCTURE 
The central dogma of molecular biology states that DNA is used as a template to make RNA, which 
is then used as a template to make proteins. Proteins then carry out most of the functions an 
organism needs to thrive. However, DNA and RNA are more than just templates for transcription and 
translation. Both molecules can adopt rich structures via base pairing and folding, by which they can 
be involved in various mechanisms useful to organisms and viruses. In RNA viruses, RNA structure 
is an indispensable factor in various viral functions, so much so that the evolution of such viruses 
may be constrained by conservation of RNA structures (Smyth et al. 2018). For influenza, the 3’-5’ 
UTR panhandle structure which forms in each of the vRNAs is an example of a functional RNA 
structure, which in this case is important for viral packaging and complexing with the viral polymerase 
subunits. However, there are other (potentially conserved) RNA structures in the influenza genome, 
although not much is known about their functions, cf. (Gultyaev, Fouchier, and Olsthoorn 2010) 
(Ferhadian et al. 2018).  

Importantly, these are all examples of RNA structures formed by intra-RNA interactions (or cis-(RNA-
RNA) interactions), meaning that these structures are formed when nucleotides on the same RNA 
molecule form base pairs. These cis-interactions can occur on a short range to form localised RNA 
structures, but long-range cis-interactions are also known. Such long-range cis-interactions are found 
not just in influenza, but are widespread across RNA viruses, where they are involved in critical viral 
functions, cf. (Nicholson and White 2014). These interacting RNA elements are on the same 
molecule, but they can lie thousands of nucleotides apart, meaning that complex regulatory 
mechanisms, perhaps involving large-scale RNA structure and competing RNA elements, may be 
involved in getting such interactions to occur at the right stages of viral life cycles (Nicholson and 
White 2014). 

RNA-RNA INTERACTIONS IN INFLUENZA A 
To explain selective packaging phenomena however, we need to study the potential for 
intersegmental inter-RNA interactions (or trans-(RNA-RNA) interactions). Direct inter-RNA 
interactions in the influenza genome would mean base pairing between nucleotides in different vRNA 
segments. Finding such interactions could mean that the vRNA sequences themselves are at least 
partly responsible for selective packaging in influenza, and that the conservation or lack thereof 
would probably be critical in reassortment compatibility between influenza strains. As discussed 
before, evidence has been mounting that some form of direct intersegmental RNA-RNA interaction is 
indeed involved in selective packaging in influenza, but up until recently, no techniques existed to 
study these potential interactions. In 2012 and in 2013, two studies showed using mutagenesis and 
electron tomography that certain regions of vRNAs in particular strains are involved in interactions 
with other vRNAs (Fournier et al. 2012; Gavazzi, Isel, et al. 2013), and pinpointed the specific 
nucleotides that could be involved in direct base pairing between vRNAs. Later in 2013, another 
study showed evidence of a functional inter-RNA interaction between two vRNA elements in the PB1 
and NS segments of a H5N1 influenza A strain (Gavazzi, Yver, et al. 2013). Non-complementary 



 
 
 
mutation of nucleotides in the vRNA elements responsible for this interaction greatly reduced 
packaging efficiency. The in vitro nature of this study limited its virological relevance, but this was a 
major step towards proving that direct inter-RNA interaction occurs in influenza, and that such 
interactions are important for selective packaging. 

To conclusively demonstrate the existence of such intersegmental RNA-RNA interactions, in virio 
studies were conducted in recent years. Two seminal studies by (Dadonaite et al. 2019) and (Le 
Sage et al. 2020) were able to prove the existence in virio of hundreds such inter-RNA interactions 
between all vRNAs in various strains of influenza A. The data from these studies will be the focal 
point of analysis for this thesis. These studies used two novel molecular methods to capture these 
inter-RNA interactions in the in virio context: SPLASH for (Dadonaite et al. 2019) and 2CIMPL for (Le 
Sage et al. 2020). The 2CIMPL method was developed for the Le Sage study, whilst the SPLASH 
technique was described in (Aw et al. 2016). Although there are important differences between these 
methods, they are similar in that they both employ a crosslinking technique to stabilise the otherwise 
‘fragile’ RNA-RNA base pairing, and then use sequencing followed by a mapping algorithm to 
determine the genomic locations of the interacting RNA elements. See Figure 2 for a schematic 
overview adapted from the respective studies. Importantly, 2CIMPL also incorporates an 
immunoprecipitation step targeting viral nucleoprotein (in this specific study), but this did not lead to 
bias in favour of high-nucleoprotein RNA regions according to the authors. A comparison of results 
between the two studies in the (Le Sage et al. 2020) paper revealed some major differences in terms 
of interactions found, even in highly similar strains. The reasons for these discrepancies are not clear 
yet. A review of inter-RNA interactions (trans-RNA-RNA interactions) in influenza A and other 
segmented RNA viruses is available, including evidence from the Dadonaite et al. study, cf. 
(Newburn and White 2019). 



 
 
 

 

Figure 2: Schematic overviews of Le Sage et al. 2CIMPL method and Dadonaite et al. SPLASH method for detecting 
inter-RNA interactions in influenza A. (A): 2CIMPL method, from: (Le Sage et al. 2020, Figure 1). (B): SPLASH 
method, from: (Dadonaite et al. 2019, Supplement Figure 7). Both use a crosslinking technique on vRNA bound in 
vRNP in virio. The crosslinked interactions are isolated using RNase digestion and proximity ligation. The 2CIMPL 
method then includes an immunoprecipitation step targeting viral nucleoprotein (NP) to isolate interacting vRNA 
elements. Both methods employ a bioinformatics-based mapping algorithm on the ‘chimeric’ reads to determine the 
genomic locations of the two interacting RNA elements. 

  



 
 
 
These studies showed that a complex network of inter-RNA interactions exists in various strains of 
influenza A. Mutagenesis experiments in these studies revealed a significant role of these 
interactions in selective packaging, and potential consequences for reassortment compatibility. A 
built-in degree of redundancy in these networks was also noted, which could be useful in case some 
interactions are broken by natural processes such as mutation. Remarkably, some of these 
redundant interactions were not reproduced in virtually identical replicates between (Dadonaite et al. 
2019) and (Le Sage et al. 2020), or even in separate replicates of the same strains within these 
studies. Of course, this is just the first step in what is needed to determine the extent, timing, and 
functions of these inter-RNA interactions. Importantly, these methods are able to pinpoint to high 
accuracy the regions involved in such an inter-RNA interaction, but they cannot determine exactly 
which nucleotides within the interacting regions are involved in binding and what opposite-strand 
nucleotides they bind to. In other words, these methods are not able to determine the structure of an 
inter-RNA interaction. In the next section, I will explain how inter-RNA interaction structures can be 
predicted, and how interactions can be extended to other strains based only on sequence 
information. 

  



 
 
 

METHODS 
In this section, I will describe the experiments and general methods that were developed as part of 
this thesis. All code written for this thesis project is available along with documentation in a Git 
repository at: https://gitlab.com/ruben.walen/infla-rna-interactions. The repository also contains 
results of experiments performed. 

Pipeline and experiments 
Various separate experiments were performed to analyse the inter-RNA interaction data from several 
different perspectives. The data from (Dadonaite et al. 2019) and (Le Sage et al. 2020) serves as the 
basis for this thesis: they provide information on the genomic locations (involved segments and 
specific nucleotide ranges) of inter-RNA interactions occurring in multiple strains of influenza A. The 
interaction extrapolation step described below is a key prerequisite to most of these experiments, 
because it allows for the extension of inter-RNA interaction data from one reference strain to a set of 
new (unanalysed) strains. This enables analysis of the interacting RNA regions on both the sequence 
level and the structure level, the latter requiring a further inter-RNA structure prediction step using the 
intaRNA algorithm. A general graphical overview of the data processing- and analysis pipeline is 
shown in Figure 3. 

https://gitlab.com/ruben.walen/infla-rna-interactions


 
 
 

 

Figure 3: General overview of the data processing- and analysis pipeline for this thesis. Blue: data sources; green: 
processing steps; orange: analysis steps; grey: external tools used. 

  



 
 
 
INTER-RNA INTERACTION EXTRAPOLATION 
I developed a method to re-analyse the in virio inter-RNA interaction data from one strain (the 
reference strain) using the genomic sequence of another strain. The method is as follows: 

- multiple sequence alignment (using GenomeNet CLUSTALW, genome.jp) of the new strains 
to the reference strain, for each vRNA segment 

- use the genomic location data for inter-RNA interactions, which was derived experimentally 
for the reference strain in either Dadonaite et al or Le Sage et al., to generate pairs of 
sequences of interacting RNA elements for each strain (including the reference strain) for 
each interaction 

- execute the intaRNA algorithm on every pair of interacting RNA elements for each strain and 
gather the results: the minimum free energy inter-RNA interaction structure and the 
corresponding free energy value, if a significant interaction was found 

This method relies on extrapolating the experimentally derived genomic locations of discrete inter-
RNA interactions in one strain to other strains based on multiple sequence alignment of vRNA 
segments. This enables comparative analysis of these interacting RNA elements on a sequence 
level, and on a predicted structure level. The major limitation of this approach is that there is no 
guarantee that the inter-RNA interactions in the reference strain can be extended to the same 
(homologous) genomic location in other strains. (Dadonaite et al. 2019) and (Le Sage et al. 2020), 
and the additional analysis of their data in the Results section of this thesis, showed that inter-RNA 
interactivity can differ greatly between strains and even between replicates of the same strains. Thus, 
it is highly unlikely that extrapolating interactions from one reference strain to a new strain will yield a 
fully accurate profile of inter-RNA interactions in the new strain, especially if the strains have greatly 
differing genomes or even different serotypes. What it can be used for is to determine to which 
degree the inter-RNA interacting elements are conserved or similar between strains on a sequence 
level and on a predicted structure level, whether some interactions are more conserved than others, 
and what implications this could have on genome packaging and reassortment in influenza A. 

The method uses a reference strain, which supplies the reference viral genome and the genomic 
locations of inter-RNA interactions in that strain. The genomic location of an inter-RNA interaction 
consists of the start- and end positions of the interacting RNA regions on both interacting vRNA 
segments. No additional information, such as indications of RNA structure, is supplied or required, 
although the number of reads per million (RPM) in Dadonaite et al. data and the number of 
occurrences in Le Sage et al. data can be useful as an indicator of the frequency of occurrence of 
each discrete interaction. Using multiple sequence alignment, analogous RNA regions are then 
derived in the new strains, where the same inter-RNA interaction would occur as in the reference 
strain if it were conserved. Then, an inter-RNA structure prediction algorithm is applied to derive the 
minimum free energy (MFE) structure (and corresponding free energy value) of those interacting 
RNA regions. Here, Freiburg RNA Tools intaRNA will be used, as it quite modern and is useful in this 
context, and it was also employed in the Dadonaite et al. study, albeit with different (non-traceable) 
parameters and perhaps on an older version. It is possible that the algorithm will not yield a 

https://www.genome.jp/


 
 
 
significant inter-RNA structure for a given interaction if no structure has a predicted free energy value 
below 0.00 kcal/mol, especially for the non-reference strains. In this case one can assume that the 
likelihood of the extrapolated interaction existing in that strain is low, noting that all inter-RNA 
interactions found in the Dadonaite et al. study did have an associated significant inter-RNA 
structure. In the Dadonaite et al. study, nucleotide-scale accessibility constraints were used to guide 
the inter-RNA structure prediction algorithm, which they derived using a powerful in virio approach for 
the strains they analysed, cf. (Dadonaite et al. 2019, Fig. 1). Because these experimentally-derived 
accessibility constraints are not available for the strains used here for extrapolation, such information 
cannot not be included here. 

The Dadonaite et al. data includes several reference strains for the purpose of this method of 
analysis: A/WSN/1933[H1N1] (WSN), A/Puerto Rico/8/1934[H1N1] (PR8) and A/Udorn/1972[H3N2] 
(Udorn, also known as A/Udorn/307/1972). WSN will be used as a basis reference strain for most of 
the analysis here, owing to the fact that Dadonaite et al. include in the data an ‘average of replicates’ 
for the two WSN replicates they analysed, which I regard as more reliable than the data for individual 
replicates. Also of interest is the use of the Udorn strain as a reference, as it is of a different 
serotype. An important assumption is that the applicability of interaction extrapolation to new strains 
is reduced the more genomically distant they are from the reference strain. The Le Sage et al. data is 
also suitable for use as a reference strain, but since they also and exclusively analyse the WSN 
strain for wild-type, I will mainly stick to Dadonaite et al. WSN. 

INTER-RNA STRUCTURE PREDICTION 
Based on advances in the prediction of nucleic acid folding (DNA/RNA folding), algorithms have been 
developed for the determination of minimum free energy (MFE) structures of RNA-RNA interactions. 
Here, RNA structure refers to a configuration of the nucleotide bonds within an RNA molecule (or 
between two or more interacting RNA molecules). The MFE structure is the RNA structure that 
occupies the lowest possible free energy state within the folding landscape of an RNA molecule, or in 
this case two interacting RNA molecules. It is well known in the field of RNA structural biology (and in 
structural biology in general) that MFE structures are not the end-all-be-all of RNA structure biology 
(Zuker 1989), since RNA molecules can and do adopt non-MFE structures, and the RNA folding 
energy landscape may depend on the local environment. However, a determination of the MFE 
structure of an RNA molecule, or in this case the binding structure of two interacting RNA molecules, 
can provide insight into the properties of that structure, notably including the ‘strength’ or stability of 
the structure. The MFE value of an inter-RNA interaction gives an indication of the expected stability 
of such an interaction: low MFE values correspond to more stable structures, whilst higher MFE 
values may be associated with weaker interactions that may even represent algorithmic artifacts 
instead of biologically relevant interactions, absent other evidence. Algorithms that are able to 
determine the MFE structure of an inter-RNA interaction are therefore useful as a first bioinformatics 
step for studying the expected properties of the influenza inter-RNA interactions that may be so 
important for selective packaging. 



 
 
 
One such algorithm, intaRNA (Busch, Richter, and Backofen 2008), which was developed by 
researchers at the University of Freiburg, was used in the Dadonaite et al. study to compute the 
expected MFE structures of inter-RNA interactions. This algorithm, which was originally published in 
2008 and further enhanced in 2017 (Mann, Wright, and Backofen 2017), is part of a long line of 
similar inter-RNA structure prediction algorithms relying on dynamic programming methods, which 
are in turn based on standard RNA folding algorithms and energy parameters. Several of these 
algorithms can still be considered ‘contemporary’, i.e. incorporating some of the new insights in 
recent years, and each of the corresponding publications seems to claim dominance in some 
particular field of application. An independent benchmark placed intaRNA as one of the top 
‘competitors’ in various domains of application (Umu and Gardner 2017). None of these algorithms 
seem to have been developed specifically for predicting viral inter-RNA interactions. Therefore, 
intaRNA was chosen as the algorithm to use in the methodology of this thesis in order to remain 
close to the Dadonaite et al. results whilst still working with a high-quality algorithm. 

 

Figure 4: An example of an inter-RNA interaction structure predicted by intaRNA. The interaction is between the MP 
and NS segments of A/WSN/1933[H1N1] based on data from (Dadonaite et al. 2019). (A): The raw output of the 
intaRNA software. (B): a visualization of the above interaction using the ViennaRNA forna RNA structure 
visualisation tool. G-U alternative base pairs not included in this visualisation. 

Like the other inter-RNA interaction prediction algorithms, intaRNA is based on a dynamic 
programming method, in this case meaning a method that recursively reduces the original problem to 
a series of smaller sub-problems, which are divided again until they are solvable. The solved 
subproblems are then compiled into a solution to the original problem. More concretely, the original 
problem comprises finding the MFE interaction structure of two RNA sequences, here these will be 
the RNA regions that were found to be involved in an interaction. Each recursion step divides this 
problem into smaller sequences, until they become solvable by means of assessment by some 



 
 
 
scheme of RNA (sub)structure energy estimation, such as the well-known Nearest Neighbour 
Database (Turner and Mathews 2010), which is based on real molecular free energy measurements. 

Then, a traceback procedure is used to compile the ‘global’ minimum free energy structure (and 
calculate the corresponding MFE value) based on these local estimations. The intaRNA algorithm 
presents optimisations on these procedures, including a more efficient recursion procedure and the 
ability to find and initiate from a seed region, a small region of (relatively) uninterrupted inter-RNA 
base pairing that can be used as a basis for computing the rest of the RNA structure. Also important 
is the ability to include accessibility constraints, meaning that restrictions to base pairing accessibility 
due to e.g. intra-RNA structure and RNA-protein binding can be included as a constraint on the 
individual nucleotide scale to provide a more accurate inter-RNA structure and MFE energy estimate. 
Although accessibility data is not available for most of the influenza strains that will be included in this 
thesis, this constraint was used by Dadonaite et al. for their inter-RNA interaction structure 
computations, using RNA accessibility constraints measured in virio at the nucleotide scale. 

One important limitation of most if not all current inter-RNA structure prediction approaches is that 
they cannot predict the existence of pseudoknots and other ‘higher-order’ RNA (sub-)structures. 
Pseudoknots are a family of various types of RNA structures (Peselis and Serganov 2014) 
characterised by ‘non-linear’ base pairing that make them unrepresentable using the standard 
bracket notation, and difficult to predict using standard dynamic programming methods, although 
specialised methods for pseudoknot prediction exist (Jabbari, Wark, and Montemagno 2018). They 
exist natively in structures of various RNA molecules and even have functional implications in viruses 
(Brierley, Pennell, and Gilbert 2007). Although the concept of pseudoknots does not directly translate 
to context of inter-RNA interaction structure, the ‘non-linear’ form of binding seen in pseudoknotting 
could be extended to inter-RNA interaction, in which case the correct structure of such an interaction 
would not be elucidated by existing algorithms including intaRNA. Resolving this issue is outside of 
the scope of this thesis, and the small size of the interacting RNA regions in the influenza A inter-
RNA interactions should conformationally limit non-linear binding. The existence of more complicated 
and large-scale inter-RNA interaction structures, possibly involving multiple interacting sites, is an 
interesting prospect however. 

Utilising inter-RNA interaction structure prediction allows for extrapolation and analysis of the 
influenza RNA-RNA interaction data not just on the sequence level, but also on the (predicted) 
structure level. This two-level comparative analysis of inter-RNA interactions across different strains 
will be the central theme of this thesis to tackle some of the questions posed. If someday a technique 
becomes available that can determine the actual RNA structure of inter-RNA interactions, preferably 
in virio, this analysis can perhaps be extended using those experimentally determined inter-RNA 
structures. 

For the interaction structure prediction, intaRNA 2.0 version 3.2.1 precompiled (Windows 64 bit) 
binary, dated November 2020, is used. Unless stated otherwise, the parameter set used is: default 
settings, with ‘exact’ (most precise) prediction mode, no accessibility constraint, and no seed 
constraint. 



 
 
 
EXTRAPOLATION STRAINS 
Thousands of sequences of influenza A genomes are available online in scattered databases, 
including in the Influenza Research Database (located at fludb.org) and the NCBI Influenza Virus 
Database (NCBI IVD) (Bao et al. 2008). For the purpose of the analysis performed here, it is 
important to have complete genomes, containing all eight genome segments and all material in each 
of the genome segments (no significant sequencing gaps). However, the pipeline built here is able to 
deal with incomplete genomes if necessary. As a first step for analysis and exploration of results, 
H1N1 vaccine strains in the NCBI IVD were picked with (Dadonaite) WSN as the reference strain, 
because these vaccine strains could be considered to constitute a form of consensus concerning the 
human-infecting H1N1 strains occurring in the time period in which the vaccine derived from that 
strain was made. The following (all H1N1) strains fit this description within the NCBI IVD: 

Box 1: H1N1 interpolation strain set; A/WSN/1933[H1N1] (WSN) as the reference strain. WSN has a small, 
presumably sequencing-related gap in the NA segment. 

 

The WSN, PR8 and Udorn sequences were taken from the Dadonaite et al. supplemental data (first 
replicates). The low quality of the ‘Bayern’ and ‘Solomon Islands’ sequences pose challenges for the 
analysis of these strains, but all other strains are relatively complete, bar potential sequencing 
problems in the near-end regions on both sides of vRNA segments in several strains. The 
chronological and geographical variety of these strains offers a solid basis of analysis for H1N1 
strains of influenza A. 

 

 

 

 

 

 

- A/Bayern/7/1995 (absent: PA, PB1, PB2; incomplete: HA, NP, MP) 
- A/Beijing/262/1995 
- A/Brazil/11/1978 
- A/Brisbane/59/2007 
- A/California/07/2009 
- A/Chile/1/1983 
- A/Michigan/45/2015 
- A/New Caledonia/20/1999 
- A/Singapore/6/1986 
- A/Solomon Islands/3/2006 (absent: NS, PB1, PB2; incomplete: PA) 
- A/South Dakota/06/2007 
- A/USSR/90/1977 

 

http://www.fludb.org/


 
 
 
 

Owing to the role of H3N2 strains in causing human outbreaks and pandemics, a selection of H3N2 
vaccine strains with a large chronological and geographical spread was compiled: 

Box 2: H3N2 interpolation strain set; A/Udorn/72[H3N2] as the reference strain. WSN is also possible as a reference 
strain but is less relevant due to greater sequence dissimilarity. 

 

For this strain set, A/Udorn/72[H3N2] (Udorn) is most fitting as the reference strain due to its 
serotypic and genomic similarity. However, WSN (or even PR8) could also be used as the reference 
strain, especially when working with shared WSN-Udorn interactions in the Dadonaite et al. dataset.  

To increase the variety of serotypes and genetic material, some analysis was also performed with a 
set of mixed serotype (not necessarily vaccine-related) strains, with WSN as the reference strain. 
The selection contains several non-human strains, as well as the 2009 pandemic A/Belgium/145-
MA/2009[H1N1] strain and the 1968 pandemic A/Hong Kong/01/1968[H3N2] strain. A/Anhui/1-
BALF_RG1/2013[H7N9] was responsible for an novel-serotype outbreak with an unusually high 
human case fatality rate in 2013 (Watanabe et al. 2013).  

- A/Moscow/10/1999 
- A/Bangkok/1/1979 
- A/Beijing/353/1989 
- A/Leningrad/360/1986 
- A/Wellington/01/2004 
- A/Beijing/32/1992 
- A/Wisconsin/67/2005 
- A/Brisbane/10/2007 
- A/Shandong/9/1993 
- A/Philippines/2/1982 
- A/Victoria/210/2009 (large gaps in PB1, PB2 segments, smaller gaps in HA, PA) 
- A/Texas/50/2012 
- A/Victoria/361/2011 
- A/Ohio/02/2012 
- A/Colorado/06/2017 
- A/Brisbane/1/2012 
- A/Brisbane/6/2012 
- A/South Australia/55/2014 
- A/Kansas/14/2017 

 



 
 
 
Box 3: Mixed serotype interpolation strain set; A/WSN/1933[H1N1] as the reference strain. 

 

Lastly, a selection of H5Nx strains was made to study those serotypes in greater depth, due to the 
increasing potential of these serotypes in causing outbreaks of influenza in humans. The selection 
forms a chronologically and geographically varied mixture of strains from different animal sources 
(including humans, birds, and swine) and including several different neuraminidase (NA/Nx) 
serovars: 

Box 4: H5Nx serotypes interpolation strain set; A/WSN/1933[H1N1] as the reference strain. 

 

INTER-RNA INTERACTION DISTRIBUTIONS 
In this experiment, profiles are created of the number of unique inter-RNA interactions sites 
overlapping each nucleotide position along the genome segments. This is done based only on the 
raw (Dadonaite et al. 2019) and (Le Sage et al. 2020) supplemental data, structure prediction was 
not necessary here. Finding the distribution of hotspots along the eight vRNA segments for each 
strain is straightforward based on the data. Each nucleotide in each segment is simply annotated 
with the number of unique interactions overlapping that nucleotide in the dataset. The three strains 
available in the Dadonaite et al. data are: A/WSN/1933[H1N1] (WSN), A/Puerto Rico/8/1934[H1N1] 
(PR8) and A/Udorn/72[H3N2] (Udorn). Note that the Udorn strain is of a different serotype than the 
first two, although this does not necessarily mean that it is also dissimilar to WSN and PR8 in non-
antigenic segments. For WSN, the data from the ‘average’ of the two reproduced replicates is used, 
whilst for PR8 and Udorn, the data on the first replicate is used. For Le Sage et al., the data on the 

- A/Puerto Rico/8/1934-Korea/426/1968[H2N2] 
- A/Anhui/1-BALF_RG1/2013[H7N9] 
- A/Belgium/145-MA/2009[H1N1] 
- A/Brisbane/59/2007[H1N1] 
- A/Hong Kong/01/1968[H3N2] 
- A/duck/Hokkaido/Vac-3/2007[H5N1] 
- A/duck/Zhejiang/6DK19-MA/2013[H5N2] 
- A/mallard/Alberta/70/2017[H7N3] 

 

 

- A/Anhui/1/2005[H5N1] 
- A/Vietnam/UT36282/2010[H5N1] 
- A/Egypt/MOH-NRC-8434/2014[H5N1] 
- A/Changsha/1/2014[H5N6] 
- A/Yunnan/0127/2015[H5N6] 
- A/duck/Mongolia/54+47/01[H5N1] 
- A/duck/Hokkaido/Vac-3/2007[H5N1] 
- A/duck/Moscow/4182-C/2017[H5N3] 
- A/duck/Zhejiang/6DK19-MA/2013[H5N2] 
- A/Anas Platyrhynchos/Belgium/10811-6/2019[H5N6] 
- A/swine/Banten/UT2071/2005[H5N1] 
- A/swine/Zhejiang/SW57/2015[H5N1] 
- A/Crow/Aghakhan/2017[H5N8] 
- A/swan/Krasnodar/44/2017[H5N8] 

 



 
 
 
first replicate of their WSN strain is used, as well as the HSmut strain created by the researchers as 
a variant of WSN in which the NP hotspot was disrupted using synonymous mutations. The 
distributions were normalised by setting the maximal value across all segments to one, i.e. setting 
the highest peak to one and normalising the distributions for all segments to that peak value. This 
allows for cross-comparison of hotspots across segments. A second normalisation procedure 
including reads-per-million (RPM) information was omitted due to lack of observed effect on the 
resulting distributions. 

SEQUENCE- AND STRUCTURE CONSENSUS 
Based on the data at hand, several different ideas are possible for further analysis of the inter-RNA 
interactions without performing additional web-lab experiments. Firstly, sequence- and (predicted) 
structure consensus can be computed using the strains gathered (reference strain and extrapolation 
strains) at the nucleotide level to get a view of conserved sequence- and structural elements inside 
interactions. For sequence consensus, multiple sequence alignment followed by consensus scoring 
is sufficient. For structure consensus, this is a little more complicated because there is no set way to 
align (inter-)RNA structures. One method is to align the underlying sequences, and then assign inter-
RNA bond information to each nucleotide, i.e. whether that nucleotide engages in inter-RNA base 
pairing in that specific interaction. In this way, sequence alignment is used to align the inter-RNA 
structures, and consensus scoring can be performed on the structures. This must be performed 
separately for the two interacting RNA elements, resulting in two separate per-nucleotide structure 
consensus profiles aligned to the interacting sequences. 

A method to obtain a single structure consensus profile for an interaction is also possible. It involves 
placing the predicted inter-RNA structure and corresponding two interacting sequences back into the 
original two sequences used for the structure prediction query. This is necessary because most 
predicted interaction structures involve sub-sequences of the original query sequences, which can be 
used for structure-oriented re-alignment of those query sequences and the inter-RNA binding pattern 
between them. These structure-oriented aligned binding patterns can then be used for consensus 
scoring, yielding a single structure-oriented consensus profile. A graphical overview is shown in 
Figure 5. 



 
 
 

 

Figure 5: Overview of structure-oriented realignment of inter-RNA interaction sequences. The two ‘original’ 
sequences or query sequences are derived e.g. by the mapping algorithm used to deduce which RNA regions are 
involved in a particular inter-RNA interaction. The predicted interaction structure between sub-sequences of those 
query sequences is reintegrated into the query sequences, after which comparative analysis between strains of 
binding patterns is possible for that interaction. The green bars show the predicted interacting sub-sequences, and 
interaction binding pattern. The yellow bars show gaps introduced in the sub-sequence structural alignment due to 
loops in the predicted interaction structure. 

In the absence of a precise and complete phylogenetic tree describing the evolution of each strain, 
the resulting alignments for determining sequence- and structure consensus can be interpreted 
simply as a histogram at each position (nucleotide or structure position). For example, for sequence 
consensus, each nucleotide is either one of the four RNA nucleotide bases (‘A’, ‘U’, ‘C’, ‘G’), or an 
alignment gap (symbol ‘-’), forming a discrete distribution over the various strains (reference strain 
and extrapolation strains). There are various measures of ‘consensus’ applicable to such a 
histogram, including variance from the histogram mean, histogram entropy and mean pairwise 
Hamming distance.  

 



 
 
 
Mean pairwise Hamming distance (mpd, technically its inverse), as used by (Gog et al. 2007) in a 
similar experiment, is simply the proportion of equal pairs (of sequences, nucleotides, etc.) among 
the total number of possible pairs of values: 

Equation 2: Inverse mean pairwise Hamming distance defined over a histogram with N bins and M total values (all 
bins). 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑀𝑀2�(𝑝𝑝(𝑥𝑥𝑖𝑖)𝑀𝑀)2

𝑁𝑁

𝑖𝑖=1

 

Where 𝑀𝑀 is the (unnormalised) sum of the histogram across all bins, e.g. the number of sequences, 
𝑁𝑁 indicates the number of possible histogram values or bins, e.g. the number of possible nucleotides 
plus alignment gap symbol for sequence consensus, and 𝑝𝑝(𝑥𝑥𝑖𝑖) is the histogram probability 
(normalised to 𝑀𝑀) of symbol 𝑥𝑥𝑖𝑖, e.g. 𝑝𝑝(𝐴𝐴) is the number of occurrences of nucleotide ‘A’. Without 
additional normalisation, the upper limit (full consensus) of this score is always one, but the lower 

limit (minimal consensus) is close to 𝑀𝑀
𝑁𝑁2

. I will mainly use the histogram entropy measure as a 

consensus score, which measures the entropy of the histogram configuration as follows: 

Equation 3: Histogram entropy for N bins. 

𝑆𝑆 =  −�𝑝𝑝(𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

) log𝑝𝑝(𝑥𝑥𝑖𝑖) 

This can then be mapped to an entropy consensus score between zero and one, where zero 
indicates minimal consensus and one indicates maximum consensus: 

Equation 4: Histogram entropy consensus score from histogram entropy S, with N bins. 

𝐶𝐶 =  1 −
𝑆𝑆

log𝑁𝑁
 

The sequence consensus, per-nucleotide structure consensus, and reintegrated structure consensus 
profiles for inter-RNA interactions will be computed as a measure of nucleotide-scale conservation, 
which can provide evidence for the existence of conserved sequence- or structural elements in such 
interactions. 

MUTATION 
It is difficult to track mutagenesis across strains for widely divergent influenza strains, as a full 
phylogenetic tree for influenza A is not well-defined, and this is complicated even further by the 
occurrence of reassortment processes between strains. Nevertheless, it may be useful in some 
cases to use the inter-RNA interaction reference strain as a basis strain for mutation analysis, with 
the extrapolation strains as variants. In this case, sequence mutation rates, consisting of the 
substitution rate, deletion rate and insertion rate, can be computed per nucleotide or over a section of 
the genome based on comparison of this reference strain to the extrapolation strains. In this context, 
the overall ‘mutation rate’ refers to the sum of these three individual mutation rates. ‘Conservation 



 
 
 
rate’ then refers to the inverse of this sum, i.e. one minus the mutation rate. The conservation rate in 
this context is equal to the notion of ‘sequence identity’ often seen in genomics. 

 

Figure 6: Mutations in a sequence alignment w.r.t. a reference sequence (top row). Substitutions are in yellow, 
deletions in red, insertions in cyan. The mutation rate for a strain is calculated as an average of SNPs at each 
position in the alignment. Mutation rates per position can be calculated by summing SNPs along a column and 
dividing by the number of variant strains. 

COVARIATION 
In the context of genomics, covariation occurs when pairs (or greater multiples) of sequence 
elements (most commonly individual nucleotides) share an evolutionary constraint, resulting in co-
dependent/cross-correlated mutational patterns (Dutheil 2012). Such an evolutionary constraint can 
be imposed by RNA structure, in which case pairs of nucleotides involved in a (intra- or inter-RNA) 
nucleotide bond may not mutate independently due to conservation of that bond being important for 
maintaining the RNA structure. A covariation event occurs when mutation does occur in those 
particular nucleotides in such a way that the bond (and the RNA structure) is conserved, e.g. if both 
nucleotides mutate to a pair of complementing nucleotides. Evidence of the occurrence of covariation 
events within some sequence element may be seen as evidence of the presence of such an 
evolutionary constraint, in this case, the presence of an important, conserved inter-RNA interaction, 
or elements of that interaction. 

A well-informed study of covariation must take into account the phylogeny of the genomes being 
studied to elucidate which specific covariation events could have taken place (Dutheil 2012). 
Covariation is often detected and quantified on the basis of measures of mutual information between 
genome elements (Dutheil 2012). In the context of this thesis, proper statistical analysis of 
covariation processes is not available due to the complexities and unknowns of influenza phylogeny, 
and uncertain quality of inter-RNA interaction structures. Instead, I will look at the possibility of 
individual covariation events within inter-RNA interactions, supported by phylogenetic information 
when possible. 

Due to the shifting nature of (predicted) inter-RNA interaction structures, a definition for covariation in 
this context is not immediately obvious. The key idea is that a covariation event is a double mutation 
in nucleotides on different segments that acts to conserve a base pair in an inter-RNA interaction. 
However, the (predicted) inter-RNA structure depends on the configuration of all nucleotides in the 
interaction regions, so base pair conservation is not solely determined by mutation events in the two 
nucleotides that engage in the bond. Nevertheless, the most sensible definition of a covariation event 



 
 
 
in the context of inter-RNA interactions is: a double mutation in two nucleotides that base-pair in an 
inter-RNA interaction in a reference strain, resulting in conservation of that specific base pair in the 
inter-RNA interaction in the variant strain. This is illustrated in Figure 7. 

 

Figure 7: Graphical illustration of covariation principle in an example inter-RNA interaction between the NP and MP 
segments (Dadonaite et al. WSN 28 NP 670-712 MP 355-395). Depicted is the predicted interaction structure in the 
reference strain, and the same interaction in a fictional variant strain with a double mutation (blue box) in two base 
pairing nucleotides, which results in conservation of that base pair instead of loss of complementarity. forna is used 
to visualise the RNA structures. 

STRUCTURAL IMPOSITION 
To provide another perspective into similarities and differences in predicted inter-RNA interaction 
structures across strains, the structural imposition experiment is introduced. In this method, a 
predicted inter-RNA interaction structure for one strain is imposed unto homologous sequences in 
another. This imposed structure is then scanned for incompatible base pairings, i.e. when 
complementarity is lost due to variations in the imposed strain. Additionally, if two non-base-paired 
complementary nucleotides are directly opposite one another in the imposed structure, a new base 
pairing is introduced between them. This rescanned imposed structure is then evaluated using the 
ViennaRNA RNAeval tool, which estimates the free energy of intra-RNA structures, because 
intaRNA is not available for direct free energy estimation on existing structures. In order to transform 
the inter-RNA structures (consisting of two interacting (sub-)sequences) into intra-RNA structures 
(consisting of just one RNA sequence with internal base pairing), five unpaired ‘G’ nucleotides are 
inserted between the two interacting sequences, after which the inter-RNA interaction can be 



 
 
 
converted to an intra-RNA interaction in the fused sequence. The quintuple ‘G’ insert is introduced in 
order to avoid impossible stereochemical configurations (i.e. base pairing between two nucleotides 
that are directly connected on the backbone), which are incompatible with RNAeval. This quintuple 
‘G’ insert has a moderate (single digit) effect on the predicted free energy, but this is compensated by 
also evaluating the original (non-imposed) inter-RNA structure in this way. RNAeval can yield results 
different from intaRNA predicted MFE values mainly due to algorithmic- and parametric differences, 
but in most cases, they were found to at least correlate. A graphical overview of the method is given 
in Figure 8. 

 

Figure 8: An overview of the structural imposition method, with the Dadonaite et al. 2 MP 382-420 NS 605-631 
interaction as an example. The predicted structure of A/WSN/1933 for this interaction is imposed on the sequence of 
A/Anhui/1-BALF_RG1/2013[H7N9], with mutations marked in purple. Then, each inter-RNA base pair is re-examined 
for validity: non-complementary bonds are removed, complementary nucleotides directly opposite one another in the 
imposed structure form a new bond, opposing G-U base pairs form alternative base pairs, and all other bonds are 
left unchanged (including in cases of covariation). The ViennaRNA RNAeval tool is then used to evaluate the free 
energy of the original structure and the rescanned imposed structure for comparison. A loop of 5 ‘G’ nucleotides is 
inserted in the middle of the bracket-notation form of these interactions (here, between the ‘A’ and ‘U’ nucleotides at 
the top of the structures) before RNAeval evaluation to avoid impossible stereochemical configurations which cause 
the algorithm to glitch. forna is used to visualise the RNA structures. 

The purpose of the structural imposition experiment is to measure the compatibility of a predicted 
inter-RNA structure for one set of interacting nucleotides with another set of interacting nucleotides. If 
there is a large positive net change in free energy for the rescanned imposed structure, then the 
imposed strain likely has a different optimal structure for that interaction, if it has a good optimal 
structure at all. This may indicate a lack of interaction conservation, and it may have consequences 
for e.g. reassortment compatibility between strains. 

 



 
 
 
CROSS-STRAIN INTERACTION 
The cross-strain interaction experiment focuses on elucidating the compatibility of two strains for 
specific inter-RNA interactions, which is potentially relevant in understanding reassortment 
compatibility between strains. In the cross-strain interaction experiment, the interaction site sequence 
for one segment for one particular strain is combined in an intaRNA query with the sequence for the 
opposing segment from a different strain. In this way, genetic material from two different strains is 
combined to check whether the particular interaction between those two strains is feasible. There are 
two cross-strain combinations which can be made per interaction and per strain pair, depending on 
which strain ‘donates’ which segment. The resulting predicted structures and corresponding MFE 
values can then be compared to the in-strain predictions for both involved strains. Unlike the 
structural imposition experiment, intaRNA is used directly here for structure- and free energy 
computation. 

 

Figure 9: An overview of the cross-strain interaction method. Shown here are the cross-strain computations for 
strains A/WSN/1933[H1N1] and A/Anhui/1-BALF_RG1/2013[H7N9] for the Dadonaite et al. 2 MP 382-420 NS 605-
631 interaction, between the MP and NS segments. Using intaRNA, the predicted interaction structure was 
computed for each combination of interaction site sequences from each strain. The (non-reintegrated) predicted 
structure and MFE value (bottom rights) for each combination are shown in the boxes. The purple stars mark 
mutations in the H7N9 strain interaction site sequences w.r.t the H1N1 strain. The cross-strain interactions are in 
the bottom-left and top-right boxes. 



 
 
 
VISUALISATION 
There are multiple ways to visualise inter-RNA interactions, but no specific tools are available for this 
purpose yet. In this thesis, the main ways in which inter-RNA interaction structures are visualised 
are: intaRNA-like and forna, cf. Figure 4. The intaRNA-like visualisation method aligns the two 
interacting sequences, with potential insertion of gap symbols (i.e. ‘-’) for nucleotides opposite loops, 
and shows the binding pattern of nucleotides between these sequences. Here, the colon symbol is 
used to visualise G-U alternative base pairs. Sometimes, the interaction structural alignment is first 
‘reintegrated’ into the full query sequences (cf. Figure 5), because usually only parts of the full 
interaction site sequences form the predicted optimal inter-RNA interaction structure. 

The forna visualisation technique relies on fusing the two interacting sequences (without a middle 
insert, cf. Structural imposition section), and linearising the binding pattern between the sequences to 
bracket notation as if it were a single RNA molecule. This fused RNA structure is then visualised 
using the ViennaRNA forna tool, available at http://rna.tbi.univie.ac.at/forna/, which can only handle 
single-molecule RNA structures. A limitation of this approach is that it cannot handle the full 
interaction site sequences when only parts of those sequences constitute the predicted interaction 
structure (i.e. the aforementioned reintegration method is not possible) because an improper loop 
would appear around the sequence fusion point in the visualisation. 

  

http://rna.tbi.univie.ac.at/forna/


 
 
 

RESULTS 
Known inter-RNA interactions in influenza A 
As discussed in the Introduction, so-called packaging signals or packaging sites exist in the influenza 
genome: regions of the viral RNA that are involved in genome packaging and/or selective packaging. 
Both general- and selective packaging seem to be driven by RNA elements near the 3’ and 5’ ends 
of each vRNA segment, mostly in the untranslated regions (UTRs), but also sometimes overlapping 
the coding regions, cf. (Hutchinson et al. 2010, Fig. 4). However, the recent (Dadonaite et al. 2019) 
and (Le Sage et al. 2020) studies, amongst others, seem to suggest that the RNA elements 
responsible for inter-RNA interactions, which are thought to be a key factor in selective packaging, 
are located all over the vRNA segments, with many occurrences well inside coding regions. Evidence 
from the earlier (Gavazzi, Yver, et al. 2013) and (Fournier et al. 2012) studies seems to suggest that 
such inter-RNA interactions well inside coding regions are indeed important in maintaining selective 
packaging. These hundreds of unique inter-RNA interactions seem to form a network involving all 
eight vRNA segments. These findings seem to contradict the idea that it is mostly the untranslated 
regions around segment ends that are involved in genome packaging in influenza A. 

The data in the Dadonaite et al. and Le Sage et al. studies seems to suggest that the distribution of 
inter-RNA interactions is far from uniform across the vRNA segments. Certain regions, deemed 
hotspots, seem to engage in far more interactions than other regions of the vRNA. In particular, one 
hotspot in the NP (nucleoprotein-encoding) vRNA segment was analysed in depth by the Le Sage et 
al. team, who concluded that this hotspot is central to the RNA-RNA interaction network, but that a 
built-in degree of redundancy exists within this network to compensate for potential mutations in the 
interacting RNA elements including this hotspot. Such redundancy could imply a degree of 
robustness of the inter-RNA interactions to mutation. By extension, this could indicate that the 
selective packaging process in influenza A could be somewhat robust to random genomic mutations 
through this redundant network of RNA-RNA interactions. Also interesting is the observation that 
some vRNA regions seem to not engage in any inter-RNA interactions at all, I will dub these silent 
regions. In this section, I will take a look at the distribution of inter-RNA interactions in the various 
strains analysed in the Dadonaite and Le Sage studies, with the aim of discovering potential patterns 
in inter-segment interactivity and in hotspots and silent regions and ascertaining whether these 
patterns are conserved across strains and across the two studies. 

GENERAL OVERVIEW OF INTER-RNA INTERACTIONS IN INFLUENZA 
A 
Before analysing the distributions of the inter-RNA interactions over the segments, it is prudent to 
take a look at a more global overview of the number of interactions per segment, and at the number 
of interactions between each pair of segments.  

Table 2 shows the absolute number of interactions involving each segment in the Dadonaite et al. 
data for the WSN strain, and the number of interactions averaged over the length in nucleotides of 



 
 
 
each segment. The same is showed for the Udorn strain of Dadonaite et al. in Table 3. Since PR8 is 
quite similar in this regard to WSN, this strain has been omitted. First off, fewer interactions were 
found for the Udorn strain overall in this experiment. For both replicates of WSN, around 850 
interactions were found in Dadonaite et al. (611 combined interactions in the ‘average’ of replicates), 
compared to only 112 and 312 respectively for the two replicates of Udorn (of which the first was 
selected for further analysis here). Why this might be the case is unclear, but it might be useful to 
check in a future study whether this is a real reflection of differing numbers of total interactions in the 
two strains, or a consequence of the method and/or statistical evaluation. For PR8, 1275 and 600 
interactions were found for the two respective replicates, again widely differing numbers for replicates 
which are supposed to be almost equal genetically. For the Le Sage et al. study, 675 and 1240 
interactions were found for the two replicates of WSN respectively. 

From looking at Table 2 for Dadonaite et al. WSN, it is apparent that the longer segments (PB2, PB1, 
PA) engage in more interactions overall, but that the shorter segments (MP, NS) have more 
interactions relative to segment length. An exception to this is the NA segment, which seems to 
engage in relatively few interactions in both regards. For Udorn in Table 3, the reverse is true: NA 
engages in the most interactions of any segment, both absolutely and relatively. Here, the three 
longest segments engage in the fewest interactions relative to segment length. It should be noted 
that the low number of overall interactions may reduce the statistical significance of these findings in 
the case of Udorn. To this end, replicate 2 of Udorn in Dadonaite et al. has also been included. Here, 
NA is still relatively strong in terms of the number of relative interactions, but the long PB2 and mid-
length HA segments are now also relatively strongly represented. Interestingly, the short segments 
MP and NS here engage in few interactions both absolutely and relatively speaking. Overall, the 
picture of which segments are central to the interaction network in terms of the number of 
interactions they engage in is inconclusive. The only real conclusion is that all eight segments seem 
to engage in inter-RNA interactions in the strains analysed. 

Table 2: Interaction coverage table for A/WSN/1933[H1N1] (WSN), average of replicates based on data from 
(Dadonaite et al. 2019). Interpretation: although the polymerase segments have the most interactions overall, the 
two smallest segments, MP and NS, surprisingly have the most interactions per nucleotide. The NP segment, which 
is middling in length, has a relatively high number of interactions per nt potentially due to the NP hotspot. 

Segment Length (nt) 
Number of 
interactions 

Avg. interactions 
per nt 

PB2 2341 194 0.0829 
PB1 2341 204 0.0871 
PA 2233 193 0.0864 
HA 1775 136 0.0766 
NP 1565 166 0.1061 
NA 1409 91 0.0646 
MP 1027 128 0.1246 
NS 889 110 0.1237 

 

 



 
 
 
Table 3: Interaction coverage table for A/Udorn/1972[H3N2] (Udorn), both replicates shown based on data from 
(Dadonaite et al. 2019). Interpretation: the overall number of interactions found in both replicates was unfortunately 
lower, but the relative number of interactions with the polymerase segments has decreased, whereas the NA 
(neuraminidase) segment now has relatively many interactions, possibly due to the presence of several new 
hotspots in the second half of this segment.  

Segment Length (nt) 
Number of 
interactions 

Avg. interactions 
per nt 

Replicate 2 
Length (nt) 

No. 
inter. 

Avg. 
inter. 

PB2 2341 29 0.0124 2341 123 0.0525 
PB1 2341 32 0.0137 2341 92 0.0393 
PA 2233 27 0.0121 2233 88 0.0394 
HA 1774 30 0.0169 1765 98 0.0555 
NP 1565 33 0.0211 1565 74 0.0473 
NA 1466 38 0.0259 1466 72 0.0491 
MP 1027 18 0.0175 1027 46 0.0448 
NS 890 17 0.0191 890 31 0.0348 

 

More specifically, it is compelling to look at the number of unique interactions between each pair of 
segments in the various strains, to gain an understanding of how segments interact with one another. 
Multiple discrete interactions were found between most pairs of segments in both datasets for the 
various strains analysed, with each discrete interaction consisting of different interacting RNA 
regions, although (part of) the same RNA region on one segment can interact separately with 
multiple other RNA regions on other segments. Figure 10 shows a heatmap of the number of 
interactions between each pair of segments for the WSN (average of replicates) strain in Dadonaite 
et al., Figure 11 shows the same for the two replicates of Udorn in Dadonaite et al. In both cases, the 
three long polymerase segments PB2, PB1 and PA form a block dense with interactions. In WSN, 
the PB2-PB1 and PB2-PA interactions are particularly numerous, the same goes for Udorn. The 
polymerase segments also seem involved in a large number of interactions with the HA, NP and 
perhaps MP segments in WSN. In Udorn replicate 2, HA seems to engage in many interactions with 
the polymerase segments as well. HA also interacts more commonly in Udorn with the NP and NA 
segments. In WSN, there exists a relatively large number of interactions between the MP and NP 
segments. Also notable are the absence of interactions between MP-HA and NA-NS in WSN, and 
near-absence of interactions of PB2-NS in Udorn replicates 1 and 2. 



 
 
 

 

Figure 10: Unique interactions found between segments in A/WSN/1933, average of two replicates, from the 
(Dadonaite et al. 2019) data. Note: This figure is symmetric along the diagonal axis. 

  

Figure 11: Unique interactions found between segments in A/Udorn/1972, both replicates displayed left/right, from 
the (Dadonaite et al. 2019) data. Note: These figures are symmetric along the diagonal axes. 

A more precise overview of the ~50 highest RPM interactions for WSN and Udorn is available in 
Figure 12. It is apparent that inter-RNA interaction networks are complex and non-uniform across 
segments, and that they differ between the WSN and Udorn strains. Based on the results so far, it is 
also evident that most segments engage in at least one interaction with each other segment, 
indicating that a model in which one segment is responsible for mediating interactions between other 
segments is probably unlikely. This may also mean that the ‘7+1’-vRNP architecture is not static and 
could simply be a consequence of spatial constraints instead of a consequence of a central 
mediating vRNP.  



 
 
 
 

  

Figure 12: Left: Circos (pyCircos) plot of 54 (out of 611) interactions with highest RPM in the Dadonaite et al. WSN 
average of replicates dataset. Right: the same plot for 56 (out of 112) interactions in Udorn, first replicate. This is a 
recreation of the Circos plots in Dadonaite et al., e.g. (Dadonaite et al. 2019, Fig. 2). Triple conserved (WSN, PR8, 
Udorn) interactions in the Dadonaite et al. dataset are marked in red. All segments are ordered clockwise in the 5’ 
to 3’ direction. Interpretation: although some interactions, including those marked in red, are conserved across the 
two strains, the overall interaction networks are markedly different. Both interaction networks are also highly non-
uniform across the segment lengths. Even in this smaller selection, it seems that most segments have at least one 
interaction with all other segments, no ‘central’ segment in the network is apparent. 

Overall, no clear and/or conserved pattern is visible in terms of which segments interact with which 
other segments, but some segment pairs do engage in more unique interactions than others. 
However, this does not directly mean that these segments interact relatively less with one another, 
since the strength of interactions and other factors such as co-localisation and site accessibility must 
also be taken into account. In the Dadonaite et al. study, the number of reads per million (RPM) may 
give insight into how common each unique interaction is, i.e. how likely that interaction is to be found 
at a given time in the given strain. For interaction sites which can have multiple interaction partners 
and for chains of interactions in which multiple configurations of interactions are possible, this could 
provide a view into the ensembles of interactions that are likely to exist at the same time. The wide 
distribution of RPM values for the interactions found and low correlation to predicted interaction MFE 
values (computed by Dadonaite et al.) as shown in Figure 13 (for WSN) probably indicates that not 
every possible interaction is present all the time. There may be multiple possible ensembles of co-
occurring interactions due to (partly) overlapping interaction sites and/or differing segment co-
localisation patterns. 



 
 
 

 

Figure 13: Scatter plot of intaRNA-predicted free energy values of the predicted RNA structure of each interaction in 
the (Dadonaite et al. 2019) WSN average of replicates dataset, plotted against log10 of reads per million (RPM) 
values of interactions. Interpretation: the RPM values of interactions have a broad distribution, and the correlation 
with predicted free energy values, i.e. stability, of the corresponding RNA interaction structures is low. Note: the 
predicted MFE values here were taken from the Dadonaite et al. data, they were not computed using the 
methodology of this thesis. 

DISTRIBUTIONS OF INTER-RNA INTERACTIONS IN INFLUENZA A 
The results on the inter-RNA interaction distributions across the various strains for which data is 
available are shown in Figure 14 to Figure 18. Broadly taken, it is clear that the distribution of inter-
RNA interactions is highly non-uniform for all vRNA segments in all strains. All eight vRNA segments 
seem to be involved in inter-RNA interactions in the strains analysed, although not all of them seem 
to be involved equally. Multiple hotspots and silent regions seem to exist for each vRNA segment, 
and not all of these seem to be conserved across all strains.  

Firstly, there are notable differences between the distributions derived from Dadonaite et al. data 
versus Le Sage et al. data, even when comparing the same strain (WSN). In particular, the peak 
corresponding to the NP hotspot is far and away the strongest in the Le Sage et al. WSN non-HSmut 
(intact hotspot) strain (Figure 17), whilst the peak corresponding to the NP hotspot in the Dadonaite 
et al. WSN strain (Figure 14) is of similar strength to that of several other hotspots, such as those in 
the PA and PB1 segments. This indicates, as Le Sage et al. already investigated, that the 2CIMPL 
and SPLASH methods employed in the two studies do not yield equal or even similar results due to 
as of yet unknown factors. This highlights the importance of data validation using a variety of 
approaches. Further research might elucidate the causes of the divergences of the two methods. 

The Le Sage et al. HSmut strain (Figure 18), which features synonymous mutations in the NP 
hotspot nucleotides, shows a general increase in the peak size of other hotspots, a consequence of 
the normalisation procedure. It is also clear that the synonymous mutations in this NP hotspot induce 
other changes, such as the relative shrinking of the PA ~1400 nt hotspot peak. A possible 
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explanation is that this hotspot interacts frequently with the NP hotspot in the WSN strain. Other 
hotspots, such as the PA ~100 nt hotspot, could be unaffected by the NP hotspot disruption if they do 
not interact with that hotspot. This is the simplest explanation, but it may not be the only one, as 
higher-order network effects may come into play here as well. For example, the disruption of the NP 
hotspot may ‘free’ other interacting RNA elements, which could then interact with yet other RNA 
elements that normally bind the PA ~1400 nt hotspot. In a cascading effect, this could then reduce 
the (normalised) interactivity of that hotspot through disruption of another site. Indeed, only one 
interaction between this PA hotspot and the NP hotspot is found in the Le Sage et al. data on WSN 
non-HSmut (replicate 1), between PA 1384-1414 nt and NP 619-706 nt. This would indicate that 
there must be higher-order network effects at play, because the falling out of one interaction is not 
enough to explain the reduction in normalised peak size of the PA hotspot. The possibility of changes 
in (intra- and inter-)RNA structure due to the disruption of the NP hotspot can also not be discounted 
as a factor in the complex changes observed in the interaction network. 

Looking at the figures for the three strains WSN, PR8 and Udorn (Figure 14, Figure 15, Figure 16 
respectively) in the data derived from Dadonaite et al., it is clear that there are several differences in 
the distributions of inter-RNA interactions between these strains. The figures have been annotated 
using markers to show several points of interest, with cyan markers indicating peaks that are deemed 
to be conserved in all three strains, and black markers indicating potential silent regions (conserved 
or non-conserved). The blue marker indicates the NP hotspot, and the red marker indicates the PA 
hotspot described earlier in this section. Even though WSN and PR8 are quite closely related 
(Dadonaite et al. 2019), several differences are apparent between these two strains as well. An 
obvious discrepancy is the strong and wide peak in the NA ~900 nt region of PR8, constituting a 
hotspot on par with the NP hotspot in terms of peak size. In WSN, this peak is significantly lower, 
indicating (relatively) fewer interactions at this site. In Udorn, it is unclear whether this peak exists at 
all, but many other strong peaks arise in the NA segment. Between WSN and PR8, several such 
differences in peak strengths can be observed, but it also seems that there is a large degree of 
similarity in the overall distribution of peaks and silent regions. This may indicate that the interaction 
networks of these two strains are quite similar. From this observation, it is tempting to speculate that 
these two strains may be ‘compatible’ in the sense that co-packaging and therefore reassortment of 
segments from these two strains may be possible. The reason for the differing peak strengths in 
many hotspots in these two strains is not immediately obvious: this may be a consequence of the 
method used to find the inter-RNA interactions, or it may be a genuine reflection of differing numbers 
of interactions at these hotspot sites. 

The differences between the H1N1 WSN/PR8 strains and the H3N2 Udorn strain are much more 
obvious. Many peaks and silent regions, including the NP hotspot, are still conserved to some 
degree. Others however have disappeared or seem to have shifted in position. It is unclear whether 
the PA hotspot that was mentioned before still exists, and in general the PA segment seems ‘quieter’. 
The pattern for the HA and NA segments seems to be completely different, including a very strong 
and broad new peak around ~1100 nt in NA. This seems logical, as the Udorn strain has different 
serotypes for both the HA and NA proteins compared to the H1N1 WSN and PR8 strains, and 



 
 
 
consequently the underlying genotypes must be different as well. A sensible conjecture is that the co-
packaging/reassortment probabilities between Udorn segments and WSN/PR8 segments are 
probably lower due to inter-RNA interaction incompatibilities. Dadonaite et al. investigated this to 
some extent, cf. (Dadonaite et al. 2019, Fig. 4), and found incompatibilities that could be recovered 
using silent nucleotide substitutions. This is an interesting avenue for future research, and a new 
study that is currently in preprint may shed some further light on the topic of reassortment 
probabilities and gene constellations in the context of genome packaging in influenza A (Trifkovic et 
al. 2021). Using a combination of the Dadonaite et al. data, influenza A sequencing data, and 
intaRNA computations, I will try to study the potential for cross-strain inter-RNA interaction later in 
this thesis.

 

Figure 14: Interaction coverage plots per segment for strain A/WSN/1933[H1N1] (WSN), average of replicates based 
on data from (Dadonaite et al. 2019). The number of interactions covering each nucleotide position is shown, 
normalised to the highest coverage value across all segments. Nucleotides on the x-axis are numbered from 5’ to 3’. 
Colours: cyan: conserved hotspots or peaks found in all three Dadonaite strains; black: silent regions; blue: the NP 
hotspot; red: another strong WSN hotspot in the PA segment. Markers: star: feature is present in this strain; 
question mark: feature may be present in this strain, but ambiguity exists; X: feature is present in other strains but 
not in this strain. Interpretation: the NP hotspot is clearly visible as a high peak at around 700 nt in the bottom right 
(NP) plot. However, an even stronger, narrow hotspot exists at the red marker in the PA segment. Various other 
hotspots, lesser peaks and silent regions are seen as well, including the cyan-marked hotspots, which are conserved 
across the three strains Dadonaite et al. analysed. Interestingly, both the 3’ and 5’ ends do not seem to play a major 
role in terms of strong hotspots for most segments in this strain, except for the 3’ end of PB1 and perhaps the 5’ 
ends of PA and HA. In other segments, some interactions may occur in the 3’ and 5’ regions, but not on the scale of 
the stronger hotspots. 



 
 
 

 

Figure 15: Interaction coverage plots per segment for strain A/Puerto Rico/1934[H1N1] (PR8) replicate 1, based on 
data from (Dadonaite et al. 2019). For the description of the colours and markers, see Figure 14. Interpretation: the 
NP hotspot is clearly visible as a high peak at around 700 nt in the bottom right (NP) plot. Many features seen in the 
WSN distribution are conserved here. 

 

Figure 16: Interaction coverage plots per segment for strain A/Udorn/1972[H3N2] (Udorn), average of replicates 
based on data from (Dadonaite et al. 2019). For the description of the colours and markers, see Figure 14. 
Interpretation: the NP hotspot is visible around 700 nt in the bottom right (NP) plot. Other hotspots are also visible, 
some of which are not seen in H1N1 strains, including a moderate NA ~1100 nt hotspot, and other new hotspots in 
the second half of the NA segment. 



 
 
 

 

Figure 17: Interaction coverage plots per segment for strain A/WSN/1933[H1N1] (WSN), first replicate based on data 
from (Le Sage et al. 2020). For the description of the colours and markers, see Figure 14. Interpretation: The NP 
hotspot is clearly visible as a high peak at around 700 nt in the bottom right (NP) plot, but other hotspots are 
suppressed compared to the Dadonaite et al. WSN results. 

 

Figure 18: Interaction coverage plots per segment for strain A/WSN/1933[H1N1] (WSN) with disruption of NP hotspot 
nucleotides (HS-mut strain), first replicate based on data from (Le Sage et al. 2020). For the description of the 
colours and markers, see Figure 14. Interpretation: the NP hotspot is now absent, but new hotspots have appeared, 
and hotspots in the non-HS-mut strain are more prominent. 



 
 
 
From these results, it is apparent that the degree of involvement of different vRNA segments, and of 
RNA regions within those segments, in inter-RNA interactions differs vastly. Some segments seem to 
be more involved in inter-RNA interactions than others, including when measured in average number 
of interactions per nucleotide, and patterns of hotspots and silent regions appear in the distributions 
of interactions over whole segments. These differences are strain-specific and seem to be influenced 
significantly by the method used to find and map the inter-RNA interactions, but large similarities also 
existed in the two genetically similar strains WSN and PR8 in the Dadonaite et al. dataset. It is 
unclear what kind of virion vRNP organisation is most fitting given these results, but the results do 
seem to underline the involvement of each segment in every strain in inter-RNA interactions. Again, 
lack of a static central organising segment seems most likely. 

SEQUENCE CONSERVATION AND INTER-RNA INTERACTIONS 
It is interesting to check whether there is evidence of increased conservation at the sequence level in 
regions which are highly involved in inter-RNA interactions (hotspots) across multiple strains. It is 
known that packaging signals in influenza A are conserved at the sequence level (Gog et al. 2007). 
Increased conservation at the sequence level can indicate an evolutionary constraint imposed by 
other factors such as protein conservation and perhaps even intra-RNA structure, and since a large 
number of the inter-RNA interactions take place inside coding regions, this complicates such 
sequence consensus analysis. Nevertheless, I constructed the consensus plots per segment based 
on the method of Gog et al., cf. (Gog et al. 2007, Fig. 1), with ‘consensus’ meaning the degree to 
which nucleotides are conserved (including deletion/insertion) at each position in the viral genome. 
To this end, whole viral genome sequences were gathered for WSN replicate 1 from Dadonaite et al. 
and 10 H1N1 vaccine strains, which were aligned (using multiple sequence alignment) and used to 
compute the (inverse) mean pairwise Hamming distance, a type of distance metric that was used by 
Gog et al. as a sequence consensus scoring metric. The 10 selected vaccine strains are shown in 
Box 1, excluding the incomplete A/Bayern/7/1995 and A/Solomon Islands/3/2006 strains. Bilateral 
sliding window averaging was applied in a 20 nt window for smoothing. The rolling consensus score 
per segment is overlaid with the interaction density plot of WSN as described in Figure 14. The result 
is shown in Figure 19. 

Although the method used to determine sequence conservation is quite simplistic here, it is apparent 
from the results that there is variability of consensus at different vRNA genomic positions for all 
segments. As mentioned before, increased sequence consensus may be evidence of evolutionary 
constraints due to a variety of factors including codon conservation and possibly intra-RNA structure 
conservation. Comparing to the WSN interaction density overlay, it is unclear whether regions with 
high inter-RNA interaction density also constitute an evolutionary constraint, i.e. correlate with higher 
sequence consensus/conservation. The gold markers identify regions with high interaction density 
where the sequence consensus score is locally higher, supporting this hypothesis, while black 
markers show the opposite: regions with high interaction density where the sequence consensus 
score is locally lower. For the PA hotspot discussed before, displayed in blue, no significant local 
enhancement of consensus is seen. For the NP hotspot, a minor local increase in consensus score is 
observed, in support of the hotspot manipulation findings of (Le Sage et al. 2020). The significance of 



 
 
 
this finding is low given the variability of the consensus score across every segment at this scale. It is 
possible that the degree of evolutionary constraint imposed, and therefore the degree of sequence-
level conservation in RNA sites involved in inter-RNA interactions, is affected by the importance of 
the interactions at that RNA site in the overall genome packaging process. 

 

Figure 19: Sequence consensus score per nucleotide over influenza genome segments in WSN and 10 vaccine-
associated H1N1 strains using the inverse mean pairwise Hamming distance metric, averaged using a 20 nt (10 nt 
each side) bilateral sliding window, shown in blue. A higher value indicates greater consensus. The interaction 
density, normalised to all-segment highest value, of inter-RNA interactions in the average of replicates data on WSN 
from (Dadonaite et al. 2019) is also shown in green for comparison. Markers: blue: NP hotspot; red: PA hotspot; 
gold: several sites where a peak in the interaction density coincides with (locally) higher consensus; black: several 
sites where a peak in the interaction density coincides with (locally) lower consensus. Interpretation: there is 
variability in sequence conservation across the various gene segments. It is unclear whether regions with high inter-
RNA interaction density display increased sequence conservation, with some regions supporting this hypothesis, 
and other contradicting it. The low consensus regions around segment ends are mostly due to sequencing issues 
and not due to genuine lack of consensus in those segment ends.   

 

  



 
 
 

Extrapolation of A/WSN/1933 RNA-RNA interactions to 
other strains 
So far, I have only looked at existing data on inter-RNA interactions in influenza A from the 
(Dadonaite et al. 2019) and (Le Sage et al. 2020) studies. These experiments were able to derive 
regions of the vRNA between which inter-RNA interactions may be occurring. They did this for 
several well-known strains of influenza A of the most common (in humans) serotypes, H1N1 and 
H3N2. For this thesis, I extrapolated the data on these interacting vRNA regions to other strains that 
have not yet been analysed in this way, with the aim of deriving information about inter-RNA 
interactions in these strains. Especially interesting would be to look at conservation at the sequence- 
and structure level of these interactions in various influenza A strains, including different serotypes 
such as H5Nx strains, which have garnered attention due to their possible risk in causing dangerous 
outbreaks. The purpose of this is to gain further insights into similarities and differences in inter-RNA 
interactions in various strains of influenza A, with a view of acquiring knowledge relevant to the open 
questions of the influenza genome packaging process and reassortment. 

CURSORY ANALYSIS OF WSN-H1N1 VACCINE STRAIN 
EXTRAPOLATED INTERACTIONS 
The interaction extrapolation pipeline was performed initially for the Dadonaite et al. WSN reference 
strain with the H1N1 vaccine strains as the extrapolation set (cf. Box 1). Here, I will show some 
insights gained from the analysis of the extrapolation results. 

Noting that there are over 600 discrete inter-RNA interactions in the Dadonaite et al. average of 
replicates WSN dataset, with widely differing RPM values (cf. Figure 13), a global overview of the 
interactions and their extrapolations is prudent. Shown in Figure 20 and Figure 22 are a histogram of 
the distribution of predicted MFE values for the reference strain (WSN) and a plot of the reference 
strain predicted MFE values versus RPM for each interaction, respectively. Somewhat surprisingly, 
the predicted MFE values seem to be almost normally distributed, with the mean of the distribution 
situated somewhere between -11 kcal/mol and -13 kcal/mol. The strongest interaction in terms of 
predicted MFE is the 2 MP 382-420 NS 605-631 interaction with -27.14 kcal/mol. The interaction 
notation can be broken down as follows: ranked 2 + 1 = 3rd in terms of RPM in Dadonaite et al., 
between the MP segment at 382 to 420 and NS segment at 605 to 631, measured from the 5’ end. 
This is followed by: 0 PA 101-135 HA 831-863 with -24.46 kcal/mol and 31 NA 981-1011 MP 937-
967 with -23.80 kcal/mol. The weakest predicted interaction in terms of MFE is: 187 PB1 2225-2269 
PA 778-812 with just -0.62 kcal/mol, barely below the +0.00 kcal/mol threshold. Oddly, eight 
interactions did not have any predicted significant interaction, contrary to the result in the Dadonaite 
et al. intaRNA run. Note that those authors most likely used an older version of the algorithm, with 
differing parameters and including accessibility constraints. The lack of significant interaction 
structures found in those eight interactions is therefore probably due to technical (algorithmic) 
differences, but it should be noted that these interactions had poor MFE and low RPM values in the 
Dadonaite et al. data as well. Significant differences between the Dadonaite et al. intaRNA results 
and the results here were also observed for interactions for which significant structures did exist, but 



 
 
 
this is not a large concern as long as the same method and configuration is employed within the 
scope of this thesis for all interactions and all strains. 

From Figure 22 (compare to Figure 13) it is again apparent that (the logarithm of) RPM values is not 
a good predictor for the MFE values of interactions, but there may be some overall correlation of 
predicted MFE value with the overall bulk of low-RPM interactions versus the rarer high-RPM 
interactions. In particular, the very lowest (best) MFE interactions do seem to be associated with 
higher RPM values, although there are counterexamples outside the top five or so. This probably 
indicates that the (predicted) stability of inter-RNA interactions is far from the only factor influencing 
how likely that interaction is to arise and be maintained in the influenza genome, assuming RPM is a 
good predictor of interaction occurrence. Interaction site length was considered as a factor of 
influence in interaction RPM/MFE, but no significant correlation was found with either. 

 

Figure 20: Distribution of intaRNA predicted minimum free energy (MFE) values for inter-RNA interactions of 
Dadonaite et al. WSN strain (average of replicates). Interpretation: the MFE values follow a broad, approximately 
normal distribution. 



 
 
 

  

Figure 22: Predicted minimum free energy (MFE) values vs. (base 10) logarithm of reads-per-million values for inter-
RNA interactions of Dadonaite et al. WSN strain (average of replicates). (Logarithmic) trendline shown with R2 
value. Interpretation: the predicted MFE values are poorly correlated with RPM, but some correlation may exist for 
high-RPM interactions vs. low-RPM interactions in general. Note: this is a recreation of Figure 13 using predicted 
MFE values from the pipeline of this thesis. 

So far, only interactions in the reference strain (WSN) have been analysed, with no extrapolation to 
new strains. In Figure 21, the distributions of predicted MFE values are shown for all WSN-based 
interactions for the reference strain and two extrapolation strains. The figures clearly show a shift in 
stability distributions in the extrapolation strains, with an especially strong shift in the 2009-pandemic-
associated A/California/07/2009 strain. Assuming that inter-RNA interactions are important in 
maintaining genome packaging in influenza A, this is probably due to changes in the interaction 
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Figure 21: Predicted minimum free energy (MFE) distributions for the WSN reference strain (cf. Figure 20) and two H1N1 vaccine 
strains. California/2009 is associated with the 2009 H1N1 pandemic. Interactions for which no significant structure was found are 
mapped to the bin including zero. Interpretation: the free energy distribution clearly shows that most interactions are predicted to be 
most stable in WSN, with an overall moderate positive-ward stability shift in USSR/1977 and a bigger shift in California/2009. 

 



 
 
 
network, instead of a genuine overall weakening of interactions. In Figure 23, the distributions of 
predicted MFE shifts with respect to the reference strain are shown. It is apparent that most 
interactions are predicted to be less stable in the extrapolation strains, especially for 
A/California/07/2009. A significant portion of interactions is predicted to have a higher MFE in the 
extrapolation strains however, even though such negative shifts are usually comparatively small. 

Figure 23: Distributions of predicted minimum free energy (MFE) differences with the reference strain (WSN) for 
A/California/07/2009 and A/USSR/90/1977. Negative shifts (lower predicted MFE, including zero shift) in blue, 
positive shifts in red. Interactions for which no significant structure was found in WSN and/or the extrapolation strain 
are not binned. Interpretation: most interactions are predicted to become weaker in the two extrapolation strains. 
The shift is stronger for California/2009, with a mean shift of +5.18±4.83 kcal/mol (1σ), vs. +2.98±4.04 kcal/mol for 
USSR/1977. Not all interactions are predicted to become less strong, for California/2009, 77 out of 585 significant 
interactions (13.2%) are predicted to decrease in MFE. For USSR/1977, this is true for 138 out of 582 significant 
interactions (23.7%). Here ‘significant interaction’ means that a stable interaction structure below +0.00 kcal/mol 
was found for that strain. The dataset contains 611 interactions in total. Note: shifts of +0.00 kcal/mol in the [-1, 0] 
bin are common due to cases of no mutations in the interaction sites. 

Due to the large number of discrete interactions in the dataset, it is difficult to discuss and display 
information on all of them. A selection of interactions was made for the purpose of closer analysis: 
the twenty interactions that were conserved in WSN, PR8 and Udorn in the Dadonaite et al. data, 
according to their method of determining interaction overlap across strains. These interactions are 
shown in Table 4. 

 

 



 
 
 
Table 4: Interactions found in all three of WSN, PR8 and Udorn in the Dadonaite et al. dataset. The interaction 
‘index’ is the position of that interaction in the WSN average of replicates dataset, sorted by RPM value, starting at 
0. NP hotspot sites are marked in green. Plot index is the index of that particular interaction in Figure 24. Also 
given are the MFE values for WSN and Udorn, calculated using the intaRNA pipeline. The WSN values were 
calculated using Dadonaite et al. WSN average of replicates, the Udorn values using Dadonaite et al. Udorn 
replicate 1. 

Interaction (WSN RPM indexed) Plot 
index 

WSN predicted MFE  
(kcal/mol) 

Udorn predicted MFE 
(kcal/mol) 

2 MP 382-420 NS 605-631 0 -27.14 -28.10 
13 PB2 1463-1513 NP 656-698 1 -14.87 -10.38 
28 NP 670-712 MP 355-395 2 -12.12 -14.17 
36 NP 675-717 MP 400-434 3 -13.94 -14.17 
45 NP 1319-1365 MP 941-983 4 -20.69 -24.76 
53 MP 116-148 NS 510-542 5 -17.37 -12.49 
92 PB2 112-152 PA 1540-1566 6 -16.67 -14.75 
98 PA 612-652 NP 689-731 7 -9.48 -12.43 
103 PA 112-164 MP 932-964 8 -15.49 -13.95 
149 PB1 1925-1959 NP 672-706 9 -14.78 -18.33 
153 PA 611-645 NP 782-812 10 -16.60 -14.87 
183 PB1 345-393 MP 399-445 11 -11.67 -11.85 
197 NA 561-605 MP 601-641 12 -11.80 -18.59 
241 HA 583-625 NP 667-701 13 -11.65 -21.70 
304 PB2 464-508 PA 1453-1489 14 -12.40 -18.86 
323 NP 1087-1123 NS 504-546 15 -1.81 -9.51 
345 NP 350-384 NS 600-630 16 -16.27 -17.78 
352 NP 953-1003 MP 761-817 17 -4.99 -8.59 
396 PB2 2082-2154 NA 582-616 18 -10.24 -16.82 
539 PB2 1057-1105 HA 1461-1505 19 -5.89 -7.72 

 

Figure 24 shows an overview of the predicted MFE value differences for the extrapolated strains with 
respect to the WSN reference strain for these interactions. This plot shows that the patterns of 
change of MFE of predicted inter-RNA structures are not uniform across interactions, with some 
interactions becoming more stable in terms of predicted MFE and some becoming less stable. For 
some interactions, the variance of predicted MFE is high across strains, perhaps indicating 
decreased sequence conservation at these sites, while for some, the variance is lower. A 
combination of low variance and increased stability in all extrapolation strains is found for the 
interaction at index 2, which corresponds to 28 NP 670-712 MP 355-395. The combination of low 
variance and increased stability might indicate that this interaction became more important in various 
strains than it was in WSN. However, the low correlation of predicted MFE with RPM values as 
shown earlier means caution must be exercised in making such statements. Other interactions, such 
as 92 PB2 112-152 PA 1540-1566 (plot index 6) are not conserved at all in terms of free energy, 
having an MFE of around -16.67 kcal/mol in WSN, increasing by more than +5 kcal/mol in all 
extrapolated strains (with an average increase of +7.53 kcal/mol). This indicates that this interaction 
may have become less stable in the diverse set of strains analysed, which may mean that this 
interaction is less important for the overall packaging process, and/or that the RNA regions involved 
in this interaction are subject to other evolutionary pressures. There are other interactions for which 
the same logic applies, e.g. 304 PB2 464-508 PA 1453-1489 (plot index 14), which surprisingly is in 



 
 
 
the PA ~1400 nt hotspot region. Another interesting interaction is 2 MP 382-420 NS 605-631 (plot 
index 0), coinciding with triple-conserved peaks in both segments in Figure 14, which has one of the 
lowest overall MFE values in the reference strain WSN: -27.14 kcal/mol. In the extrapolated strains, 
there is a large spread of MFE values, including some strains (A/Singapore/6/1986 and 
A/USSR/90/1977) for which this interaction becomes even more stable, and some interactions for 
which it becomes much less stable, most notably A/California/07/2009 and A/Michigan/45/2015, both 
of which are 2009-pandemic- or post-pandemic strains found in North America. In conclusion, even 
patterns in predicted MFE values can bring about interesting discussions concerning inter-RNA 
interactions and their conservation, but other techniques of analysis are required for a more in-depth 
study. 

 

Figure 24: Plot of predicted mean free energy (MFE) value differences from the reference strain (Dadonaite et al. 
WSN) for H1N1 vaccine strains for 20 triple-conserved interactions. The blue line at +0.00 kcal/mol indicates the no-
change reference strain baseline. Interpretation: for some strains, the predicted MFE values in the new strains 
seem to increase, while for others, it decreases. The variance also differs greatly between discrete interactions. This 
indicates that some interactions may be conserved in terms of structure stability preservation, while others may even 
become more stable, but yet others are not conserved and/or become less stable. Note: the interaction indices do 
not correspond directly to Dadonaite et al. supplement dataset numbering, please refer to Table 4. 

INTER-RNA STRUCTURES 
Zooming in on some of these interactions can provide interesting insights. Shown in Figure 25 is a 
selection of predicted structures for the 28 NP 670-712 MP 355-395 interaction for the WSN 
reference and several extrapolated H1N1 strains. This interaction seems to have a form of structural 
conservation in that a central loop (containing ‘UUACCA’ 3’ to 5’ in WSN on the MP segment) is 
surrounded by short regions of largely uninterrupted binding on both sides. However, one feature is 
most striking: the existence of a repeating pattern (‘CAGG’ 5’ to 3’) in the NP interaction site, which is 
most apparent as a quadruple tandem repeat in the WSN structure, covering the entire predicted 
interaction (WSN NP 685-697 5’ to 3’). This repeating pattern is somewhat conserved in the other 
selected strains. Its complementary pattern (‘GUCC’ 3’ to 5’) occurs several times in the MP 



 
 
 
interaction site for most strains, but usually not in tandem repeat. Very interesting is the fact that this 
interaction involves the NP hotspot region. It may be the case that this tandem ‘CAGG’ repeat is 
involved in the stability and mutational robustness of this hotspot region. 

 

Figure 25: A selection of predicted inter-RNA structures for the 28 NP 670-712 MP 355-395 interaction in the 
A/WSN/1933 reference strain (leftmost) and several extrapolated H1N1 strains. The NP interaction site (5’ to 3’ top 
to bottom) is the strand on the left, the MP interaction site (3’ to 5’ top to bottom) is the strand on the right. 
Visualisation was done using the ViennaRNA forna tool. Also shown are the free energy values of the predicted 
interaction structures. The blue marker shows the site of a conserved loop as a point of orientation. Interpretation: 
there seems to be some form of conservation of the ‘UUACCA’-containing (in WSN) loop across the selected strains, 
with binding sequences on both sides of that loop. In the more modern strains (A/Brisbane/59/2007 and 2009-
pandemic A/California/07/2009), the overall stability of the interaction seems to have increased. In the NP segment 
(left) interaction site for WSN, a quadruple repeat of ‘CAGG’ (top to bottom, here 5’ to 3’) occurs, covering the entire 
predicted interaction site sub-sequence. This pattern is somewhat, but not completely, conserved among the other 
strains. The complementary pattern of ‘GUCC’ (3’ to 5’) also appears several times, but not in unbroken tandem. The 
‘CAGG’-repeats could allow for shifting of the interaction along the repeating region, and this could confer some 
form of robustness of the interaction to mutations in the region. Also note that this repeating pattern is in the NP 
hotspot region. Note: alternative ‘G-U’ base pairs are not displayed. 

In Figure 26, the same selection of strains for the 2 MP 382-420 NS 605-631 interaction is shown. 
This interaction is ranked third highest in terms of RPM in the Dadonaite et al. WSN average of 
replicates dataset. As discusses earlier, it occurs between two small peaks in the interaction 
distribution of WSN (cf. Figure 14). In WSN, the MFE of the predicted optimal interaction structure is 
one of the lowest. Combined with the long uninterrupted binding region marked with an orange box, 
this could indicate that this interaction is stable and common in WSN, underlining its importance. The 
long binding region and low overall MFE are conserved in most other strains (including ones not 
shown), except for the 2009-pandemic A/California/07/2009 strain. It is also interrupted in the post-
pandemic A/Michigan/45/2015 strain. This seems to be due mostly to mutations in the NS segment, 



 
 
 
possibly attesting to a different evolutionary path or origin of this segment compared to the other 
H1N1 strains. As shown in Figure 13, predicted MFE for an interaction structure is in general not a 
good predictor of interaction RPM, but the large +20.23 kcal/mol jump between WSN and 
A/California/07/2009 most likely does have an effect on the stability and occurrence of this interaction 
in the 2009 pandemic and post-pandemic strains. It is possible that the mutations in the NS segment 
are due to other evolutionary pressures, and that the interaction network shifted to accommodate the 
resulting loss of stability within this 2 MP NS interaction that is so stable in other H1N1 strains. A 
comprehensive study on the origins of 2009 pandemic strains indicates that the NS segment in 2009 
pandemic precursor strains has its origins in H3N2 strains, whilst the MP segment likely comes from 
avian H1N1 strains, supporting the analysis presented here (Smith et al. 2009, Fig. 8). 

 

Figure 26: A selection of predicted inter-RNA interaction structures for the 2 MP 382-420 NS 605-631 interaction in 
the A/WSN/1933 reference strain (leftmost) and several extrapolated H1N1 strains. The left strand is MP (5’ to 3’ 
top to bottom), the right strand is NS (3’ to 5’ top to bottom). Visualised using the ViennaRNA forna tool. The blue 
line gives an orientation point for the MP strand. The orange box/line marks a mostly conserved uninterrupted 
binding region. Interpretation: for one of the strongest interactions in terms of RPM- and MFE values, the long 
binding motif marked by the orange box is highly conserved among selected strains, except in the 2009-pandemic 
A/California/07/2009 strain due to heavy mutations in the NS interaction site. This may indicate that the NS segment 
in that strain has a different origin, and that this interaction is no longer as relevant in the 2009-pandemic and post-
pandemic H1N1 strains. Note: alternative ‘G-U’ base pairs are not displayed. 

  



 
 
 

Sequence- and structure conservation 
As described in the Sequence- and structure consensus section of the Methods, a method is 
available to determine nucleotide-resolution consensus profiles in the sets of reference- plus 
extrapolation strains, both at the sequence level as well as at the structure level. Using this method, 
a closer look can be taken at some of the interesting patterns seen in the previous section. 

The 28 NP 670-712 MP 355-395 interaction, which overlaps the NP hotspot region, now abbreviated 
as 28 NP MP, seemingly had an open loop (of varying sizes) in the MP segment surrounded by 
binding regions in the structures in Figure 25. In the middle plot (per-nucleotide structural function 
consensus) of Figure 27, the open loop in the MP segment (bottom) as seen in the predicted 
structure for WSN is formed by nucleotides 11 to 16 (‘ACCAUU’) from the left, which corresponds to 
a highly conserved structure (orange line) except for the last nucleotide, which engages in an 
alternative ‘G-U’ base-pair. In the structure-aligned consensus profile on the bottom, this is not the 
case, probably due to shifts in the interaction alignments (which can be due to changes in loops in 
the interactions, or due to interaction frame shifts). In the top plot, which gives the sequence 
consensus profiles for the interaction sites on both segments, one pattern is most apparent: tandem 
repeats of triplets, where the third nucleotide has a lower consensus score than the other two. This is 
due to the fact that mutations in the third nucleotide in gene codons are more likely to be silent (not 
result in an amino acid change), so this effect will be seen in any interaction site overlapping with a 
protein-coding region. The lower conservation pressure on the third nucleotides could also mean that 
these nucleotides are influenced more by other evolutionary constraints, such as inter-RNA 
interaction conservation/changes. Nucleotide 14 on the NP segment and nucleotide 16 on the MP 
segment both have very low consensus scores. For the NP 14 nucleotide, this seems to result in a 
loss of an interaction nucleotide binding, but the MP 16 nucleotide mutations result in an upgrade of 
a G-U alternative base pair to a full base pair in most structures. Manual analysis in this manner of 
mutations at the nucleotide scale and their effects on predicted interaction structures is difficult, as 
changes in the predicted structures from a reference structure are conferred by the whole ensemble 
of mutations in a complex manner. Looking at larger patterns is therefore more prudent. 

The most interesting feature of the 28 NP MP interaction as discussed in the previous section was 
the existence of the quadruple tandem repeat of ‘CAGG’ nucleotides (5’ to 3’) in the NP hotspot 
predicted binding region. This is shown in the top plot in Figure 27 as nucleotides 13 to 28 (incl.) in 
Sequence 1, coinciding with the blue background frame. In this region, there are few mutations even 
in the codon third nucleotides, except at index 14. This suggests that the ‘CAGG’-pattern in the NP 
hotspot is at least somewhat conserved among H1N1 strains, underlining its potential importance in 
maintaining inter-RNA interactions. The only really common mutation in this region is G699A (index 
25) in the last repeat on the 3’ end, which occurs in most other H1N1 vaccine strains. The role of the 
‘CAGG’-pattern in NP hotspot inter-RNA structure is further underlined by its predicted involvement in 
nucleotide binding in various strains for this interaction, as well as in the 36 NP 675-717 MP 400-434 
and 98 PA 612-652 NP 689-731 interactions. Another remarkably conserved region lies just outside 
this tandem repeat (to the right, in the 5’ direction) of the NP segment, stretching for about ~10 nt. 



 
 
 
Perhaps this region is also involved in the NP hotspot interaction(s), although intaRNA does not 
include it in the predicted optimal structure for the 28 NP MP interaction specifically, or for other 
strong hotspot interactions such as the highly similar (in terms of localisation) 36 NP 675-717 MP 
400-434 interaction. 

 

 

 

Figure 27: Consensus profiles for the WSN 28 NP 670-712 MP 355-395 interaction with WSN + H1N1 vaccine strains. Top:  
sequence consensus profiles for both interacting regions. Middle: per-nucleotide structural function consensus profiles for both 
interacting regions. The blue- and orange windows denote the locations of the predicted interacting sub-sequences. NP segment 
in blue; MP segment in orange. Bottom: structure-oriented consensus profile. Gaps are denoted by a ‘-’, and characters 
outside the interaction window for WSN are marked using an ‘x’. The x-axis shows the sequence or (predicted) structure in 
WSN, with an asterisk marking positions where a different variant is more frequent in the other strains, to distinguish high-
consensus positions that disagree with WSN. On the x-axes, the NP strand is on top (in reverse direction, i.e. 3’ to 5’), and the 
MP strand (5’ to 3’) is at the bottom. The consensus score in each plot at each position was computed using the entropy method. 
Sliding window averaging was not used here. 



 
 
 
For the 2 MP 382-420 NS 605-631 interaction, from now on abbreviated as 2 MP NS, the most 
notable conserved feature in Figure 26 was the long binding region (~10 nt, orange box). In Figure 
28, this region lies between positions 16 and 25 in the structure consensus profile (bottom plot), 
corresponding to nucleotides 17 to 28 (measured within the plot bounds) in the sequence consensus 
profile (top plot) for MP, and nucleotides 11 to 22 for NS. The central part of this region seems to be 
well-conserved in the bottom structure consensus profile, although shifts in the interaction alignment 
may influence this. In the sequence consensus plots, the 17 to 28 region is relatively well conserved, 
except at position 18. In the NS segment 11 to 22 region, there is a little more variation, almost 
exclusively at codon third positions. Except for the MP 18 U – NS 12 A base pair, all base pairs in 
this region are relatively well conserved in the structure consensus plot in the middle. In conclusion, 
the region of strong uninterrupted base pairing seen in the predicted structure for WSN and several 
other strains in Figure 26 is generally well conserved among H1N1 strains, further highlighting the 
potential importance of this interaction and of this structural element in the stability of this interaction. 
However, some sequence mutations and corresponding structural variations do occur in this region, 
indicating some level of robustness to such mutations. 

Overall, analysis of sequence- and structure consensus at the nucleotide level is possible, but it is 
very difficult to interpret the small-scale variations seen here in a justified manner, taking care so as 
to avoid over-interpreting such patterns. 



 
 
 

  

 

 

 
Figure 28: Consensus profiles for the WSN 2 MP 382-420 NS 605-631 interaction with WSN + H1N1 vaccine strains. Top:  
sequence consensus profiles. Middle: per-nucleotide structural function consensus profiles for both interacting regions. MP 
segment in blue; NS segment in orange. Bottom: structure-oriented consensus profile. On the x-axes, the MP strand is on top 
(3’ to 5’), and the NS strand (5’ to 3’) is at the bottom. The consensus score in each plot at each position was computed using the 
entropy method. 



 
 
 

Mutational analysis of inter-RNA interaction sites 
The proposed existence of conserved inter-RNA interactions in influenza A genomes poses an 
interesting question: are inter-RNA interaction sites more conserved relative to the rest of the 
genome? In the section Sequence conservation and inter-RNA interactions, very limited evidence 
(and counterevidence) was found of some form of increased sequence consensus in regions 
corresponding to interaction hotspots or ‘peaks’, but most regions of consensus variation seemed 
unrelated to the distribution of inter-RNA interactions. A simpler analysis is possible by taking a 
reference strain such as WSN, which sourced the inter-RNA interactions in the analyses so far, and 
comparing its genome to the extrapolation strains. A comparison is then possible by calculating the 
average mutation rate (the sum of the substitution-, deletion- and insertion rates) over the whole 
genome versus within interaction sites, for several strains. For the H1N1 vaccine strain set with WSN 
as the reference, this is shown in Figure 29. From this figure, it is apparent that as expected, not all 
strains are equally similar to WSN. Especially the 2009-pandemic A/California/07/2009 and post-
pandemic A/Michigan/45/2015 strains are dissimilar: somewhat surprisingly this dissimilarity is most 
notable in the HA and NA segments, even though these strains are still classified as H1N1.  

Looking at the plot showing the same calculation restricted only to the Dadonaite et al. WSN 
interaction sites, it is apparent that there may indeed be some level of increased conservation in the 
WSN-sourced interaction sites, but not by a large margin. The A/Michigan/45/2015 MP segment is an 
example, with a whole-genome conservation rate of 0.85 versus 0.90±0.01 within interaction sites 
(one standard deviation, t-test statistic ~69.0, two-sided p < 0.00001, sample size 128 WSN MP 
interactions). Care must be taken in interpreting these values however as the differences are not very 
large, and they may be subject to the multiple testing problem. Overall though, several such 
instances for which the interaction site conservation rate is higher can be found. Another problem is 
the existence of sequencing issues in segment end regions, which may influence especially the 
whole-segment calculation. This was corrected for by excluding such regions from the calculation. 
Lastly, the same interaction site (or overlapping sites) may be included multiple times in the 
calculation if it is involved in multiple discrete interactions. 

A more in-depth study into this phenomenon could be undertaken by further restricting the calculation 
to predicted interaction nucleotides only, and by taking more- and larger sets of genomes. 



 
 
 

 

Figure 29: Conservation rates (one minus the mutation rate) for WSN as the reference strain with H1N1 vaccine 
strains as the variant set. Top: conservation rates across whole segments. Bottom: conservation rates inside WSN 
Dadonaite et al. interaction sites within segments. N/A and extremely low values are usually indicative of absent 
segments and sequencing errors respectively, cf. Box 1. Interpretation: strains such as Brazil/1978, Chile/1983 and 
USSR/1997 are more similar to WSN than others. Especially the 2009-pandemic and post-pandemic California/2009 
and Michigan/2015 strains are quite dissimilar, most notably in the NA and HA segments. Across most strains and 
most segments, the conservation rate within the Dadonaite et al. interaction sites may be slightly higher than the 
whole-segment conservation rate, the Michigan/2015 MP segment being an example (0.85 vs. 0.90±0.01 (1σ), 
p<0.00001), but the differences are not always significant, and family-wise errors should be taken into account.  



 
 
 

Structural imposition 
The structural imposition experiment aims to provide another method of assessing the similarity of 
two strains for a given inter-RNA interaction. By substituting nucleotides (for both segments) from 
one strain (the sequence donor strain) into a structure predicted for another (the structure donor 
strain), removing non-complementary base pairs and introducing new base pairings between directly 
opposing complementary nucleotides, and finally using ViennaRNA RNAeval to determine the 
predicted free energy of the corresponding structure, the following question is answered: how well do 
the nucleotides from the sequence donor strain fit into the predicted inter-RNA structure for the 
structure donor strain?  

In Figure 30, a heatmap of free energy values for structural impositions of the H1N1 vaccine strains 
(and the WSN reference strain) is shown for the 2 MP NS interaction. Note that the self-imposed 
structures, where the sequence donor strain is the structure donor strain, are also evaluated using 
RNAeval. Figure 31 can be used as a reference figure, showing a heatmap of the mutation rates 
within the donor structure interaction sites between the sequence donor strain and the structure 
donor strain. The pattern of sequence donors with the WSN predicted interaction structure is similar 
to the sequence conservation pattern for the MP and NS segments in Figure 29. Overall, the 
predicted imposition FE values follow the mutation patterns in Figure 31 quite closely. In case of 
structure-preserving or structure-strengthening mutations between two strains, an unexpected 
deviation from this mutation patterns would be expected, but such a phenomenon does not jump out 
at first glance. A weaker example of this is that the structures of A/Brisbane/59/2007 and A/South 
Dakota/06/2007 imposed on the WSN sequence result in highly stable structures even though a few 
mutations occurred in these strains’ interaction sites relative to WSN. 

One pattern is most apparent: the low similarity of the 2009-pandemic A/California/07/2009 and post-
pandemic A/Michigan/45/2015 strains with virtually all other strains, both when acting as the 
sequence donor and as the structure donor. However, the predicted self-imposed structures for these 
strains are not very stable either. The imposition of non-2009-pandemic-associated strains on 
A/California/07/2009 seems to result in the least stable structures, especially the A/Beijing/262/1995 
structure. Somewhat surprisingly, the imposition of A/California/07/2009 structure on 
A/Michigan/45/2015 and vice versa does not yield better results than with other strains, even though 
they are highly similar in terms of mutations inside the interaction sites in Figure 31. Interestingly, 
WSN nucleotides are relatively stable in the A/Michigan/45/2015 structure, more so than self-
imposed, possibly due to the generation of new base pairs using WSN nucleotides. This may indicate 
that some element of the WSN structure may persist in the A/Michigan/45/2015 predicted structure, 
but that nucleotide bonds have been lost due to mutations. 

 



 
 
 

 

Figure 30: Structural imposition for the 2 MP NS interaction with H1N1 vaccine strains, with WSN as the reference 
strain. The sequence donor strain is on the x-axis, the structure donor strain is on the y-axis. The free energy value 
was predicted for each single-molecule fused interaction structure with internal open-loop ‘GGGGG’ nucleotides 
insert using RNAeval. Therefore, the self-impositions along the diagonal are not necessarily equal in predicted FE to 
the intaRNA predictions. Interpretation: a clear pattern of low similarity between 2009-pandemic and post-pandemic 
strains with other strains emerges, both for sequence donation as well as for structure donation. 

 

Figure 31: Structural imposition experiment mutation rate heatmap for the 2 MP NS interaction for H1N1 vaccine 
strains, with WSN as the reference strain. The sequence donor strain is on the x-axis, the structure donor strain is 
on the y-axis. Shown here are the average mutation rates (sum of substitution-, deletion- and insertion rates) 
between sequence donor strain and structure donor strain within the predicted interacting sub-sequences of the 
donor structures only, averaged over both segments. Interpretation: the same pattern of higher dissimilarity 
between 2009-pandemic associated strains with other strains is visible here. One notable feature is that the low 
mutation rate between California/2009 and Michigan/2015 does not result in higher free energy values for cross-
imposed structures between the two, given that the Michigan/2015 structure has a better predicted MFE value. 



 
 
 

Cross-strain interaction 
The cross-strain interaction experiment evaluates the compatibility of two strains for a specific inter-
RNA interaction, by taking the interaction site on one segment from the first strain, and using 
intaRNA to predict a potential interaction with the interaction site on the other segment from the 
second strain. For each pair of strains, two such combinations can be made.  

For the H1N1 vaccine strains including WSN, the resulting predicted MFE values are shown in Figure 
32 for the 2 MP NS interaction. Additionally, Figure 33 shows the cross-strain interaction heatmap for 
the mixed serotype strain set (see Box 3), again including the reference strain WSN. In the Inter-RNA 
structures section, it was determined that mutations in the NS segment interaction site are most likely 
responsible for the loss of structure stability of this interaction in 2009-pandemic associated strains, 
i.e. A/California/07/2009 and A/Michigan/45/2015. Figure 32 provides further confirmation of this 
hypothesis by showing that stable structures are possible using the MP segment interaction sites 
from these strains with non-2009-pandemic-associated NS segment interaction sites, but that the 
reverse leads to much more unstable structures. Also interesting is the observation that for some 
combinations of strain crossings, the predicted MFE value is lower than for the non-crossed 
interactions (along the diagonal), indicating that a cross-strain interaction for these pairs of strains 
could result in a more stable structure than within the strains themselves. This could have 
implications for the potential for cross-strain co-segregation of these segments in reassortment 
scenarios. Examples are: A/California/07/2009 MP with A/Brazil/1/1978, A/Chile/1/1973, 
A/Singapore/6/1986 or A/USSR/90/1977 NS, and to a lesser extent A/South Dakota/06/2007 NS with 
A/Chile/1/1983 or WSN MP. Care must be taken in interpreting these results directly in this way on 
multiple levels: these structure predictions are not necessarily reflective of the in virio situation, 
interaction sites can shift between strains, the MFE value does not say everything about the 
probability of an interaction occurring, and the integrated effect of other interactions must be 
considered as well. Nevertheless, some results are strong enough to warrant further investigation, 
especially the incompatibility of the 2009-pandemic associated NS interaction site with non-2009-
pandemic associated strains.  



 
 
 

 

Figure 32: Cross-strain interaction MFE heatmap for the 2 MP NS interaction for the H1N1 vaccine strains and WSN. 
MP segment donor strain on the x-axis, NS segment donor strain on the y-axis. In-strain interactions are shown 
along the diagonal marked in green. Interpretation: the pattern here clearly shows that the 2009-pandemic-
associated California/2009 and Michigan/2015 strains’ NS segment is incompatible for this interaction with MP 
segments from non-pandemic-associated strains, and the in-strain values indicate incompatibility as well. The MP 
segment of these 2009-pandemic-associated strains however is compatible with the NS segment of non-2009-
pandemic associated strains. Some cross-strain interactions are predicted to be more stable than the interactions 
within the ‘parent’ strains. 

In Figure 33, the same heatmap of cross-strain interactions is shown for 2 MP NS interaction for the 
mixed serotype strain set, including WSN. These strains are much more dissimilar between 
themselves compared to the H1N1-only vaccine strains set. This results in increased spread of 
predicted MFE values for both the in-strain- as well as cross-strain interactions. More caution should 
be taken in interpreting these results as there is even less guarantee that WSN in virio interaction 
sites are a genuine reflection of the interaction network in these distant influenza strains. 
Nevertheless, some interesting patterns are visible. The 1968-pandemic associated H3N2 strain 
A/Hong Kong/01/1968 has a highly stable predicted structure for this interaction, even more so than 
WSN. The 2 MP NS interaction was also found in virio in the A/Udorn/1972[H3N2] (Udorn) strain, 
which is also temporally associated with the Hong Kong pandemic strain, by Dadonaite et al. For 
both possible cross-strain interactions with WSN, a highly stable interaction is predicted, indicating 
compatibility between these strains even though they are of different serotypes. Since only the MP 
and NS segments are directly involved in this interaction, this is not as unusual as it seems at first 
glance. It instead highlights the restrictive nature of the HxNy serotype notation for describing 
influenza A genomes, and suggests that more focus may be needed in analysing reassortment 
processes not just involving HA and NA segments, but also involving other segments. In the same 
vein, A/Puerto Rico/8/1934-Korea/426/1968[H2N2] and A/Brisbane/59/2007[H1N1] (which is also in 



 
 
 
the H1N1 vaccine strains set) are also predicted to have stable in-strain interactions, and stable 
cross-strain interactions with WSN and A/Hong Kong/01/1968. Also note the 2009-pandemic-
associated A/Belgium/145-MA/2009[H1N1], which, like the A/California/07/2009 and 
A/Michigan/45/2015 strains, is associated with the 2009 H1N1 pandemic. The pattern for this strain is 
the same as in Figure 32: its in-strain predicted MFE is high, and its NS segment is predicted to 
interact poorly with WSN and other H1N1, H2N2 and H3N2 MP segments within the 2 MP NS 
interaction sites. However, like the other 2009-pandemic-associated strains, its MP segment does 
seem to be compatible with these H1N1, H2N2 and H3N2 strains. Such patterns are especially 
interesting because the potential for a more stable cross-strain interaction could indicate a cross-
strain co-segregation preference in reassortment scenarios, if this pattern holds for other cross-strain 
interactions between the two segments in question. 

The more serotypically varied strains included in this analysis are: A/Anhui/1-
BALF_RG1/2013[H7N9], A/duck/Hokkaido/Vac-3/2007[H5N1], A/duck/Zhejiang/6DK19-
MA/2013[H5N2] and A/mallard/Alberta/70/2017[H7N3], of which only the first was isolated from a 
human, having been the cause of a significant outbreak of novel influenza in 2013 (Watanabe et al. 
2013). Each of these strains except the last have relatively high predicted MFE values for the 2 MP 
NS interaction. A straightforward explanation is that A/mallard/Alberta/70/2017[H7N3] has relatively 
few mutations in both the MP and NS sites with respect to WSN. This seems to be true on average 
over the whole lengths of the MP and NS segments, as shown in Figure 34, possibly pointing to a 
WSN-proximal origin of the MP and NS segments in this strain. Notably, these segments are more 
conserved in all strains than the HA and NA segments (and to a lesser extent the PB1 segment). As 
a result, interactions between these segments may remain more stable throughout the evolution of 
influenza strains than interactions between highly variable segments. However, even relatively few 
mutations in interaction sites are predicted to be able to lead to large variations in interaction stability. 
This is the case for example for the 2009-pandemic-associated strains for the 2 MP NS interaction, 
which have only four extra mutations in the NS interaction site compared to e.g. the stable 
A/Brazil/11/1978 strain. In general, the MP and NS segment conservation rates w.r.t. WSN correlate 
well with the predicted MFE values of the 2 MP NS interaction in the extrapolation strains, with lower 
conservation rates generally resulting in decreased predicted MFE. In the case of 
A/duck/Zhejiang/6DK19-MA/2013[H5N2], a 15-nucleotide deletion in the NS interaction site results in 
a radically changed, weaker interaction structure, and incompatibility of this NS interaction site with 
other strains in cross-interaction. Oddly enough, the MP interaction site of that strain is quite 
compatible with NS segments of all other strains (except itself). 

Here, it is important again to stress the shifting nature of inter-RNA interactions in influenza A 
genomes, meaning that it is quite possible that any important functions of this interaction have been 
taken over by other interactions, or that the interaction sites have gradually shifted away from the 
homologous genomic location in WSN. This is assuming this interaction even existed in an ancestor 
strain in the first place, which is not guaranteed especially for the strains with segments more 
distantly related to WSN. 



 
 
 

 

Figure 33: Cross-strain interaction MFE heatmap for the 2 MP NS interaction for the mixed serotype strain set and 
WSN. NI means no predicted stable interaction (i.e. no interaction structure below 0.00 kcal/mol). Interpretation: in-
strain stable predicted structures exist for this interaction for WSN, the Puerto Rico…[H2N2] strain, the 
Brisbane/2007[H1N1] strain and Hong Kong/1968[H3N2]. These strains are also predicted to form stable cross-strain 
interactions with each other, for all possible segment combinations. Other strains generally have lower predicted in-
strain MFE values, including the 2009-pandemic associated Belgium/2009 strain, whose MP segment does form a 
stable cross-interaction with WSN and the aforementioned stable strains. Other surprising results are seen as well, 
such as the stability of the Alberta/H7N3 predicted in-strain- and cross-strain interaction structures. 

 

Figure 34: Whole-segment average conservation rates (one minus the mutation rate) for the mixed serotype strain 
set with WSN reference strain. Interpretation: the H1N1, H2N2 and H3N2 are closest to WSN in terms of 
conservation for most segments. As expected, the strains not of serotype H1N1 carry dissimilar HA and NA 
segments, including H3N2 and H2N2. The Alberta/2017 H7N3 strain non-antigenic segments are surprisingly similar 
to WSN, especially in the MP and NS segments, perhaps pointing to a shared origin or ancestral relationship. 



 
 
 
Although such caveats remain, it is worthwhile to note some significant results. Especially interesting 
is the predicted enhanced stability of the 2 MP NS interaction in the A/Hong Kong/1/1968[H3N2] 
strain, of which the MP and NS segments are highly similar to those of WSN. Figure 35 shows a 
closer analysis of the predicted structures of this interaction in WSN, A/Hong Kong/1/1968[H3N2] 
and A/mallard/Alberta/70/2017[H7N3] and the mutations that cause variations in these structures, as 
well as an overview of mutations in the interaction sites in the mixed serotype strain set. The 
conclusion here is that several mutations commonly occur in these interaction sites across strains of 
likely different origins, but that these mutations are not predicted to result in obvious gains or 
conservation of the (stability of the) interaction structure. It seems more likely that these mutations 
are common due to other evolutionary pressures or were introduced randomly in a shared ancestor 
(although this is less likely given the variety of the strain set). Given the centrality of the 2 MP NS 
interaction in terms of both RPM and predicted MFE in the WSN reference strain, this is a somewhat 
surprising result. It may be the case that the interaction network is sufficiently plastic to 
accommodate most random- and non-random mutations through interaction site shifts and the 
formation of new interactions. Minor variations in the stability of inter-RNA interactions could also 
simply not affect the prevalence of that interaction by much, although not all mutations are predicted 
to result in only minor variations. 

 

Figure 35: Mutation analysis for the 2 MP NS interaction with WSN as the reference strain and the mixed serotype 
strain set for extrapolation. (A): three selected (re-integrated) predicted interaction structures and corresponding 
predicted MFE values. Mutations in the interaction sites w.r.t. WSN are marked in yellow. G-U alternative base pairs 
are shown using the ‘:’ character. (B): mutation table for the mixed serotype strain set w.r.t. WSN in the MP and NS 
interaction sites. Deletions are shown using the ‘-’ character. Interpretation: mutations in the Hong Kong/1968 and 
Alberta/2017 interaction sites are predicted to result in some consolidation of alternative base pairs into standard 
complementary base pairs, and loss of three bonds in the last part of the structure. For Alberta/2017, mutations in 
the latter half of interaction sites on both segments result in the loss of several bonds in the main uninterrupted 
binding part, also leading to slightly decreased stability. The mutations occurring in these strains are usually 
commonly found in other strains as well, see (B). The MP U390C and A391C dual mutation (blue marker), resulting 
in the loss of the three lone base pairs on the right side of the structure, is especially universal. The MP U409C (red 
marker) mutation resulting in conversion of a U-G base pair to C-G is also common. Overall, most mutations do not 
seem to have an obvious benefit for interaction stability, including mutations in Hong Kong/1968. 



 
 
 

Covariation 
As discussed in Covariation in the Methods section, nucleotide covariations can reveal the presence 
of evolutionary constraints imposed on a sequence. Although evidence presented so far points 
toward mutations in interaction sites generally not being associated with conservation or increased 
stability of inter-RNA interactions, the detection of covariation events in predicted base pairing 
positions in such interactions may provide another perspective.  

The covariation detection pipeline was performed for the 2 MP NS interaction with the mixed 
serotype, H3N2 and H5Nx strain sets for interaction extrapolation. No covariation events were found 
in the H1N1 vaccine strains set for this interaction. The two discrete covariations seen for the 2 MP 
NS interaction across these strains are shown in Figure 36. These covariations occur in separate 
base pairing positions in the WSN uninterrupted binding region of the interaction structure, cf. Figure 
26. Both covariations are found in multiple strains, with the red-marked covariation occurring mostly 
in H5Nx strains and the blue-marked covariation occurring mostly in H3N2 strains. Unfortunately, the 
serotypic and genomic similarity of these strain groups means that these covariation events likely 
occurred once in shared ancestor strains and were subsequently inherited into the strains shown 
here. The lack of multiple separate covariations occurring in the same coupled positions also 
represents a lack of certainty that these covariation events reflect a genuine evolutionary constraint 
imposed by inter-RNA interaction conservation, instead of random variation. It is interesting however 
that two separate covariations occur in the WSN uninterrupted binding region, whereas covariations 
in interaction structures are observed to be relatively rare even when searching in all four 
extrapolation strain sets (many interactions do not have any detected covariation events in any 
extrapolated structure). For example, the 28 MP NP interaction covered earlier does not have any 
detected covariation events across any of the strains analysed.  

Looking back at the sequence- and structure consensus profiles in Figure 28, it is apparent that the 
bond involved in the covariation event marked in blue is very poorly conserved with low consensus in 
H1N1 strains at both the sequence- and structure level, which is further evidence that this covariation 
event may just be due to random variation. The red-marked covariation bond and its nucleotides 
especially are a lot more conserved. 



 
 
 

 

Figure 36: Interaction structure covariations in the 2 MP NS interaction, with WSN as the reference strain. Two 
separate covariations are marked in red and blue. Interpretation: each of these covariation events is found in 
multiple strains, with the covariation event marked in blue being common in H3N2 strains (the H3N2 vaccine strain 
set), and the event marked in red being common in the H5Nx strain set. The similarity of these strains means that 
these events likely occurred in shared ancestor strains, and thus that there is little evidence of multiple separate 
occurrences of these covariation events. 

  



 
 
 

DISCUSSION 
The aim of this thesis is to provide a bioinformatics-based perspective into the ‘goldmine’ of 
intersegmental RNA-RNA interaction data provided by the (Dadonaite et al. 2019) and (Le Sage et 
al. 2020) studies. A pipeline was built to extrapolate known inter-RNA interactions in reference 
strains to other strains and predict the structures of these interactions. Several experiments were 
developed to gain a better understanding of these interactions and of the sequence- and structure 
level similarities and differences in these interactions between strains of influenza A. 

In the Known inter-RNA interactions in influenza A section, the Dadonaite et al. and Le Sage et al. 
data on inter-RNA interactions was discussed in detail. The data mainly concerned interactions in the 
A/WSN/1933[H1N1] (WSN), A/Puerto Rico/8/1934[H1N1] (PR8) and A/Udorn/1972[H3N2] (Udorn) 
strains. It was concluded that most genomic segments in each of these strains engage in multiple 
interactions with other segments, usually with multiple discrete interactions between pairs of 
segments. Some segments engage in more interactions than others, both in absolute numbers and 
when measured relative to segment length. However, it does not seem to be the case that one 
segment is central to the interaction network as a mediator of inter-RNA interactions. The overall 
interaction networks looked very different when comparing WSN to Udorn, underlining the effects of 
genomic variation on inter-RNA interactions.  

A ‘7+1’-organisation of viral ribonucleoproteins (vRNPs) in influenza virions has been observed in 
several studies, in which one vRNP in the centre is surrounded by the other seven (Hutchinson et al. 
2010). It is possible that this central vRNP is not static, i.e. that different segments can fulfil this 
central vRNP role, and/or that this organisation is simply due to spatial packing constraints within the 
viral particles. The evidence does not completely rule out static segment (vRNP) positioning in the 
7+1-organisation in a given strain, since there are many unknowns about influenza RNA interaction 
networks. However, the presence of multiple interactions between most segments in each strain 
analysed by Dadonaite et al. and Le Sage et al. does seem to refute the idea of a static vRNP 
organisation, as this seems difficult to achieve if some pairs of vRNPs do not come into close 
contact, unless the interaction networks are dynamic at different stages of replication and/or in 
different viral particles. 

By analysing the distributions of discrete inter-RNA interactions over the genome segments in the 
various strains for which data was available, very interesting observations were made. The 
distribution of interactions is not uniform for any strain or for any segment. Instead, there exist 
regions that are involved in many discrete inter-RNA interactions (hotspots or peaks), alternating with 
regions engaging in few to none (silent regions). The patterns of hotspots and silent regions were 
similar for the closely related WSN and PR8 strains, but not when compared to Udorn. There were 
also significant differences between the distributions for WSN in Dadonaite et al. (derived using the 
SPLASH method) and in Le Sage et al. (derived using the 2CIMPL method) due to as of yet 
unknown reasons, as also discussed in (Le Sage et al. 2020, p. 6).  



 
 
 
Contrary to expectations from research on the selective packaging model of influenza genome 
packaging, cf. e.g. (Hutchinson et al. 2010), hotspots in inter-RNA interaction profiles are not just 
concentrated around segment ends, where packaging signals are known to reside. Instead, strong 
hotspots are frequently located in the middle of coding regions. One of these coding-region hotspots, 
the hotspot located around 680-720 nt 5’ to 3’ in the NP segment of WSN, PR8 and Udorn, was 
analysed in depth in (Le Sage et al. 2020). They showed that synonymous mutations in this hotspot 
region result in rearrangements in the overall interaction network in WSN, indicating the importance 
of this hotspot in the interaction network. The lack of disruption of genome packaging in this mutated 
strain was unexpected, and probably indicates a form of robustness of the interaction network to 
mutations even in important interaction sites. Besides the NP hotspot, other hotspots were found by 
re-analysing data from mainly the Dadonaite et al. dataset. Particularly strong peaks were found in 
the PA ~1400 nt and PB1 ~2400 nt regions for WSN, PR8 and perhaps even Udorn. Segments such 
as MP in WSN had an oscillating pattern of peaks interspersed with silent regions, whilst other 
segments displayed more ‘disordered’ profiles. 

Additionally, a basic genome-wide sequence consensus study was performed, inspired by (Gog et al. 
2007), to determine whether genomic regions with high involvement in inter-RNA interactions are 
more conserved at the sequence level. With WSN as the reference strain, several H1N1 vaccine 
strains were selected for this consensus study, cf. Extrapolation strains in the Methods section. It 
was inferred from overlaying the inter-RNA interaction distribution with the sequence consensus 
profile that there is little evidence of significantly increased conservation of hotspot regions, including 
for the strong NP and PA hotspots. For some peak regions, such as the peak around PB1 ~2400 nt, 
there appeared to be some form of local increase in sequence consensus, but other regions 
contradicted these findings. More research is needed in order to confirm these findings, but it may be 
the case that inter-RNA interactions do not necessarily impose strong evolutionary constraints at the 
sequence level. A more in-depth study should consider the existence of other constraints on 
sequence evolution, such as those imposed by intra-RNA structure and protein conservation. 

So far, only results based directly on the Dadonaite et al. and Le Sage et al. data have been 
discussed. The more ‘experimental’ results of this thesis concern the extrapolation of this data to new 
strains in order to support a series of experiments analysing the inter-RNA interactions in depth in a 
wider context. The bulk of extrapolation experiments were performed with Dadonaite et al. WSN as 
the reference strain providing the data on inter-RNA interaction locations, which were extrapolated 
mainly to the set of selected H1N1 vaccine strains using multiple sequence alignment. The Freiburg 
RNA Tools intaRNA algorithm was then used for inter-RNA structure- and minimum free energy 
(MFE) prediction. For WSN, the predicted MFE values were broadly and roughly normally distributed. 
It was noted that the predicted MFE values correlate only weakly to the reads-per-million (RPM) 
values of inter-RNA interactions in the Dadonaite et al. WSN dataset. This most likely indicates that 
the predicted MFE value does not tell us everything about the occurrence and stability of an 
interaction in virio. A global or interaction-specific comparison of MFE values could still provide useful 
insights. It was found that the MFE distributions of two extrapolation strains, A/California/07/2009 and 
A/USSR/90/1977, tended towards less stable interactions. This skew was especially notable for the 



 
 
 
more dissimilar 2009-pandemic-associated A/California/07/2009 strain. The overall positive-ward 
shift of these distributions in extrapolation strains is another possible indication of a lack of 
conservation of inter-RNA interactions across strains of influenza. 

Twenty interactions were selected for further analysis out of the set of 611 found by Dadonaite et al. 
for WSN. These interactions were the ones that were found to be conserved across WSN, PR8 and 
Udorn in the Dadonaite et al. study, hopefully reflecting some form of cross-strain conservation of 
these interactions, even though their RPM and predicted MFE values vary greatly. Of these, two 
interactions in particular were analysed in depth: 28 NP 670-712 MP 355-395 and 2 MP 382-420 NS 
605-631. The 28 NP MP interaction was ranked relatively high in RPM and predicted MFE for WSN, 
overlaps the NP hotspot, and is predicted to be more stable in terms of MFE in most extrapolation 
strains. The 2 MP NS interaction is interesting because it was ranked third highest in terms of RPM in 
WSN, and because its predicted MFE in WSN and other strains indicated that it should form one of 
the most stable interaction structures. Visual inspection of the predicted interaction structures 
indicated that some conserved structural elements may be present, including a region of relatively 
uninterrupted binding in the 2 MP NS interaction. However, a degree of variation was also observed 
in the predicted structures. 

The existence of these conserved structural elements was examined by analysing sequence- and 
structure consensus at the single nucleotide scale. The results were inconclusive, with some 
apparent increased consensus at key nucleotide binding positions in the 2 MP NS binding region, 
and perhaps also in an open loop in the 28 NP MP interaction. However, there was no clear overall 
pattern of increased conservation of inter-RNA-binding nucleotide positions and inter-RNA bonds in 
these two interactions.  

A very interesting sequence pattern in the NP hotspot region involved in e.g. 28 NP MP was noted 
however, which was most apparent in WSN: a quadruple tandem repeat of four nucleotides (‘CAGG’) 
in the 5’ to 3’ direction. This unusual sequence feature was moderately conserved in other strains: 
usually one or more, but not all, of the repeats were partially mutated, cf. Figure 37. It is possible that 
this tandem repeat pattern is involved in inter-RNA interactions, for example by decreasing the 
chance that each ‘CAGG’ repeat in this region is broken in case of mutation. The perfect 
complementary pattern, ‘GUCC’ 3’ to 5’ (antiparallel), was not as common in interaction sites 
interacting with this NP hotspot, but it did occur thrice within the (WSN) MP interaction site for 28 NP 
MP. Most interactions in the NP hotspot however were predicted to involve bonds with the ‘CAGG’-
repeat region, including the 28 NP MP interaction, as well as the 36 NP 675-717 MP 400-434 and 98 
PA 612-652 NP 689-731 interactions. Another hypothesis is that the ‘CAGG’-repeats allow for 
shifting and ‘slipping’ of interaction structures, e.g. multiple stable interaction structures with this 
region could be possible. What the effect of this will be in virio is hard to hypothesise. Perhaps one of 
the ‘CAGG’-motifs could act as the initiator of an interaction by means of a ‘kissing-loop’ interaction, 
in which free nucleotides (in this case, ‘CAGG’ nucleotides) in a stem-loop structure bind to free 
nucleotides elsewhere, in this case to the opposing interaction site. This initial interaction could then 
act as a seed for consolidation into the full, stable inter-RNA interaction. It is feasible that a repeating 
pattern of multiple ‘CAGG’ nucleotides could engage in such an interaction more easily, or more 



 
 
 
likely: that it could more easily receive such a ‘kissing’ interaction, perhaps from a ‘GUCC’ 3’ to 5’ 
complementary stem-loop. The existence of stem-loops in the influenza genome has been discussed 
before (Gultyaev, Fouchier, and Olsthoorn 2010, p. 17-18). 

 

Figure 37: The NP hotspot (here NP 670-712 5’ to 3’ measured in WSN) and tandem repeat region for various 
strains of influenza A. The tandem repeat region is shaded pink. (Selections from) all strain sets used in the 
pipeline of this thesis are shown, including the two additional interaction reference strains PR8 and Udorn. 
Interpretation: the tandem repeat region is well conserved in H1N1 strains especially, with no mutations at all in 
Singapore/1986 and PR8. At least one ‘CAGG’ pattern is conserved in all strains shown. Except perhaps for the ‘G’ 
to ‘A’ mutation in the last repeat, there is little consensus for mutations in the tandem repeat region. Note that 
nucleotides outside the tandem repeat may also be involved in NP hotspot interactions. The 2009-pandemic 
associated strains California/2009, Michigan/2015 and Belgium/2009 have a unique pattern of mutations in/around 
the NP hotspot with only one mutation inside the tandem repeat. 

Another way of computing possible sequence-level conservation of interaction sites was devised by 
calculating whole-segment conservation rates (a form of sequence identity, the inverse of mutation 
rate) for all segments and all selected extrapolation strains, with WSN as the reference genome. 
These values were then compared to the conservation rates within interaction sites inside each 
segment. These results were more promising, showing possible increases in sequence conservation 
inside interaction sites for multiple segment-strain pairs. It was difficult to establish the statistical 
significance of these findings, and the quality of the sequences and of the alignments can have a 
major effect on such computations. Especially concerning was the potential for skew of the 



 
 
 
conservation rates due to sequencing issues in segment extremities. Manual inspection of the 
alignments however showed that these issues were of limited effect on the quality of the alignments, 
and the segment ends were excluded from computations as a precaution. A cursory t-test calculation 
did yield a promising indication of statistical significance of this finding for at least one segment in 
one strain. 

The structural imposition experiment aimed to investigate the similarity of predicted inter-RNA 
structures for two strains in a different way. By imposing the predicted interaction structure for one 
strain onto the interaction site sequences of another and measuring the free energy of that imposed 
structure, a measure of interaction similarity for two strains is constituted. For the 2 MP NS 
interaction, it was found that the 2009-pandemic-associated strain A/California/07/2009 and the post-
pandemic strain A/Michigan/45/2015 are not compatible with non-pandemic strains, neither when 
their structure is imposed nor when their nucleotides are substituted into another structure. Also note 
that these two strains had relatively unstable predicted structures in the first place. Taken together, 
this indicates that the 2 MP NS interaction has likely weakened significantly, or even been lost, in the 
2009-pandemic-associated strains due to mutations in key binding positions in the interaction. 

In a similar vein, the cross-strain interaction experiment was used to compare pairs of strains on a 
given interaction. However, the cross-strain interaction experiment was intended to check the 
compatibility of two strains in a reassortment scenario, by predicting the interaction in case of an 
exchange of segments between strains. For the 2 MP NS interaction, the conclusion was that the NS 
segment of the 2009-pandemic-associated strains drives the weakening of that interaction and the 
incompatibility with non-pandemic-associated H1N1 strains, whilst its MP segment is predicted to be 
compatible with all other H1N1 strains tested. The cross-strain interaction analysis was expanded to 
a mixed serotype strain set for this interaction. The main observation here was the formation of a 
compatible cluster of H1N1 (non-2009-pandemic) strains, and one strain each of the H3N2, H2N2 
and H7N3 serotypes. The unexpected serotypic variety of this cluster is an interesting avenue for 
future research on the potential for cross-serotype reassortment. A larger scale computational study 
of cross-strain interaction potentials would be a first step to that end. 

Finally, one last attempt was made to investigate conservation in inter-RNA interactions: by looking 
for nucleotide covariations in inter-RNA binding positions. This yielded no results for the 28 NP MP 
interaction, but two discrete covariation events were found in the long binding region of the 2 MP NS 
interaction. These events were seen in several strains of H5Nx and H3N2 serotypes respectively. 
Unfortunately, due to the genetic similarity of these strains and in the absence of good phylogenetic 
information on the evolution and reassortment of these strains, the conclusion must be that the 
evidence points to single occurrences of these two discrete covariation events in ancestor strains. 
Although covariation events in inter-RNA binding positions were observed to be relatively rare in 
inter-RNA interactions even when analysing relatively large numbers of strains, there is therefore no 
strong evidence that these covariations are indicative of an evolutionary constraint imposed on 
conservation of these binding positions. If a covariation event is shown to occur in multiple discrete 
lineages at the same position, this would constitute more significant evidence of an evolutionary 
constraint. 



 
 
 
Due to space constraints, few results on the H3N2 and H5Nx strain sets were covered in this thesis. 
The role of H3N2 strains as one of the foremost causes of seasonal- and epidemic influenza, and the 
concern about potential human outbreaks of highly pathogenic H5Nx strains, warrants further 
investigation into the patterns of inter-RNA interactions and consequences for reassortment in these 
strains. Some insights into H3N2 and H5Nx strains were covered mostly for the WSN-based 2 MP 
NS and 28 NP MP interactions. For H3N2, the use of the Dadonaite et al. Udorn interactions 
datasets is probably more prudent, given the serotypic connection of Udorn to other H3N2 strains. 
For H5Nx unfortunately no such reference strain/dataset is currently available. Preliminary results 
indicate that H5Nx strains are most likely more dissimilar to WSN than the H1N1 strains in terms of 
interaction site sequences and predicted interaction structures, as expected. The defining feature of 
H5Nx strains is the H5 segment type, which is highly dissimilar to H1, with around ~60% sequence 
identity/conservation rate in Figure 34. Other segments in H5Nx strains are usually also less similar 
to WSN when compared to e.g. non-2009-pandemic H1N1 strains. This resulted in more pronounced 
predicted MFE shift distributions from the WSN reference for H5Nx strains compared to 
A/USSR/90/1977[H1N1], but not compared to 2009-pandemic-associated A/California/9/2009[H1N1] 
(comparing Figure 23 to Figure A 2 in Appendix A: H5Nx figures). As with the H1N1 strain set, not all 
interactions were predicted to have less stable structures in H5Nx strains: for a surprisingly large 
number of interactions, significant negative shifts were predicted across numerous strains, cf. Table 
A 1 in Appendix A: H5Nx figures. Lastly, Figure A 1 shows the predicted MFE values for a selection 
of H5Nx strains for the triple conserved interactions (cf. Table 4 and Figure 24). The pattern of MFE 
shifts here does not seem similar to the pattern for H1N1 extrapolation strains in Figure 24: virtually 
all triple-conserved (WSN, PR8, Udorn) interactions are predicted to become less stable in H5Nx 
strains. 

Limitations 
The wealth and complexity of the inter-RNA interaction datasets means that there are various 
approaches to deriving new information from them. The approach chosen for this thesis has its 
advantages, but it also has drawbacks. The most fundamental limitation lies in the concept of 
interaction extrapolation: given the apparent volatile nature of inter-RNA interaction networks, there is 
no guarantee that extrapolation of interaction sites from one reference strain to homologous RNA 
regions in another yields a real interaction occurring in the extrapolation strain. The interaction sites 
may have shifted due to mutations, or the interaction may have substantially weakened or 
disappeared altogether. Another option is that the interaction never existed in ancestor strains of the 
extrapolation strain, having arisen in a distinct phylogenetic lineage for the reference strain, or that it 
disappeared due to reassortment with other genetic material. In this case, the entire concept of 
‘conservation’ of interactions is not valid, as only convergent evolution or multiple reassortment could 
result in similar interactions arising in the extrapolation strain. In an attempt to alleviate this, I focused 
mostly on triple conserved interactions (in WSN, PR8 and Udorn) from the Dadonaite et al. dataset 
for the extrapolation analyses. That should mean that interactions in strains with segments derived 
from the lineages of these three reference strains should be valid targets for conservation analysis, 
but it is difficult to determine when this is the case, as high mutation rates and reassortment make 



 
 
 
influenza phylogeny complex. Still, in cases where the concept of interaction conservation is not 
sensible, apparent conservation or lack thereof may still provide useful perspectives into interaction 
network plasticity, reassortment or even convergent evolution. A more phylogenetically informed 
study may prove useful however in determining the scope of this plasticity. 

A related issue is that the extrapolation method can never find new interactions (unless they perfectly 
overlap a known interaction) in the extrapolation strains. This likely resulted in unrealistic free energy 
distributions showing an apparent overall weakening of interactions in most extrapolation strains with 
respect to the reference strain. 

In order to make a solid comparison of inter-RNA interactions between strains, it would be prudent to 
analyse a large set of interactions between various segments. However, only 20 triple-conserved 
inter-RNA interactions were available from the Dadonaite et al. dataset, and of these, only few were 
analysed in any depth due to space- and time constraints. These individual interaction analyses 
probably do not tell us the full story of interaction conservation and cross-strain potentials. An 
extended analysis including more interactions and perhaps a more statistics-driven interpretation 
could provide additional perspectives and help make the conclusions more concrete. 

The intaRNA algorithm is a powerful and modern tool for inter-RNA structure prediction, but it can 
also confer drawbacks in the context of this thesis. Firstly, it only yields the minimum free energy 
predicted structure, but this may not always be the most likely structure to occur in virio due to 
environmental factors, the effect of intra-RNA structure (no accessibility constraints were available), 
protein binding, etc. It is also possible that multiple structures occur in the real situation, i.e. some 
sort of thermodynamic ensemble of interaction structures is more realistic. Another issue is that the 
predicted MFE value does not tell us everything about interaction stability or the probability of that 
interaction occurring in virio, as partially supported by the weak correlation of interaction RPM with 
predicted MFE, cf. Figure 22. Moreover, the intaRNA algorithm can only predict structures that are 
two-dimensional and linear in some sense, i.e. three-dimensional RNA structure is neglected and 
more complicated pseudoknot-like inter-RNA structures will not be found. A three-dimensional and 
non-linear structure prediction algorithm would likely carry much heavier computational costs, 
especially in the pipeline of this thesis, where the procedure would have to be called hundreds of 
times. Another concern is the fundamental assumption that inter-RNA interaction only occurs in the 
antiparallel direction, i.e. 5’ to 3’ for one strand, 3’ to 5’ for the other. This assumption may not be 
correct in all cases, as parallel RNA duplexes are thought to be possible (Szabat and Kierzek 2017). 
A cursory look for a few low MFE interactions did not reveal more stable interaction in the parallel 
direction, but a deeper study would be necessary to confirm this. To verify the inter-RNA structures 
predicted by algorithmic approaches, a nucleotide-resolution inter-RNA structure elucidation 
technique would have to be developed. Perhaps developments in the (single molecule) nucleic acid 
structure determination field could aid such an effort (Weeks 2010). The SHAPE-MaP technique 
used to elucidate the intra-RNA structure of influenza genome segments and derive accessibility 
constraints for inter-RNA structure prediction by (Dadonaite et al. 2019) could conceivably also help 
in determining the RNA structure of crosslinked inter-RNA interaction fragments. 



 
 
 

Outlook 
RESOLVE THE ROLE OF INTER-RNA INTERACTIONS IN INFLUENZA 
GENOME PACKAGING 
Although evidence abounds in favour of the occurrence of selective packaging in influenza, the 
precise mechanism has remained a mystery. Evidence for the existence of so-called packaging 
signals mainly near segment extremities has been found, but the role of these regions is unclear. 
Literature on influenza genome packaging has noted the potential involvement of direct inter-RNA 
interactions in maintaining selective packaging, cf. e.g. (Hutchinson et al. 2010), (Gerber et al. 2014) 
and (Shafiuddin and Boon 2019), the last also discussing the seminal findings of the (Dadonaite et al. 
2019) study. Although these inter-RNA interactions are noted to be important in maintaining selective 
packaging e.g. in (Gavazzi, Yver, et al. 2013), (Gavazzi, Isel, et al. 2013) and (Le Sage et al. 2020), it 
is not clear how they are involved. At what stage of replication do inter-RNA interactions arise? Is the 
interaction network dynamic, with interactions arising and disappearing at different time points? How 
does the interaction network itself arise, does any segment play a bigger role in this regard than 
others? What is the interplay between vRNA association into vRNP complexes and inter-RNA 
interaction, is inter-RNA interaction hindered or assisted by nucleoprotein binding? A logical 
hypothesis is that the direct inter-RNA interactions cause vRNPs to stick together, resulting in co-
segregation into new virions. Is this a realistic model of the (contribution of inter-RNA interactions to 
the) mechanism of selective packaging? These are just a few of the questions posed that we may 
want to see answered in the coming years. 

ELUCIDATE INTERACTION NETWORKS IN VIRIO 
The SPLASH and 2CIMPL techniques used/developed by (Dadonaite et al. 2019) and (Le Sage et al. 
2020) respectively are able to resolve influenza intersegmental RNA-RNA interactions in virio. The 
application of these techniques has so far been limited mostly to a few common strains of influenza. 
In order to study the conservation and plasticity of inter-RNA interaction networks, a larger-scale 
study should be performed on strains with diverse genomic- and serotypic backgrounds. Especially 
interesting is tracking changes in interaction networks due to reassortment events, this could for 
example be done using artificial reassortant strains combining genetic material from several ancestor 
strains, as (Dadonaite et al. 2019) already showed. Based on notable similarities in the WSN and 
PR8 interaction networks, it is also interesting to compare closely related strains. This could perhaps 
allow us to track the effects of specific mutations on the interaction network, in the same manner as 
the NP hotspot mutagenesis experiment in (Le Sage et al. 2020). Perhaps the analysis of interaction 
networks could be expanded to influenza B, which does engage in reassortment (Dudas et al. 2015) 
even though it is less common in animal reservoirs, or even to other segmented single-stranded RNA 
viruses. In the end, elucidating the structure and evolution of inter-RNA interaction networks could 
provide us with a greater understanding of reassortment potentials between strains, which could 
prove invaluable in predicting dangerous reassortment events. 



 
 
 
ALGORITHMIC APPROACH: WHOLE GENOME INTERACTION SCAN 
The core contribution of this thesis is to introduce a method to extrapolate known inter-RNA 
interactions found for one strain to other strains. Influenza genome databases contain thousands of 
relatively complete influenza genomes, and this approach can easily be extended to other interesting 
strains. Although several useful experiments in this thesis build upon the data generated using this 
method, it has its limitations. Besides the fact that intaRNA-predicted interaction structures may not 
be a genuine reflection of the in virio interactions, a more fundamental limitation is the fact that inter-
RNA interactions are not static. From the results in (Dadonaite et al. 2019) and (Le Sage et al. 2020), 
we know that the genomic locations of interactions can shift due to genetic variation between strains. 
One major concern for the method in this thesis is the fact that new interactions may arise in a 
variant strain, which can never be found using a dataset that only provides interactions derived in 
some reference strain. 

An approach that may alleviate this issue is to perform a whole-genome evaluation of potential inter-
RNA interactions using an intaRNA-like structure prediction method. This method would take all pairs 
of segments (28 combinations) given a particular influenza genome and calculate potential 
interactions between each pair of segments. As has been discussed throughout this thesis, e.g. in 
Distributions of inter-RNA interactions in Influenza A, most segments interact through multiple 
discrete interactions with each other segment. This is a problem, because current inter-RNA 
interaction structure prediction algorithms usually only return the strongest predicted interaction 
between a pair of sequences, i.e. only one interaction would be found using a naïve approach of 
querying to intaRNA using full sequences for each pair of segments. 

Instead, the algorithm should predict all discrete interactions possible between two sequences (two 
segments) above some free energy threshold, e.g. 0.00 kcal/mol as the absolute maximum. Given 
two sequences of length n and m, such an approach would involve performing multiple dynamic 
programming-based (pairwise alignment-like) procedures on a pairing table of size n × m, similar to 
other inter-RNA interaction finding algorithms such as intaRNA or RNAup. This would be 
computationally expensive, as even efficient algorithms like intaRNA have trouble scaling up to 
whole-segment scales, and that is just for one interaction.  

To ease the computational complexity, a seed scan step could be implemented first. In this 
procedure, each sequence is subdivided into its constituent consecutive k-mers of nucleotides. For 
each k-mer found, complementary k-mers can be computed based on its antiparallel perfect 
nucleotide-complementary k-mer, and then allowing for some number of mismatches and alternative 
base pairs (i.e. G-U base pairs). Then, seed matches can be found by matching complementary k-
mers between the two query sequences. This procedure is similar to the word matching step used as 
a starting point in the various versions of BLAST algorithms (Wheeler and Bhagwat 2007, Section 
1.3). In analogy to BLAST algorithms, these seed matches can then be used as a starting point for 
an intaRNA-like dynamic programming procedure which expands the interaction region around the 
seed region in order to find the local minimum free energy interaction. Several inter-RNA interaction 
algorithms already have a similar seed-finding and -starting step built in, including intaRNA. The only 



 
 
 
difference is that each seed region found should be expanded separately, i.e. result in discrete 
interactions with different predicted free energy values. In cases where two discrete interactions are 
close in the pairing diagram, they could be merged if the resulting interaction is more stable. This 
merging procedure could become complicated in cases where there is disagreement on which 
nucleotides bind to which other nucleotides, which is something to keep in mind. The resulting list of 
interactions and corresponding free energy values then constitute all predicted possible inter-RNA 
interactions between the two segments. See Figure 38 for a graphical overview of the proposed 
method. 

 

Figure 38: An illustration of the proposed whole-sequence inter-RNA interactions profiling method. (A): the seed 
matching step, showing perfect complementary k-mers of length 5. (B): the pairing diagram for the two sequences 
with two interactions extended from the seed matches shown. The first interaction (blue) has an uninterrupted 
binding region of 8 nucleotides, meaning that three length-5 k-mers seed matches would be merged into this single 
interaction. The second interaction (red) has an internal loop of 3 nucleotides on both sequences. 

This approach itself comes with limitations. By relying only on sequence information, important 
considerations such as RNA accessibility are left out. A more complicated algorithm could be devised 
to include such information, as intaRNA already does (Busch, Richter, and Backofen 2008). The 



 
 
 
most fundamental limitation is that this approach would rely fully on an in silico approach of finding 
interaction sites and corresponding interaction structures. There is no guarantee that a profile of 
inter-RNA interactions generated by such a pipeline would be a genuine reflection of the interaction 
network found in virio in the particular strain of influenza to analyse. The key to resolving this is by 
testing the approach on real in virio interaction network datasets, such as those provided already by 
(Dadonaite et al. 2019) and (Le Sage et al. 2020). In this way, an assessment can be made as to 
whether this approach can produce a realistic profile of the inter-RNA interaction network in a 
particular influenza genome. The current state of conflicting results between the (Dadonaite et al. 
2019) and (Le Sage et al. 2020), cf. (Le Sage et al. 2020, p. 6), may prove to be problematic in this 
regard, but this situation may change in the future if more data becomes available. 

Conclusions 
This thesis aimed to investigate intersegmental RNA-RNA interactions (inter-RNA interactions) in the 
influenza A genome from a bioinformatics perspective. Tools were developed to answer a few key 
questions, such as: are inter-RNA interactions in influenza A conserved among different strains and 
serotypes on the sequence- and/or structure level? Are some interactions more or less conserved 
than others? Based on the results in this thesis, I would say that most inter-RNA interactions are 
likely not well conserved across strains. This is especially true for genomically more distant strains. 
Influenza genomics is complex, and serotype certainly does not tell us everything about the 
interrelatedness of strains due to the potential for ‘silent’ reassortment of other segments, i.e. where 
no antigenic shift is involved. Some evidence points to the existence of partially conserved 
interaction-site sequence elements, structural elements, and structure stability for interactions that 
were studied in depth, even between more distant strains. Crucially, the vast majority of mutations 
within existing (extrapolated) interaction sites seemed to result in less stable predicted structures; 
consolidation of interaction structures as a result of mutational processes seemed rare to non-
existent. 

Such results should be confirmed by extending to new strains the highly innovative in virio inter-RNA 
interaction resolution procedures that were utilised by (Dadonaite et al. 2019) and (Le Sage et al. 
2020), whose data forms the foundation of this thesis. This thesis by no means describes all the 
interesting information and patterns that can be extracted from these datasets, and myriad 
fundamental questions remain. Is it true that inter-RNA interaction networks are highly plastic, 
changing quickly even when relatively few mutations occur? How does the interaction network 
respond to reassortment events? If inter-RNA interactions are important in maintaining selective 
packaging, how come the interaction network is so volatile? Is there a degree of robustness built in, 
ensuring that selective packaging is maintained even though inter-RNA interactions and the 
interaction networks overall may shift frequently and rapidly? By expanding our knowledge of inter-
RNA interaction networks, we may elucidate the role they play in influenza genome packaging and 
pave the way towards solving key mysteries of the influenza reassortment process. 

  



 
 
 

APPENDIX A: H5NX FIGURES 
This appendix contains figures concerning H5Nx strains referred to in the Discussion. 

Table A 1: Dadonaite et al. WSN dataset interactions for which the predicted MFE values in the H5Nx strain set are 
on average shifted negatively (more stable) w.r.t. WSN by more than -1.00 kcal/mol. Sorted by segment-pair. 
Predicted MFE values for WSN and three H5Nx strains also shown. Triple conserved (WSN, PR8, Udorn) 
interactions in the Dadonaite et al. datasets are marked green. 

Interaction 

Mean 
H5Nx 
MFE shift WSN  

A/Anhui/1/ 
2005[H5N1] 

A/duck/Mongolia/ 
54+47/01[H5N1] 

A/swine/Banten/ 
UT2071/2005[H5N1] 

150 PB2 1996-2030 PB1 343-401 -2.15 -3.79 -8.65 -9.28 -9.32 

294 PB2 1984-2042 PB1 2038-2116 -1.57 -3.49 -4.79 -7.91 -6.35 

564 PB2 478-532 PB1 2224-2272 -1.07 -6.75 -12.19 -6.71 -12.92 

506 PB2 1556-1606 HA 1398-1454 -1.39 -4.08 -5.07 -5.04 -5.16 

303 PB2 185-239 NP 674-716 -1.44 -12.06 -16.72 -17.33 -16.28 

359 PB2 1971-2035 NP 1452-1516 -1.11 -4.31 -4.52 -4.37 -4.47 

187 PB1 2225-2269 PA 778-812 -2.88 -0.62 -3.38 -4.48 -3.22 

258 PB1 917-961 PA 1364-1412 -3.27 -6.20 -10.24 -16.22 -8.56 

366 PB1 340-398 PA 203-271 -3.66 -4.19 -7.75 -6.14 -7.11 

383 PB1 1883-1925 PA 749-805 -2.25 -5.16 -9.20 -7.97 -7.50 

269 PB1 749-799 HA 819-865 -1.45 -7.24 -9.94 -10.16 -9.83 

271 PB1 2211-2265 HA 85-135 -1.59 -6.01 -9.38 -7.97 -6.04 

572 PB1 1037-1073 HA 103-133 -5.68 -2.76 -8.33 -6.09 -11.52 

419 PB1 307-347 NA 285-335 -1.02 -7.20 -9.69 -11.58 -14.45 

80 PB1 730-772 NS 527-565 -2.90 -9.21 -13.09 -12.22 -13.09 

483 PB1 293-353 NS 227-267 -1.53 -4.46 -6.46 -4.21 -6.74 

536 PA 1362-1398 HA 1400-1450 -5.04 -4.61 -7.98 -10.43 -9.61 

103 PA 112-164 MP 932-964 -1.63 -15.49 -16.91 -19.37 -17.26 

253 PA 1351-1411 MP 373-419 -4.36 -7.52 -10.25 -14.51 -12.97 

309 PA 1357-1409 MP 848-898 -1.91 -4.07 -9.19 -7.95 -5.42 

311 PA 1353-1403 MP 456-500 -2.19 -5.50 -8.58 -12.21 -7.46 

27 PA 1539-1561 NS 207-261 -4.21 -10.23 -16.59 -11.51 -15.72 

487 PA 139-187 NS 528-570 -3.24 -5.92 -10.70 -7.97 -7.83 

45 NP 1319-1365 MP 941-983 -2.21 -20.69 -25.61 -17.56 -26.43 

343 NP 450-500 MP 840-882 -3.59 -3.68 -5.16 -6.16 -9.65 

323 NP 1087-1123 NS 504-546 -3.77 -1.81 -4.83 -3.69 -4.83 

488 NP 937-979 NS 360-396 -2.04 -7.42 -9.67 -8.75 -10.62 

544 NP 681-715 NS 597-627 -3.21 -2.77 -8.18 -7.96 -5.33 

609 NP 108-156 NS 730-770 -1.47 -7.15 -9.50 -11.12 -9.63 

458 NA 869-919 MP 601-647 -2.03 -5.91 -13.17 -11.68 -6.50 
 



 
 
 

 

Figure A 1: Recreation of Figure 24 for the H5Nx strain set: predicted MFE differences w.r.t. WSN for the triple 
conserved (WSN, PR8, Udorn) interactions in the Dadonaite et al. datasets, for several strains from the H5Nx strain 
set. Please refer to Table 4 for the interactions corresponding to each plot index. 
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Figure A 2: Histograms of predicted MFE differences for three H5Nx strains w.r.t. WSN for the full Dadonaite et al. 
WSN (average of replicates) interactions dataset. Positive shifts in red, negative shifts (including zero) in blue. The 
negative shift ratios for the respective strains are: 77 out of 589 significant interactions (13.1%), 71 out of 588 
significant interactions (12.1%), 69 out of 587 significant interactions (11.8%). The dataset contains 611 interactions 
in total. The mean shifts per strain are respectively (±1σ): +5.77±5.05 kcal/mol; +5.65±4.99 kcal/mol; +6.05±5.05 
kcal/mol. 
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