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Abstract

Trajectories of birds collected with GPS sensors can be compared with each other to find
trajectory patterns. There are a number of well-known algorithms available for finding similar
trajectories that can be used to find common fly patterns of birds with their seasonal migration.
However, uncommon fly patterns can also be investigated to find reasons why these fly patterns
are uncommon. To find uncommon fly patterns, we investigated similarity algorithms to detect
anomalous trajectories and chose SSPD algorithm due to its capability to define a distance-
based similarity on the whole structure of the two trajectories. This similarity algorithm will
not only consider the route a bird took, but it will also look at the positions a bird has flown.
We have also chosen another algorithm, called t2vec, as it offers calculation of the vector
representation of trajectories. These vector representation consist of numbers that do not
define a geo-spatial point, unlike GPS representation, and can then be used for clustering,
such that potential different clusters of birds can be made. A cluster of trajectories is a group
of different trajectories that all represent the same route a bird has flown. The clusters from
both SSPD and t2vec, as well as the computational time complexity of two approaches, were
compared to identify which algorithm is the most effective for anomalous trajectories. Our
results indicated that t2vec should be preferred over SSPD because t2vec was able to obtain
similar clusters when applied to a down-sampled dataset. The Euclidean distance for t2vec
between the clusters of the down-sampled dataset and the complete dataset was much lower
than the Euclidean distance for SSPD. Both the computational time and the run time was
lower for t2vec compared to SSPD. Further research with t2vec was performed to investigate
the underlying reason for anomalous trajectories by narrowing down to several possible causes
(including the failures of the tracking devices, or behavior changes). Further research must be
done to be able to conclude such hypotheses.
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1 Introduction

1.1 behavior of animals

Animals are complex creatures. Some tend to behave in groups, others tend to act on their own.
The behavior of animals is mostly linked to a means of survival | ]. A flock of birds tends to
have more chance to make their full migration and a herd of deer sticks together such that it will
be harder for any predator to eat one of the deer. However, there are always some animals that
deviate from the whole group. They act on their own or fly to a different place compared to the
group of the same species. These animals show anomalous behavior. While behavior of groups of
animals is observed and understood correctly, people have much yet to learn about animals with
anomalous behavior. A better understanding of these animals can provide more information about
the life of certain animals. Some might not be able to complete the migration, while other animals
might find a more suitable environment for survival. A change in climate or available resources
could also be a reason why animals show anomalous behavior. Therefore, we can conduct more
research on environmental changes if we can find animals with anomalous behavior.

1.2 Manipulation of animal trajectories

Animal trajectories themselves are recorded through the format called Global Positioning System
(GPS). A trajectory may consist of a lot of data points. Most trajectories are recorded through
a tracking device that records the position during different time frames for a certain period. A
dedicated algorithm is necessary to do any analysis on different trajectories. Quite some different
comparison algorithms exist that define the similarity between two trajectories. These algorithms
can cluster big data and categorize similarity groups, such as Longest Common Sub Sequence
(LCSS) | ] or Symmetrized Segment-Path Distance (SSPD) | . LCSS will try
to find the longest path of two trajectories that are the same. Figure 1 shows two possible bird
trajectories and their data points. LCSS would not be able to find a part of the trajectories that
are the same, even though they start and end at the same position. SSPD is able to calculate a
distance between these two trajectories. The distance between two bird trajectories is the total
amount of difference. The bigger the distance, the more both trajectories differ from each other.
The distance in SSPD depends on the amount of data points as well as the structure of the two
trajectories. Most similarity algorithms will calculate such a distance of two trajectories. If that
number is fairly small, these two trajectories belong to the same group of trajectories. If there
are many trajectories in the dataset, the algorithm will divide all the trajectories into groups of
trajectories. The groups can tell us which route is the most popular route, or what route is the
most popular route to take.

Birds that take a completely different route compared to the most popular route are considered
anomalous trajectories. They are hard to distinguish from other trajectories. While two trajectories
may start and end on the same position, the route to the endpoint may differ to a large extent
from the other trajectory. The bird trajectories in Figure 1 show the same start-and-end point,
although it is undefined which route is the most natural route. The natural route is the most
popular route that a flock of birds takes for their migration. Because there is no way to define



the natural route in Figure 1, the difference between anomalous and similar trajectories remains
unclear. Similarity algorithms could still be useful to detect possible anomalous trajectories. While
similarity algorithms cannot define an anomalous trajectory, recent studies show that the use of a
Recurrent Neural Network (RNN) may work better for anomaly detection | 11 ].
RNN is able to find common patterns of trajectories better than other similarity algorithms, even
when the data is heavily altered. Standard rules for anomaly detection do not exist. However, there
are some general consensuses | | in which trajectories could be considered anomalous such
as the direction of the trajectory and the structure of the trajectory as a whole. If a bird flew
towards the East while the flock of birds flew towards the West, then the bird that flew to the East
has flown an anomalous trajectory. Algorithms that calculate a distance between two trajectories
use a highest threshold to define the border between similar or not. This is the maximum amount
of distance between two trajectories. Trajectories that have a distance number higher than the
threshold could be considered anomalous. However, similar trajectories could still contain outliers
in their data points. Outliers are points in the dataset that has nothing to do with the trajectory.
Outliers could be the case of a faulty GPS signal. Most algorithms are capable to detect outliers.
However, the distance number may become higher due to these outliers.

@ Trajectory 1
& Trajectory 2

Figure 1: Two trajectories that both have the same start-and-end point.

1.3 Thesis contribution

Anomaly detection with animal tracking datasets could be very useful to obtain information about
the life of the animals. To do so, we first study several different similarity algorithms to find the most
appropriate algorithms to use for clustering trajectories. We will choose two algorithms that use
different methods to obtain similar trajectories. After both algorithms made clusters of trajectories,
they will be compared to find the highest accuracy between the two algorithms. The most useful
of the two will be used for further anomaly detection on modifications of the used bird tracking
dataset. A modified dataset could lead to better detection of anomalous trajectories. Therefore, we
pose two research questions that are focused on GPS data.

e Which algorithm will provide the highest accuracy for detecting similar trajectories?

e When is a trajectory anomalous and how will an anomalous trajectory be useful?



1.4 Thesis overview

An explanation will be given inside Section 2 providing necessary details about trajectories,
algorithms, and anomalies. The algorithms will be thoroughly explained inside Section 4 to
share an understanding of both algorithms used. Section 3 will cover all research done by other
authors and what was learned from this research. A complete overview of the results is given
inside Section 5, including all useful graphs inside Section B. Some results will be taken out of
Section B and inserted in Section 5, to assist the explanation of the results. Section A contains
numerical results of the clustering of the Fall and Spring datasets separated. All conclusions are
made inside Section 6. All created code that is used in this research can be found on https:
//github.com/ThootjeV/anomaly-detection.
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2 Definitions

2.1 'Trajectories

First of all, it is of great importance to define a trajectory exactly. If we do not understand what
a trajectory is, we are unable to do any research on trajectories. Trajectories are known to have
several data points in a sequenced order. Those data points consist of a Longitude and Latitude.
Latitude is known as the displacement on earth compared to the equatorial line. The equatorial
line is at 0 degrees, while the North Pole is 90 degrees and the South Pole is -90 degrees. The
latitude can also be seen as the vertical place on a world map. Longitude is then the horizontal
displacement compared to the prime meridian. The prime meridian is at 0 degrees, while the 180"
meridian is at 180 degrees to the west (-180) and east (+180) of the prime meridian.

A combination of latitude and longitude can determine the exact place in the world. To get a
trajectory, one would need to record more than one combination of latitude and longitude, together
with the times that those were measured. If all data points have a designated time, then a complete
trajectory is measured for an investigated object. If not all data points have a designated time, or
some data points are missing, the trajectory is known as incomplete. With an incomplete trajectory,
it is difficult to determine what happened between two known data points. A more formal definition
of a trajectory is described in Equation 1:

T = ((tes ty1)s -y (tagn, tyn) (1)

where T is defined as a trajectory T, n is the size, x is the longitude and y is the latitude. There
may be other data files that contain data points similar to the ones stated above. However, these are
not considered trajectories because they are not in a sequenced order. They are merely individual
data points that can be registered by other means than a GPS signal.

In this research, we will use a dataset that is stored on Movebank | ]. The dataset contains
all data points from trajectories of birds. It is collected by Si et al. | ]. The dataset itself
contains 80 trajectories of birds. All trajectories are from the white-fronted goose in Asian territory.

Every data point has a timestamp to see which date and time the data point was collected through
GPS.

2.2 Similarity algorithms

Comparing two trajectories can be quite difficult. As seen in Figure 1, trajectories might differ a lot
while both trajectories end and start at the same position. Therefore, most comparison algorithms
will calculate a resulting distance between the two trajectories. An algorithm that calculates a
certain distance between two trajectories is called a similarity algorithm. Every similarity algorithm
calculates distances slightly differently. Most algorithms use a calculation measure called Euclidean
distance. Euclidean distance is calculated through Equation 2.

d(p, a) = d(a,p) = /(@ — po)? + (4, — p,)? (2)
Where d is the distance between two points p and q, and the points are in a 2-dimensional space
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with = longitude of a certain point and y the latitude of a certain point. Similarity algorithms have
different approaches for the use of Euclidean distance. The two most notable ways to calculate
a resulting distance are warping-based distance algorithms and shape-based distance algorithms.
Warping-based distance algorithms will calculate a distance through similar patterns of trajectories.
Shape-based distance algorithms will calculate a distance through the data points and the structure
of two trajectories.

2.3 Deep Representation learning

Some more recent algorithms make use of a technique called deep learning to predict if an unknown
trajectory is similar to one of the trajectories the algorithm has learned. Deep representation
learning itself is a learning method for an algorithm to identify features from data input (i.e., the
longitude and latitude features from the bird dataset). Through several layers, which are called
hidden layers, the data input will be transformed into a certain pattern. This pattern can then
be compared to known patterns that the algorithm has learned. To learn from data input, the
algorithm will make use of a training dataset. This is a certain percentage of all the data input.
Widely used percentages are 80% for the training set and 20% for the test set.

There are different types of deep representation learning. T'2vec, for example, uses the unsupervised
type of deep representation learning. It is a type that uses unlabeled data. Unlabeled data does not
contain identifying classifications. With unlabeled data, the algorithm can easily use different sorts
of data input. Unsupervised learning has to learn potential patterns inside the training dataset
by itself. The test dataset is then used to test if the recognized patterns are correct patterns on
the input data. This is in contrast to supervised learning | |, which uses labeled data to
essentially learn by an already established example of patterns. Unsupervised learning is a bit slower
compared to supervised learning. It will, however, be more useful than supervised learning | ]
with anomaly detection, because unsupervised learning algorithms are useful for the categorization
of different unknown patterns. Supervised learning algorithms, on the other hand, will only recognize
known patterns to optimize already existing patterns.

The learning process of unsupervised learning results in a vector representation of the trajectories.
The vector representation is 1-dimensional. Different deep representation learning algorithms
calculate the vector representation in different ways. Therefore, a vector representation is hard to
understand. There is not one globally accepted representation, unlike GPS data. To be able to
show results, we will use IDs such that every vector representation is unique and can be analyzed
when the algorithm created vectors.

2.4 Hierarchical clustering

Algorithms that compare two trajectories will not be completely useful without a way to cluster.
Through clustering, we can group trajectories with high similarity. Most clustering methods cannot
cluster the data only with the results. These methods need every distance that is calculated with
a similarity algorithm to be able to define clusters. Therefore, the comparison of two trajectories
must take place inside the clustering algorithm. The clustering must be done on all trajectories.
Since the clusters must contain all similar trajectories, the used clustering algorithm must run until



trajectories or groups of trajectories are not similar. The used clustering algorithm in this paper is
called Hierarchical Clustering (HCA) | 1 ]. This method will run through iterations until
the specified similarity threshold cannot be obtained with all the sub-clusters. The threshold is the
highest number the comparison result may be to be considered similar. The threshold is calculated
through Equation 3.

sum(results)

Threshold = (3)

Where results is a list containing all the different similarity values for all pair of points from
trajectories of the first iteration.

length(results)

HCA is a process in which the algorithm will begin with all trajectories in a separate cluster. It will
take two clusters or trajectories and their similarity value, compare the sub-clusters and see if the
result is higher or lower than the highest threshold. This threshold must be specified by the user.
Whenever the result is lower than the threshold, the algorithm will combine the two sub-clusters
into a new cluster. This process will go on until all clusters and sub-clusters have a similarity value
higher than the threshold.

2.5 Comparison between similarity algorithms

The two algorithms that will be used must be compared with each other to see which of the
two performs better. The comparison will be based on Experiment 2 by Li et al. | ]. This
experiment takes down-sampled datasets and compares the clustering of the down-sampled datasets
with the clustering of the complete dataset. It is not possible to calculate the accuracy of anomalous
trajectories since bird trajectories do not have a clear distinction between anomalous and regular
trajectories. Therefore, the comparison of the two algorithms will be done through a variation of
Equation 2. Equation 2 will calculate a Euclidean distance for two points. However, if all the points
in two trajectories are calculated with Equation 2, the sum of all the Euclidean distances will be
the total Euclidean distance between the two trajectories. The distance between two trajectories is
defined by Equation 4.

N
d(Ty,Ts) = Zdi(pia q;) (4)
i=1
Where N is the number of data points from the smallest trajectory, d(p;,q;) the distance between
two data points, p,; an individual data point of trajectory 1 and q,; an individual data point of
trajectory 2.

To be able to correctly use Equation 4 for algorithm comparison, the dataset will be down-sampled
to obtain another dataset. This can be achieved through a function that will randomly remove data
points based on the amount of down-sampling. A pseudo-code can be seen in Algorithm 1.



Algorithm 1: Down-sampling algorithm

Input A trajectory with several data points, down-sampling rate
Output The same trajectory with fewer data points
1: fori =2, ..., trajectory-size-1 do
2:  random-number < generate random number between 0 and 1
3:  if random-number bigger than down-sampling rate then
4: new-trajectory.append(data point i)
5. end if
6: end for

With two datasets, we can calculate the distance of the clusters made with the down-sampled
dataset and the complete dataset. Similarity algorithms, as well as deep representation learning,
will group similar trajectories. The down-sampled dataset still contains the same trajectories, albeit
with fewer data points. A distance will be calculated between the trajectory categories of the
complete dataset and the down-sampled dataset, for both algorithms. A lower distance between
categories from the complete dataset and the down-sampled dataset would result in a more accurate
algorithm.



3 Related Work

3.1 Warping-based distance algorithms

Throughout the years, there are already lots of algorithms established that need trajectories as their
input. All of them do something unique that others do not do. However, it is possible to categorize
lots of algorithms in certain groups. One such group is called the warping-based distance group.
These algorithms try to find patterns with all the different data points of two trajectories. Warping
distance algorithms not only compare the same index of a trajectory point blue(i.e., the first or the
second data point), but will also compare all different indices of the compared trajectories with each
other. This is achieved by creating a grid cell of all the different combinations of indices. Warping
distance is essential when the trajectories are not the same length. The most notable are Longest
Common Sub Sequence (LCSS) | ], Edit Distance on Real sequences (EDR) | ], Edit
distance with Real Penalty (ERP) | | and Dynamic Time Wrapping (DTW) | ].

While most warping-based distance algorithms use Euclidean distance, they differ in their approach.
LCSS takes a look at two trajectories and their timestamps, to see if any sub-sets of these two
trajectories are the same. The algorithm will search for the longest of those subsets. LCSS is mostly
useful if all the trajectories have the same timestamps and all of the timestamp intervals are the
same. DR, on the other hand, looks at the differences between all data points. LCSS and ERP are
completely different warping-based distance algorithms. DTW and ERP will put additional weight
on the differences and similarities between all data points from two trajectories. With this weight,
DTW and ERP can be considered to be more accurate than LCSS and EDR. The computational
cost that they take is O(n?) for all algorithms.

3.2 Shape-based distance algorithms

A whole different approach for the comparison of two trajectories is the shape-based distance
algorithm. Compared to warping distance, shape distance will calculate a distance over two whole
trajectories and their geometries. Notable algorithms that use a shape-based distance are Hausdorff
[F.14] and Fréchet | |. Hausdorff takes the greatest distance from a data point in Trajectory
1 that is smaller or equal to all data points in Trajectory 2 and does this for every data point in
Trajectory 1. Then, Hausdorff has a list of distances from every data point in Trajectory 1. The
final distance of Hausdorff is decided by the smallest distance in this list that is greater or equal
to all other distances. However, Hausdorff will also calculate distances from data points to line
segments. Therefore, the algorithm will obtain a distance that is based on the geometry of two
trajectories and will not take any timestamps into account. Fréchet distance is calculated through
similarity between curve segments of trajectories. Both have a computational cost of O(n?) and
perform exceptionally well when time series will not be taken into account.

Another shape-based distance algorithm is Symmetrized Segment-Path Distance (SSPD). Compared
to Hausdorff and Fréchet, SSPD will look at all possible sub-trajectories that two trajectories can
have. Therefore, the trajectories as a whole will also be used when calculating the final distance. The
distances that SSPD calculates are called the Segment-Path distances. If the segment of Trajectory 1
is part of the path of Trajectory 2, then the distance will be zero. To make the algorithm symmetric,



the algorithm will take the mean of all Segment-Path distances from both trajectories. SSPD is
time-insensitive, compares the whole trajectory, and compares the physical distance between two
trajectories. This has not been achieved with all the aforementioned algorithms | ]. This
leads to the decision to use SSPD as the traditional similarity algorithm.

To use SSPD, a combination of different algorithms must be made. There are sufficient Python
libraries that work with trajectory data [ ][ ]. These source codes are easy to re-
implement for computation of distances. During the calculation of all the distances, we will also
make use of a clustering algorithm that can cluster data with only their distances as a parameter

[A-19].

3.3 Deep Representation Learning algorithms

In more recent years, using a deep representation learning algorithm has seen to have many advan-
tages over the more traditional similarity functions [ ]. Some algorithms have proven to be
more useful with trajectory clustering than the more traditional distance calculation, using traffic
data | 11 |. These algorithms work with labeled GPS data, so their source code
would not be useful. However, their conclusions offered a more in-depth look at what the difference
could be between a more traditional algorithm and a deep representation learning algorithm. Deep
representation learning algorithms are capable to distinguish similar trajectories better than more
traditional algorithms, when the labeled GPS data tells which trajectories are anomalous. Even if
the dataset is configured, the deep representation learning algorithm can correctly distinguish similar
trajectories. Therefore, if we have labeled trajectories, RNN algorithms perform exceptionally well
for anomaly detection.

Another deep representation learning algorithm is the trajectory to vector (t2vec) algorithm,
composed by Li et al. | ]. This algorithm will use a training dataset to create vector represen-
tations of the input data through a recurrent neural network, and then it will use the test dataset
to see if the vector representation can be transformed to a GPS-represented trajectory. This results
in a best-model of vectors that represent the trajectories. The test dataset will also be used to see
how well the algorithm has learned from the training dataset, through various modifications of the
dataset. Li et al. found that the computational cost of t2vec is O(n + |v|) with |v| being the length
of the vector. While there may be a plethora of other deep representation learning algorithms to
use, t2vec is resistant to possible outlier data points and low-sampling rates.



4 Methodology

4.1 Choice of algorithms

Several algorithms may be useful for this research. We have chosen a shape-based distance, SSPD,
for the more traditional algorithm. We have chosen t2vec as an example of an RNN based algorithm.
With animal trajectory data, the general geometry will be very important for anomaly detection.
Therefore, a shape-based distance algorithm is more useful than a warping-based distance algorithm.
We also experimented with a warping-based distance algorithm, LCSS. However, we were not able
to cluster the trajectories with LCSS. The similarity numbers of all trajectories were zero. LCSS
can only calculate a distance if the timestamps and their intervals are the same. However, every
timestamp is different as well as the timestamp interval from all data points. SSPD has been
chosen specifically because the algorithm is relatively new | |, and it will look into subsets
of trajectories as well as the whole trajectory itself. Li et al. | ] used the t2vec algorithm
with a taxi trajectory dataset. Therefore, the use of t2vec for anomaly detection of bird trajectories
may be useful. t2vec also has the potential for further research in trajectory detection.

4.2 The data

Before the algorithms will be used, one must have a thorough understanding of the data that is
provided. First of all, the GPS data consists of several data points for one species and all organisms
have their unique ID. The species provided is the white-fronted goose, in a time frame from 2015
until 2019. All individual organisms had their own tracker for a certain period in time. The length
of this period depends on the duration of the tracking and the system that the tracking company
used. The duration ranges from several days to several months. While GPS data may not always
be accurate, the algorithms consider the trajectories as complete and without missing values.
Otherwise, the algorithms are not able to compare trajectories.

Furthermore, the timestamps that are provided in the GPS data are not consistent. While some data
points have data every 20 minutes, others have time jumps for more than a few hours. Therefore,
the algorithms used will not take timestamps into account or consider them all equally divided.
While this decision may seem to be a bit dubious, the first implementation of LCSS did take all
different timestamps into account. The resulted similarities for all of the trajectories were zero.
However, it may be interesting to divide the data by timeframe, such that the spring migration
and fall migration will be separated in different files. This is useful because most birds will have a
northern migration during spring and a southern migration during fall.

The data collected by GPS is inside a CSV file format, organized alphabetically by the bird ID
[ ]. The sum of all unique animal IDs is 80, which means that the algorithms will work with
a maximum of 80 trajectories. Reading the data from the CSV file can be done through the pandas
library | ]. However, the type of all longitudes and latitudes are in string format. This must be
correctly changed to floats when using the data.
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4.3 SSPD

The implementation of SSPD is used inside a hierarchical cluster algorithm. First of all, all trajec-
tories are considered separate clusters. Then, the first round of comparisons is done through all
80 clusters, comparing them one by one. All subsequent rounds will then compare a cluster of 1
or more trajectories with another cluster until none of the comparisons hit below the threshold
number. Comparing clusters is done through SSPD, an implemented function inside the python
library trajectory-distance by Guillouet et al. | ].

The implemented function will take two trajectories or clusters and run the SSPD algorithm through
these two trajectories. Figure 2 shows two example trajectories. When SSPD is run with these
trajectories, it will calculate distances for all possible combinations of sub-trajectories. Trajectory
1 and Trajectory 2 both contain five data points, such that 1.0 and 2.0 are the start data points
of the trajectories. 1.4 and 2.4 are the end data points of the trajectories. SSPD will calculate
a distance for all individual points, and all of the possible combinations of points. This means
that SSPD will also calculate a distance between the sub-trajectories 1.0 until 1.3 and 2.0 until
2.3. Once all distances are calculated, they are summed. The resulting value is called Dgpp. SPD
means Segment-Path Distance. The final distance will be calculated by Equation 5.

Dgspp(T1,Ts) + Dspp(Ts,T1) (5)
2

If there is any sub-trajectory of Trajectory 1 that is a sub-trajectory of Trajectory 2, the distance
will always be zero. A proof of this is given by Besse et al. | ].

Dsspp =

!
\.‘_(ﬁ_,

Trajectory 1
@ Trajectory 2

Figure 2: Two trajectories with different mid and endpoints.

4.4 t2vec

The base algorithm of ¢2vec is defined by Li et al. | ]. While Li et al. use taxi data from
the city of Porto, the algorithm can be used on every other data since it is a neural network
based on unlabeled data. Therefore, the GPS data from birds must be preprocessed into the
same format as the Porto dataset. The format used is a polyline format. This means that all
longitude and latitude points must be on the same list, where a combination of longitude and lat-

11



itude is one element in this list. As stated before, the dataset is complete when no points are missing.

T2vec uses a special encoder-decoder model for representation learning. The encoder-decoder model
takes a trajectory p and will build a vector v from the trajectory p. All sequential information
inside p still exist inside the newly made vector v. The decoder will be able to convert vector v
back into a trajectory q, where q is a representation trajectory of trajectory p. To learn trajectory
representations using a RNN, the components of a trajectory p will first be changed to an embedded
vector (i.e., all embedded vectors contain the necessary information to represent trajectory p)
before all embedded vectors will be converted to a single vector v. To learn a reliable representation
through these vectors, a conditional probability function (Equation 6) will be used to calculate the
most reliable route R from an input trajectory p and a vector v.

exp(W,] hy) (©)
vev €xp(Wl hy)

Here, p; is the t-th trajectory data point, h; is the t-th hidden state in the RNN which is used
to decode the vector v, W is the projection matrix that can output a positional value with the

corresponding hidden state and the input vector v, V' is the complete Vocabulary that contains all
the possible latitude and longitude positions and u is the u-th row.

P(p: = ulpr4-1,v) = 5

A route R is a collection of data points that indicates the travel of the bird, defined by Li et al.
[ ]. Due to the probability function, several different routes R can be generated from the
input trajectory and the corresponding vector. All these routes must be considered similar to be
able to cluster trajectories. To address this issue, the coordinates of R are changed into cells. While
coordinates have a continuous range, cells have a discrete range. A discrete range is useful when we
want to cluster trajectories. All components from several generated trajectories with route R will
be put inside the same cells.

12



5 Experiments

5.1 Individual algorithm results
5.1.1 Data manipulation

Before both algorithms can be run, the order of the data must be changed to fit both algorithms.
For both, the individual data points must be grouped by their respective animal ID. For a faster
configuration, the Python library package Traja | | can be used to do manipulations on all
trajectories in a small number of functions. Then, the data must be saved to a different CSV file
format to ensure the same type of columns that are used with the initial t2vec algorithm. To run the
SSPD algorithm, the saved data from Traja needs to be changed to a NumPy | | array. This is
the only accepted format inside the SSPD algorithm, as this algorithm uses NumPy-only functions.
Figure 11 shows every trajectory from the used dataset. While one may see several outlying data
points, there is no certainty as to which trajectories may be anomalous or not.

5.1.2 SSPD results

First of all, the threshold for clustering similar trajectories must be decided. This is done by running
the SSPD algorithm through all the trajectories once. To calculate the threshold, Equation 3 will
be used. All the distances are summed up and divided by the total number of distances, which is
6400. This resulted in a threshold around 2, which is rounded down to be sure the algorithm takes
only the most similar trajectories. The maximum and minimum length of a trajectory must also be
set in SSPD, as well as the number of trajectories. Table 1 contains the numbers that have been
used for the SSPD algorithm with the bird dataset.

Hyperparameters SSPD | Bird dataset settings
Number of trajectories 80
Minimum length 100
Maximum length 10,000
Threshold 2

Table 1: Parameter settings for SSPD

Secondly, the clustering algorithm needs to run past all possible clusters. Most of the clustering
algorithms themselves consist of code that will combine the two clusters when the threshold criteria
are met. Then inside this algorithm, the distances between the two clusters are calculated through
the SSPD function. This process took roughly 3 whole days. It is, therefore, useful to note that
this algorithm is expensive. blueThe clustering resulted in eight clusters, which can be seen from
Figure 13 until Figure 27. The algorithm is built in such a way that individual trajectory numbers
are lost. This could be a problem if the algorithm will be used for further research since all the
clusters now only contain a lot of different data points.

As a final step, some clusters look quite vague. It would be better to take an average trajectory and

visualize that. While Figure 14 until Figure 28 are not one specific trajectory each, they show a
possible average of the trajectories. To calculate every average trajectory, we followed the following
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process: For every latitude point, all longitudes of that point will be put inside one list. Afterward,
for every latitude point, the mean of all the longitudes will be calculated. The result will be a list
of 0 or 1 longitude, where the list ranges between 0 and 90.

Figure 13 until Figure 27 show that SSPD also clusters on different routes. When Figure 13 is
compared with 17, they both contain a large number of similar data points. However, the distance
calculated through SSPD also depends on northern or southern migration. Therefore, northern
and southern migration is of influence with this algorithm. Normally during spring, the birds will
migrate to the northern region. This can be related to what is presented in Figure 23. Normally
during fall, on the other hand, birds will migrate to the southern region. Figure 13 shows the
migration to the south. Since this algorithm does not take timestamps into account, the results
only show northern and southern migration. From these results, there is no way to deduct whether
a cluster contains only fall or only spring migrations. Every figure has a representative start point
for all the trajectories inside the cluster, to illustrate where the trajectories began.

SSPD also separates trajectories on their endpoints. The figures show that the data is separated
by whether or not the birds reached northern Siberia. Figure 27 shows a northern migration from
China to Siberia. A comparison with Figure 23 shows that the birds in Figure 23 only reached
up to northern China instead. This could mean a failed GPS signal, the death of those birds, or
anomalous trajectories.

The biggest advantage of SSPD is the separation of data through all the possible trajectories.
Many or few data points, northern or southern migration, and completed or unfinished migration
all define the distance value for a trajectory or sub-cluster. However, SSPD does not separate
anomalous trajectories enough to be able to tell which trajectories are anomalous.

5.1.3 T2vec results

Several hyper-parameters need to be set to use this algorithm. These hyper-parameters need to
be changed to use your dataset. The dataset of Porto only focuses on the city of Porto, whereas
our dataset will contain data points all over Asia. The dataset of Porto also contains an enormous
set of small taxi trajectories, while the GPS dataset contains a small number of trajectories that
are enormous. The algorithm will read a CSV file. However, any trajectory that is too big to fit in
the CSV file will be seen as incomplete. The implementation cannot be changed, as the processed
format is strict and vulnerable to errors. As a consequence, the only data that can be used will be
the accepted data by the algorithm. This means that our implementation can only use 38 of all 80
trajectories that are available in the complete dataset. This must be taken into consideration when
comparing both algorithms. A possible solution to this problem would involve dividing the dataset
into separate datasets or reducing the amount of time interval points.

Before running the algorithm, the hyper-parameters need to be set for the bird GPS data. The
minimum and maximum longitude and latitude will be set appropriately to fit every possible point
around Asia since the data ranges from China to Russia. See Table 2 for a comparison between the
Porto parameters and the Asia parameters. Li et al. reads a CSV file and copy the content into an
HDF5 file. An HDF5 file is called a Hierarchical Data Format. Li et al. use this type of format

14



as their primary format. Only the content that can be copied to the HDF5 file will be used. As
explained before, not all trajectories can be used. Therefore, only 38 of all 80 trajectories will be
converted into the HDF5 format. To identify these trajectories, the prepossessing step will also
make a new CSV file which only contains the trajectories that are used. After the conversion, the
data inside the HDF5 file will be separated for a training dataset and a test dataset.

Hyperparameters t2vec | Porto settings | Asia settings
Minimum Longitude -8.735152 0.15
Minimum Latitude 40.953673 0.15
Maximum Longitude -8.156309 171.44
Maximum Latitude 41.307945 80.12

Table 2: Parameter settings for Porto and Asia datasets

If all prepossessing steps are done, the neural network must train to learn and recognize vector
patterns. This will be done through the created training dataset inside the HDF5 file. The test
dataset is used to calculate the amount of error that the vector represented trajectory has compared
to the actual GPS-represented trajectory. The whole dataset is split by given numbers. A ratio of
80% of the dataset is used to train, whereas 20% of the dataset is tested. This is a widely used
ratio for any learning algorithm. The training was done for about twelve hours, and every thousand
trained iterations are saved inside a checkpoint file. The best checkpoint file will be saved as a
file named the best-model. After twelve hours, the error margin for every thousand iterations was
the same. The error margin is the difference between the output of the vector representation and
the actual input. Therefore, the best-model contains the best possible vector representation of the
training dataset. To link every vector representation to their respective GPS representation, another
CSV file will be created which contains a combination of these two representations. This CSV file
will also be used to visualize the clusters in the final step. Since the training dataset is used in the
training process, the CSV file contains only those vector representations of the trained trajectories.
The vector representation of the test data will not be stored, because it was only needed to obtain
the best possible vector representations of the trajectories.

The vector representation can now be used to calculate distances and to cluster the different
trajectories. Like with SSPD, the threshold must be decided first. The distance calculation will
be done with DTW, such that all the different vectors of two trajectories can be compared. The
threshold calculated through Equation 3 resulted in around 25000. This might seem like a very
high number. However, it will not matter, since all distances are scaled to high numbers around
the threshold. If all distances in results in Equation 3 are high, the scaling of the threshold is
done automatically. The clustering algorithm itself will be the same as with SSPD. This process
took around one hour, which is less expensive compared to SSPD. The results can be seen from
Figure 29 until Figure 45. The average trajectories of the clusters can be seen from Figure 47 until
Figure 55. This average is calculated in the same way that has been done with the clusters from SSPD.

While t2vec does not separate quite as rigorously as SSPD, trajectories found in Figure 35 as well

as Figure 45 could be considered anomalous trajectories. These trajectories are separated from
other clusters, meaning that this algorithm is able to detect possible anomalous trajectories.
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5.2 Evaluating the performance of algorithms

When the two algorithms have finished clustering and calculating distances between all the
trajectories, the two algorithms need to be compared to see which of them is more effective. t2vec
has several comparison methods that have proven to be the most effective | 11 ].
The results already show a high advantage to t2vec over more traditional algorithms, like LCSS or
EDR. These results have been obtained with the Porto dataset. However, t2vec uses datasets that
contain more than 1 million trajectories. One method, proposed by Li et al. | ] (Experiment
1), takes a random sample varying between 10.000 and 100.000 trajectories. Since our datasets
only contain 80 different trajectories, this method will not be used. The other methods that are
used by Li et al. will change the data itself. We will use the method that will remove a certain
percentage of data points from the data (Experiment 2), to see if the clustering stays the same with
a smaller-sized trajectory. We will use various percentages, to find whether or not the algorithms
can group the same trajectories inside one cluster. The computational cost will also be taken into
account.

5.3 Results of the evaluation
5.3.1 Manipulation of dataset

SSPD is able to run on all 80 trajectories, while t2vec was only able to run on 38 full trajectories
of the 80 trajectories in total. Figure 12 shows all trajectories from the dataset that is used initially
with t2vec. Therefore, both results will always differ from each other. To compare which algorithm
could detect anomalous trajectories more easily, the algorithms must be run with the same dataset.
We will use a re-sampled dataset for the comparison. The complete dataset contains 80 trajectories
with some trajectories that contain an enormous amount of data points. Most of these trajectories
cannot be used with the t2vec algorithm. Therefore, the dataset must be resized to use all 80
trajectories with both algorithms. The time between two data points ranges between every few
minutes and several hours. This wide range of time frames will be reduced such that every data
point will at least have 2 hours between two data points. The re-sized dataset contains less than
30% of all the data points in the whole dataset, without losing much information. t2vec is able to
run all 80 trajectories with the re-sampled dataset.

We will also create subsets of the re-sampled dataset to use Equation 4. Different reduction per-
centages will be used to compare both algorithms. If the algorithms ran with the reduced datasets,
we will compare the clusters made by both algorithms for the re-sampled dataset and the reduced
dataset. Equation 4 is then used to calculate the distance between all clusters from one algorithm
with the down-sampled dataset and the re-sampled dataset. If the distance is low, the algorithm
was able to correctly cluster the same trajectories, even if the dataset is reduced. If the distance is
high, the algorithm made completely different clusters and is therefore vulnerable to changes in
the dataset. Since only the dataset changes, the setup to run both algorithms is the same as in
Sections 5.1.2 and 5.1.3.
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5.3.2 SSPD results

The results of the 38 trajectories dataset used with SSPD can be found in Figure 56 until Figure
58. While the results are completely different from the results in Section 5.1.2, the figures show
that the algorithm did do the same separations. It did not take into account whether or not the
migration was completed and whether there were many or only a few data points. Some birds
finished or started their migration in northern China (Figure 57), while other birds finished or
started their migration in Siberia (Figure 56). However, we cannot deduce which cluster has the
most natural route for the birds. We also cannot deduce any anomalous trajectory from these
figures alone. SSPD was able to successfully cluster the trajectories, though it was not able to filter
any possible anomalous trajectories. The algorithm was a whole lot faster compared to 5.1.2, with
only 30 minutes of runtime before the clusters were made.

5.3.3 T2vec results

The results of the 38 trajectories down-sampled dataset used with t2vec can be found in Figure
30 until Figure 46. Most clusters have many similarities with the clusters found in Section 5.1.3.
Figure 46 and Figure 40 contains data previously seen in Figure 43 and Figure 37. It is unclear why
t2vec has filtered these trajectories into different clusters. Even if the data is manipulated, t2vec is
able to identify possible anomalous trajectories. The algorithm was only a bit faster compared to
Section 5.1.3, with 30 minutes of runtime.

5.3.4 Computational cost

The computational cost is also very important for the difference between the two algorithms. For
t2vec, the computational cost is linear, O(n + |v|). For SSPD, the computational cost is quadratic,
O(n?). Therefore, t2vec is better to use. Furthermore, the total runtime of SSPD with the original
bird dataset was three days. The runtime of SSPD with the re-sampled dataset was around one
hour. The learning process of t2vec consisted of twelve hours of learning. The clustering process
took another twelve hours of runtime.

5.3.5 Comparison results

We cannot compare the algorithms with the use of figures only, as these are used mainly for
visualization. The Euclidean distances of the down-sampled clusters have been calculated comparing
the clusters of their original counterpart. The results can be seen in Table 3. The distance numbers
for SSPD do show that SSPD will treat the same trajectories differently when the dataset is
down-sampled, as the distance numbers are in a high range. There will always be a difference in
distance, as one dataset contains more data points than the other. However, the distances that
t2vec was able to acquire are far more suitable for anomaly detection, since a manipulated dataset
will result in almost the same clusters of trajectories.

20% 30% 40% 50% 60%
SSPD | 5229.49 | 3807.55 | 4705.17 | 4968.53 | 3777.19
t2vec | 14.625 17.5 16.625 | 15.375 20

Table 3: Euclidean distances for SSPD and t2vec
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While SSPD is a great algorithm to cluster several trajectories into different groups and identify
their traits, SSPD is not useful to identify possible anomalous trajectories. The possible anomalous
trajectories are still grouped into several big clusters. T'2vec on the other hand shows clusters
that could be anomalous trajectories. Therefore, t2vec has the biggest advantage when identifying
anomalous trajectories. Similar algorithms to SSPD have also been compared with t2vec by Li
et al. | |. When identifying traits, t2vec has clusters with indistinct traits and therefore
SSPD would be more useful to apply with this dataset. For our research of anomalous trajectories,
however, t2vec will be the most useful algorithm to use.

5.4 Further results from the re-sampled dataset with t2vec
5.4.1 More manipulation of the dataset

The re-sampled dataset can also be filtered such that one subset only contains fall migration and
another dataset spring migration. Since t2vec will not cluster distinct traits, there will not be a
way to separate fall migration from spring migration with t2vec. In the data pre-processing step,
we will split the data into a CSV file containing all the data points that have dates between July
and December for fall migration, and a CSV file containing all the data points that have dates
between January and June. While the total number of trajectories was 80, the Spring dataset
contains 67 trajectories and the Fall dataset contains 70 trajectories. This is a confirmation that
some trajectories were recorded in one long period where some geese made one or multiple northern
and southern migrations with the recorded data.

5.4.2 Results of t2vec on the re-sampled dataset

The re-sampled dataset, which does not have spring and fall separated, contains all 80 trajectories.
t2vec can now run on all 80 trajectories. The learning process took around 12 hours. The learning
process only learns with 80% of all the data, since the other 20% is used as test data. Therefore, all
clustered trajectories together contain 80% of the total number of trajectories inside the dataset.
After obtaining the best possible vector representation, the clustering process also took around
12 hours. The results are shown in Figure 3, Figure 4, and Figure 59 until Figure 83. While there
are many different clusters, the clusters themselves show that some trajectories contain possible
anomalous trajectories. The average trajectories of the clusters can be seen in Figure 5, Figure 6,
and Figure 60 until Figure 84. The average trajectories show that some clusters only have subtle
differences in their representative trajectory. This can be seen in Figure 5 and Figure 6, where
the representative trajectory only differs in north Russia. However, Figures 3 and 4 show more
noticeable differences in Northern Russia. To get the best possible clusters, t2vec must also be run
with fall and spring migration separated.
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Figure 5: t2vec cluster 1 re-sampled average Figure 6: t2vec cluster 2 re-sampled average

5.4.3 Results of t2vec on Spring and Fall datasets

The final results, with spring and fall migrations separated, can be seen in different figures. For the
Fall-only dataset, the clusters can be seen in Figure 7, Figure 8, and from Figure 85 until Figure 95.
The Spring-only dataset can be seen in Figure 9, Figure 10, and from Figure 96 until Figure 106.
These results contain trajectory numbers for each cluster. Every tracked bird in each cluster for both
the Spring dataset and the Fall dataset can be found in Table 4. These tables also state whether
or not every bird in the cluster had data points throughout multiple years. Many trajectories are
collected inside Figure 7 and Figure 9. These figures indicate that the clusters show flocks of birds mi-
grating together in the specified season. These clusters could very well be the typical trajectory that
white-fronted geese take when migrating between Russia and China and are therefore not anomalous.
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Figure 7: t2vec cluster 10 re-sampled fall Figure 8: t2vec cluster 11 re-sampled fall
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There are no birds that traveled in the opposite direction, as birds will have natural survival
instincts. They will not travel to places where they cannot survive due to cold weather. While
analyzing the clusters, there was one bird tracking company (Druid) that registered their data
points in reverse chronological order. This can also be seen in Table 4, as cluster 11 only contains
trajectories from this company. The algorithm was not able to label them correctly, as the algorithm
stated that these birds traversed in opposite directions. Therefore, most of the trajectories from the
company Druid have been left out. Further manual analysis of cluster 11 (Figure 105) found out
that these birds traveled northward. Some trajectories, like in Figure 88, made the full migration
with very few data points. These clusters contain data points that registered only one migration.
Others, like the birds in Figure 95, have fully completed their migration with a lot of data points.
These clusters contain data points of multiple migrations. In Figure 103, the goose either died
before it could start migrating or the GPS signal failed to register this specimen.
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Figure 9: t2vec cluster 10 re-sampled spring Figure 10: t2vec cluster 12 re-sampled spring
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6 Conclusions and Further Research

6.1 Conclusion

Anomalous trajectories can be detected more easily through the vector representation of t2vec
compared to SSPD. While SSPD is useful to find common traits for each cluster, the vector
representation of {2vec can separate the anomalous trajectories from the typical trajectories. If
the data itself is separated by season, t2vec can run through all the data with relative ease to see
which trajectories could be anomalous. While none of the results can definitively show anomalous
trajectories, t2vec shows a better understanding of which trajectories may be anomalous. t2vec is
able to filter any possible anomalous trajectory from the cluster with regular trajectories, even if
the data is heavily down-sampled. t2vec can also separate one migration with multiple migrations.
These trajectories could be analyzed further to see why they differ from the typical trajectory.

6.2 Discussion

The results of the comparison between SSPD and t2vec show that t2vec has an overall better
performance compared to SSPD. While SSPD may cluster on common features that cannot be
found through t2vec, t2vec clusters all regular trajectories together. This cannot be obtained through
SSPD. The computational cost is also in favor of t2vec, as t2vec can compute clusters much faster
compared to SSPD. However, t2vec will not work if the dataset contains too many data points for
one trajectory. Therefore, every dataset that will be used for t2vec must be re-sampled first before
any computation can be done. The results of the Fall and Spring datasets indicate possible reasons
why some trajectories are not clustered with other regular trajectories. The GPS signal could have
failed, the bird could have died or there could be fewer resources in the environment. However,
every nature-based reason behind the anomalous trajectory should be analyzed further before we
can make any conclusion. t2vec considered every bird ID as an individual trajectory. However, Table
4 and Table 5 contain trajectories of multiple migrations. This indicates that multi-year migrations
are considered as a single trajectory. We will lose information about the possible change in behavior
of birds over multiple years. Therefore, a better approach would be to separate such trajectories.

6.3 Future Implementation

The t2vec algorithm, as well as the plots, could both be improved in future work. T2vec could be
altered to be able to use full-fledged datasets. This would mean an altered vector length and size
such that t2vec accepts trajectories that consist of more data points. Future plots could contain the
coordinates of every point, preferably stating which data point belongs to which trajectory. Future
research could also be done with other species of birds. Because t2vec is an unsupervised learning
algorithm, the algorithm could be used for any kind of anomalous data detection throughout the
whole world. SSPD could also be improved for possible anomaly detection. This could be achieved
by defining a function that defines which trajectories could be anomalous. If we are able to obtain
labeled data, a RNN supervised learning algorithm might find interesting patterns among the
available data.
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A Tables

Table 4: Spring dataset clusters

Cluster ID | Trajectory numbers | Bird ID’s Multi-migration? | Years
1 16 E002(GWFG) Yes 2015-2019
2 17 E003(GWFG) Yes 2015-2019
3 20 E013(GWFG) Yes 2016-2019
4 32 H024 B(GWFG) Yes 2015-2016
5 33 H027_B(GWFG) Yes 2015-2017
6 47 HO88(GWFG) Yes 2018-2019
7 53 H100(GWFG) Yes 2018-2019
8 55 H117(GWFG) No 2018
9 56, 11 HI21(GWFG), D3725(GWFG) No 2018, 2019
50, 30, H093(GWFG), HO18(GWFG), 2018, 2016,
28, 45, HO13(GWFG), HO81(GWFG), 2016, 2018,
31, 43, HO021(GWFG), HOT4(GWFG), 2016, 2018,
34, 39, HO47(GWFG), HO66(GWFG), 2017, 2018,
48, 40, HO89(GWFG), HO67(GWFG), 2018, 2018-2019,
10 29, 38, HO16(GWFG), HO64(GWFG), No 2016, 2018,
36, 46, HO057(GWFG), HO86(GWFG), 2018, 2018,
21, 35, E017(GWFG), HO50(GWFG), 2016, 2017,
57, 15, H124(GWFG), E001(GWFG), 2018, 2015,
27, 42, HO006(GWFG), HOT2(GWFG), 2016, 2018,
59, 25, H127(GWFG), HO03(GWFG), 2018, 2016,
26 HO005(GWFG) 2016
1 12, 13, D3731(GWFG), D3749(GWFG), No 2019, 2019,
14 D3827(GWFG) 2019
41, 61, HO71(GWFG), H129(GWFG), 2018-2019, 2018-2019,
51, 19, H094(GWFG), E0O10(GWFG), 2018-2019, 2016-2017,
12 58, 52, H125(GWFG), HO97(GWFG), Yes 2018, 2018-2019,
22, 49, E018(GWFG), H092(GWFG), 2016-2017, 2018-2019,
24, 44 E022(GWFG), HOT9(GWFG) 2016-2017, 2018-2019
13 18, 37, E005(GWFG), HO63(GWFG), Yos 2015-2019, 2018-2019,
54, 60 H115(GWFG), H128(GWFG) ) 2018-2019, 2018-2019
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Table 5: Fall dataset clusters

Cluster ID | Trajectory numbers | Bird ID’s Multi-migration? | Years
1 11 E003(GWFG) Yes 2015-2019
2 15 E013(GWFG) Yes 2016-2019
3 34 HO027_B(GWFG) Yes 2015-2016
4 39 HO063(GWFG) No 2017-2018
5 a4 HO71(GWFG) Yes 2017-2019
6 47 HO79(GWFG) Yes 2017-2019
7 51 HO88(GWFG) Yes 2017-2019
8 56 HO097(GWFG) No 2017-2018
9 57 H100(GWFG) Yes 2017-2019
59, 64, H117(GWFG), H127(GWFG), 2017, 2017,
14, 46, E010(GWFG), HO74(GWFG), 2015-2016, 2017,
54, 48, H093(GWFG), HO81(GWFG), 2017, 2017,
50, 23, HO87(GWFG), HO03(GWFG), 2017, 2015,
38, 27, HO061(GWFG), HOO9(GWFG), | No, 2018, 2015,
29, 26, HO16(GWFG), HOO7(GWFG), | Data starts 2015, 2015,
10 31, 25, HO020(GWFG), HO0O6(GWFG), end of year, 2015, 2015,
62, 24, H124(GWFG), HO0O5(GWFG), | no completed 2017, 2015,
16, 17, E015(GWFG), E017(GWFG), migration 2015, 2015,
30, 35, HO18(GWFG), HO47(GWFG), 2015, 2016,
36, 28, HO050(GWFG), HO13(GWFG), 2015, 2015,
49, 45, HO086(GWFG), HO7T2(GWFG), 2017, 2017,
21, 52 E021(GWFG), HO89(GWFG) 2015, 2019
22, 53, E022(GWFG), H092(GWFG), 2015-2016, 2017-2018,
1 40, 42, H064(GWFG), HO66(GWFG), Vos 2018, 2017,
58, 18, HI115(GWFG), E018(GWFG), 2017-2018, 2015-2016,
37, 63 HO57(GWFG), H125(GWFG) 2015, 2017
12 61, 41, HI121(GWFG), HO65(GWFG), No 2017, 2017,
32 HO021(GWFG) 2015-2016
13 12, 43, E005(GWFG), HO67(GWFG), Vos 2015-2019, 2017-2018,
33, 55 H024 B(GWFG), H094(GWFG) 2015-2016, 2017-2018
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Graphs

Figure 12: Line segments showing all different trajectories of the 38 trajectories dataset
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Figure 17: SSPD cluster 3 with start point
[116.2, 29.1]

Figure 19: SSPD cluster 4 with start point
[115.9, 29.1]

Figure 20: SSPD cluster 4 average
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Figure 21: SSPD cluster 5 with start point
[68.9, 51.1]

Figure 23: SSPD cluster 6 with start point )
[116.4, 29.0] Figure 24: SSPD cluster 6 average

Figure 25: SSPD cluster 7 with start point
[116.4, 28.9]

Figure 27: SSPD cluster 8 with start point
[116.1, 28.8]

Figure 28: SSPD cluster 8 average
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Figure 31: t2vec cluster 2 Figure 32: t2vec down-sampled cluster 2
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Figure 33: t2vec cluster 3 Figure 34: t2vec down-sampled cluster 3

Traéel:mry number:

Figure 35: t2vec cluster 4 Figure 36: t2vec down-sampled cluster 4
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Figure 37: t2vec cluster 5
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Figure 39: t2vec cluster 6 Figure 40: t2vec down-sampled cluster 6
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Figure 41: t2vec cluster 7 Figure 42: t2vec down-sampled cluster 7
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Figure 43: t2vec cluster 8 Figure 44: t2vec down-sampled cluster 8
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Figure 47: t2vec cluster 1 average Figure 48: t2vec cluster 2 average

Figure 49: t2vec cluster 3 average Figure 50: t2vec cluster 4 average

Figure 51: t2vec cluster 5 average Figure 52: t2vec cluster 6 average
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Figure 53: t2vec cluster 7 average Figure 54: t2vec cluster 8 average
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Figure 56: SSPD cluster 1 with 38 trajectory

Figure 55: t2vec cluster 9 average
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Figure 57: SSPD cluster 2 with 38 trajectoryFigure 58: SSPD cluster 3 with 38 trajectory
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Figure 59: t2vec cluster 3 re-sampled Figure 60: t2vec cluster 3 re-sampled average
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Figure 61: ¢2vec cluster 4 re-sampled Figure 62: t2vec cluster 4 re-sampled average
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Figure 63: t2vec cluster 5 re-sampled Figure 64: t2vec cluster 5 re-sampled average
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Figure 66: t2vec cluster 6 re-sampled average

Figure 65: t2vec cluster 6 re-sampled
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Figure 67: t2vec cluster 7 re-sampled Figure 68: t2vec cluster 7 re-sampled average
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Figure 73: t2vec cluster 10 re-sampled Figure 74: t2vec cluster 10 re-sampled average
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Figure 75: t2vec cluster 11 re-sampled Figure 76: t2vec cluster 11 re-sampled average
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Figure 77: t2vec cluster 12 re-sampled Figure 78: t2vec cluster 12 re-sampled average
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Figure 83: t2vec cluster 15 re-sampled Figure 84: t2vec cluster 15 re-sampled average
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Figure 85: t2vec cluster 1 re-sampled fall Figure 86: t2vec cluster 2 re-sampled fall
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Figure 87: t2vec cluster 3 re-sampled fall Figure 88: t2vec cluster 4 re-sampled fall
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Figure 89: t2vec cluster 5 re-sampled fall Figure 90: t2vec cluster 6 re-sampled fall
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Figure 91: t2vec cluster 7 re-sampled fall Figure 92: t2vec cluster 8 re-sampled fall
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Figure 93: t2vec cluster 9 re-sampled fall Figure 94: t2vec cluster 12 re-sampled fall
E{ignow number ii’eabectnry number:
=

50 100 150

Figure 95: t2vec cluster 13 re-sampled fall Figure 96: t2vec cluster 1 re-sampled spring
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Figure 99: t2vec cluster 4 re-sampled spring Figure 100: t2vec cluster 5 re-sampled spring
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Figure 105: t2vec cluster 11 re-sampled spring Figure 106: t2vec cluster 13 re-sampled spring
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