

Universiteit Leiden

ICT in Business and the Public Sector

From Natural Language to UML Class Models:
An Automated Solution Using NLP to Assist
Requirements Analysis

Name: Tiantian Tang
Student-no: s2236516

Date: 01/09/2020

1st supervisor: Dr. G.J. Ramackers
2nd supervisor: Prof. dr. S.A. Raaijmakers

MASTER'S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

1st supervisor: Dr. G.J. Ramackers
2nd supervisor: Prof. dr. S.A. Raaijmakers

Acknowledgements

Foremost, I would like to express my deepest appreciation to my first

supervisor, Guus Ramackers, for his continuous support and guidance on my

thesis. This thesis would never have been completed without his patient and

enthusiastic guidance. His guidance helped me in all the time of research and

writing of this thesis. Also, I am thankful to my second supervisor Stephan

Raaijmakers. He gave me valuable suggestions and feedback to improve my

thesis and point out the direction of future work.

I am deeply indebted to my parents and friends. They have provided me with

so much understanding and laughter during the most difficult and stressful

moments of this research work.

At such a special time, I would like to acknowledge Wiebe Posthuma, Leiden

Student Councilor Department and Leiden Institute of Advanced Computer

Science (LIACS) for their efforts to help me. Also, I would like to extend my

sincere thanks to Dai Clegg and Fahmeena Odetta Moore, who responded to

my questionnaire and provided valuable comments on the tool developed in

this research.

Abstract

The initial input to the requirements analysis process of many software

development projects typically consists of natural language documents

produced by business experts and end-users. When dealing with complex

software systems, these documents are then often converted into structured

Unified Modeling Language (UML) models by UML experts and consultants

using software development tools. This process of manually converting

natural language into UML models is a time-consuming process. Furthermore,

once models are expressed in UML, they become harder to interpret by non-

experts, leading to increased complexity when requirements have not been

expressed in a complete or consistent manner, and when subsequent

changes to requirements occur.

To address some these issues, this research utilizes Natural Language

Processing (NLP) toolkits to automate a significant part of the conversion of

natural language requirements documents into UML Class metadata. A web-

based application to demonstrate the feasibility of the approach has been

developed in Python, with back-end processing based on the NLTK and

Stanford CoreNLP libraries. When compared to existing tools in this area of

research, our application does not restrict the input documents to follow a

rigid, pre-defined structure. Furthermore, it requires minimal user intervention,

and covers the full range of structural concepts that are part of the definition of

UML Class models.

In addition, this research implementation interfaces with other research

performed at Leiden University that provides a runnable prototype from the

generated UML meta data. This combined facility provides immediate

feedback to the user by showing them the (initial) application that results from

their textual requirements input. This enables users to identify errors early on

in the process, and iterate towards the intended result in a rapid manner.

Table of Content
1. Introduction ... 7

1.1. Background and Problem Statement.. 7

1.2. Research Objectives .. 10

1.3. Thesis Overview ... 11

2. Theoretical Background ... 12

2.1. Unified Modelling Language Class Model 12
2.1.1. Metadata in Unified Modelling Language Class Model 15

2.2. Natural Language Processing .. 17
2.2.1. Natural language processing toolkits... 19
2.2.2. Natural language processing and machine Learning 20

3. Related Work ... 21

3.1. Linguistic Assistant for Domain Analysis .. 21

3.2. Graphic Object-Oriented Analysis Laboratory 22

3.3. Class Model Builder ... 23

3.4. UML Generator from Analysis of Requirements 24

3.5. Diagram Class Builder .. 24

3.6. Requirements Analysis to Provide Instant Diagrams...................... 25

3.7. Automatic Builder of Class Diagram ... 25

3.8. UML Generator... 25
3.9. Discussion .. 26

4. System Architecture .. 28

4.1. Conceptual application framework ... 28
4.1.1. High-level architecture ... 28
4.1.2. Application process .. 30
4.1.3. Functional requirements .. 33

4.2. NLP-based Extraction Module Architecture 34
4.2.1. Text Structuring Process (NLP tools layer) .. 36
4.2.2. Rule-based extraction block.. 45

4.3. Implementation ... 49

5. Example Requirements and Results .. 59

5.1. Input Data Preparation ... 59

5.2. “Police Station System”: Requirements and Results 60

5.3. Discussion of UML Experts Verification Results 68

6. Conclusion .. 70

6.1. Limitations .. 70

6.2. Future Work ... 71

7. References .. 74

Appendix A: Sample Requirement Data and Results 84

A.1. Input Scenario 2 (Supermarket System) ... 84

A.2. Input Scenario 3 (Online Shopping System) 90

A.3. Input Scenario 4 (Course Attendance System) 97

A.4. Input Scenario 5 (Hospital System) .. 104

Appendix B: Questionnaire .. 112

List of figures

Figure 1. The Importance of An Automated Solution (Narawita & Vidanage, 2016) ... 8

Figure 2. Class in UML notation (Miles & Hamilton, 2006) .. 12

Figure 3. An Example of UML Class Diagram (Fowler, 2003) 13

Figure 4. UML Classes Relationship (Adapt from Miles & Hamilton, 2006) 14

Figure 5. High-level Architecture of our application ... 29

Figure 6. High-level Architecture for Integration ... 30

Figure 7. Activity Diagram Overviewing Process ... 32

Figure 8. NLP-based Extraction Module Architecture Design 36

Figure 9. Parsing tree example .. 41

Figure 10. Stanford Dependency Parser Demo ... 43

Figure 11. Home page of application .. 50

Figure 12. Example of audio file conversion .. 52

Figure 13. Example of UML class metadata result... 53

Figure 14. Manage requirement page .. 54

Figure 15. Menu page of runnable prototype page .. 55

Figure 16. An Example of Integration codes .. 56

Figure 17. Results from “CourseAttendance” in Runnable Prototype 56

Figure 18. An Example of Executable Application ... 57

Figure 19. Example of Failure ... 61

Figure 20. UML class diagram from police station system ... 66

List of tables

Table 1. Multiplicities in UML class model (Adapt from Ambler, 2004) 15

Table 2. Data and metadata in UML class model .. 16

1. Introduction

1.1. Background and Problem Statement

The System Development Life Cycle (SDLC) in software development

consists of various methods such as waterfall, iterative, rapid application

development (RAD), agile, SCRUM, etc. All of these contain requirements

analysis during the early phases. Reducing errors in the requirements

analysis phase is crucial, because such errors escalate exponentially in the

later stages of a system development process (Boehm & Basili, 2001;

Westland, 2002; Gupta & Deraman, 2019).

Software requirements are commonly expressed by business experts and end

users in natural language (NL) during discussions and textual communication.

Subsequently, they will be analyzed and documented, typically by analysis

experts and consultants. The Unified Modelling Language (UML) is widely

utilized in transforming textual or oral requirements to system design,

particularly in terms of its use case models, activity models, and class models

(Agarwal & Sinha, 2003).

UML class models provide a structural view of a system in terms of the central

information (concepts) of the problem domain, and their interrelationships. As

such, these models define the “universe of discourse” which is dynamically

modified by the dynamic internal and external interactions of the system

(Fowler, 2003; Narawita & Vidanage, 2016).

The process of defining a precise UML class model based on the verbal and

textual requirements is currently a manual one, requiring the involvement of

UML experts. An automated, or semi-automated solution for generating UML

models is highly desirable (Narawita & Vidanage, 2016), see figure 1. As part

of their research, the authors show that 75% of survey respondents thought

an automated solution for UML model generation is important.

Figure 1. The Importance of An Automated Solution (Narawita & Vidanage,
2016)

The current process of generating UML models from requirements has many

drawbacks. Firstly, reading and analyzing a large volume of requirements by

human actors (UML experts and consultants) is time-consuming. Secondly,

although there are a large number of commercial and open-source tools that

help with drawing UML class diagrams, the majority of them utilize a “drag and

drop” style user interface. In such a conventional context, not only analyzing

the input, but subsequently defining the UML model adds an additional layer

of complexity. The defining process also requires multiple rounds of

communication and discussion between requirements analysts and

stakeholders (e.g. end users and business experts) to enable iterations of the

UML models. Therefore, in order to improve these inconveniences, automated

support for the requirement analysis process is highly desirable.

In addition, a critical challenge in the requirement analysis process from NL

requirements to system design is coping with changes, particularly in situation

such as a system with correspondingly complex stakeholder communities

(Berzins et al, 2008). For example, business experts may suggest additional

requirements after the UML class models has been completed, or end users

decide that a part of a UML model from their previous requirement is not what

they intended. During this process, changes occur frequently and need to be

responded to in a rapid way, otherwise they can propagate into later phases

of software development, potentially causing errors or even failure (Kof,

2005). Therefore, the automated support for generating UML class models

during the requirement analysis process should enable the inclusion of all

stakeholders in such a manner that enables obtaining rapid feedback on the

results. This enables validation of the models produced, and incorporating any

required changes in an iterative process.

In summary, there are two requirements for the solution provided in resolving

the above issues:

⚫ Automate the analysis process from textual requirements to UML models;

⚫ Involve more stakeholders in the requirements analysis process through

the use of the tool.

The details of these requirements are elaborated more specifically in the next

section (chapter 1.2).

Natural Language Processing (NLP), a subset of Artificial Intelligence focuses

on analyzing unstructured text (Arellano et al., 2015). It has been employed to

automate UML class model generation in previous research (Yalla & Sharma,

2015; Osman & Zălhan, 2016). However, the tools implemented were

designed to aid requirement analysis experts only. Other stakeholders such

as end users and business specialists are not enabled by such tools.

Secondly, the vast majority of automated tools developed are not “open

source”, and therefore are not open to researchers and developers, and as a

result, are no longer being improved. Finally, an important problem with

existing solutions in the area of NLP driven requirements analysis is that these

tools still “require consistent human intervention in the process of UML

diagrams generation” (Osman & Zălhan, 2016).

Our research provides a tool that can be accessed by users at different levels,

and is available for further research. Reducing human intervention in the

requirements analysis process is a central objective of our research, and tool

implementation. The requirements analysis process is also a highly

challenging task due to the ambiguous and semantic problems that are

inherently present in natural language (Narawita & Vidanage, 2016;

Deshpande, 2012). As a result, it is unrealistic to obtain completely error-free

analysis results. This research thus turns to the purpose of achieving rapid

generation of preliminary UML model results when given textual software

requirements.

1.2. Research Objectives

In the context of the problem statement above, we define our research

objectives as follows:

Develop a flexible, open-source UML class model generator to automate

the requirements analysis software development phase by utilizing NLP

techniques.

The generator is a web-based application that is developed by using the

open-source Python Web framework “Django”. Several NLP toolkits and

techniques are used to develop the UML class model generator. A more

detailed requirements based on previous section addressed in this automated

solution are as follows:

⚫ Automate the analysis process from textual requirements to UML models

- Minimize the tool interruption by UML experts;

- Enable to use fairly natural expressions of software requirements from

business specialists and end users. The tool does not force a

particular structure on the input text.

⚫ Involve more stakeholders in the requirements analysis process through

the use of the tool

- Easy to use for any level of user, whether end-user, business

specialist, software developer, or UML consultant;

- Enable rapid testing of requirements by generating a prototype

implementation (this part of the research utilizes the run-time

application framework – developed by Ralph Driessen (2020)),

providing a rapid feedback to users about the implications of their

requirements in terms of executable prototype software.

The focus of this research is to utilize existing research in the field of NLP for

the requirements analysis process and to implement a UML Class model

generation tool. As such, it employs the research methodology of “design

science”. This paradigm is focused on solving research problems by building

and evaluating artifacts (Hevner et al., 2004). The artifacts in this research

include the tool implementation and the architectural frameworks that

implement it. The focus of this study is on the extraction of metadata, the

primary source of composition for UML class models. There are also five

sample requirements (Appendix A) as input for this design tool to gain

corresponding UML class metadata result. A questionnaire survey (Appendix

B) is conducted to evaluate the design tool and extracted results.

1.3. Thesis Overview

This research is comprised of seven parts. In the introduction (Chapter 1), the

importance of an automated solution for the requirement analysis process and

issues that existed in previous research are presented. The second chapter

elaborates on the concepts used in UML class modelling and its metadata,

describes the context of Natural Language Processing (NLP), and the usage

of NLP in requirements analysis. The third chapter illustrates related research

in this domain (i.e. previous NLP-based tools in generating UML class

models), their development frameworks and limitations. The fourth chapter

describes the architecture design and framework of our application. The fifth

chapter explains the output results of several sample requirement data sets,

and discusses the questionnaire result on the evaluation of our tool. The sixth

chapter contains the conclusion, discusses current limitations of this research,

and proposes further research directions.

2. Theoretical Background

This chapter presents the concepts that having essential relevance to this

research. Firstly, the Unified Modelling Language (UML) class model and its

elements are illustrated, followed by the metadata definition and

implementation in the UML class model. Secondly, Natural Language

Processing (NLP) is introduced including its application in the requirements

analysis process of software engineering.

2.1. Unified Modelling Language Class Model

Unified Modelling Language (UML), developed by Object Management Group

(OMG) in 1997, is an open standard software modelling language embraced

by the industry and is exhibited by graphical notation to depict a complex

system (Fowler, 2003; Miles & Hamilton, 2006). There are various

representations of UML diagrams such as use case diagrams, activity

diagrams, sequence diagrams, etc. The UML class diagram is the core type of

UML diagrams that are used in real life when defining a system design

(Fowler, 2003). Therefore, this research centres around the UML class

diagrams to explore its components and generation. The basic elements of

the UML class diagram are introduced as follows.

The UML class diagram is a static modelling technique that defines the

objects and their relationships in a system. An object normally consists of a

class, properties (attributes), and operations of that class (Fowler, 2003). The

following picture (Figure 2) displays how a class is interpreted in the UML

class diagram.

Figure 2. Class in UML notation (Miles & Hamilton, 2006)

As can be seen, the rectangular shape has three sections. The top section is

the name of the class. A class has the characteristics of abstraction and

encapsulation (Miles & Hamilton, 2006). The middle section contains

attributes of that class. Normally an attribute has names and types. For

example, a person has a name and age with string and integer type

respectively. Thus, an example of a name attribute can be written as “name:

String”. Operations are the behaviours or declaration of methods carried by a

class (Fowler, 2003). Imagine a logistic system that a customer can view his

or her order, which can be expressed in the customer class as

“ViewOrderDetails()”. Figure 3 gives a concrete example of a UML class

diagram containing its elements and notation expressions.

Figure 3. An Example of UML Class Diagram (Fowler, 2003)

There are different types of relationships in the UML class model. Figure 4

displays six types of relationships in the UML class model. For instance, the

association is expressed as a solid line with a name directed from one class to

another target class in a diagram. “A customer can place many orders”, which

can be depicted by a solid line between customer and order with the word

“places”, together with the notation of multiplicity. The composition is a

stronger version of a relationship type. For instance, a house has rooms and

the rooms do not exist separate from the house. Inheritance and subtyping

are commonly understood similarly. However, these two should be separated.

Subtyping indicates the compatibility of interfaces, where the attributes and

operations in a class can be invoked to its subtyped class. While inheritance

focuses on the reuse of implementations. For example, some operations for a

class B are written in terms of the operation of class A, this is so-called

inheritance (i.e., class B inherits from class A).

Figure 4. UML Classes Relationship (Adapt from Miles & Hamilton, 2006)

Multiplicity in the UML class model can be set for relationships between

classes, and for attributes and operations of classes. It indicates the allowable

number of objects (instances of classes) participating in a given relationship. It

can be a specific number or a range. There are four indicators of multiplicity in

table 1.

Indicator Meaning Example

1 (one to one) Exactly one object Each student carries

exactly one ID card.

0..* or * (zero to many) No object or at least

one or more

A person might own no

phone, one phone or

many phones.

1..* (one to many) At least one object or

many

A building can contain

many doors.

0..1 (zero to one) No instance or have

one instance

Car can be assigned to

a road. A road can also

be free of car.

Table 1. Multiplicities in UML class model (Adapt from Ambler, 2004)

2.1.1. Metadata in Unified Modelling Language Class Model

“Metadata” is a term that simply represents “data about data”. It both

describes the organizational level of their structure and use of information,

and the technical level of the description of a system which is used to manage

that information (Hay, 2006). The business information collected from

requirement analysis is typically the initial component of metadata captured in

any development project (Hay, 2006). Those metadata can be refined and

used as the data about a data model, where the model can be a database

design, or in our research of following UML class standards to define classes

and their relations. Table 2 gives an example to show the metadata in a UML

class model for a bank:

Metadata Data about a

data model (UML

class model)

Class:

“Customer”

Attributes:

“Name”

“Phone number”

Class:

“Employee”

Attributes:

“Position”

“Name”

“Phone number”

Relationships:

“An asset

manager is

responsible for

one customer

only”

Instance data Data about real-

world things

Customer Name:

“Bob Lee”

Customer phone

number:

“XX XXXXXXX”

Manager Name:

“Sam Smith”

Manager phone

number:

“XX XXXXXX”

Real-world things A particular

customer:

“Bob Lee”

An asset

manager:

“Sam Smith”

Table 2. Data and metadata in UML class model

Since metadata should address both business and technical point of view

(Hay, 2006), an objective of our application is to display the extracted UML

class metadata in a well-understood and structural way for both of them.

Due to the complexity and ambiguity of natural language, it is difficult to

perform the extraction of complete elements of a UML Class model. Our

application abandons the identification of Operations, and Relationship types

such as Dependency, Aggregation and Inheritance, as they are similar to

Association, Composition and Subtyping (which are stronger Relationship

types) in the requirements expressed in natural language and are difficult to

distinguish directly. For example, “A folder contains many files” and “A car has

wheels”. For the former sentence, if a folder is deleted, all the files it contains

are deleted. It indicates a Composition Relationship between “Folder” and

“File”. The latter sentence can be understood as a car needs wheels, but

wheels do not need a car. Wheels can also apply to bicycles and motor

vehicles. This suggests a weaker type of Relationship, i.e. Aggregation

between “Car” and “Wheel”. The boundary is not explicit in natural language

expressions.

The application does, however, identify Classes and Attributes, Association,

Composition and Subtyping of Relationship types. The extraction of

Multiplicity is the most challenging task and this application develops a

relatively simple extraction method for it.

2.2. Natural Language Processing

NLP is a way of analysing, understanding, gathering knowledge from a natural

language with different forms (text or oral) by computerized means (Arellano

et al., 2015; Joseph et al., 2016). Its origins go back to the beginning of the

1940s. Developments in artificial intelligence have boosted the field

significantly, and NLP currently achieves sufficiently high-quality linguistic

analysis to accomplish different tasks and serve for a range of applications

(Arellano et al., 2015; Joseph et al., 2016; Jones, 2001).

As a multidisciplinary research area dealing with linguistics, NLP can bring

benefits to Software Engineering. The NLP techniques can be employed in

every phase in Software Development Life Cycle (SDLC) (Dawood &

Sahraoui, 2017; Yalla & Sharma, 2015), particularly in requirement-related

stages since requirements are normally written and expressed by natural

language. Koerner et al (2014) summarized NLP can be applied in improving

requirement specifications, finding domain-specific ontologies in requirements

engineering, helping automatic model creation and text synthesis, and

extracting the impact assessment from changes in software specification.

This research focuses on one of the above applications in requirement

analysis: using NLP techniques to improve automatic model creation from NL

requirements. The first step in automating the model creation is extracting

information (i.e., UML class metadata) from the textual requirements. NLP

techniques utilized in this area belong to the application of Information

Extraction (IE) (Narawita & Vidanage, 2016). IE as an application of NLP,

“refers to the automatic extraction of structured information such as entities,

relationships between entities, and attributes describing entities from

unstructured sources.” (Sarawagi, 2007) In this research, extracting classes,

attributes, and relationship information between classes addresses the tasks

in IE application. Examples of NLP techniques for an IE system are as follows:

⚫ Segmentation

The segmentation tasks divide the text into tokens, typically following the

rules such as using the whitespaces separate words and full stop

separates sentences in English, or based on statistics such as using N-

grams for segmentation in Chinese (Simões et al., 2009).

⚫ Named Entity Extraction

One of a classic technique in IE application includes Named Entity

Recognition (NER). It identifies and classifies the specific types of named

entities such as the name of people, places, organizations in domain-

independent area or the name of disease, drug in domain-specific area

(Sarawagi, 2007; Adnan & Akbar, 2019).

⚫ Relation Extraction (RE)

Relation Extraction is a task of extracting relationships between entities.

Various techniques are applied in relation extraction, most of which are

based on rules. A general approach is based on syntactic analysis, since

the relations we want to extract are often in grammatical form. For

example, a verb may refer to a relationship between entities, e.g., “is

acquired by” relationship between pairs of companies (Sarawagi, 2007;

Simões et al., 2009). Open Information Extraction (Open IE) is a notable

task in recent years that extracting open-domain relation triples (i.e.,

“arg1”, “rel”, “arg2”) from the raw text. It was initially introduced by Banko

et al (2007) where the system extracted a large set of relational triples

from web. In general, the Open IE application starts with collecting

sentences from corpuses and splitting each sentence into sets of entailed

clauses, then shortening each clause maximally to produce sentence

fragments in triplets by using shallow syntax and dependency methods

(Angeli et al., 2015; Ali et al., 2019). For example, the output of sentence

“Born in a small town, she took the midnight train going anywhere” in

Stanford OpenIE is “(she; took; midnight train)” (Angeli et al., 2015).

⚫ Ontology Induction

The ontology induction refers to construct an ontology and map textual

expressions to concepts and relations in that ontology. An IE application

of ontology induction is extracting knowledge from unstructured text.

Typically, the application usually begins with specifying domain-specific

lexical knowledge, extraction rules and an ontology, then the learning

approaches are applied to the processed data. (Yildiz & Miksch, 2008;

Poon & Domingos).

2.2.1. Natural language processing toolkits

There are several powerful NLP toolkits developed in different programming

languages. These toolkits can be used to accomplish common NLP tasks. For

example, Natural Language Toolkit (NLTK) and SpaCy in Python, Stanford

CoreNLP developed by Java, Apache OpenNLP that has been used in

previous research, Google’s SyntaxNet as a rising tool in this market.

Cheng et al (2020) found that the publicly available NLP toolkits are pervasive

in analysing software requirement documents. They investigated a set of

different public NLP toolkits and found that NLTK and Stanford CoreNLP

(including parts of it such as Standford Parser) achieve the highest accuracy

in results of doing tokenization for all kinds of software requirement

documents. Stanford CoreNLP is the most frequently used NLP library in this

research field (Cheng et al., 2020).

Osman and Zălhan (2016), Dawood and Sahraoui (2017) analysed previous

NLP-based UML generation tool and found the NLP toolkit from

StanfordCoreNLP are widely adopted to analyse textual requirements,

especially Stanford Parser. Osman and Zălhan (2016) also argued that “the

majority of NLP libraries belong to NLTK framework.”. The application is

developed in Python environment. NLTK is the most powerful and convenient

tool to use in this case. Stanford CoreNLP is a Java tool but has API in Python

environment, and it’s easy to use the packages in Python. Their frameworks

and implementations in this application are elaborated in Chapter 4.

2.2.2. Natural language processing and machine Learning

Natural Language Processing (NLP) and Machine Learning (ML) are both

subsets of Artificial Intelligence (AI). They are complementary to each other.

Through NLP, computers can handle a number of tasks in human language,

such as keywords recognition, text classification, translation, etc. To automate

these tasks and applications, ML is utilized as the process of applying

algorithms to the system. It teaches the system to understand, learn and

improve from new data inputs without the need for explicit human

reprogramming.

However, in order to achieve this and produce accurate results, it is often

necessary to train a significant and clean data set for the system. While this

has been achieved with great success in areas such as biological and medical

applications, sufficient training data sets are the first obstacle to applying this

to software requirements analysis, as requirements documents and their

associated UML models are difficult to obtain. These data are commonly

internal to the company and are kept confidential. Self-made requirements

texts introduce bias, as people have their own natural language expression

habits. It is also a time-consuming task to find UML experts to compile

software requirements and to label those data.

3. Related Work

Several studies have integrated NLP techniques to support UML generation,

and provided their respective development methods. Those studies depended

significantly on the NLP technology available at the time. As a result, the tools

developed in this study also makes use of newer state-of-the-art NLP tools. In

addition, none of the existing tools can extract complete information from NL

requirements such as classes, their relationships, attributes, direction, etc

(Osman & Zălhan, 2016). Our research aims to broaden the set of extracted

UML metadata. Moreover, human intervention is largely required in existing

tools from sentence input to output result (Osman & Zălhan, 2016). Our aim is

to minimise human intervention in conversion process supported by our

automated tooling.

Given these objectives, the remainder of this chapter explores the

development methods implemented by previous researchers in their tools,

with the aim of extending their methods and frameworks. This provides

insights into addressing existing issues, i.e., user intervention problems,

immaturity of mechanisms.

Initially, the development of these tools was solely inspired by the experience

of requirements analysts working with textual requirements. Traditionally, the

requirement analyst selects and highlights nouns and verbs from the entire

text to identify possible objects and operations (Overmyer et al., 2001). The

experience of previous experts has led to a practical and natural way of

identifying objects and methods by utilizing part-of-speech (POS) of the words

(Chen, 1983; Barker, 1990; Overmyer et al., 2001). For example, linking

nouns to classes, verbs to relationships, adjectives or prepositional phrases to

attributes.

3.1. Linguistic Assistant for Domain Analysis

A representative study comes from Overmyer et al (2001). They relied on

POS-tagging to develop a prototype tool named Linguistic Assistant for

Domain Analysis (LIDA). The tool tags the POS of words after the analyst

imports a requirements document. Then a noun marking list is generated to

indicate candidate classes. The analyst iteratively removes classes that do not

qualify as classes. A similar process is employed with the adjective list and

verb list. The final step for analyst is using LIDA Modeler to graphically

associate identified classes, attributes and methods (Overmyer et al., 2001).

Obviously, LIDA relies heavily on user intervention. The analyst has to check

and refine the marking lists at each step. Furthermore, some elements of the

UML class model, e.g., multiplicity, are excluded. LIDA was placed as an aid

for UML experts when analysing requirement texts (Overmyer et al., 2001). It

did not analyse the texts themselves, as it was limited by the development of

NLP technology at that time.

3.2. Graphic Object-Oriented Analysis Laboratory

Perez-Gonzalez and Kalita (2002) developed a different way to construct UML

models from software requirement description, by regulating the input text.

They proposed a tool called Graphic Object-Oriented Analysis Laboratory

(GOOAL). The analysts must declare the problem domain name, sub-domain

name, problem name and problem description before they use the tool. This

tool used a semi-natural language (4W) to identify syntactic subjects and

objects, and prepositional phrases of relations. They were then analysed

sentence-by-sentence using role posets, a conceptual framework based on

the linguistic notion of theta roles and mathematical notion of ordered sets,

which can be used to produce tabular and graphical results of UML class

metadata (Perez-Gonzalez & Kalita, 2002). In general, GOOAL imposed

restrictions on requirement texts. Analysts have to rearrange the collected

requirement description by following the regulations and need to validate the

interpretation of 4W language results. The tool can only process simple

problem domains (Perez-Gonzalez & Kalita, 2002).

Subsequently, with the development of natural language processing

technology, NLP techniques in the application of information extraction (IE)

systems suggest promising approaches that may assist the requirement

analysis process. Researchers started to adopt a combination of NLP tools

and human experience rules in the development of UML model generation

application.

3.3. Class Model Builder

Harmain and Gaizauskas in 2003 proposed their Class Model Builder (CM-

Builder) in producing UML models from requirements. Rather than relying on

deep analysis approach as it required labour intensive manual process,

researchers explored a domain independent “semantic” analysis approach

which could compute richer syntactic analysis than based on surface analysis.

They started to use NLP tools of the era and designed a pipeline of

tokenization, sentence splitter, POS tagger, morphological analyser and

parser in sequence on processing requirement text.

CM-Builder has been evaluated quantitatively to prove its practical value. The

tool relies on a number of certain or frequent words that appear in the

requirement specification. For example, “is made up of”, “is composed of”,

“contains” indicates a relationship of aggregation relationship (Harmain &

Gaizauskas, 2003). CM-Builder initiates an NLP-based methodology to

produce a full-fledged tool, but similar to previous researches, it presents the

users with lists at each step of the pipeline, rather than developing an

integrated process without human intervention. Using the case study by

Harmain and Gaizauskas (2003), Dewar et al (2005) investigated CM-Builder,

LIDA (Overmyer et al., 2001) and GOOAL (Perez-Gonzalez & Kalita, 2002),

and concluded that none of them could fully extract classes from NL

requirement. In addition, CM-Builder has limitations when drawing candidate

class models, because the mechanism for acquiring objects is not appropriate

(Dewar et al., 2005; Osman & Zălhan, 2016).

3.4. UML Generator from Analysis of Requirements

In 2009, Babar and Deeptimahanti developed a semi-automated tool to

generate static and dynamic UML models, called UML Generator from

Analysis of Requirements (UMGAR). The tool was implemented by means

of innovative approaches. Firstly, the core component is a set of syntactic

reconstruction rules that transform complex sentences to simple ones.

Secondly, Rational Unified Process (RUP) and ICONIX process are

combined. The former helps to identify all possible classes and methods,

attributes and relationships, on which the latter enhances the class

identification process in preparation for the generation of collaboration

diagrams. While the previous studies dealt with a small number of

requirements (< 200 words), they used Stanford Parser which can tagged a

larger number of requirement text (Babar & Deeptimahanti, 2009). At the

same time, other two efficient NLP tools were adopted. WordNet 2.1 for

morphological analysis (converting plural into singular) and JavaRAP for noun

form correction (Babar & Deeptimahanti, 2009). A remarkable feature is that

UMGAR provides a generic XMI parser to generate XMI file as output (Babar

& Deeptimahanti, 2009), so that user can visualize the output model in any

other graphical modelling tool. However, UMGAR needs human intervention

during the process of irrelevant classes elimination and relationship

identifications (Osman & Zălhan, 2016). There are also restrictions on input

sentences due to the syntactic reconstruction rules they create. Every input

sentence has to satisfy the rules, otherwise the user will be asked to modify

the sentence. However, their syntactic reconstruction rules have inspired later

researchers when dealing with the normalization process of textual data.

3.5. Diagram Class Builder

Herchi and Abdessalem (2012) created the Diagram Class Builder (DC-

Builder) by employing NLP and domain ontologies to produce UML class

diagrams. The General Architecture for Language Engineering (GATE)

framework was utilized in this tool, as it provided “the foundational building

blocks for higher level text understanding applications” (Herchi & Abdessalem,

2012). A set of heuristic rules was integrated to extract classes, attributes and

relationships. The extracted information then was saved into an initial

structured XML file. A following domain ontology block was used for XML file

refinement (Herchi & Abdessalem, 2012). Compare to previous tools, DC-

Builder improves the accuracy of extracting results from requirement text, but

excludes methods and multiplicity extraction.

3.6. Requirements Analysis to Provide Instant Diagrams

While in the same year, More and Phalnikar (2012) extended the research by

Babar & Deeptimahanti, 2009 (UMGAR), and proposed a desktop tool called

“Requirements Analysis to Provide Instant Diagrams” (RAPID). The tool

employed NLP technologies such as OpenNLP for lexical and syntactic

analysis, RAPID’s own Stemming Algorithm for the base words and

WordNet2.1 for semantic correctness (Osman & Zălhan, 2016). The syntactic

reconstruction rules from UMGAR (Babar & Deeptimahanti, 2009) were

refined and adopted. This indicates that it still requires users to change input

sentence if the sentence violates the rules.

3.7. Automatic Builder of Class Diagram

Automatic Builder of Class Diagram (ABCD) is another UML class

generation tool proposed by Azzouz et al in 2015. The Stanford NLP toolkit

was used for lexical and syntactical analysis. A pattern-matching NLP

technique was developed to extract the types of relationship and multiplicity of

the identified classes. Similarly, the output is saved as XMI format files and

can be imported into other visualization tool to build diagrams. However, the

ABCD system has weaknesses in dealing with the problem of redundant

information extraction, and confusion in relationship and method identification.

(Osman & Zălhan, 2016)

3.8. UML Generator

Narawita and Vidanage (2016) proposed a web-based application: UML

Generator, to produce UML class and Use case diagram automatically.

Similar basic processing required for requirement text such as part-of-speech

tagging; tokenization was implemented. At the same time, they adopted a

rule-based approach, defining a set of XML rules to structure the output

information and filter words. In addition to these methodologies employed in

previous studies, a Weka model was trained to recognize the type of

relationship and multiplicity, and vote for use case. Finally, two diagrams i.e.,

UML class and use case diagrams are generated.

This research provides a state-of-the-art approach to the field of NLP-based

UML generation, combining used NLP tools, rule-based algorithm and a

trained Weka model to accomplish different tasks. However, user has to follow

the structure “subject-object-predicate” to enter each requirement sentence.

This indicates a limitation on processing complex sentences. Another tiny

limitation is that user cannot input “class” in the text due to a small bug existed

in Weka (Narawita & Vidanage, 2016). This leaves the researcher with the

challenge of exploring other tools and development methodology for

enhancement.

3.9. Discussion

These research works have provided valuable insights into how NLP can be

employed in the software requirement analysis process. Each of these tools

has its advantages and weaknesses that has been described in previous sub

sections, which also indicates that the NLP-based tools have not yet risen as

a common use in real practice of software requirement analysis.

The majority of those development methods rely on rules heavily and placed

NLP toolkits as a complementary role to extract the elements of UML models.

These rules have been shaped by the experience and knowledge of

requirement analysis experts. The advantages of using this approach are,

firstly, that the rules become more refined as the research develops. For

example, UMGAR (2009) proposed syntactic reconstruction rules, and RAPID

(2012) utilized these rules and refined the extraction rules for each element.

Secondly, the use of rules is primarily a declarative approach that leads to a

highly transparent, readable, and maintainable system (Waltl et al., 2018).

However, as this field of study has evolved, the rules have become

sophisticated, and have been framed differently in previous tools. Some of the

rules are not appropriate, such as the rule proposed by Abdessalem & Herchi

(2014) to indicate the presence of an attribute when a noun phrase succeeds

a “has/have” verb phrase, which is too absolute as it can also refer to a class

that has a composition relationship to the antecedent subject. In addition,

there are several studies (e.g. Perez-Gonzalez & Kalita, 2002; Babar &

Deeptimahanti, 2009; More & Phalnikar, 2012; Narawita & Vidanage, 2016;

etc.) that propose syntactic reconstruction rules for the input requirement

sentences, or require a “Subject, Predicate, Object” format to simplify the

requirement sentences. This approach adds an additional layer of activity to

the requirement analysts, an activity of converting NL text into structural text

performed by a human rather than the system itself.

Machine learning has been applied to complement the rules in the element

extraction process. For example, Narawita & Vidanage (2016) used a trained

Weka model to vote for relationship and multiplicity extraction results of a

UML class model. Machine learning can assist in providing a more accurate

result of information extraction. However, as mentioned in chapter 2.2.2, one

of the first step and the first bottleneck when applying it to a new application is

gaining or creating enough training data sets (Roh et al, 2019), as supervised

learning requires (large) amount of training data. In the software requirements

domain, pre-labelled samples are scarce since these requirements come from

industry usually in closed domain. Ferrari et al (2017) provided a dataset of 79

public software requirement document. These documents are Software

Requirement Specification (SRS) which is a documentary result from

traditional requirement analysis process. A few documents contain NL

requirement paragraphs as well as their corresponding UML class diagram,

but they are inconsistent with each other. It is the case that such recent

applications have little or no useful training data.

4. System Architecture

Based on the discussion of previous approaches to the development of UML

class model generation tools, this study presents a novel architecture

framework. Rather than formulate rules on input sentences, our system

performs text structuring tasks by using NLP toolkits to transform raw text into

a set of triplets with “Subject, Relation, Object” format. This reduces the

unnecessary activity that user structure the requirement texts themselves.

Our proposed tool implementation is structured as a web-based application.

The backend analysis model consists of two parts, namely text structuring

process with NLP toolkits and rules to support element extraction. In this

section, an overall design of this application is given, which consists of a high-

level architecture, an activity diagram for application processing, and a set of

functional requirements on UML class metadata extraction. The core

component (i.e., extraction methodology) are elaborated in Chapter 4.2.

4.1. Conceptual application framework

4.1.1. High-level architecture

Figure 5 is the high-level architecture of our designed tool.

Figure 5. High-level Architecture of our application

There are five main sections in this web application. Each of them is

connected by input and output objects such as file and text objects. Users of

the system initially interact with the generator website by uploading a local text

file that contains NL requirements, or an audio file that records a speech for

requirements or entering NL requirements in the text area. The aim of

providing these two options is to reduce time-consuming requirement

transcription. Instead of spending time recording the requirements from

stakeholders and subsequently transcribing them after meetings, the

stakeholders and requirement analysts can sit together, using this application

to view their requirements and make modifications immediately. The file

loader and the audio to text converter extract the original text from the input

requirement file. Text loader transfers these text data into memory. The

application extracts UML class metadata by using NLP-based extraction

module. It is a module that adopts NLP toolkits and extraction rules to identify

UML class metadata such as the data of classes, attributes, relations and

directions. The application displays the UML class metadata output in a text

area that users can check and modify the results. Therefore, the output is

customizable and users can receive a direct result according to their

requirement text.

In order to get other stakeholders such as business experts and end users

involved in requirement analysis process, our application integrates an outside

solution developed by Driessen (2020) to show a runnable prototype results

based on the extracted results from requirements texts. Figure 6 displays

another high-level architecture design of the integration work, continued with

the output of Figure 5.

Figure 6. High-level Architecture for Integration

The extracted results are separated into different data sets, and saved in a

database created by Driessen (2020). By working through the integration,

other stakeholders can not only see the results of the UML metadata or visual

model, but also have immediate access to a running prototype application.

This allows them to highlight omissions, errors and modifications. A more

detailed explanation and implementation is described in Chapter 4.3.

4.1.2. Application process

To describe the process of our application, figure 7 is a UML activity diagram

emphasising sequential activities for each section, where the shaded swim

lane indicates functional modules (e.g., NLP-based extraction module) of the

process. This defines the main back-end analysis procedure for UML class

metadata extraction purposes. The NLP-based extraction module will be

described in detail in Chapter 4.2.

In the initialization step, the user performs a decision activity on determining to

upload a requirement file in form of text or audio, or copy and paste the

requirement text on a text area provided by the generator website.

Alternatively, the user can enter text directly into this area. If a user

determines to upload an audio file, the “Audio to Text Converter” in Figure 5

utilized SpeechRecognition library with its’ built-in method of Google Speech

API to transform the speech to text. SpeechRecognition is a library support for

several speech recognition APIs such as Google Speech Recognition, Google

Cloud Speech API, Microsoft Bing Voice Recognition, IBM Speech to Text

and so on.

The generator website displays the converted audio requirement text or the

uploaded requirement text in a text area. The user can check and modify the

initial requirement text if needed, and enter a title for the requirement. Text

loader loads them as stored text data. The NLP-based extraction module then

performs structuring and extracting activities on this stored text data

sequentially. The final activity is performed in the generator module, which

displays the UML class metadata results to the user.

Figure 7. Activity Diagram Overviewing Process

4.1.3. Functional requirements

The NLP-based extraction module is the core component that processes and

analyses NL requirement texts in this application. A specification of the

functionality for the NLP-based extraction module is described as follows:

⚫ Recognize Classes

Extract Classes from NL requirement text. The Class name must be in a

singular format with initial capitalization.

⚫ Recognize Attributes for each Class

Extract Attributes for identified Classes from NL requirement text if in

existence. Take a sentence as an example: “A customer has an id, name, and

address.” The extraction result should be “Class: Customer; Attributes: id,

name, address”.

⚫ Extract Relationships between identified Classes

The Relationship result should involve four characteristics: Relationship type

and value, Directionality, and Multiplicity. There are three sub-functional

requirements in Relationship extraction:

a. Recognize the type and value of Relationship:

Detect different types of Relationship from the user input text. There are three

types of Relationship encompassed in this extraction process: Association,

Subtyping, and Composition. The result format should be “Relationship type:

Relationship value”. Take a sentence as an example, “A customer places an

order.” (which will be used as an example sentence for the remaining sub-

functional requirements) The Relationship extraction should be “Association:

places”.

b. Recognize Directionality between identified Classes

Identify Direction between Classes. The format should be “Directionality

(from): Class name; Directionality (to): Class name”. An extraction result for

example sentence should be “from: Customer; to: Order”.

c. Extract Multiplicities between Classes

The Multiplicity value should be attached to each Class. To continue and

integrate with Directionality result: “Directionality (from): Class name;

Multiplicity value; Directionality (to): Class name; Multiplicity value”. An

extraction result for example sentence is “from: Customer; multiplicity: 0..*; to:

Order; multiplicity: 0..*”.

⚫ Display a complete UML Class metadata result

Integrate all the data gathered from Class, Attribute, and Relationship

extraction, and display them to the user. For example, the ultimate results of

the example sentence displayed on the front end are as follow:

Class: Customer

Class: Order

Association: places

from: Customer

multiplicity: 0..*

to: Order

multiplicity: 0..*

4.2. NLP-based Extraction Module Architecture

To achieve the functional requirements (i.e., class and attribute identification,

relationship identification with type, value, direction and multiplicity), the NLP-

based extraction module is decomposed into two main components: i) a text

structuring process with NLP tools, and ii) a rule-based extraction block to

extract UML class metadata from structured text data.

Since both IE and Open IE are often placed as an early stage before pursuing

higher level tasks in a more specialized NLP application (Singh, 2018;

Chikkamath et al., 2018), we utilize the steps in our text structuring block to

transfer the raw text into a list of tuples containing triplets. Then, rules are

defined for further metadata extraction. Figure 8 elaborates the process

architecture of the NLP-based extraction module.

Figure 8. NLP-based Extraction Module Architecture Design

4.2.1. Text Structuring Process (NLP tools layer)

Text cleaning is an initial and integral part of any NLP-based system (Palmer,

2010). In this application, requirement documents and input NL requirement

texts are typically unstructured or semi-structured data which is difficult to

process immediately. The objective of this block is to transform raw text data

into a predictable and analysable form for subsequent processing tasks.

There are various information extraction (IE) steps for text cleaning and

structuring such as lowercasing the characters, remove punctuations and stop

words, stemming and lemmatization, etc.

With the rapid development of NLP technologies, there are many NLP toolkits

available for performing common NLP activities, which enable the

development of NLP-based applications without having to start from scratch

(Pinto et al., 2016). In text structuring module, we work with Natural Language

Toolkits (NLTK) developed in Python, as it provides a mature IE pipeline

architecture framework and gives freedom for developers to use those steps

in a framework. In addition, we utilize the library package from Stanford

CoreNLP. It provides open information extraction package (Stanford Open IE)

that is utilised for triplet extraction.

In general, there is no rigid standard procedure for an information extraction

system. The steps and methods should satisfy the needs, and adapt to the

purpose of a program. The purpose in this component is to output the triplets

that represent the input requirement text. The following is a sequential listing

of the relevant steps:

1. Lowercasing

Lowercasing is the simplest and a common text cleaning technique. The idea

behind it is normalizing all the words from a text in a same casing format, so

that they can be treated the same way and without causing further problems.

For example, Python interprets uppercase and lowercase letters differently.

“Customers” and “customers” occur at different places in a textual document,

but a system would treat them separately rather than process them as a

single semantic concept. With mixed-case text data, lowercasing can

eliminate variation and reduce vocabulary size. However, there are cases

where lowercasing might have a negative by increasing ambiguity (Camacho-

Collados & Pilehavar, 2018). Some typical examples are “Apple” company or

“apple” as a fruit to be identified, “IT” as an abbreviation of information

technology while “it” as referring to an object.

In our application, the module analyses requirement texts in English. Without

lowercasing, the system might treat a word which is in the beginning of a

sentence with a capital letter different from the same word which appears later

in the sentence without any capital letter. This will lead to a decline in

accuracy.

2. Line removal

NL requirement texts typically consist of a collection of paragraphs.

Frequently, those paragraphs are distinguished by line breaks. When users

upload their NL requirement document, strings of the entire requirement text

including line breaks will return to the back-end program. To keep the string

being displayed in one line containing the entire requirement text, we should

remove all the line breaks in advance.

3. Sentence Splitting

After the previous steps, the text data is integrated without any breaks and is

returned as a string. The objective of our structuring component is to convert

raw text in structured format (i.e. triplets containing subject, relation and

object) for every sentence, so that each triplet represents a sentence.

Therefore, it becomes vital to segment the string of text into sentences to

achieve the above-stated purpose. Sentence splitting in our case is

considered as a base step because we need to keep the data in list of

sentences before the step of open information extraction. We can simply split

a sentence by delimiters like a period (.) Taking a simple text as an example

“A customer places one or more orders. An order is for multiple products.”

Sentence splitting output will be ['a customer places one or more orders.', 'an

order is for multiple products.'] A simple piece of code using default sentence

tokenizer from NLTK is as follows:

4. Word Tokenization

Tokenization in general is a process of breaking up textual data by locating

the word boundaries into smaller and more meaningful components called

tokens (Palmer, 2000). The common types of tokenization include sentence

and word tokenization. In our structuring process, we break down a text

document into sentences and tokenize them into words. For example, word

tokenization for sentence “A customer places one or more orders.” will be ['a',

'customer', 'places', 'one', 'or', 'more', 'orders', '.'] Word tokenization is in

necessary because it can be provided as an input for further text processing

procedures such as punctuation elimination, lemmatization, stemming, etc. In

our program, the purpose of word tokenization is to prepare for data cleaning

with stop words removal. Sample Python code using the method

word_tokenize() in NLTK after sentence splitting is shown as follows:

5. Word Removal

To remove unwanted words, our application specifies a list of excluded words.

Some of the words belongs to stop words in NLP application. Stop words refer

to the words in natural language that do not add much meaning in a text.

Those words can be eliminated without ruining the meaning of a sentence.

Examples of stop words are “the”, “a”, “an”, etc.

One of the reasons to remove stop words is that system can concentrate on

more valuable information in downstream processing steps rather than

spending time on analysing meaningless words. Nevertheless, stop words

removal is not an obligation in every application of data cleaning. It should be

considered thoughtfully because stop words mean differently in different

applications. In our research, rather than using a corpus of stop words

provided by NLP tools, we recompile an excluded word list based on the

corpus of stop words provided by NLTK and append other specific words that

are meaningless in requirement text as metadata for UML class model. The

code below is our predefined excluded words lists in our application:

The separate excluded words list is used before Open IE and after Open IE

respectively. The purpose is to remove certain words without violating the

integrity of a sentence, so that Open IE can process the sentence and extract

a more accurate result.

After obtaining triplet results, a further “design element” word removal is

performed in order to clean the non-relevant terms. This is based on a list

containing high-level words such as “application”, “system”, “user”, “data”, etc,

because these words are related to (system) design elements, which should

be avoided as classes (Narawita & Vidanage, 2016; More & Phalnikar, 2012).

6. Open Information Extraction

Open Information Extraction (Open IE) in NLP is a task of generating a

structured, machine-readable representation of the information in a text,

usually in the form of triplets, where a triplet usually consists of subject,

predicate, and object in sequence to represent a fact (Chikkamath et al.,

2018; Khairova et al., 2020). Taking the example sentence “A customer

places one or more orders.”, represented in an appropriate structure for

computers to process is [(“Customer”, “places”, “Order”)]. The subject and

object arguments are often expressed by nouns or noun phrases, while the

predicate indicates a relation expressed by verbs frequently. Our application

adopts Open IE to extract triplets from requirement text, and subsequently the

system identifies further extraction of UML Class metadata from those triplets.

Example code using StanfordCoreNLP in Python using the OpenIE package

is as follows:

7. Parsing tree

A parsing tree in NLP is a way of representing the syntactical structure of a

text in a tree graph. The syntactical structure is produced after basic NLP

tasks such as tokenization, part of speech tagging, chunking to reveal and

group syntax of a sentence. In this process, the parsing tree is utilized when

the step 6 (Open Information Extraction) fails to extract some specific

sentence.

Typical syntactical categories are S (Sentence), NP (Noun Phrase) where it

usually contains labels such as NN (Noun), NNS (Plural nouns), etc., DT

(Determiner), VP (Verb Phrase), PP (Prepositional Phrase), and so on. Figure

9 is an example of a parsing tree for sentence “The quick brown fox jumps

over the lazy dog”:

Figure 9. Parsing tree example

This step helps us in identifying the main parts like subject, predicate and

object in a given sentence (Btoush & Hammad, 2015).

While Stanford OpenIE is intended for large-scale relation extraction from text

such as Wikipedia, currently, it sometimes fails to extract triplets for certain

sentences such as a sentence without object or verbal components, or a

sentence where the POS of object is defined as verbs by Stanford OpenIE.

When it fails to process a sentence, it will return empty. In this case, Stanford

Parser is employed to parse the sentence that cannot be extracted by

Stanford OpenIE, and use NLTK.Tree to represent it before adding our own

rules to extract triplets. Thus, parsing tree is a replacement process once

Stanford OpenIE fails. The Classes and Relationships can be extracted by

exploring the labels (i.e., syntactic categories such as NP, VP, NN) and

corresponding leaves (i.e., values like “fox”, “dog”) of a tree. An example of

codes for computing parsing tree is as follows. The rules to extract triplet is

illustrated in Chapter 4.2.2.

8. Lemmatization

Lemmatization refers to turning a word into its corresponding lemma (i.e.,

dictionary form). For instance, “places”, “placing”, “placed” are all forms of the

word “place”, so that “place” is the lemma of all those words. There are

various purposes and emphasises to use lemmatization in different

applications. For example, in web document clustering for search engines,

lemmatization is employed to reduce the number of tokens with identical

meanings but different forms, and increase the system performance. For our

program, except for the reason stated above, an extracted Class name must

be in singular form. Therefore, we adopt lemmatization as a final step to

transform the plural class name into singular. NLTK offers lemmatization using

WordNet’s built-in morphological analysis function:

As can be seen, lemmatization in NLTK returns the input word unchanged if it

cannot be found in WordNet and confirms the necessity of lowercasing step.

9. Dependency Parsing

Dependency parsing is a process of representing the grammatical structure of

a sentence based on the dependencies between words in the sentence.

Figure 10 displays a result of analysing “A customer places an order. An order

is placed by a customer” by dependency parser through StanfordCoreNLP

demo.

Figure 10. Stanford Dependency Parser Demo

As can be seen from the dependency parsing result, there is a “det”

(determiner) relation between “order” (NN) and its determiner “An” (DT). The

“aux” (auxiliary) and “auxpass” (passive auxiliary) in the second sentence

indicates dependency relationship between “placed” and “can”, “placed” and

“be”, respectively. In our application, dependency parsing is used to recognize

passive and active voice according to the label “nsubj” (nominal subject) and

“nsubjpass” (passive nominal subject). In this way the Directionality between

Classes can be determined. Lemmatization is cooperated in this step to

transferred the Relationship value from passive voice to active voice. The

built-in method dependency_parse() of StanfordCoreNLP and lemmatization

to transform verb format for passive Relationship value are developed in the

code as follow (with the corresponding result from an input sentence “An order

is placed by a customer”):

Algorithm

Having described all of the architectural steps for the text structuring process

(with Python code examples), an algorithm integrating these steps is as

follows:

4.2.2. Rule-based extraction block

A rule-based system is an automated system encoding human expert’s

knowledge in a narrow area, and is usually made up of sets of rules or

assertions, where the rules are expressed as if-then statements (Grosan &

Abraham, 2011; Narawita & Vidanage, 2016). In our application, rules are

formulated to overcome the limitations of NLP tools and for further information

extraction steps which are specific to UML class meta data.

Additional triplet extraction rules

When Stanford OpenIE fails to process a sentence, extra rules are defined to

identify triplets from a parsing tree of that sentence. A heuristic rule of

identifying Subject-Relation-Object is that nouns are often referred to subjects

and objects, while relations are usually expressed by verbs. Therefore, we

have following rules on triplet extraction when exploring a parsing tree:

1. Find the first label NP (noun phrase) occurs in a sentence, if there is any

label as NN (noun, singular or mass), NNS (plural noun), and NNP

(singular proper noun) in the noun phrase, then assign the corresponding

value as a subject.

2. Find if there is a label VP (verb phrase), NP (noun phrase), PP

(prepositional phrase) occurs after NP (noun phrase), then if there is any

label as VB (verb with base form), VBN (verb, past participle), VBZ (3rd

person singular present verb) or VBP (non3rd person singular present

verb) in those three types of phrases, assign the text value as a predicate

in a triplet.

3. Continue from the second rule set to explore if there are any labels NN,

NNS or NNP in VP, NP, PP, then assign the text value as an object.

Since natural language is complex and ambiguous, the accuracy of applying

the above rules cannot compare with that of Stanford OpenIE. The rules

perform very well in syntactic structures like NP+VP (e.g., “A customer can

place one or more orders”). However, they are less effective with a more

complicated sentence structure composed of multiple NP and VP labels or a

sentence with more than three candidate Classes (concept) value.

UML meta data extraction rules

The syntactic reconstruction rules which are developed in UMGAR (Babar &

Deeptimahanti, 2009) and reinforced in RAPID (More & Phalnikar, 2012),

focused on restricting input sentence from users. Other rules are focused on

metadata extraction, for example, More and Phalnikar (2012), Shinde et al

(2012) designed more than 10 rules on Class, Attribute and Relationship

extractions. Our application defines fewer and more straightforward rules for

metadata extraction due to the results of the last NLP toolkits layer process,

presenting a set of clean and structured triplets. For example, “Subject,

Predicate, Object” directly implied as (Candidate Class, Relationship,

Candidate Class).

With all the triplets result from previous block (Chapter 4.2.1), and the

additional triplet extraction rules discussed above, the UML specific extraction

rules are defined as follows:

1. Class extraction

We have discussed a rule for avoiding Class extraction in the previous block:

remove the words related to (system) design elements such as “application”,

“system”, “user”, etc. After these unintended nouns are removed, the values of

every subject and object from the triplet results become a UML Class.

2. Attribute extraction

If a Class (subject and object value in triplet) has a value like “name”, “date”,

“id”, “code”, “address”, etc, which are commonly regarded as attributes when

defining UML Class models, then it is an Attribute. We collect and store a

predefined list including the most popular Attribute words in our program. It is

used to check the extracted subjects and objects value from triplets. The

predefined Attribute word list contains the words as follow:

However, the word list can be extended manually rather than learning from

user’s modification of the extracted results. To extend the attribute glossary,

more requirements texts should be obtained for manual analysis to identify

common attribute terms.

3. Relationship extraction

The second value (i.e., predicate expressed by verbs or a verb phrase) from

triplets becomes the name of a Relationship between classes. For example,

“A customer places one or more orders.”, “places” is the name of relationship

between “Customer” and “Order”. We have mentioned in the functional

requirements that this application focuses on three types of Relationship

extraction. The rules utilised for Relationship type identification are:

⚫ If the Relationship name is equal to one of the words or phrases “have”,

“has”, “contains”, “contain”, “consists of”, “composed of”, “hold”, “include”,

“maintain”, “maintains”, “divided to”, “has part”, “comprise”, “carry”,

“involve”, “imply”, “embrace” and “is for”, then it indicates a Composition

Relationship.

⚫ If the Relationship name is equal to or includes one of the words or

phrases like “is a”, “is a kind of”, “can be”, “is”, “are”. Then it indicates a

Subtyping Relationship, and the Relationship name should be removed.

⚫ If the Relationship name does not satisfy any of the previous rules, then it

is defined as Association Relationship.

4. Relationship Direction extraction

The Direction of Relationships between classes is defined by utilizing the

active and passive voice in the relationship name. If it is in active, the direction

is defined from subject to object. If it is passive voice, the direction is defined

from object to subject. For instance, “A customer places one or more orders.”

(“Customer”, “places”, “Order”) “An order is placed by customers.” (“Order”, “is

placed by”, “Customer”). Since the predicate in the latter triplet is in passive

voice, the direction result for both triplets is from “Customer” to “Order”. These

can be achieved by using Stanford Dependencies where “nsubj” represent

active and “nsubjpass” represent passive. Therefore,

⚫ If “nsubj” exists in dependency parsing result, the direction is from subject

to object.

⚫ “If “nsubjpass” exists in dependency parsing result, the direction is from

object to subject.

5. Multiplicity extraction

Multiplicity is difficult to extract from a triplet that contains three arguments.

Furthermore, requirement documents frequently omit explicit reference to

association multiplicity. In addition, natural language can be ambiguous with

respect to multiplicity. For example, an NL requirement might be described as

“A teacher gives lectures”, whereas in real life, it happens that more than one

teacher gives a lecture at a school or university. If the algorithm strictly follows

the structure and content of requirement text, the accuracy of multiplicity

identification declines. The widest range “0..*” (zero to many) is not a hundred

percent accurate result, it is not a faulty outcome. The users can refine the

multiplicity result into smaller range. If the Relationship type between two

Classes is Composition, the Multiplicity is given as “1” for the starting Direction

(from) and “0..*” to the end Direction (to).

The very limited capabilities of our rule-based extraction module are:

⚫ the identification method for Attributes is restricted to a predefined word

set.

⚫ The identification method for Multiplicity simply performs the widest range

of “0..*”. The only update is based on the detection of the Composition

Relationship type.

4.3. Implementation

Based on the requirements and architecture design, a web application has

been developed in the Python environment using Django, which is a Python-

based high level web framework. The back-end NLP and Rule processing is

also implemented in Python. The implementation covers the architecture and

algorithm described in Chapter 4.1 and 4.2, and uses an external program

(Ralph Driessen (2020)) and dependent libraries (i.e. NLTK, Stanford

CoreNLP and SpeechRecognition).

Our web application consists of three front-end web pages:

- The home page enables users to upload requirement text files, audio

files, or input text directly. A separate pane on this page displays the

extracted UML meta data in structured textual format.

- The second page enables users to modify uploaded requirement texts.

- The third page integrates a prototype run-time application environment

based on the extracted UML Class meta data (Ralph Driessen (2020)).

This environment enables users to immediately obtain feedback on the

UML Class meta data extracted in the form of a running prototype. It

provides a rapid feedback mechanism on the UML Class model

extracted from the NL requirements text by running the resulting

application. It also contains a visual UML class modeler component to

view the extracted meta data in that form.

Home page

The homepage of this application is displayed in Figure 11. The application

can open and read textual requirements from two different sources including

text files (.txt) and audio files (.wav). User can either uploads a file or input

text in “Requirement text” area. When user click “Convert to text” button, text

data from uploaded file will be displayed in “Requirement text” area. A title

must be input in order to store data and enable requirement modification in

the “Manage Requirement” page.

Figure 11. Home page of application

Apart from using Stanford CoreNLP and NLTK libraries, this application also

uses SpeechRecognition, a python library for speech-to-text, or text-to-speech

conversion, that has support for several engines and APIs online and offline

such as Google Speech Recognition, IBM Speech to Text, Snowboy Hotword

Detection, etc. By default, Google Speech Recognition is utilized in this

application to transform the speech content from an uploaded .wav file to text.

The Python code to achieve this is as follows:

An example of converting .wav file to text is in Figure 12. The application can

perform speech recognition of a long audio file, and handle full stops and

silence in a speech. Due to pronunciation specifics, or background noise in an

audio file, the conversion cannot achieve a hundred percent accurate

conversion result. However, the user can modify the converted sentences

directly in the text area.

Figure 12. Example of audio file conversion

When user clicks “Show metadata” button, there is a text area following the

button to display the UML class metadata result (Figure 13). The backend

implements the design architecture and algorithm of the NLP based extraction

module.

Figure 13. Example of UML class metadata result

Manage Requirement

Figure 14 shows the page for requirement modification. A select menu loads a

previously saved requirement title from the database. The corresponding

contents will be displayed in the text area. The user can make changes to the

requirements text. This page implements the Read and Update functions in

CRUD (Create, Read, Update and Delete).

Figure 14. Manage requirement page

Runnable Prototype

This page integrates an application developed by Ralph Driessen (2020). The

original purpose of the application is to execute a runnable prototype

application based on the metadata of the UML class model entered by the

users. Users can manually add class, attribute, operation, link relationship

between classes with multiplicity, and create an application to link the required

metadata. The application is activated by clicking on a “Run” button. The

source code of the defined application will be created automatically.

Integration brings a win-win situation. On the one hand, for our research, end

users and stakeholders can obtain an initial operational prototype from their

requirements text in a rapid way. This provides them with an easy-to-

understand solution for validating the generated UML class metadata in the

form of an actual (prototype) application. Requirement analysts can also get

faster feedback from end-users and business experts on the results of UML

class metadata. On the other hand, for the tool developed by Ralph Driessen

(2020), its software (prototype) development process extends and includes

the stage of requirement analysis, adding the functionality of our automated

metadata generation tool - rather than manually adding UML class metadata

from scratch.

Figure 15 displays a simple menu page including different parts of the models

that are editable. For example, users can manually create classes by filling in

class names and properties. The classes will be saved as meta data in a

database.

Figure 15. Menu page of runnable prototype page

To integrate with this application, the NLP generated UML class metadata is

saved into the database of this application by calling its methods. A simple

example of the Python integration code to achieve this meta data integration

is displayed in Figure 16. All of the extracted data in the form of UML Classes,

Attributes and Relationships are stored in one go, and the application can be

executed after a few simple steps to define an Application Model.

Figure 16. An Example of Integration codes

Taking the “CourseAttendance” from Figure 11 as an example, the

corresponding metadata outputs in integrated application is shown in Figure

17.

Figure 17. Results from “CourseAttendance” in Runnable Prototype

Figure 18 displays the process and an example running application when

creating a new “coursesystem” application. We link the Class “Course” and its

Attributes “course name”, “code” and “date” to the example application. The

application will be running by clicking the “Run” button. After that, user can

add any course information to the created application. The data will be saved

in database. User can view detail information of their “course list”.

Figure 18. An Example of Executable Application

As can be seen, user can immediately obtain a runnable prototype and make

changes. It is a way of providing end users with an initial prototype, enabling

them evaluate the implications of their requirements, and facilitate rapid

software development and model validation.

5. Example Requirements and Results

In the previous chapter we elaborated the architecture framework, extraction

process, and the NLP toolkits utilised for our UML class metadata generation

application, and described its implementation.

In this chapter, we will demonstrate the functionality of the tool by using a set

of 5 sample textual requirements documents. For each of these, the

generated UML Class meta data is shown in structured textual format, and

also by means of a visual UML Class diagram.

A number of imperfections (“bugs”) are highlighted and classified.

Furthermore, their causes are explained – in most cases they are the result of

bugs in the underlying libraries utilised.

We conclude this chapter by discussing written feedback from an industry

expert in UML tool development as to the functionality and desirability of our

implementation.

5.1. Input Data Preparation

Ferrari et al (2017) published a dataset containing 79 public NL software

requirement documents collected from the web, the majority of which are

software requirement specifications (SRS). SRS is normally regarded as a

result of the requirement engineering process after collecting requirements

from stakeholders (Pekar et al, 2014). The SRS document contains the

general system requirements, and specific information such as functional

requirements, non-functional requirements and system design (e.g. UML

diagrams, design models). However, the focus of this research is on

extracting UML Class information from requirements expressed by

stakeholders, rather than from well-organised documentation results from the

process of collecting and analysing requirements. Therefore, instead of using

this dataset directly as input in our application, five sample requirements are

compiled with reference to some paragraphs from the dataset.

5.2. “Police Station System”: Requirements and Results

This section describes the “Police Station System” requirements test case, in

terms of its input and the corresponding output results. The UML class

diagram has been drawn manually according to the meta data results

generated in order to give an intuitive feel. Several classes of bugs have been

annotated to the UML diagram, and are further explained in a section

following the diagram. Four additional example requirements (and their

corresponding outputs) are exhibited in appendix A.

Bug Classification and Causes

To extract UML class metadata, this program relies on two NLP toolkits:

Stanford CoreNLP and NLTK. These two toolkits provide various pre-built

methods to accomplish different tasks in NLP. In our project, the OpenIE

(Open Information Extraction) from Stanford CoreNLP is one of the main

models we use to extract triplets (Subject – Relation - Object) for each

sentence. For example, “An order is for multiple products”. The OpenIE result

is (‘Order’, ‘is for’, ‘Products’). With this triplet, we can define there are classes

as “Order” and “Product”, a relationship between them named as “is for”.

We use OpenIE because it is useful when there is limited or no training data

for relation extraction tasks, and it is easy to extract the information required

from open domain triples. However, there are unexpected results for some

particular sentences, which result in small errors emerge when identifying

UML class metadata. In this case, we have characterized those errors into 4

different types:

⚫ Type 1: Incomplete information extraction.

OpenIE fails to extract information from part of a sentence. An example is

displayed in figure 19 that OpenIE extracts the relationship between “police

officer” and “duty sergeant”, but fail to identify and include relationship

between “police officer” and “crime officer”.

Figure 19. Example of Failure

⚫ Type2: Multiple entities problems.

Three or more entities exist in one sentence, and those entities have

relationships with each other. For example, “Police officer can add multiple

case entries to a particular case.”, the OpenIE result is (‘police officer’, ‘add

multiple case entries’, ‘case’; ‘police officer’, ‘add’, ‘case entries’)

⚫ Type 3: Noun + Prep + Noun problem.

For example, “location in supermarket” will be extracted as an object

⚫ Others

For example, OpenIE misunderstands the sentence, the sentence has co-

reference problems, or result is correct according to the sentence, but leads to

dangle problems in the diagram, etc.

The diagram will highlight the type of errors by different color and attach a

specific error explanation. Every test case consists of requirement text, the

output metadata from our program, and UML class diagram with error

explanation (see Appendix A).

Input scenario 1:

Requirement title

Police Station System

Requirement text

“Citizens can register their complaints by speaking to a police officer. The

police officer is either a duty sergeant or a crime officer. The police officer

registers the citizen’s details such as name, address, contact information

and so on. The police officer will then assign a case, and initiate the

investigation process.

During the investigation process, the police officer collects evidence and

facts, and records them for the relevant case. Each case has an id, a

creation date, a crime code, and a resolution date. Furthermore, a case

mentions the citizen that registered the complaint, and it mentions any

suspects. Police officers can add multiple case entries to a particular case.

For each case, the police officer will summon and interrogate suspects.

When enough evidence against a suspect exists, a police officer will arrest

the suspect. Following an arrest, court proceedings are initiated, and the

suspect will be sent to a court. The court will then hand out a sentence, and

the suspect may be fined, or sent to jail. ”

The following is the intermediate output (i.e, triplets result after Text

Structuring Process) based on the above requirements texts:

[('citizens', 'speaking to', 'police officer'), ('citizens', 'can register', 'complaints'),

('police officer', 'is', 'duty sergeant'), ('police officer', 'registers', 'citizen details'),

 ('police officer', 'initiate', 'investigation process'), ('police officer', 'assign',

'case'), ('police officer', 'collects', 'evidence'), ('police officer', 'collects', 'facts'),

('case', 'has', 'resolution date'), ('case', 'has', 'id'), ('case', 'has', 'creation date'),

('case', 'has', 'crime code'), ('case', 'mentions', 'citizen'), ('case', 'mentions',

'suspects'), ('police officers', 'can add case entries to', 'case'), ('police officers',

'can add', 'case entries'), ('police officer', 'summon', 'case'), ('police officer',

'interrogate', 'suspects'), ('police officer', 'arrest', 'suspect'), ('court

proceedings', 'are initiated following', 'arrest'), ('court', 'hand out', 'sentence'),

('suspect', 'sent to', 'jail')]

The UML class metadata output generated by our NLP tool:

Corresponding UML class diagram

Figure 20. UML class diagram from police station system

Error explanation:

Type 1: Incomplete information extraction (OpenIE fails to extract

information from part of a sentence)

⚫ “The police officer is either a duty sergeant or a crime officer.” Triplets:

[('police officer', 'is', 'duty sergeant')] OpenIE fails to extract “police officer

is a crime officer”.

(Note: OpenIE has incomplete information extraction problem when

processing the sentence containing the words: “can be”, “such as”, “is”,

“are”, etc, which sometimes indicates subtyping relations. If the sentence

contains more than one object, OpenIE will extract the first object

appeared in the sentence.)

⚫ “The police officer registers the citizen’s details such as name, address,

contact information and so on.” Triplets: [('police officer', 'registers', 'citizen

details')] The OpenIE fails to extract information from the latter part of the

sentence.

Type 2: Multiple entities problem (Three or more entities exist in one

sentence, and those entities have relationships with each other)

⚫ “Police officer can add multiple case entries to a particular case.” Triplets:

[('police officers', 'add case entries to', 'case'), ('police officers', 'add',

'case entries')] The ideal result is (‘case entry’, ‘is for’, ‘case’) or (‘case’,

‘has’, ‘case entry’) accompany (‘police officers’, ‘add’, ‘case entries’)

Others (understanding problem and dangle problem)

⚫ “For each case, the police officer will summon and interrogate suspects.”

Triplets: [('police officer', 'summon for', 'case'), ('police officer',

'interrogate', 'suspects')] OpenIE separate the sentence as “for each case,

the police will summon”; “The police officer will interrogate suspects” to

process.

⚫ “Following an arrest, court proceedings are initiated.” Triplets: [('court

proceedings', 'are initiated following', 'arrest')] It is not wrong

according to the sentence but results in dangle problem in the UML class

diagram.

5.3. Discussion of UML Experts Verification Results

The results of sample requirements texts, a screen-recorded video of our

application, and a questionnaire are delivered to twenty UML experts (from

industry and academia) as a verification and evaluation session. In the

questionnaire, the UML experts were asked, more specifically, to give a score

to the accuracy of UML class metadata results, give feedback on our tool, and

their experience and opinion on NLP-based UML model generation tools. The

design of questionnaire is exhibited in Appendix B. Unfortunately, due to the

recipients being busy, it resulted in only 2 responses.

As explained earlier, our results point out and explain some of the errors in the

extraction results from the use of Stanford OpenIE package. To begin with,

respondents were asked to rate the results from two different perspectives.

When disregarding the highlighted errors, the two evaluators gave a score of

5 and 3 respectively (10 as maximum score). When considering that the

situation and error was highlighted and explained, both of them gave 7 for the

accuracy of the results, and affirmed that our tool can assist the requirement

analysis process. One of the evaluators specified that typically, the first goal in

elicitation process is to seek an 80/20 gain. The accuracy of our results has

not yet achieved 80% of accuracy from his perspective because of dependent

libraries. However, the other respondent stressed that even with the bugs

remained, using our tool is a good way to ramp up a design rapidly.

Evaluators regarded our textual extraction results easy to read and modify.

While an evaluator embraced the opinion that textual results can be easy to

manipulate and copy-paste, and thus reducing the time on dealing with layout,

the other raised that visual representation is a benchmark that has been

established in this particular UML class modelling field. Therefore, the

diagram generation module should be added as a feature in this tool to meet

this requirement.

As for the integrated work (“Runnable Prototype” page), the evaluators gave

positive attitude to its’ possibility on getting end users more involved during

requirement analysis process. This integration effort is regarded as a way to

check the understanding of requirements, correct, qualify and extend the

requirements.

The questionnaire also received suggestions on the improvement of this tool

in the future, which are displayed as follows:

⚫ Adding a machine learning feedback loop to improve the precision.

⚫ Even if without machine learning applied, the tool should be improved in a

way of maintaining synchronization between text and model results,

particularly when users modify the results. This means that the metadata

results can be modified by users and make changes on the original

requirements texts.

⚫ Parsing problems should be handled, and subtype and instance should be

distinguished. Therefore, more efforts on improving the extraction

methodology should be made in order to cover more elements

identification.

⚫ The tool cannot detect synonyms and other terminology defined in the

text. It would be better for the tool to generate a general description of

terminology of the extracted domain. To achieve this, ontology induction

would be valuable to this tool.

Neither evaluator had access to or used an NLP-based UML model

generation tool, but we received some of their ideas and requests for such a

tool. While one of the respondents claim to reduce drawing time, another UML

expert desire a characteristic of interactivity for such a tool. A Siri-like

conversation tool that generating and clarifying qualified questions to verify

and correct the requirements when they are emerged would be preferred. This

can be achieved to develop a chatbot that addressing the issue of input

requirement regulations, and a validation process during the conversation,

thus to generate a precise result from user’s requirement. However,

requirement analysis process should co-ordinate various perspectives from

different stakeholders, a chatbot is more specific to an individual. In this case,

the involvement of a wider range of stakeholders remains an issue.

6. Conclusion

This thesis presents a new architecture framework from the perspective of

assisting software requirements analysis process by combining the use of

rules and NLP tools in a different manner. Other studies have typically limited

the user’s requirements input text to a significant extent, indicating that the

steps of text cleaning and structuring are left to humans, and the analysis

process of those tools are not fully automated. The tool we have developed

replaces this step by utilizing the NLP toolkits, i.e., transforming the

requirements text into structured triplet text data, improving the efficiency on

text structuring from raw requirements text.

Furthermore, previous research tended to develop extraction tools for UML

experts or requirements analysts as users. Such tools did increase the speed

of requirements analysis to some extent, but created a separation of

communication with the main owners of the requirements – the stakeholders

–, and thus in responding to changes in requirements and validation feedback.

Software nowadays needs to evolve rapidly, in which analysts are required to

interview and communicate with all stakeholders of the software, and adapt to

their changes and feedback immediately. Under this circumstance, instead of

reorganising the collected requirements themselves and analysing them with

a tool after communication, this research integrates with a run-time application

solution developed by Driessen (2020). The integrated application allows the

analysts to immediately acquire UML class metadata results, and a run-time

prototype based on them, immediately after stakeholders express their

requirements. The stakeholders can view the initial prototype from their

requirements and modify it.

6.1. Limitations

While the framework developed provides an improved solution for extracting

UML class metadata from requirements texts and the integration effort offers a

possibility for all stakeholders involved in the requirement analysis process,

there are few things to keep in mind. Firstly, the sample of requirements text

data (Chapter 5.2 & Appendix A) on which these extraction results are based

is quite small. A larger sample of realistic requirements data, perhaps spread

across various software development organizations, is necessary to expand

the test cases for this tool. This expansion could also allow for greater

extraction mechanisms to be developed or evolved, particularly as software

requirements expressed in NL are complex and most of the time contain a

number of dedicated words or specific abbreviations. Secondly, the

mechanism for extracting multiplicity become difficult in our frameworks since

the structured triplet data contains three arguments, while the multiplicity is

usually expressed in adjective or numeral words, which were neglected in

triplet’s extraction. Thirdly, the only methodology of attribution extraction in

this research is restricted to a set of attribute words, and the mechanism

cannot extend the attribute glossary or Rules by catching or learning from

user input. Fourthly, while our tool can extract less structured requirements

texts (the tool uses NLP toolkits to process text structuring), suggestively, the

tool becomes less effective when processing over-complex sentences or

compound sentences (i.e, contains reference words like “which”). Lastly, the

questionnaire produced for the evaluation of the results and tools collected

very limited responses. Also, the only participants in the questionnaire were

UML experts or requirements engineers. More stakeholders need to be

included to assess our tool.

6.2. Future Work

Due to the limitations of requirements data, the extraction methodology in this

research forgoes any machine learning or deep learning techniques, opting

instead for an approach that uses NLP tools and rules. An aspect of further

research from this might be training models for relationship and multiplicity

prediction, or conducting supervised learning for ontology induction once

sufficient realistic software requirements data are obtained. This can provide a

more intelligent solution for this research field.

file:///C:/Users/surface/Downloads/Police_Station_System%23_

As mentioned in chapter 5, the Stanford OpenIE package we used in this tool

failed to extract triplets from incomplete sentences. In this case, future works

could explore other rising NLP toolkits, such as TensorFlow-based Google

SyntaxNet, perhaps able to deal with more free text, or compare NLP toolkits

used in the development of similar extraction tools.

Furthermore, chapter 5 also mentions an extensibility problem in that the

mechanism cannot update the glossary or create Rules based on user

modifications. This indicates a data driven implementation in the future

research work. For example, the extracted UML Class meta data should

update when user changes Multiplicity, Relationship, Class value, or add a

new Class name, new attribute in prototype application. Besides that, once

the extracted UML Class metadata is updated, is it possible to update or

renew the corresponding requirements text at the same time? A two-way

integration and generation should be worked out in the future.

In addition, the integration effort offered the possibility to involve all the

stakeholders in requirement analysis process and these requirements owners

were supposed to evaluate the results. However, they were not fully included

in our verification questionnaire. UML experts were the only group of users

who participated in this questionnaire and evaluated the results by giving a

score. What could not be confirmed was the evaluation criteria they used to

give this score, in other words, the evaluation indicators were in a black box.

These in turn raise some further research questions, e.g., what are the

metrics used to evaluate the accuracy of the extraction results? How do other

stakeholders (end-users, business specialists, software developer, etc.)

validate the results? Is there a framework to reconcile these judgements from

different stakeholders’ perspectives? Our evaluation session is set up by

sending results and a screen video. However, the ideal process would be to

conduct task-based evaluations by providing a tool that the evaluator can play

around in practice. In this case, ensure consistency of input is required and

evaluators should be provided with input texts of similar length and similar

complexity. Then, a series of task-based activities and questions can be

undertaken. This was not achieved in our study due to the time-consuming

nature of finding and contacting candidate evaluators, and such evaluation

sessions (particularly in the absence of relevant social networks in industry

and the uncertainty of response time), but could be carried out in the future

studies.

Another interesting research angle might be extending our tool to automate

the generation of UML class diagrams, as our methodology focuses on

extracting UML class metadata. In our questionnaire, there is a respondent

who also mentioned that some people prefer a more intuitive or visual model

(i.e., a diagram). Based on this research tool, a diagram editor can be

developed to meet the demands of this group of users.

7. References

1. Driessen, R. (2020). UML Class Models as First-Class Citizen: Metadata

at Design-time and Run-time. Leiden University. Leiden Institute of

Advanced Computer Science (LIACS). Pp 1-42.

2. Berzins, V., Martell, C., Luqi., Adams, P. (2008). Innovations in Natural

Language Document Processing for Requirements Engineering. In: Paech

B., Martell C. (eds) Innovations for Requirement Analysis. From

Stakeholders’ Needs to Formal Designs. Monterey Workshop 2007.

Lecture Notes in Computer Science, vol 5320. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-540-89778-1_11

3. Westland, J, C. (2002). The cost of errors in software development:

evidence from industry. Journal of Systems and Software. 62(1). pp 1-9.

https://www.sciencedirect.com/science/article/pii/S0164121201001303

4. Kof, L. (2005). Natural Language Processing: Mature Enough for

Requirements Documents Analysis?. In: Montoyo A., Munoz R., Merais E.

(eds) Natural Language Processing and Information Systems. NLDB 2005.

Lecture Notes in Computer Science, vol 3513. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/11428817_9.

5. Boehm, B. & Basili, V, R. (2001). Software defect reduction top 10 list.

IEEE Computer. 34(1). pp. 135-137

https://www.researchgate.net/publication/220476082_Software_Defect_Re

duction_Top_10_List

6. Gupta, A, K. & Deraman, A. (2019). A Framework for Software

Requirement Ambiguity Avoidance. International Journal of Electrical and

Computer Engineering (IJECE) 9(6). Pp.5436-5445.

https://doi.org/10.1007/978-3-540-89778-1_11
https://www.sciencedirect.com/science/article/pii/S0164121201001303
https://doi.org/10.1007/11428817_9
https://www.researchgate.net/publication/220476082_Software_Defect_Reduction_Top_10_List
https://www.researchgate.net/publication/220476082_Software_Defect_Reduction_Top_10_List

https://www.researchgate.net/publication/337664522_A_framework_for_so

ftware_requirement_ambiguity_avoidance

7. Agarwal, R. & Sinha, A, P. (2003). Object-Oriented Modeling with UML: A

Study of Developers’ Perceptions. Communications of the ACM. 46(9).

Pp.248-256.

https://www.researchgate.net/publication/220424961_Object-

oriented_modeling_with_UML_A_study_of_developers'_perceptions

8. Narawita, C, R. & Vidanage, K. (2016). UML Generator – An Automated

System for Model Driven Development. International Conference on

Advances in ICT for Emerging Regions (ICTer). Pp. 250-256.

https://www.researchgate.net/publication/312964481_UML_generator_-

_an_automated_system_for_model_driven_development

9. Deshpande, D. (2012). Textual Requirement Analysis for Object Model

Designing by Using NLP. International Journal of Innovative Research in

Science, Engineering and Technology. 1(2). Pp. 270-276.

https://www.ijirset.com/upload/december/23_Textual.pdf

10. Arellano, A., Carney, E. & Austin, M, A. (2015). Natural Language

Processing of Textual Requirements. The Thenth International Conference

on Systems. Pp. 93-97.

https://www.researchgate.net/publication/290225986_Frameworks_for_Na

tural_Language_Processing_of_Textual_Requirements

11. Osman, C, C. & Zălhan, P, G. (2016). From Natural Language Text to

Visual Models: A Survey of Issues and Approaches. Informatica

Economică. 20(4). Pp. 44-61.

https://www.researchgate.net/publication/311966768_From_Natural_Lang

uage_Text_to_Visual_Models_A_survey_of_Issues_and_Approaches

https://www.researchgate.net/publication/337664522_A_framework_for_software_requirement_ambiguity_avoidance
https://www.researchgate.net/publication/337664522_A_framework_for_software_requirement_ambiguity_avoidance
https://www.researchgate.net/publication/220424961_Object-oriented_modeling_with_UML_A_study_of_developers'_perceptions
https://www.researchgate.net/publication/220424961_Object-oriented_modeling_with_UML_A_study_of_developers'_perceptions
https://www.researchgate.net/publication/312964481_UML_generator_-_an_automated_system_for_model_driven_development
https://www.researchgate.net/publication/312964481_UML_generator_-_an_automated_system_for_model_driven_development
https://www.ijirset.com/upload/december/23_Textual.pdf
https://www.researchgate.net/publication/290225986_Frameworks_for_Natural_Language_Processing_of_Textual_Requirements
https://www.researchgate.net/publication/290225986_Frameworks_for_Natural_Language_Processing_of_Textual_Requirements
https://www.researchgate.net/publication/311966768_From_Natural_Language_Text_to_Visual_Models_A_survey_of_Issues_and_Approaches
https://www.researchgate.net/publication/311966768_From_Natural_Language_Text_to_Visual_Models_A_survey_of_Issues_and_Approaches

12. Hevner, A, R., March, S, T., Park, J. & Ram, S. (2004). Design Science in

Information System Research. MIS Quarterly. 28(1). Pp. 75-105.

https://www.researchgate.net/publication/201168946_Design_Science_in_

Information_Systems_Research

13. Fowler, M. (2003). UML Disstilled 3rd Edition: A Brief Guide to the

Standard Object Modeling Language. Pp.14-25 & pp. 35-46.

http://ce.sharif.edu/courses/96-97/2/ce418-

1/resources/root/Books/UMLDistilled.pdf [Accessed date: 05-03-2020]

14. Hamilton, K. & Miles, R. (2006). Learning UML 2.0. Pp. 22 & Pp. 89-125.

https://flatis.moe/uploads/uploads/uml.pdf [Accessed date: 05-03-2020]

15. Joseph, S, R., Hlimani, H., Letsholo, K., Kaniwa, F., & Sedimo, K. (2016).

Natural Language Processing: A Review. International Journal of

Research in Engineering and Applied Sciences. 6(3). Pp. 207-210.

https://www.researchgate.net/publication/309210149_Natural_Language_

Processing_A_Review [Accessed date: 03-09-2020]

16. Jones, K, S. (2001). Natural Language Processing: A Historical Review.

University of Cambridge. Pp. 2-10.

https://www.cl.cam.ac.uk/archive/ksj21/histdw4.pdf [Accessed date: 03-09-

2020]

17. Dawood, O.S., Sahraoui, A.E.K. (2017). From Requirements Engineering to

UML Using Natural Language Processing – Survey Study. European

Journal of Industrial Engineering. 2(1). pp. 44-50.

doi:10.24018/ejers.2017.2.1.236.

https://www.researchgate.net/publication/314486237_From_Requirements

_Engineering_to_UML_using_Natural_Language_Processing_-

_Survey_Study

https://www.researchgate.net/publication/201168946_Design_Science_in_Information_Systems_Research
https://www.researchgate.net/publication/201168946_Design_Science_in_Information_Systems_Research
http://ce.sharif.edu/courses/96-97/2/ce418-1/resources/root/Books/UMLDistilled.pdf
http://ce.sharif.edu/courses/96-97/2/ce418-1/resources/root/Books/UMLDistilled.pdf
https://flatis.moe/uploads/uploads/uml.pdf
https://www.researchgate.net/publication/309210149_Natural_Language_Processing_A_Review
https://www.researchgate.net/publication/309210149_Natural_Language_Processing_A_Review
https://www.cl.cam.ac.uk/archive/ksj21/histdw4.pdf
https://www.researchgate.net/publication/314486237_From_Requirements_Engineering_to_UML_using_Natural_Language_Processing_-_Survey_Study
https://www.researchgate.net/publication/314486237_From_Requirements_Engineering_to_UML_using_Natural_Language_Processing_-_Survey_Study
https://www.researchgate.net/publication/314486237_From_Requirements_Engineering_to_UML_using_Natural_Language_Processing_-_Survey_Study

18. Yalla, P., Sharma, N. (2015) Integrating Natural Language Processing and

Software Engineering. International Journal of Software Engineering and Its

Applications. 9(11). Pp. 127-136.

https://www.researchgate.net/publication/292299148_Integrating_Natural_

Language_Processing_and_Software_Engineering

19. Koerner, S, J., Landhäußer, M., Tichy, W. (2014). From Requirements to

UML Models and Back: How Automatic Processing of Text can Support

Requirements Engineering. Software Qual J. (22). Pp 121-149.

https://www.researchgate.net/publication/257665306_From_requirements_

to_UML_models_and_back_How_automatic_processing_of_text_can_sup

port_requirements_engineering

20. Sarawagi, S. (2007). Information Extraction. Foundation and Trends in

Databases. 1(3). Pp 261-377.

https://books.google.nl/books?id=AqHpDoYPjLQC&printsec=frontcover#v=

onepage&q&f=false

21. Cheng X., Kong X., Liao L., Li B. (2020). A Combined Method for Usage

of NLP Libraries Towards Analyzing Software Documents. In: Dustdar

S., Yu E., Salinesi C., Rieu D., Pant V. (eds) Advanced Information

Systems Engineering. CAiSE 2020. Lecture Notes in Computer

Science, vol 12127. Springer, Cham. https://doi.org/10.1007/978-3-030-

49435-3_32

22. Steven, B., Loper, E., Klein, E. (2009). Natural Language Processing with

Python. O’Reilly Media Inc.

https://www.researchgate.net/publication/220691633_Natural_Language_

Processing_with_Python

23. Azzouz, Z.B., Karaa, W.B.A., Singh, A., Dey, N., Ashour, A.S., Ghezala, H.B.

(2015). Automatic Builder of Class Diagram (ABCD): An Application of UML

Generation From Functional Requirements. Software Practice and

Experience, 46(12), pp. 1443-1458. doi: 10.1002/spe.2384

https://www.researchgate.net/publication/292299148_Integrating_Natural_Language_Processing_and_Software_Engineering
https://www.researchgate.net/publication/292299148_Integrating_Natural_Language_Processing_and_Software_Engineering
https://www.researchgate.net/publication/257665306_From_requirements_to_UML_models_and_back_How_automatic_processing_of_text_can_support_requirements_engineering
https://www.researchgate.net/publication/257665306_From_requirements_to_UML_models_and_back_How_automatic_processing_of_text_can_support_requirements_engineering
https://www.researchgate.net/publication/257665306_From_requirements_to_UML_models_and_back_How_automatic_processing_of_text_can_support_requirements_engineering
https://books.google.nl/books?id=AqHpDoYPjLQC&printsec=frontcover#v=onepage&q&f=false
https://books.google.nl/books?id=AqHpDoYPjLQC&printsec=frontcover#v=onepage&q&f=false
https://doi.org/10.1007/978-3-030-49435-3_32
https://doi.org/10.1007/978-3-030-49435-3_32
https://www.researchgate.net/publication/220691633_Natural_Language_Processing_with_Python
https://www.researchgate.net/publication/220691633_Natural_Language_Processing_with_Python

https://www.researchgate.net/publication/283571085_Automatic_Builder_o

f_Class_Diagram_ABCD_an_Application_of_UML_Generation_From_Fun

ctional_Requirements

24. Overmyer, S.P., Benoit, L., Owen, R. (2001). Conceptual Modeling through

Linguistic Analysis Using LIDA. Proceedings of the 23rd International

Conference on Software Engineering (ICSE), pp. 401-410. doi:

10.1109/ICSE.2001.919113.

https://www.semanticscholar.org/paper/Conceptual-modeling-through-

linguistic-analysis-Overmyer-

Lavoie/e43ee1a276c3b6c1f13f1942e49026058718fc63

25. Barker, R. (1990). Case Method: Entity Relationship Modelling. Addison-

Wesley Professional, ISBN 10: 0201416964.

26. Chen, P.P. (1983). English Sentence Structure and Entity-Relationship

Diagrams. Information Sciences, 29(2-3), pp. 127-149. doi:

https://doi.org/10.1016/0020-0255(83)90014-2

27. Perez-Gonzalez, H, G., Kalita, J, K. (2002) Automatically Generating Object

Models from Natural Language Analysis. Proceedings of the 17th Annual

ACM SIGPLAN Conference on Object-oriented Programming, System,

Languages, and Applications (OOPSLA’ 02). pp. 86-87.

28. Harmain, H, M., Gaizauskas, R. (2003) CM-Builder: A Natural Language-

based CASE Tool for Object-oriented Analysis. Automated Software

Engineering, 10(2), pp. 157-191. doi: 10.1023/A:1022916028950

https://www.researchgate.net/publication/226432934_CM-

Builder_A_natural_language-based_CASE_tool_for_object-

oriented_analysis

29. Herchi, H., Abdessalem, W, B. (2012) From User Requirements to UML

Class Diagram. Proceedings of International Conference on Computer

Related Knowledge (ICCRK’ 2012). Sousse, Tunisia.

https://www.researchgate.net/publication/283571085_Automatic_Builder_of_Class_Diagram_ABCD_an_Application_of_UML_Generation_From_Functional_Requirements
https://www.researchgate.net/publication/283571085_Automatic_Builder_of_Class_Diagram_ABCD_an_Application_of_UML_Generation_From_Functional_Requirements
https://www.researchgate.net/publication/283571085_Automatic_Builder_of_Class_Diagram_ABCD_an_Application_of_UML_Generation_From_Functional_Requirements
https://www.semanticscholar.org/paper/Conceptual-modeling-through-linguistic-analysis-Overmyer-Lavoie/e43ee1a276c3b6c1f13f1942e49026058718fc63
https://www.semanticscholar.org/paper/Conceptual-modeling-through-linguistic-analysis-Overmyer-Lavoie/e43ee1a276c3b6c1f13f1942e49026058718fc63
https://www.semanticscholar.org/paper/Conceptual-modeling-through-linguistic-analysis-Overmyer-Lavoie/e43ee1a276c3b6c1f13f1942e49026058718fc63
https://doi.org/10.1016/0020-0255(83)90014-2
https://www.researchgate.net/publication/226432934_CM-Builder_A_natural_language-based_CASE_tool_for_object-oriented_analysis
https://www.researchgate.net/publication/226432934_CM-Builder_A_natural_language-based_CASE_tool_for_object-oriented_analysis
https://www.researchgate.net/publication/226432934_CM-Builder_A_natural_language-based_CASE_tool_for_object-oriented_analysis

https://www.researchgate.net/publication/232808848_From_user_require

ments_to_UML_class_diagram

30. More, P., Phalnikar, R. (2012) Generating UML Diagrams from Natural

Language Specifications. International Journal of Applied Information

Systems. 1(8). pp. 19-23. doi: 10.5120/ijais12-450222.

https://www.researchgate.net/publication/258650012_Generating_UML_Di

agrams_from_Natural_Language_Specifications

31. Dewar, R, G., Li, K., Pooley, R, J. (2005). Object-Oriented Analysis Using

Natural Language Processing. Linguistic Analysis.

https://www.semanticscholar.org/paper/Object-oriented-Analysis-Using-

Natural-Language-Dewar-

Li/e9e464dc4bf52d93adadb140c410a950ed04aea9

32. Palmer, D. 2010. Handbook of Natural Language Processing. Chapter 2.

Text Preprocessing. pp. 9-28.

https://karczmarczuk.users.greyc.fr/TEACH/TAL/Doc/Handbook%20Of%2

0Natural%20Language%20Processing,%20Second%20Edition%20Chapm

an%20&%20Hall%20Crc%20Machine%20Learning%20&%20Pattern%20

Recognition%202010.pdf

33. Palmer, D. 2000. Handbook of Natural Language Processing. Chapter 2.

Tokenisation and sentence segmentation. pp. 11.

https://books.google.nl/books?hl=en&lr=&id=VoOLvxyX0BUC&oi=fnd&pg=

PA11&ots=ww82HJ3Ot-

&sig=5CyuoDHxUHKxKd2JiXUjIT_hSvY&redir_esc=y#v=onepage&q&f=fal

se

34. Camacho-Collados, J., Pilehvar, M, T. 2018. On the Role of Text

Preprocessing in Neural Network Architectures: An Evaluation Study on

Text Categorization and Sentiment Analysis. Proceedings of the 2018

EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural

Networks for NLP. pp. 40-46. Association for Computational Linguistics.

https://www.researchgate.net/publication/232808848_From_user_requirements_to_UML_class_diagram
https://www.researchgate.net/publication/232808848_From_user_requirements_to_UML_class_diagram
https://www.researchgate.net/publication/258650012_Generating_UML_Diagrams_from_Natural_Language_Specifications
https://www.researchgate.net/publication/258650012_Generating_UML_Diagrams_from_Natural_Language_Specifications
https://www.semanticscholar.org/paper/Object-oriented-Analysis-Using-Natural-Language-Dewar-Li/e9e464dc4bf52d93adadb140c410a950ed04aea9
https://www.semanticscholar.org/paper/Object-oriented-Analysis-Using-Natural-Language-Dewar-Li/e9e464dc4bf52d93adadb140c410a950ed04aea9
https://www.semanticscholar.org/paper/Object-oriented-Analysis-Using-Natural-Language-Dewar-Li/e9e464dc4bf52d93adadb140c410a950ed04aea9
https://karczmarczuk.users.greyc.fr/TEACH/TAL/Doc/Handbook%20Of%20Natural%20Language%20Processing,%20Second%20Edition%20Chapman%20&%20Hall%20Crc%20Machine%20Learning%20&%20Pattern%20Recognition%202010.pdf
https://karczmarczuk.users.greyc.fr/TEACH/TAL/Doc/Handbook%20Of%20Natural%20Language%20Processing,%20Second%20Edition%20Chapman%20&%20Hall%20Crc%20Machine%20Learning%20&%20Pattern%20Recognition%202010.pdf
https://karczmarczuk.users.greyc.fr/TEACH/TAL/Doc/Handbook%20Of%20Natural%20Language%20Processing,%20Second%20Edition%20Chapman%20&%20Hall%20Crc%20Machine%20Learning%20&%20Pattern%20Recognition%202010.pdf
https://karczmarczuk.users.greyc.fr/TEACH/TAL/Doc/Handbook%20Of%20Natural%20Language%20Processing,%20Second%20Edition%20Chapman%20&%20Hall%20Crc%20Machine%20Learning%20&%20Pattern%20Recognition%202010.pdf
https://books.google.nl/books?hl=en&lr=&id=VoOLvxyX0BUC&oi=fnd&pg=PA11&ots=ww82HJ3Ot-&sig=5CyuoDHxUHKxKd2JiXUjIT_hSvY&redir_esc=y#v=onepage&q&f=false
https://books.google.nl/books?hl=en&lr=&id=VoOLvxyX0BUC&oi=fnd&pg=PA11&ots=ww82HJ3Ot-&sig=5CyuoDHxUHKxKd2JiXUjIT_hSvY&redir_esc=y#v=onepage&q&f=false
https://books.google.nl/books?hl=en&lr=&id=VoOLvxyX0BUC&oi=fnd&pg=PA11&ots=ww82HJ3Ot-&sig=5CyuoDHxUHKxKd2JiXUjIT_hSvY&redir_esc=y#v=onepage&q&f=false
https://books.google.nl/books?hl=en&lr=&id=VoOLvxyX0BUC&oi=fnd&pg=PA11&ots=ww82HJ3Ot-&sig=5CyuoDHxUHKxKd2JiXUjIT_hSvY&redir_esc=y#v=onepage&q&f=false

https://www.aclweb.org/anthology/W18-5406.pdf

35. Hay, D, C. 2006. Data Model Patterns: A Metadata Map. Chapter 1. About

metadata models. pp.1- 7.

https://books.google.nl/books?hl=en&lr=&id=YxDBaWj9itkC&oi=fnd&pg=P

P1&dq=Data+Model+Patterns:+A+Metadata+Map+&ots=PkZoK1FcwI&sig

=aHk1BnrzPm4MBZ49uqLUQ4BkZyU&redir_esc=y#v=onepage&q=Data

%20Model%20Patterns%3A%20A%20Metadata%20Map&f=false

36. Singh, S. 2018. Natural Language Processing for Information Extraction.

arXiv:1807.02383 [cs.CL]. pp.1-24.

https://arxiv.org/abs/1807.02383v1

37. Khairova N., Petrasova S., Mamyrbayev O., Mukhsina K. (2020) Open

Information Extraction as Additional Source for Kazakh Ontology

Generation. In: Nguyen N., Jearanaitanakij K., Selamat A., Trawiński B.,

Chittayasothorn S. (eds) Intelligent Information and Database Systems.

ACIIDS 2020. Lecture Notes in Computer Science, vol 12033. Springer,

Cham. pp. 86-96.

https://doi.org/10.1007/978-3-030-41964-6_8

38. Chikkamath, M., Ponnalagu, K., Prasad, P, V, R, D. & Veera, P, R, M.

2018. Extracting Conjunction Patterns in Relation Triplets from Complex

Requirement Sentence. International Journal of Computer Trends and

Technology (IJCTT). 60(3). pp. 133-143.

https://www.researchgate.net/publication/327934144_Extracting_Conjuncti

on_Patterns_in_Relation_Triplets_from_Complex_Requirement_Sentence

39. Pinto, A., Oliveira, H, G. & Alves, A, O. 2016. Comparing the Performance

of Different NLP Toolkits in Formal and Social Media Text.

https://drops.dagstuhl.de/opus/volltexte/2016/6008/

https://www.aclweb.org/anthology/W18-5406.pdf
https://books.google.nl/books?hl=en&lr=&id=YxDBaWj9itkC&oi=fnd&pg=PP1&dq=Data+Model+Patterns:+A+Metadata+Map+&ots=PkZoK1FcwI&sig=aHk1BnrzPm4MBZ49uqLUQ4BkZyU&redir_esc=y#v=onepage&q=Data%20Model%20Patterns%3A%20A%20Metadata%20Map&f=false
https://books.google.nl/books?hl=en&lr=&id=YxDBaWj9itkC&oi=fnd&pg=PP1&dq=Data+Model+Patterns:+A+Metadata+Map+&ots=PkZoK1FcwI&sig=aHk1BnrzPm4MBZ49uqLUQ4BkZyU&redir_esc=y#v=onepage&q=Data%20Model%20Patterns%3A%20A%20Metadata%20Map&f=false
https://books.google.nl/books?hl=en&lr=&id=YxDBaWj9itkC&oi=fnd&pg=PP1&dq=Data+Model+Patterns:+A+Metadata+Map+&ots=PkZoK1FcwI&sig=aHk1BnrzPm4MBZ49uqLUQ4BkZyU&redir_esc=y#v=onepage&q=Data%20Model%20Patterns%3A%20A%20Metadata%20Map&f=false
https://books.google.nl/books?hl=en&lr=&id=YxDBaWj9itkC&oi=fnd&pg=PP1&dq=Data+Model+Patterns:+A+Metadata+Map+&ots=PkZoK1FcwI&sig=aHk1BnrzPm4MBZ49uqLUQ4BkZyU&redir_esc=y#v=onepage&q=Data%20Model%20Patterns%3A%20A%20Metadata%20Map&f=false
https://arxiv.org/abs/1807.02383v1
https://doi.org/10.1007/978-3-030-41964-6_8
https://www.researchgate.net/publication/327934144_Extracting_Conjunction_Patterns_in_Relation_Triplets_from_Complex_Requirement_Sentence
https://www.researchgate.net/publication/327934144_Extracting_Conjunction_Patterns_in_Relation_Triplets_from_Complex_Requirement_Sentence
https://drops.dagstuhl.de/opus/volltexte/2016/6008/

40. Btoush, E, S. & Hammad, M, M. (2015). Generating ER Diagrams from

Requirement Specifications Based on Natural Language Processing.

International Journal of Database Theory and Application. 8(2). pp 61-70.

https://www.researchgate.net/publication/275952818_Generating_ER_Dia

grams_from_Requirement_Specifications_Based_On_Natural_Language_

Processing

41. Grosan C., Abraham A. (2011). Rule-Based Expert Systems. In: Intelligent

Systems. Intelligent Systems Reference Library, vol 17. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-642-21004-4_7

42. Ambler, S. (2004). The Object Primer: Agile Model-Driven Development

with UML 2.0 (3rd ed.). Cambridge: Cambridge University Press. doi:

10.1017/CBO9780511584077

43. Simões, G., Galhardas, H., & Coheur, L. (2009). Information Extraction

tasks: a survey.

https://www.semanticscholar.org/paper/Information-Extraction-tasks-%3A-

a-survey-Sim%C3%B5es-

Galhardas/92810be04dc7ecb5c7659e5b925bda2733baee11

44. Yildiz, B., & Miksch, Silvia. (2008). Motivating ontology-driven information

extraction.

https://www.researchgate.net/publication/228675059_S_Motivating_ontolo

gy-driven_information_extraction

45. Poon, H., & Domingos, P. (2010). Unsupervised Ontology Induction From

Text. Proceedings of the 48th Annual Meeting of the Association for

Computational Linguistics. Pp. 296 – 305.

https://www.aclweb.org/anthology/P10-1031.

46. Angeli, G., Premkumar, M, J., & Manning, C, D. (2015). Leveraging

Linguistic Structure For Open Domain Information Extraction. In:

Processings of the Association of Computational Linguistics (ACL). Pp.

https://www.researchgate.net/publication/275952818_Generating_ER_Diagrams_from_Requirement_Specifications_Based_On_Natural_Language_Processing
https://www.researchgate.net/publication/275952818_Generating_ER_Diagrams_from_Requirement_Specifications_Based_On_Natural_Language_Processing
https://www.researchgate.net/publication/275952818_Generating_ER_Diagrams_from_Requirement_Specifications_Based_On_Natural_Language_Processing
https://doi.org/10.1007/978-3-642-21004-4_7
https://www.semanticscholar.org/paper/Information-Extraction-tasks-%3A-a-survey-Sim%C3%B5es-Galhardas/92810be04dc7ecb5c7659e5b925bda2733baee11
https://www.semanticscholar.org/paper/Information-Extraction-tasks-%3A-a-survey-Sim%C3%B5es-Galhardas/92810be04dc7ecb5c7659e5b925bda2733baee11
https://www.semanticscholar.org/paper/Information-Extraction-tasks-%3A-a-survey-Sim%C3%B5es-Galhardas/92810be04dc7ecb5c7659e5b925bda2733baee11
https://www.researchgate.net/publication/228675059_S_Motivating_ontology-driven_information_extraction
https://www.researchgate.net/publication/228675059_S_Motivating_ontology-driven_information_extraction
https://www.aclweb.org/anthology/P10-1031

344-354. Doi: 10.3115/v1/P15-1034.

https://nlp.stanford.edu/software/openie.html

47. Banko, M., Cafarella, M, J., Soderland, S., Broadhead, M., & Etzioni, O.

(2007). Open Information Extraction from the web. IJCAI’07: Proceedings

of the 20th international joint conference on artificial intelligence. Pp. 2670-

2676. https://dl.acm.org/doi/10.5555/1625275.1625705

48. Ali, S., Mousa, H., & Hussein, M. (2019). A Review of Open Information

Extraction Techniques. IJCI. International Journal of Computers and

Information. Pp. 20-28. Doi: 10.21608/ijci.2019.35099.

https://www.researchgate.net/publication/334298170_A_Review_of_Open

_Information_Extraction_Techniques

49. Pekar, V. Felderer, M., & Breu, R. (2014). Improvement Methods for

Software Requirement Specifications: A Mapping Study. Proceedings –

2014 9th International Conference on the Quality of Information and

Communications Technolog, QUATIC 2014. Pp. 242 – 245. Doi:

10.1109/QUATIC.2014.40.

https://www.researchgate.net/publication/289094810_Improvement_Metho

ds_for_Software_Requirement_Specifications_A_Mapping_Study

50. Ferrari, A., Spagnolo, G., & Gnesi, S. (2017). PURE: A Dataset of Public

Requirements Documents. In 2017 IEEE 25th International Rquirements

Engineering Conerence (RE). Pp. 502 – 505. Doi: 10.1109/RE.2017.29.

https://www.researchgate.net/publication/320028192_PURE_A_Dataset_o

f_Public_Requirements_Documents

51. Waltl, B., Bonczek, G., & Matthes, F. (2018). Rule-based Information

Extraction: Advantages, Limitations, and Perspectives.

file:///C:/Users/surface/Downloads/Wa18b.pdf

52. Roh, Y., Heo, G., & Whang, S, E. (2019). A Survey on Data Collection for

Machine Learning: A Big Data – AI Integration Perspective. In IEEE

Transactions on Knowledge and Data Engineering. Doi:

https://nlp.stanford.edu/software/openie.html
https://dl.acm.org/doi/10.5555/1625275.1625705
https://www.researchgate.net/publication/334298170_A_Review_of_Open_Information_Extraction_Techniques
https://www.researchgate.net/publication/334298170_A_Review_of_Open_Information_Extraction_Techniques
https://www.researchgate.net/publication/289094810_Improvement_Methods_for_Software_Requirement_Specifications_A_Mapping_Study
https://www.researchgate.net/publication/289094810_Improvement_Methods_for_Software_Requirement_Specifications_A_Mapping_Study
https://www.researchgate.net/publication/320028192_PURE_A_Dataset_of_Public_Requirements_Documents
https://www.researchgate.net/publication/320028192_PURE_A_Dataset_of_Public_Requirements_Documents
file:///C:/Users/surface/Downloads/Wa18b.pdf

10.1109/TKDE.2019.2946162.

https://ieeexplore.ieee.org/document/8862913

https://ieeexplore.ieee.org/document/8862913

Appendix A: Sample Requirement Data and

Results

A.1. Input Scenario 2 (Supermarket System)

Requirement title

Supermarket System

Requirement text

“The supermarket is organized into aisles. Each aisle contains various

product categories. Food, drinks, sanitary items, and cleaning products are

all product categories. Each product category contains many products.

These products are stacked into shelves. Each product has a name, code,

and location in the supermarket.

A customer enters the supermarket, and picks up a shopping cart. The

desired products will be placed in the shopping cart. The customer will then

go to the cashier desk, and pay for the products. Each cashier desk has a

cashier, a scanner, and a till. After receiving payment from the customer,

cashiers will hand them a receipt.”

Intermediate output:

[('supermarket', 'is organized into', 'aisles'), ('aisle', 'contains', 'product

categories'), ('items', 'are', 'product categories'), ('sanitary items', 'are', 'product

categories'), ('cleaning products', 'are', 'product categories'), ('drinks', 'are',

'product categories'), ('food', 'are', 'product categories'), ('product category',

'contains', 'products'), ('products', 'are stacked into', 'shelves'), ('location', 'is

in', 'supermarket'), ('product', 'has', 'code'), ('product', 'has', 'location in

supermarket'), ('product', 'has', 'name'), ('product', 'has', 'location'), ('customer',

'picks', 'shopping cart'), ('customer', 'enters', 'supermarket'), ('customer', 'go

to', 'cashier desk'), ('customer', 'pay', 'products'), ('cashier desk', 'has',

'cashier'), ('cashier desk', 'has', 'till'), ('cashier desk', 'has', 'scanner'),

('cashiers', 'receiving', 'payment'), ('cashiers', 'hand', 'receipt'), ('cashiers',

'receiving payment from', 'customer')]

The UML class metadata output:

UML class diagram:

Error explanation:

Type 2: Multiple entities problem (Three or more entities exist in one

sentence, and those entities have relationships with each other)

⚫ “After receiving payment from the customer, cashiers will hand them a

receipt.” Triplets: [('cashiers', 'receiving', 'payment'), ('cashiers', 'hand',

'receipt'), ('cashiers', 'receiving payment from', 'customer')] The ideal

result is [(‘cashier’, ‘receive’, ‘payment’), (‘cashier’, ‘hand’, ‘receipt’),

(‘customer’, ‘proceed’, ‘payment’), (‘customer’, ‘receive’, ‘receipt’)]

Type 3: Noun + Prep + Noun problem (when there is a preposition between

two nouns)

⚫ “Each product has a name, code, and location in the supermarket.”

Triplets: [('location', 'is in', 'supermarket'), ('product', 'has', 'code'),

('product', 'has', 'location in supermarket'), ('product', 'has', 'name'),

('product', 'has', 'location')]

Others: (Duplication problem)

⚫ “Food, drinks, sanitary items, and cleaning products are all product

categories.” Triplets: [('items', 'are', 'product categories'), ('sanitary items',

'are', 'product categories'), ('cleaning products', 'are', 'product categories'),

('drinks', 'are', 'product categories'), ('food', 'are', 'product categories')]

A.2. Input Scenario 3 (Online Shopping System)

Requirement title

Online Shopping System

Requirement text

“The online shopping system allows customers to search for products by

category, and to order them. Each category contains sub categories or

products. Cars, bicycles and motorbikes are sub categories. Customers can

search for products matching their search criteria. An administrator

manages the categories and product information. Customers can create

accounts. An account will consist of various information such as name,

address, phone number, email, and so on.

Customers can add one or more products to the shopping cart. The

shopping cart lists the products, and shows their price. It also shows the

total price of the items in the shopping cart. Customers can remove

products from the shopping cart before checkout.

The payment process is triggered when customers confirm the order.

Customers will pay for the products, and receive a confirmation email. The

confirmation email shows the order information. Order information consists

of customer, products, prices, quantities, delivery address, and delivery

date.”

Intermediate output:

[('shopping', 'allows', 'customers'), ('customers', 'search', 'products by

category'), ('customers', 'search', 'products'), ('category', 'contains', 'products'),

('category', 'contains', 'sub categories'), ('bicycles', 'are', 'sub categories'),

('cars', 'are', 'sub categories'), ('bicycles', 'are', 'categories'), ('motorbikes',

'are', 'categories'), ('motorbikes', 'are', 'sub categories'), ('cars', 'are',

'categories'), ('customers', 'can search', 'products'), ('administrator', 'manages',

'categories'), ('administrator', 'manages', 'product'), ('customers', 'can create',

'accounts'), ('account', 'consist', 'name'), ('customers', 'add', 'products',

'shopping', 'cart'), ('shopping cart', 'shows', 'price'), ('shopping cart', 'lists',

'products'), ('items', 'is in', 'shopping cart'), ('customers', 'can remove products

before', 'checkout'), ('customers', 'can remove products from', 'shopping cart'),

('customers', 'can remove', 'products'), ('customers', 'confirm', 'order'),

('customers', 'receive', 'confirmation email'), ('customers', 'pay', 'products'),

('confirmation email', 'shows', 'order'), ('order', 'consists', 'quantities'), ('order',

'consists', 'delivery date'), ('order', 'consists', 'prices'), ('order', 'consists',

'customer'), ('order', 'consists', 'products'), ('order', 'consists', 'delivery

address')]

The UML class metadata output:

UML class diagram:

Error explanation:

Type 1: Incomplete information extraction. (OpenIE fails to extract

information from part of a sentence)

⚫ “An account will consist of various information such as name, address,

phone number, and email.” Triplets: [('account', 'consist', 'name')]

⚫ “It also shows the total price of the items in the cart. Triplets: [('items', 'is in',

'cart')]

Type 2: Multiple entities problem (Three or more entities exist in one

sentence, and those entities have relationships with each other)

⚫ “Customers can remove products from the shopping cart before checkout.”

Triplets: [('customers', 'remove', 'products'), ('customers', 'remove

products from', 'shopping cart'), ('customers', 'remove products

before', 'checkout')] The ideal result: [(‘customer’, ‘remove’, ‘products’),

(‘shopping cart’, ‘has’, ‘products’)]

Type 3: Noun + Prep + Noun problem (when there is a preposition between

two nouns)

⚫ “The online shopping system allows customers to search for products by

category, and to order them.” [('shopping', 'allows', 'customers'),

('customers', 'search', 'products by category'), ('customers', 'search',

'products')]

Others: (Duplication Problem)

⚫ “Cars, bicycles and motorbikes are sub categories.” Triplet: [('bicycles', 'are',

'sub categories'), ('cars', 'are', 'sub categories'), ('bicycles', 'are',

'categories'), ('motorbikes', 'are', 'categories'), ('motorbikes', 'are', 'sub

categories'), ('cars', 'are', 'categories')]

A.3. Input Scenario 4 (Course Attendance System)

Requirement title

Course Attendance System

Requirement text

“A student will enroll for one or more courses. Business Courses and

Science Courses are types of courses. Each course consists of multiple

lectures, and have a course name, code and date. A course coordinator

organizes the courses. Each course has one or more lecturers, a location,

time slot, and set of dates.

Lecturers will give lectures, and administrators will make announcements

that are for a particular course. Each course will have assignments and an

exam. Students must attend to the lectures, complete the assignments and

take the exam. Lecturers will give grades. A course grade consists of an

assignment grade and exam grade. An exam is either a first exam or a re-

take. Students will receive their course grades by email.”

Intermediate output:

[('student', 'enroll', 'courses'), ('business courses', 'are', 'courses'), ('science

courses', 'are', 'courses'), ('course', 'have', 'course name'), ('course', 'have',

'code'), ('course', 'have', 'date'), ('course', 'consists', 'lectures'), ('course

coordinator', 'organizes', 'courses'), ('course', 'has', 'dates'), ('course', 'has',

'location'), ('course', 'has', 'timeslot'), ('administrators', 'make',

'announcements'), ('lecturers', 'give', 'lectures'), ('course', 'have', 'exam'),

('course', 'have', 'assignments'), ('students', 'attend to', 'lectures

'), ('students', 'complete', 'assignments'), ('students', 'take', 'exam'), ('lecturers',

'give', 'grades'), ('course grade', 'consists', 'exam grade'), ('course grade',

'consists', 'assignment grade'), ('exam', 'is', 'first'), ('exam', 'is', 'exam'), ('exam',

'is', 'first exam'), ('students', 'receive', 'course grades')]

The UML class metadata output:

UML class diagram:

Error explanation:

Type 1: Incomplete information extraction. (OpenIE fails to extract

information from part of a sentence)

⚫ “Each course has one or more lecturers, a location, time slot, and set of

dates.” Triplets: [('course', 'has', 'location'), ('course', 'has', 'date'), ('course',

'has', 'time slot')] OpenIE fail to extract (‘course’, ‘has’, ‘lecturers’).

⚫ “An exam is either the first exam or a re-take.” Triplets: ('exam', 'is', 'first

exam'). OpenIE fails to extract (‘exam’, ‘is’, ‘re-take’)

A.4. Input Scenario 5 (Hospital System)

Requirement title

Hospital System

Requirement text

“Patients will initially visit their doctor when they are ill. The doctor will then

diagnose the patients and write a report. The diagnosis can be a physical

one, a psychological one or a psychiatric one. The report contains illness

conditions, diagnostic result, and suggestions that are for treatment. If the

doctor suggests medication, the report will list the specific drugs. The

patient will then collect their drugs from the pharmacy, and pay for the bill. If

the doctor suggests an operation, the patient will be requested to make an

appointment for the operation with the hospital. A surgeon and an operation

team are assigned to perform the operation. A surgeon typically performs

multiple operations on a particular day. Following the operation, the patient

will receive care in the hospital. Care can involve physiotherapy,

osteotherapy or mental support. The patients will be assigned a bed that is

on a ward, and will be cared for by nurses. A nurse will care for several

patients.”

Intermediate output:

[('patients', 'visit', 'doctor'), ('doctor', 'diagnose', 'patients'), ('doctor', 'write',

'report'), ('diagnosis', 'be', 'physical'), ('report', 'contains', 'result'), ('report',

'contains', 'suggestions'), ('report', 'contains', 'diagnostic result'), ('report',

'contains', 'illness conditions'), ('report', 'list', 'drugs'), ('doctor', 'suggests',

'medication'), ('patient', 'pay', 'bill'), ('patient', 'collect', 'drugs'), ('patient', 'make',

'appointment'), ('patient', 'make', 'appointment operation'), ('doctor', 'suggests',

'operation'), ('operation team', 'perform', 'operation'), ('surgeon', 'performs',

'operations'), ('surgeon', 'performs operations on', 'day'), ('patient', 'receive

care following', 'operation'), ('patient', 'receive care in', 'hospital'), ('patient',

'receive', 'care'), ('care', 'can involve', 'osteotherapy'), ('care', 'can involve',

'physiotherapy'), ('care', 'can involve', 'mental support'), ('care', 'can involve',

'support'), ('patients', 'be cared', 'nurses'), ('nurse', 'care', 'patients')]

The UML class metadata output:

UML class diagram:

Error explanation:

Type 1: Incomplete information extraction. (OpenIE fails to extract

information from part of a sentence)

⚫ “The diagnosis can be a physical, a psychological or a psychiatric.”

Triplets: [('diagnosis', 'be', 'physical')]

⚫ “The patients will be assigned a bed on a ward, and will be cared for by

nurses.” Triplets: [('patients', 'be cared', 'nurses')]

Type 2: Multiple entities problem (Three or more entities exist in one

sentence, and those entities have relationships with each other)

⚫ “A surgeon typically performs multiple operations on a particular day.”

Triplets: [('surgeon', 'performs', 'operations'), ('surgeon', 'performs

operations on', 'day')] The ideal result should be: [(‘surgeon’, ‘performs’,

‘operations’), (‘operation’, ‘is in’, ‘day’)], or simply (‘surgeon’, ‘performs’,

‘operations’)

⚫ “Following the operation, the patient will receive care in the hospital.”

Triplets: [('patient', 'receive care following', 'operation'), ('patient',

'receive care in', 'hospital'), ('patient', 'receive', 'care')] The ideal result

should be: [(‘patient’, ‘receive’, ‘care’), (‘care’, ‘is in’, ‘hospital’)]

Type 3: Noun + Prep + Noun problem (when there is a preposition between

two nouns)

⚫ “If the doctor suggests an operation, the patient will be requested to make

an appointment for the operation with the hospital.” Triplets: [('patient',

'make', 'appointment'), ('patient', 'make', 'appointment operation'), ('doctor',

'suggests', 'operation')] OpenIE seizes “appointment for operation” as an

object, data preprocessing in this program remove stop words like “for”, so

the object result is “appointment operation”.

Others (Duplication problem)

⚫ “The report contains illness conditions, diagnostic result, and suggestions

that are for treatment.” Triplets: [('report', 'contains', 'result'), ('report',

'contains', 'suggestions'), ('report', 'contains', 'diagnostic result'), ('report',

'contains', 'illness conditions')] Duplication problem with result and

diagnostic result.

“Care can involve physiotherapy, osteotherapy or mental support.” Triplets:

[('care', 'can involve', 'osteotherapy'), ('care', 'can involve', 'physiotherapy'),

('care', 'can involve', 'mental support'), ('care', 'can involve', 'support')]

Duplication problem with the last triplet.

Appendix B: Questionnaire

Evaluation for UML Class Metadata Generation Tool – Online Questionnaire

Dear UML experts,

Thank you for taking the time out of your busy schedule to help with our

survey work. Your contribution will take an important role in our research.

This questionnaire consists of two parts, with 13 questions in total. The first

part aims at asking for feedback based on the document and video we have

sent to you by email. The second part is asking general opinions regarding

Natural Language Processing (NLP) and requirement analysis.

Your participation will greatly help us in verifying the results of our research.

Your contribution will be personally acknowledged in the introduction of the

thesis, and you will receive a copy of the thesis once finished.

Best Regards,

Tiantian Tang, Master student ICT in Business

1. How would you rate the accuracy of our UML

class metadata results if you take the identified

bugs into consideration?

(The bugs are rooted from the libraries we used

for our program. In the document, we have

identified and categorized those bugs. We have

also marked and explained those errors in the

UML class diagram section. For this question,

please include the errors we have marked to

rate the accuracy of results.)

Compeletly inaccurate

⚫ 1

⚫ 2

⚫ 3

⚫ 4

⚫ 5

⚫ 6

⚫ 7

⚫ 8

⚫ 9

⚫ 10

Compeletely accurate

2. How would you rate the accuracy of our UML

class metadata results exclusive of identified

bugs?

(For this question, please take out the identified

errors and think our result accuracy.)

Compeletly inaccurate

⚫ 1

⚫ 2

⚫ 3

⚫ 4

⚫ 5

⚫ 6

⚫ 7

⚫ 8

⚫ 9

⚫ 10

Compeletely accurate

3. According to the UML class metadata results

and screen demo recording, do you think our

application can help with software requirement

analysis?

⚫ Yes

⚫ No

⚫ Maybe

⚫ Don’t know

Could you please briefly explain why you gave this answer to Question 3?

4. After watching the screen recording video,

which of the following advantages do you think

of our results have?

⚫ Accurate

⚫ Easy-to-read

⚫ Easy-to-modify

⚫ Other advantages

Could you describe it more specifically if you choose "Other advantage" in

Question 4?

5. We did not have the time to develop a graphical

UML Class modeler (a separate project is under

way), but do you feel the textual metadata format is

a readable, and useful alternative?

⚫ Yes

⚫ No

⚫ Maybe

⚫ Don’t know

Could you please briefly explain why you gave this answer to Question 5?

6. Do you think the "Runnable Prototype" page of

our application makes it easier to get end users

(your customer) more involved during the

requirements analysis process by enabling them to

comment on a (simple) application prototype?

⚫ Yes

⚫ No

⚫ Maybe

⚫ Don’t know

Could you please briefly explain why you gave this answer to Question 6?

7. Do you think our application would have value in

real word requirements elicitation settings? (if the

identified bugs are removed)

⚫ Yes

⚫ No

⚫ Maybe

⚫ Don’t know

Could you please briefly explain why you gave this answer to Question 7?

8. Do you have any other suggestion for improving our application?

9. Have you ever used a similar UML model

generator product (with NLP techniques applied)?

⚫ Yes

⚫ No

10. If yes with question 9, are you satisfied with

that product?

⚫ Satisfied

⚫ Somewhat

satisfied

⚫ Not satisfied

⚫ Don’t know

11. Could you explain the advantages and disadvantages of the NLP based

UML tools you have used?

12. What would you look for in an NLP based UML product?

13. Do you have any other comments to add for what we have not covered

in this questionnaire?

(Optional) Would you like to provide an additional requirements text as input

for our application? If so, please e-mail Tiantian Tang

t.tang@umail.leidenuniv.nl and we will return the results.

