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Abstract 
 

The initial input to the requirements analysis process of many software 

development projects typically consists of natural language documents 

produced by business experts and end-users. When dealing with complex 

software systems, these documents are then often converted into structured 

Unified Modeling Language (UML) models by UML experts and consultants 

using software development tools. This process of manually converting 

natural language into UML models is a time-consuming process. Furthermore, 

once models are expressed in UML, they become harder to interpret by non-

experts, leading to increased complexity when requirements have not been 

expressed in a complete or consistent manner, and when subsequent 

changes to requirements occur. 

To address some these issues, this research utilizes Natural Language 

Processing (NLP) toolkits to automate a significant part of the conversion of 

natural language requirements documents into UML Class metadata. A web-

based application to demonstrate the feasibility of the approach has been 

developed in Python, with back-end processing based on the NLTK and 

Stanford CoreNLP libraries. When compared to existing tools in this area of 

research, our application does not restrict the input documents to follow a 

rigid, pre-defined structure. Furthermore, it requires minimal user intervention, 

and covers the full range of structural concepts that are part of the definition of 

UML Class models. 

In addition, this research implementation interfaces with other research 

performed at Leiden University that provides a runnable prototype from the 

generated UML meta data. This combined facility provides immediate 

feedback to the user by showing them the (initial) application that results from 

their textual requirements input. This enables users to identify errors early on 

in the process, and iterate towards the intended result in a rapid manner. 
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1.  Introduction 

1.1. Background and Problem Statement 
 

The System Development Life Cycle (SDLC) in software development 

consists of various methods such as waterfall, iterative, rapid application 

development (RAD), agile, SCRUM, etc. All of these contain requirements 

analysis during the early phases. Reducing errors in the requirements 

analysis phase is crucial, because such errors escalate exponentially in the 

later stages of a system development process (Boehm & Basili, 2001; 

Westland, 2002; Gupta & Deraman, 2019). 

 

Software requirements are commonly expressed by business experts and end 

users in natural language (NL) during discussions and textual communication. 

Subsequently, they will be analyzed and documented, typically by analysis 

experts and consultants. The Unified Modelling Language (UML) is widely 

utilized in transforming textual or oral requirements to system design, 

particularly in terms of its use case models, activity models, and class models 

(Agarwal & Sinha, 2003). 

 

UML class models provide a structural view of a system in terms of the central 

information (concepts) of the problem domain, and their interrelationships. As 

such, these models define the “universe of discourse” which is dynamically 

modified by the dynamic internal and external interactions of the system 

(Fowler, 2003; Narawita & Vidanage, 2016). 

 

The process of defining a precise UML class model based on the verbal and 

textual requirements is currently a manual one, requiring the involvement of 

UML experts. An automated, or semi-automated solution for generating UML 

models is highly desirable (Narawita & Vidanage, 2016), see figure 1. As part 

of their research, the authors show that 75% of survey respondents thought 

an automated solution for UML model generation is important. 



 

Figure 1. The Importance of An Automated Solution (Narawita & Vidanage, 
2016) 

 

The current process of generating UML models from requirements has many 

drawbacks. Firstly, reading and analyzing a large volume of requirements by 

human actors (UML experts and consultants) is time-consuming. Secondly, 

although there are a large number of commercial and open-source tools that 

help with drawing UML class diagrams, the majority of them utilize a “drag and 

drop” style user interface. In such a conventional context, not only analyzing 

the input, but subsequently defining the UML model adds an additional layer 

of complexity. The defining process also requires multiple rounds of 

communication and discussion between requirements analysts and 

stakeholders (e.g. end users and business experts) to enable iterations of the 

UML models. Therefore, in order to improve these inconveniences, automated 

support for the requirement analysis process is highly desirable. 

 

In addition, a critical challenge in the requirement analysis process from NL 

requirements to system design is coping with changes, particularly in situation 

such as a system with correspondingly complex stakeholder communities 

(Berzins et al, 2008). For example, business experts may suggest additional 

requirements after the UML class models has been completed, or end users 

decide that a part of a UML model from their previous requirement is not what 

they intended. During this process, changes occur frequently and need to be 

responded to in a rapid way, otherwise they can propagate into later phases 

of software development, potentially causing errors or even failure (Kof, 

2005). Therefore, the automated support for generating UML class models 



during the requirement analysis process should enable the inclusion of all 

stakeholders in such a manner that enables obtaining rapid feedback on the 

results. This enables validation of the models produced, and incorporating any 

required changes in an iterative process.  

 

In summary, there are two requirements for the solution provided in resolving 

the above issues: 

⚫ Automate the analysis process from textual requirements to UML models; 

⚫ Involve more stakeholders in the requirements analysis process through 

the use of the tool. 

The details of these requirements are elaborated more specifically in the next 

section (chapter 1.2). 

 

Natural Language Processing (NLP), a subset of Artificial Intelligence focuses 

on analyzing unstructured text (Arellano et al., 2015). It has been employed to 

automate UML class model generation in previous research (Yalla & Sharma, 

2015; Osman & Zălhan, 2016). However, the tools implemented were 

designed to aid requirement analysis experts only. Other stakeholders such 

as end users and business specialists are not enabled by such tools. 

Secondly, the vast majority of automated tools developed are not “open 

source”, and therefore are not open to researchers and developers, and as a 

result, are no longer being improved. Finally, an important problem with 

existing solutions in the area of NLP driven requirements analysis is that these 

tools still “require consistent human intervention in the process of UML 

diagrams generation” (Osman & Zălhan, 2016).  

 

Our research provides a tool that can be accessed by users at different levels, 

and is available for further research. Reducing human intervention in the 

requirements analysis process is a central objective of our research, and tool 

implementation. The requirements analysis process is also a highly 

challenging task due to the ambiguous and semantic problems that are 

inherently present in natural language (Narawita & Vidanage, 2016; 

Deshpande, 2012). As a result, it is unrealistic to obtain completely error-free 

analysis results. This research thus turns to the purpose of achieving rapid 



generation of preliminary UML model results when given textual software 

requirements.  

 

1.2. Research Objectives 
 

In the context of the problem statement above, we define our research 

objectives as follows: 

 

Develop a flexible, open-source UML class model generator to automate 

the requirements analysis software development phase by utilizing NLP 

techniques. 

 

The generator is a web-based application that is developed by using the 

open-source Python Web framework “Django”. Several NLP toolkits and 

techniques are used to develop the UML class model generator. A more 

detailed requirements based on previous section addressed in this automated 

solution are as follows: 

 

⚫ Automate the analysis process from textual requirements to UML models 

- Minimize the tool interruption by UML experts; 

- Enable to use fairly natural expressions of software requirements from 

business specialists and end users. The tool does not force a 

particular structure on the input text. 

 

⚫ Involve more stakeholders in the requirements analysis process through 

the use of the tool 

- Easy to use for any level of user, whether end-user, business 

specialist, software developer, or UML consultant; 

- Enable rapid testing of requirements by generating a prototype 

implementation (this part of the research utilizes the run-time 

application framework – developed by Ralph Driessen (2020)), 

providing a rapid feedback to users about the implications of their 

requirements in terms of executable prototype software. 

 



The focus of this research is to utilize existing research in the field of NLP for 

the requirements analysis process and to implement a UML Class model 

generation tool. As such, it employs the research methodology of “design 

science”. This paradigm is focused on solving research problems by building 

and evaluating artifacts (Hevner et al., 2004). The artifacts in this research 

include the tool implementation and the architectural frameworks that 

implement it. The focus of this study is on the extraction of metadata, the 

primary source of composition for UML class models. There are also five 

sample requirements (Appendix A) as input for this design tool to gain 

corresponding UML class metadata result. A questionnaire survey (Appendix 

B) is conducted to evaluate the design tool and extracted results. 

 

1.3. Thesis Overview 
 

This research is comprised of seven parts. In the introduction (Chapter 1), the 

importance of an automated solution for the requirement analysis process and 

issues that existed in previous research are presented. The second chapter 

elaborates on the concepts used in UML class modelling and its metadata, 

describes the context of Natural Language Processing (NLP), and the usage 

of NLP in requirements analysis. The third chapter illustrates related research 

in this domain (i.e. previous NLP-based tools in generating UML class 

models), their development frameworks and limitations. The fourth chapter 

describes the architecture design and framework of our application. The fifth 

chapter explains the output results of several sample requirement data sets, 

and discusses the questionnaire result on the evaluation of our tool. The sixth 

chapter contains the conclusion, discusses current limitations of this research, 

and proposes further research directions.  

 

  



2.  Theoretical Background 

This chapter presents the concepts that having essential relevance to this 

research. Firstly, the Unified Modelling Language (UML) class model and its 

elements are illustrated, followed by the metadata definition and 

implementation in the UML class model. Secondly, Natural Language 

Processing (NLP) is introduced including its application in the requirements 

analysis process of software engineering. 

 

2.1. Unified Modelling Language Class Model 
 

Unified Modelling Language (UML), developed by Object Management Group 

(OMG) in 1997, is an open standard software modelling language embraced 

by the industry and is exhibited by graphical notation to depict a complex 

system (Fowler, 2003; Miles & Hamilton, 2006). There are various 

representations of UML diagrams such as use case diagrams, activity 

diagrams, sequence diagrams, etc. The UML class diagram is the core type of 

UML diagrams that are used in real life when defining a system design 

(Fowler, 2003). Therefore, this research centres around the UML class 

diagrams to explore its components and generation. The basic elements of 

the UML class diagram are introduced as follows. 

 

The UML class diagram is a static modelling technique that defines the 

objects and their relationships in a system. An object normally consists of a 

class, properties (attributes), and operations of that class (Fowler, 2003). The 

following picture (Figure 2) displays how a class is interpreted in the UML 

class diagram. 

 

Figure 2. Class in UML notation (Miles & Hamilton, 2006) 



 

As can be seen, the rectangular shape has three sections. The top section is 

the name of the class. A class has the characteristics of abstraction and 

encapsulation (Miles & Hamilton, 2006). The middle section contains 

attributes of that class. Normally an attribute has names and types. For 

example, a person has a name and age with string and integer type 

respectively. Thus, an example of a name attribute can be written as “name: 

String”. Operations are the behaviours or declaration of methods carried by a 

class (Fowler, 2003). Imagine a logistic system that a customer can view his 

or her order, which can be expressed in the customer class as 

“ViewOrderDetails()”. Figure 3 gives a concrete example of a UML class 

diagram containing its elements and notation expressions.  

 

 

Figure 3. An Example of UML Class Diagram (Fowler, 2003) 
 

There are different types of relationships in the UML class model. Figure 4 

displays six types of relationships in the UML class model. For instance, the 

association is expressed as a solid line with a name directed from one class to 



another target class in a diagram. “A customer can place many orders”, which 

can be depicted by a solid line between customer and order with the word 

“places”, together with the notation of multiplicity. The composition is a 

stronger version of a relationship type. For instance, a house has rooms and 

the rooms do not exist separate from the house. Inheritance and subtyping 

are commonly understood similarly. However, these two should be separated. 

Subtyping indicates the compatibility of interfaces, where the attributes and 

operations in a class can be invoked to its subtyped class. While inheritance 

focuses on the reuse of implementations. For example, some operations for a 

class B are written in terms of the operation of class A, this is so-called 

inheritance (i.e., class B inherits from class A).  

 

 

Figure 4. UML Classes Relationship (Adapt from Miles & Hamilton, 2006) 
 

Multiplicity in the UML class model can be set for relationships between 

classes, and for attributes and operations of classes. It indicates the allowable 

number of objects (instances of classes) participating in a given relationship. It 

can be a specific number or a range. There are four indicators of multiplicity in 

table 1. 

Indicator Meaning Example 

1 (one to one) Exactly one object Each student carries 

exactly one ID card. 



0..* or * (zero to many) No object or at least 

one or more 

A person might own no 

phone, one phone or 

many phones. 

1..* (one to many) At least one object or 

many 

A building can contain 

many doors. 

0..1 (zero to one) No instance or have 

one instance 

Car can be assigned to 

a road. A road can also 

be free of car. 

Table 1. Multiplicities in UML class model (Adapt from Ambler, 2004) 
 

2.1.1. Metadata in Unified Modelling Language Class Model 

“Metadata” is a term that simply represents “data about data”. It both 

describes the organizational level of their structure and use of information, 

and the technical level of the description of a system which is used to manage 

that information (Hay, 2006). The business information collected from 

requirement analysis is typically the initial component of metadata captured in 

any development project (Hay, 2006). Those metadata can be refined and 

used as the data about a data model, where the model can be a database 

design, or in our research of following UML class standards to define classes 

and their relations. Table 2 gives an example to show the metadata in a UML 

class model for a bank: 

 

Metadata Data about a 

data model (UML 

class model) 

Class:  

“Customer” 

Attributes: 

“Name” 

“Phone number” 

Class: 

“Employee” 

Attributes: 

“Position” 

“Name” 

“Phone number” 

Relationships: 

“An asset 

manager is 

responsible for 



one customer 

only” 

Instance data Data about real-

world things 

Customer Name: 

“Bob Lee” 

Customer phone 

number: 

“XX XXXXXXX” 

Manager Name: 

“Sam Smith” 

Manager phone 

number: 

“XX XXXXXX” 

Real-world things A particular 

customer: 

“Bob Lee” 

An asset 

manager: 

“Sam Smith” 

Table 2. Data and metadata in UML class model 
 

Since metadata should address both business and technical point of view 

(Hay, 2006), an objective of our application is to display the extracted UML 

class metadata in a well-understood and structural way for both of them. 

 

Due to the complexity and ambiguity of natural language, it is difficult to 

perform the extraction of complete elements of a UML Class model. Our 

application abandons the identification of Operations, and Relationship types 

such as Dependency, Aggregation and Inheritance, as they are similar to 

Association, Composition and Subtyping (which are stronger Relationship 

types) in the requirements expressed in natural language and are difficult to 

distinguish directly. For example, “A folder contains many files” and “A car has 

wheels”. For the former sentence, if a folder is deleted, all the files it contains 

are deleted. It indicates a Composition Relationship between “Folder” and 

“File”. The latter sentence can be understood as a car needs wheels, but 

wheels do not need a car. Wheels can also apply to bicycles and motor 

vehicles. This suggests a weaker type of Relationship, i.e. Aggregation 

between “Car” and “Wheel”. The boundary is not explicit in natural language 

expressions.  

 

The application does, however, identify Classes and Attributes, Association, 

Composition and Subtyping of Relationship types. The extraction of 



Multiplicity is the most challenging task and this application develops a 

relatively simple extraction method for it. 

 

2.2. Natural Language Processing 
 

NLP is a way of analysing, understanding, gathering knowledge from a natural 

language with different forms (text or oral) by computerized means (Arellano 

et al., 2015; Joseph et al., 2016). Its origins go back to the beginning of the 

1940s. Developments in artificial intelligence have boosted the field 

significantly, and NLP currently achieves sufficiently high-quality linguistic 

analysis to accomplish different tasks and serve for a range of applications 

(Arellano et al., 2015; Joseph et al., 2016; Jones, 2001).  

 

As a multidisciplinary research area dealing with linguistics, NLP can bring 

benefits to Software Engineering. The NLP techniques can be employed in 

every phase in Software Development Life Cycle (SDLC) (Dawood & 

Sahraoui, 2017; Yalla & Sharma, 2015), particularly in requirement-related 

stages since requirements are normally written and expressed by natural 

language. Koerner et al (2014) summarized NLP can be applied in improving 

requirement specifications, finding domain-specific ontologies in requirements 

engineering, helping automatic model creation and text synthesis, and 

extracting the impact assessment from changes in software specification.  

 

This research focuses on one of the above applications in requirement 

analysis: using NLP techniques to improve automatic model creation from NL 

requirements. The first step in automating the model creation is extracting 

information (i.e., UML class metadata) from the textual requirements. NLP 

techniques utilized in this area belong to the application of Information 

Extraction (IE) (Narawita & Vidanage, 2016). IE as an application of NLP, 

“refers to the automatic extraction of structured information such as entities, 

relationships between entities, and attributes describing entities from 

unstructured sources.” (Sarawagi, 2007) In this research, extracting classes, 

attributes, and relationship information between classes addresses the tasks 

in IE application. Examples of NLP techniques for an IE system are as follows: 



⚫ Segmentation 

The segmentation tasks divide the text into tokens, typically following the 

rules such as using the whitespaces separate words and full stop 

separates sentences in English, or based on statistics such as using N-

grams for segmentation in Chinese (Simões et al., 2009).  

⚫ Named Entity Extraction 

One of a classic technique in IE application includes Named Entity 

Recognition (NER). It identifies and classifies the specific types of named 

entities such as the name of people, places, organizations in domain-

independent area or the name of disease, drug in domain-specific area 

(Sarawagi, 2007; Adnan & Akbar, 2019).  

⚫ Relation Extraction (RE) 

Relation Extraction is a task of extracting relationships between entities. 

Various techniques are applied in relation extraction, most of which are 

based on rules. A general approach is based on syntactic analysis, since 

the relations we want to extract are often in grammatical form. For 

example, a verb may refer to a relationship between entities, e.g., “is 

acquired by” relationship between pairs of companies (Sarawagi, 2007; 

Simões et al., 2009). Open Information Extraction (Open IE) is a notable 

task in recent years that extracting open-domain relation triples (i.e., 

“arg1”, “rel”, “arg2”) from the raw text. It was initially introduced by Banko 

et al (2007) where the system extracted a large set of relational triples 

from web. In general, the Open IE application starts with collecting 

sentences from corpuses and splitting each sentence into sets of entailed 

clauses, then shortening each clause maximally to produce sentence 

fragments in triplets by using shallow syntax and dependency methods 

(Angeli et al., 2015; Ali et al., 2019). For example, the output of sentence 

“Born in a small town, she took the midnight train going anywhere” in 

Stanford OpenIE is “(she; took; midnight train)” (Angeli et al., 2015).  

⚫ Ontology Induction 

The ontology induction refers to construct an ontology and map textual 

expressions to concepts and relations in that ontology. An IE application 

of ontology induction is extracting knowledge from unstructured text. 

Typically, the application usually begins with specifying domain-specific 



lexical knowledge, extraction rules and an ontology, then the learning 

approaches are applied to the processed data. (Yildiz & Miksch, 2008; 

Poon & Domingos).  

 

2.2.1. Natural language processing toolkits 

There are several powerful NLP toolkits developed in different programming 

languages. These toolkits can be used to accomplish common NLP tasks. For 

example, Natural Language Toolkit (NLTK) and SpaCy in Python, Stanford 

CoreNLP developed by Java, Apache OpenNLP that has been used in 

previous research, Google’s SyntaxNet as a rising tool in this market.  

 

Cheng et al (2020) found that the publicly available NLP toolkits are pervasive 

in analysing software requirement documents. They investigated a set of 

different public NLP toolkits and found that NLTK and Stanford CoreNLP 

(including parts of it such as Standford Parser) achieve the highest accuracy 

in results of doing tokenization for all kinds of software requirement 

documents. Stanford CoreNLP is the most frequently used NLP library in this 

research field (Cheng et al., 2020). 

 

Osman and Zălhan (2016), Dawood and Sahraoui (2017) analysed previous 

NLP-based UML generation tool and found the NLP toolkit from 

StanfordCoreNLP are widely adopted to analyse textual requirements, 

especially Stanford Parser. Osman and Zălhan (2016) also argued that “the 

majority of NLP libraries belong to NLTK framework.”. The application is 

developed in Python environment. NLTK is the most powerful and convenient 

tool to use in this case. Stanford CoreNLP is a Java tool but has API in Python 

environment, and it’s easy to use the packages in Python. Their frameworks 

and implementations in this application are elaborated in Chapter 4. 

 



2.2.2. Natural language processing and machine Learning 

Natural Language Processing (NLP) and Machine Learning (ML) are both 

subsets of Artificial Intelligence (AI). They are complementary to each other. 

Through NLP, computers can handle a number of tasks in human language, 

such as keywords recognition, text classification, translation, etc. To automate 

these tasks and applications, ML is utilized as the process of applying 

algorithms to the system. It teaches the system to understand, learn and 

improve from new data inputs without the need for explicit human 

reprogramming. 

 

However, in order to achieve this and produce accurate results, it is often 

necessary to train a significant and clean data set for the system. While this 

has been achieved with great success in areas such as biological and medical 

applications, sufficient training data sets are the first obstacle to applying this 

to software requirements analysis, as requirements documents and their 

associated UML models are difficult to obtain. These data are commonly 

internal to the company and are kept confidential. Self-made requirements 

texts introduce bias, as people have their own natural language expression 

habits. It is also a time-consuming task to find UML experts to compile 

software requirements and to label those data. 

  



3.  Related Work  

Several studies have integrated NLP techniques to support UML generation, 

and provided their respective development methods. Those studies depended 

significantly on the NLP technology available at the time. As a result, the tools 

developed in this study also makes use of newer state-of-the-art NLP tools. In 

addition, none of the existing tools can extract complete information from NL 

requirements such as classes, their relationships, attributes, direction, etc 

(Osman & Zălhan, 2016). Our research aims to broaden the set of extracted 

UML metadata. Moreover, human intervention is largely required in existing 

tools from sentence input to output result (Osman & Zălhan, 2016). Our aim is 

to minimise human intervention in conversion process supported by our 

automated tooling.  

 

Given these objectives, the remainder of this chapter explores the 

development methods implemented by previous researchers in their tools, 

with the aim of extending their methods and frameworks. This provides 

insights into addressing existing issues, i.e., user intervention problems, 

immaturity of mechanisms. 

 

Initially, the development of these tools was solely inspired by the experience 

of requirements analysts working with textual requirements. Traditionally, the 

requirement analyst selects and highlights nouns and verbs from the entire 

text to identify possible objects and operations (Overmyer et al., 2001). The 

experience of previous experts has led to a practical and natural way of 

identifying objects and methods by utilizing part-of-speech (POS) of the words 

(Chen, 1983; Barker, 1990; Overmyer et al., 2001). For example, linking 

nouns to classes, verbs to relationships, adjectives or prepositional phrases to 

attributes.  

 

3.1. Linguistic Assistant for Domain Analysis 
 



A representative study comes from Overmyer et al (2001). They relied on 

POS-tagging to develop a prototype tool named Linguistic Assistant for 

Domain Analysis (LIDA). The tool tags the POS of words after the analyst 

imports a requirements document. Then a noun marking list is generated to 

indicate candidate classes. The analyst iteratively removes classes that do not 

qualify as classes. A similar process is employed with the adjective list and 

verb list. The final step for analyst is using LIDA Modeler to graphically 

associate identified classes, attributes and methods (Overmyer et al., 2001). 

Obviously, LIDA relies heavily on user intervention. The analyst has to check 

and refine the marking lists at each step. Furthermore, some elements of the 

UML class model, e.g., multiplicity, are excluded. LIDA was placed as an aid 

for UML experts when analysing requirement texts (Overmyer et al., 2001). It 

did not analyse the texts themselves, as it was limited by the development of 

NLP technology at that time.  

 

3.2. Graphic Object-Oriented Analysis Laboratory 
 

Perez-Gonzalez and Kalita (2002) developed a different way to construct UML 

models from software requirement description, by regulating the input text. 

They proposed a tool called Graphic Object-Oriented Analysis Laboratory 

(GOOAL). The analysts must declare the problem domain name, sub-domain 

name, problem name and problem description before they use the tool. This 

tool used a semi-natural language (4W) to identify syntactic subjects and 

objects, and prepositional phrases of relations. They were then analysed 

sentence-by-sentence using role posets, a conceptual framework based on 

the linguistic notion of theta roles and mathematical notion of ordered sets, 

which can be used to produce tabular and graphical results of UML class 

metadata (Perez-Gonzalez & Kalita, 2002). In general, GOOAL imposed 

restrictions on requirement texts. Analysts have to rearrange the collected 

requirement description by following the regulations and need to validate the 

interpretation of 4W language results. The tool can only process simple 

problem domains (Perez-Gonzalez & Kalita, 2002).  

 



Subsequently, with the development of natural language processing 

technology, NLP techniques in the application of information extraction (IE) 

systems suggest promising approaches that may assist the requirement 

analysis process. Researchers started to adopt a combination of NLP tools 

and human experience rules in the development of UML model generation 

application. 

 

3.3. Class Model Builder 
 

Harmain and Gaizauskas in 2003 proposed their Class Model Builder (CM-

Builder) in producing UML models from requirements. Rather than relying on 

deep analysis approach as it required labour intensive manual process, 

researchers explored a domain independent “semantic” analysis approach 

which could compute richer syntactic analysis than based on surface analysis. 

They started to use NLP tools of the era and designed a pipeline of 

tokenization, sentence splitter, POS tagger, morphological analyser and 

parser in sequence on processing requirement text.  

 

CM-Builder has been evaluated quantitatively to prove its practical value. The 

tool relies on a number of certain or frequent words that appear in the 

requirement specification. For example, “is made up of”, “is composed of”, 

“contains” indicates a relationship of aggregation relationship (Harmain & 

Gaizauskas, 2003). CM-Builder initiates an NLP-based methodology to 

produce a full-fledged tool, but similar to previous researches, it presents the 

users with lists at each step of the pipeline, rather than developing an 

integrated process without human intervention. Using the case study by 

Harmain and Gaizauskas (2003), Dewar et al (2005) investigated CM-Builder, 

LIDA (Overmyer et al., 2001) and GOOAL (Perez-Gonzalez & Kalita, 2002), 

and concluded that none of them could fully extract classes from NL 

requirement. In addition, CM-Builder has limitations when drawing candidate 

class models, because the mechanism for acquiring objects is not appropriate 

(Dewar et al., 2005; Osman & Zălhan, 2016). 

 



3.4. UML Generator from Analysis of Requirements 
 

In 2009, Babar and Deeptimahanti developed a semi-automated tool to 

generate static and dynamic UML models, called UML Generator from 

Analysis of Requirements (UMGAR). The tool was implemented by means 

of innovative approaches. Firstly, the core component is a set of syntactic 

reconstruction rules that transform complex sentences to simple ones. 

Secondly, Rational Unified Process (RUP) and ICONIX process are 

combined. The former helps to identify all possible classes and methods, 

attributes and relationships, on which the latter enhances the class 

identification process in preparation for the generation of collaboration 

diagrams. While the previous studies dealt with a small number of 

requirements (< 200 words), they used Stanford Parser which can tagged a 

larger number of requirement text (Babar & Deeptimahanti, 2009). At the 

same time, other two efficient NLP tools were adopted. WordNet 2.1 for 

morphological analysis (converting plural into singular) and JavaRAP for noun 

form correction (Babar & Deeptimahanti, 2009). A remarkable feature is that 

UMGAR provides a generic XMI parser to generate XMI file as output (Babar 

& Deeptimahanti, 2009), so that user can visualize the output model in any 

other graphical modelling tool. However, UMGAR needs human intervention 

during the process of irrelevant classes elimination and relationship 

identifications (Osman & Zălhan, 2016). There are also restrictions on input 

sentences due to the syntactic reconstruction rules they create. Every input 

sentence has to satisfy the rules, otherwise the user will be asked to modify 

the sentence. However, their syntactic reconstruction rules have inspired later 

researchers when dealing with the normalization process of textual data. 

 

3.5. Diagram Class Builder 
 

Herchi and Abdessalem (2012) created the Diagram Class Builder (DC-

Builder) by employing NLP and domain ontologies to produce UML class 

diagrams. The General Architecture for Language Engineering (GATE) 

framework was utilized in this tool, as it provided “the foundational building 

blocks for higher level text understanding applications” (Herchi & Abdessalem, 



2012). A set of heuristic rules was integrated to extract classes, attributes and 

relationships. The extracted information then was saved into an initial 

structured XML file. A following domain ontology block was used for XML file 

refinement (Herchi & Abdessalem, 2012). Compare to previous tools, DC-

Builder improves the accuracy of extracting results from requirement text, but 

excludes methods and multiplicity extraction.  

 

3.6. Requirements Analysis to Provide Instant Diagrams 
 

While in the same year, More and Phalnikar (2012) extended the research by 

Babar & Deeptimahanti, 2009 (UMGAR), and proposed a desktop tool called 

“Requirements Analysis to Provide Instant Diagrams” (RAPID). The tool 

employed NLP technologies such as OpenNLP for lexical and syntactic 

analysis, RAPID’s own Stemming Algorithm for the base words and 

WordNet2.1 for semantic correctness (Osman & Zălhan, 2016). The syntactic 

reconstruction rules from UMGAR (Babar & Deeptimahanti, 2009) were 

refined and adopted. This indicates that it still requires users to change input 

sentence if the sentence violates the rules.  

 

3.7. Automatic Builder of Class Diagram 
 

Automatic Builder of Class Diagram (ABCD) is another UML class 

generation tool proposed by Azzouz et al in 2015. The Stanford NLP toolkit 

was used for lexical and syntactical analysis. A pattern-matching NLP 

technique was developed to extract the types of relationship and multiplicity of 

the identified classes. Similarly, the output is saved as XMI format files and 

can be imported into other visualization tool to build diagrams. However, the 

ABCD system has weaknesses in dealing with the problem of redundant 

information extraction, and confusion in relationship and method identification. 

(Osman & Zălhan, 2016) 

 

3.8. UML Generator 
 



Narawita and Vidanage (2016) proposed a web-based application: UML 

Generator, to produce UML class and Use case diagram automatically. 

Similar basic processing required for requirement text such as part-of-speech 

tagging; tokenization was implemented. At the same time, they adopted a 

rule-based approach, defining a set of XML rules to structure the output 

information and filter words. In addition to these methodologies employed in 

previous studies, a Weka model was trained to recognize the type of 

relationship and multiplicity, and vote for use case. Finally, two diagrams i.e., 

UML class and use case diagrams are generated.  

 

This research provides a state-of-the-art approach to the field of NLP-based 

UML generation, combining used NLP tools, rule-based algorithm and a 

trained Weka model to accomplish different tasks. However, user has to follow 

the structure “subject-object-predicate” to enter each requirement sentence. 

This indicates a limitation on processing complex sentences. Another tiny 

limitation is that user cannot input “class” in the text due to a small bug existed 

in Weka (Narawita & Vidanage, 2016). This leaves the researcher with the 

challenge of exploring other tools and development methodology for 

enhancement. 

 

3.9. Discussion 
 

These research works have provided valuable insights into how NLP can be 

employed in the software requirement analysis process. Each of these tools 

has its advantages and weaknesses that has been described in previous sub 

sections, which also indicates that the NLP-based tools have not yet risen as 

a common use in real practice of software requirement analysis.  

 

The majority of those development methods rely on rules heavily and placed 

NLP toolkits as a complementary role to extract the elements of UML models. 

These rules have been shaped by the experience and knowledge of 

requirement analysis experts. The advantages of using this approach are, 

firstly, that the rules become more refined as the research develops. For 

example, UMGAR (2009) proposed syntactic reconstruction rules, and RAPID 



(2012) utilized these rules and refined the extraction rules for each element. 

Secondly, the use of rules is primarily a declarative approach that leads to a 

highly transparent, readable, and maintainable system (Waltl et al., 2018). 

However, as this field of study has evolved, the rules have become 

sophisticated, and have been framed differently in previous tools. Some of the 

rules are not appropriate, such as the rule proposed by Abdessalem & Herchi 

(2014) to indicate the presence of an attribute when a noun phrase succeeds 

a “has/have” verb phrase, which is too absolute as it can also refer to a class 

that has a composition relationship to the antecedent subject. In addition, 

there are several studies (e.g. Perez-Gonzalez & Kalita, 2002; Babar & 

Deeptimahanti, 2009; More & Phalnikar, 2012; Narawita & Vidanage, 2016; 

etc.) that propose syntactic reconstruction rules for the input requirement 

sentences, or require a “Subject, Predicate, Object” format to simplify the 

requirement sentences. This approach adds an additional layer of activity to 

the requirement analysts, an activity of converting NL text into structural text 

performed by a human rather than the system itself.  

 

Machine learning has been applied to complement the rules in the element 

extraction process. For example, Narawita & Vidanage (2016) used a trained 

Weka model to vote for relationship and multiplicity extraction results of a 

UML class model. Machine learning can assist in providing a more accurate 

result of information extraction. However, as mentioned in chapter 2.2.2, one 

of the first step and the first bottleneck when applying it to a new application is 

gaining or creating enough training data sets (Roh et al, 2019), as supervised 

learning requires (large) amount of training data. In the software requirements 

domain, pre-labelled samples are scarce since these requirements come from 

industry usually in closed domain. Ferrari et al (2017) provided a dataset of 79 

public software requirement document. These documents are Software 

Requirement Specification (SRS) which is a documentary result from 

traditional requirement analysis process. A few documents contain NL 

requirement paragraphs as well as their corresponding UML class diagram, 

but they are inconsistent with each other. It is the case that such recent 

applications have little or no useful training data. 

  



4.  System Architecture  

Based on the discussion of previous approaches to the development of UML 

class model generation tools, this study presents a novel architecture 

framework. Rather than formulate rules on input sentences, our system 

performs text structuring tasks by using NLP toolkits to transform raw text into 

a set of triplets with “Subject, Relation, Object” format. This reduces the 

unnecessary activity that user structure the requirement texts themselves. 

 

Our proposed tool implementation is structured as a web-based application. 

The backend analysis model consists of two parts, namely text structuring 

process with NLP toolkits and rules to support element extraction. In this 

section, an overall design of this application is given, which consists of a high-

level architecture, an activity diagram for application processing, and a set of 

functional requirements on UML class metadata extraction. The core 

component (i.e., extraction methodology) are elaborated in Chapter 4.2.  

 

4.1. Conceptual application framework 

4.1.1. High-level architecture 

Figure 5 is the high-level architecture of our designed tool. 



 

Figure 5. High-level Architecture of our application 
 

There are five main sections in this web application. Each of them is 

connected by input and output objects such as file and text objects. Users of 

the system initially interact with the generator website by uploading a local text 

file that contains NL requirements, or an audio file that records a speech for 

requirements or entering NL requirements in the text area. The aim of 

providing these two options is to reduce time-consuming requirement 

transcription. Instead of spending time recording the requirements from 

stakeholders and subsequently transcribing them after meetings, the 

stakeholders and requirement analysts can sit together, using this application 

to view their requirements and make modifications immediately. The file 

loader and the audio to text converter extract the original text from the input 

requirement file. Text loader transfers these text data into memory. The 

application extracts UML class metadata by using NLP-based extraction 

module. It is a module that adopts NLP toolkits and extraction rules to identify 

UML class metadata such as the data of classes, attributes, relations and 

directions. The application displays the UML class metadata output in a text 



area that users can check and modify the results. Therefore, the output is 

customizable and users can receive a direct result according to their 

requirement text.  

 

In order to get other stakeholders such as business experts and end users 

involved in requirement analysis process, our application integrates an outside 

solution developed by Driessen (2020) to show a runnable prototype results 

based on the extracted results from requirements texts. Figure 6 displays 

another high-level architecture design of the integration work, continued with 

the output of Figure 5. 

 

 

Figure 6. High-level Architecture for Integration 
 

The extracted results are separated into different data sets, and saved in a 

database created by Driessen (2020). By working through the integration, 

other stakeholders can not only see the results of the UML metadata or visual 

model, but also have immediate access to a running prototype application. 

This allows them to highlight omissions, errors and modifications. A more 

detailed explanation and implementation is described in Chapter 4.3. 

 

4.1.2. Application process 

To describe the process of our application, figure 7 is a UML activity diagram 

emphasising sequential activities for each section, where the shaded swim 



lane indicates functional modules (e.g., NLP-based extraction module) of the 

process. This defines the main back-end analysis procedure for UML class 

metadata extraction purposes. The NLP-based extraction module will be 

described in detail in Chapter 4.2. 

 

In the initialization step, the user performs a decision activity on determining to 

upload a requirement file in form of text or audio, or copy and paste the 

requirement text on a text area provided by the generator website. 

Alternatively, the user can enter text directly into this area. If a user 

determines to upload an audio file, the “Audio to Text Converter” in Figure 5 

utilized SpeechRecognition library with its’ built-in method of Google Speech 

API to transform the speech to text. SpeechRecognition is a library support for 

several speech recognition APIs such as Google Speech Recognition, Google 

Cloud Speech API, Microsoft Bing Voice Recognition, IBM Speech to Text 

and so on.  

 

The generator website displays the converted audio requirement text or the 

uploaded requirement text in a text area. The user can check and modify the 

initial requirement text if needed, and enter a title for the requirement. Text 

loader loads them as stored text data. The NLP-based extraction module then 

performs structuring and extracting activities on this stored text data 

sequentially. The final activity is performed in the generator module, which 

displays the UML class metadata results to the user.  

 



 

Figure 7. Activity Diagram Overviewing Process 



4.1.3. Functional requirements 

The NLP-based extraction module is the core component that processes and 

analyses NL requirement texts in this application. A specification of the 

functionality for the NLP-based extraction module is described as follows: 

 

⚫ Recognize Classes 

Extract Classes from NL requirement text. The Class name must be in a 

singular format with initial capitalization.  

⚫ Recognize Attributes for each Class 

Extract Attributes for identified Classes from NL requirement text if in 

existence. Take a sentence as an example: “A customer has an id, name, and 

address.” The extraction result should be “Class: Customer; Attributes: id, 

name, address”.  

⚫ Extract Relationships between identified Classes 

The Relationship result should involve four characteristics: Relationship type 

and value, Directionality, and Multiplicity. There are three sub-functional 

requirements in Relationship extraction: 

a. Recognize the type and value of Relationship: 

Detect different types of Relationship from the user input text. There are three 

types of Relationship encompassed in this extraction process: Association, 

Subtyping, and Composition. The result format should be “Relationship type: 

Relationship value”. Take a sentence as an example, “A customer places an 

order.” (which will be used as an example sentence for the remaining sub-

functional requirements) The Relationship extraction should be “Association: 

places”. 

b. Recognize Directionality between identified Classes 

Identify Direction between Classes. The format should be “Directionality 

(from): Class name; Directionality (to): Class name”. An extraction result for 

example sentence should be “from: Customer; to: Order”. 

c. Extract Multiplicities between Classes 

The Multiplicity value should be attached to each Class. To continue and 

integrate with Directionality result: “Directionality (from): Class name; 

Multiplicity value; Directionality (to): Class name; Multiplicity value”. An 



extraction result for example sentence is “from: Customer; multiplicity: 0..*; to: 

Order; multiplicity: 0..*”. 

⚫ Display a complete UML Class metadata result 

Integrate all the data gathered from Class, Attribute, and Relationship 

extraction, and display them to the user. For example, the ultimate results of 

the example sentence displayed on the front end are as follow: 

Class: Customer 

Class: Order 

 

Association: places 

from: Customer 

multiplicity: 0..* 

to: Order 

multiplicity: 0..* 

 

4.2. NLP-based Extraction Module Architecture 
 

To achieve the functional requirements (i.e., class and attribute identification, 

relationship identification with type, value, direction and multiplicity), the NLP-

based extraction module is decomposed into two main components: i) a text 

structuring process with NLP tools, and ii) a rule-based extraction block to 

extract UML class metadata from structured text data.  

 

Since both IE and Open IE are often placed as an early stage before pursuing 

higher level tasks in a more specialized NLP application (Singh, 2018; 

Chikkamath et al., 2018), we utilize the steps in our text structuring block to 

transfer the raw text into a list of tuples containing triplets. Then, rules are 

defined for further metadata extraction. Figure 8 elaborates the process 

architecture of the NLP-based extraction module.  

 



 



Figure 8. NLP-based Extraction Module Architecture Design 

4.2.1. Text Structuring Process (NLP tools layer) 

Text cleaning is an initial and integral part of any NLP-based system (Palmer, 

2010). In this application, requirement documents and input NL requirement 

texts are typically unstructured or semi-structured data which is difficult to 

process immediately. The objective of this block is to transform raw text data 

into a predictable and analysable form for subsequent processing tasks. 

There are various information extraction (IE) steps for text cleaning and 

structuring such as lowercasing the characters, remove punctuations and stop 

words, stemming and lemmatization, etc.  

 

With the rapid development of NLP technologies, there are many NLP toolkits 

available for performing common NLP activities, which enable the 

development of NLP-based applications without having to start from scratch 

(Pinto et al., 2016). In text structuring module, we work with Natural Language 

Toolkits (NLTK) developed in Python, as it provides a mature IE pipeline 

architecture framework and gives freedom for developers to use those steps 

in a framework. In addition, we utilize the library package from Stanford 

CoreNLP. It provides open information extraction package (Stanford Open IE) 

that is utilised for triplet extraction.  

 

In general, there is no rigid standard procedure for an information extraction 

system. The steps and methods should satisfy the needs, and adapt to the 

purpose of a program. The purpose in this component is to output the triplets 

that represent the input requirement text. The following is a sequential listing 

of the relevant steps: 

 

1. Lowercasing 

Lowercasing is the simplest and a common text cleaning technique. The idea 

behind it is normalizing all the words from a text in a same casing format, so 

that they can be treated the same way and without causing further problems. 

For example, Python interprets uppercase and lowercase letters differently. 



“Customers” and “customers” occur at different places in a textual document, 

but a system would treat them separately rather than process them as a 

single semantic concept. With mixed-case text data, lowercasing can 

eliminate variation and reduce vocabulary size. However, there are cases 

where lowercasing might have a negative by increasing ambiguity (Camacho-

Collados & Pilehavar, 2018). Some typical examples are “Apple” company or 

“apple” as a fruit to be identified, “IT” as an abbreviation of information 

technology while “it” as referring to an object.  

 

In our application, the module analyses requirement texts in English. Without 

lowercasing, the system might treat a word which is in the beginning of a 

sentence with a capital letter different from the same word which appears later 

in the sentence without any capital letter. This will lead to a decline in 

accuracy.  

 

2. Line removal 

NL requirement texts typically consist of a collection of paragraphs. 

Frequently, those paragraphs are distinguished by line breaks. When users 

upload their NL requirement document, strings of the entire requirement text 

including line breaks will return to the back-end program. To keep the string 

being displayed in one line containing the entire requirement text, we should 

remove all the line breaks in advance.  

 

3. Sentence Splitting  

After the previous steps, the text data is integrated without any breaks and is 

returned as a string. The objective of our structuring component is to convert 

raw text in structured format (i.e. triplets containing subject, relation and 

object) for every sentence, so that each triplet represents a sentence. 

Therefore, it becomes vital to segment the string of text into sentences to 

achieve the above-stated purpose. Sentence splitting in our case is 

considered as a base step because we need to keep the data in list of 

sentences before the step of open information extraction. We can simply split 

a sentence by delimiters like a period (.) Taking a simple text as an example 

“A customer places one or more orders. An order is for multiple products.” 



Sentence splitting output will be ['a customer places one or more orders.', 'an 

order is for multiple products.'] A simple piece of code using default sentence 

tokenizer from NLTK is as follows: 

 

 

4. Word Tokenization 

Tokenization in general is a process of breaking up textual data by locating 

the word boundaries into smaller and more meaningful components called 

tokens (Palmer, 2000). The common types of tokenization include sentence 

and word tokenization. In our structuring process, we break down a text 

document into sentences and tokenize them into words. For example, word 

tokenization for sentence “A customer places one or more orders.” will be ['a', 

'customer', 'places', 'one', 'or', 'more', 'orders', '.'] Word tokenization is in 

necessary because it can be provided as an input for further text processing 

procedures such as punctuation elimination, lemmatization, stemming, etc. In 

our program, the purpose of word tokenization is to prepare for data cleaning 

with stop words removal. Sample Python code using the method 

word_tokenize() in NLTK after sentence splitting is shown as follows: 

 

 

5. Word Removal 

To remove unwanted words, our application specifies a list of excluded words. 

Some of the words belongs to stop words in NLP application. Stop words refer 

to the words in natural language that do not add much meaning in a text. 

Those words can be eliminated without ruining the meaning of a sentence. 

Examples of stop words are “the”, “a”, “an”, etc.  

 



 

One of the reasons to remove stop words is that system can concentrate on 

more valuable information in downstream processing steps rather than 

spending time on analysing meaningless words. Nevertheless, stop words 

removal is not an obligation in every application of data cleaning. It should be 

considered thoughtfully because stop words mean differently in different 

applications. In our research, rather than using a corpus of stop words 

provided by NLP tools, we recompile an excluded word list based on the 

corpus of stop words provided by NLTK and append other specific words that 

are meaningless in requirement text as metadata for UML class model. The 

code below is our predefined excluded words lists in our application: 

 

The separate excluded words list is used before Open IE and after Open IE 

respectively. The purpose is to remove certain words without violating the 

integrity of a sentence, so that Open IE can process the sentence and extract 

a more accurate result.  

 

After obtaining triplet results, a further “design element” word removal is 

performed in order to clean the non-relevant terms. This is based on a list 

containing high-level words such as “application”, “system”, “user”, “data”, etc, 

because these words are related to (system) design elements, which should 

be avoided as classes (Narawita & Vidanage, 2016; More & Phalnikar, 2012).  

  

6. Open Information Extraction 

Open Information Extraction (Open IE) in NLP is a task of generating a 

structured, machine-readable representation of the information in a text, 



usually in the form of triplets, where a triplet usually consists of subject, 

predicate, and object in sequence to represent a fact (Chikkamath et al., 

2018; Khairova et al., 2020). Taking the example sentence “A customer 

places one or more orders.”, represented in an appropriate structure for 

computers to process is [(“Customer”, “places”, “Order”)]. The subject and 

object arguments are often expressed by nouns or noun phrases, while the 

predicate indicates a relation expressed by verbs frequently. Our application 

adopts Open IE to extract triplets from requirement text, and subsequently the 

system identifies further extraction of UML Class metadata from those triplets. 

Example code using StanfordCoreNLP in Python using the OpenIE package 

is as follows: 

 

 

7. Parsing tree 

A parsing tree in NLP is a way of representing the syntactical structure of a 

text in a tree graph. The syntactical structure is produced after basic NLP 

tasks such as tokenization, part of speech tagging, chunking to reveal and 

group syntax of a sentence. In this process, the parsing tree is utilized when 

the step 6 (Open Information Extraction) fails to extract some specific 

sentence. 

 



Typical syntactical categories are S (Sentence), NP (Noun Phrase) where it 

usually contains labels such as NN (Noun), NNS (Plural nouns), etc., DT 

(Determiner), VP (Verb Phrase), PP (Prepositional Phrase), and so on. Figure 

9 is an example of a parsing tree for sentence “The quick brown fox jumps 

over the lazy dog”: 

 

Figure 9. Parsing tree example 
 

This step helps us in identifying the main parts like subject, predicate and 

object in a given sentence (Btoush & Hammad, 2015).  

 

While Stanford OpenIE is intended for large-scale relation extraction from text 

such as Wikipedia, currently, it sometimes fails to extract triplets for certain 

sentences such as a sentence without object or verbal components, or a 

sentence where the POS of object is defined as verbs by Stanford OpenIE. 

When it fails to process a sentence, it will return empty. In this case, Stanford 

Parser is employed to parse the sentence that cannot be extracted by 

Stanford OpenIE, and use NLTK.Tree to represent it before adding our own 

rules to extract triplets. Thus, parsing tree is a replacement process once 

Stanford OpenIE fails. The Classes and Relationships can be extracted by 

exploring the labels (i.e., syntactic categories such as NP, VP, NN) and 

corresponding leaves (i.e., values like “fox”, “dog”) of a tree. An example of 

codes for computing parsing tree is as follows. The rules to extract triplet is 

illustrated in Chapter 4.2.2. 



 

 

8. Lemmatization 

Lemmatization refers to turning a word into its corresponding lemma (i.e., 

dictionary form). For instance, “places”, “placing”, “placed” are all forms of the 

word “place”, so that “place” is the lemma of all those words. There are 

various purposes and emphasises to use lemmatization in different 

applications. For example, in web document clustering for search engines, 

lemmatization is employed to reduce the number of tokens with identical 

meanings but different forms, and increase the system performance. For our 

program, except for the reason stated above, an extracted Class name must 

be in singular form. Therefore, we adopt lemmatization as a final step to 

transform the plural class name into singular. NLTK offers lemmatization using 

WordNet’s built-in morphological analysis function: 

 

As can be seen, lemmatization in NLTK returns the input word unchanged if it 

cannot be found in WordNet and confirms the necessity of lowercasing step. 

 

9. Dependency Parsing 

Dependency parsing is a process of representing the grammatical structure of 

a sentence based on the dependencies between words in the sentence. 

Figure 10 displays a result of analysing “A customer places an order. An order 



is placed by a customer” by dependency parser through StanfordCoreNLP 

demo. 

 

Figure 10. Stanford Dependency Parser Demo 
 

As can be seen from the dependency parsing result, there is a “det” 

(determiner) relation between “order” (NN) and its determiner “An” (DT). The 

“aux” (auxiliary) and “auxpass” (passive auxiliary) in the second sentence 

indicates dependency relationship between “placed” and “can”, “placed” and 

“be”, respectively. In our application, dependency parsing is used to recognize 

passive and active voice according to the label “nsubj” (nominal subject) and 

“nsubjpass” (passive nominal subject). In this way the Directionality between 

Classes can be determined. Lemmatization is cooperated in this step to 

transferred the Relationship value from passive voice to active voice. The 

built-in method dependency_parse() of StanfordCoreNLP and lemmatization 

to transform verb format for passive Relationship value are developed in the 

code as follow (with the corresponding result from an input sentence “An order 

is placed by a customer”): 



 

 

Algorithm 



Having described all of the architectural steps for the text structuring process 

(with Python code examples), an algorithm integrating these steps is as 

follows: 

 

 

4.2.2. Rule-based extraction block 

A rule-based system is an automated system encoding human expert’s 

knowledge in a narrow area, and is usually made up of sets of rules or 

assertions, where the rules are expressed as if-then statements (Grosan & 

Abraham, 2011; Narawita & Vidanage, 2016). In our application, rules are 

formulated to overcome the limitations of NLP tools and for further information 

extraction steps which are specific to UML class meta data.  



 

Additional triplet extraction rules 

When Stanford OpenIE fails to process a sentence, extra rules are defined to 

identify triplets from a parsing tree of that sentence. A heuristic rule of 

identifying Subject-Relation-Object is that nouns are often referred to subjects 

and objects, while relations are usually expressed by verbs. Therefore, we 

have following rules on triplet extraction when exploring a parsing tree: 

1. Find the first label NP (noun phrase) occurs in a sentence, if there is any 

label as NN (noun, singular or mass), NNS (plural noun), and NNP 

(singular proper noun) in the noun phrase, then assign the corresponding 

value as a subject. 

2. Find if there is a label VP (verb phrase), NP (noun phrase), PP 

(prepositional phrase) occurs after NP (noun phrase), then if there is any 

label as VB (verb with base form), VBN (verb, past participle), VBZ (3rd 

person singular present verb) or VBP (non3rd person singular present 

verb) in those three types of phrases, assign the text value as a predicate 

in a triplet. 

3. Continue from the second rule set to explore if there are any labels NN, 

NNS or NNP in VP, NP, PP, then assign the text value as an object. 

 

Since natural language is complex and ambiguous, the accuracy of applying 

the above rules cannot compare with that of Stanford OpenIE. The rules 

perform very well in syntactic structures like NP+VP (e.g., “A customer can 

place one or more orders”). However, they are less effective with a more 

complicated sentence structure composed of multiple NP and VP labels or a 

sentence with more than three candidate Classes (concept) value. 

 

UML meta data extraction rules 

The syntactic reconstruction rules which are developed in UMGAR (Babar & 

Deeptimahanti, 2009) and reinforced in RAPID (More & Phalnikar, 2012), 

focused on restricting input sentence from users. Other rules are focused on 

metadata extraction, for example, More and Phalnikar (2012), Shinde et al 

(2012) designed more than 10 rules on Class, Attribute and Relationship 

extractions. Our application defines fewer and more straightforward rules for 



metadata extraction due to the results of the last NLP toolkits layer process, 

presenting a set of clean and structured triplets. For example, “Subject, 

Predicate, Object” directly implied as (Candidate Class, Relationship, 

Candidate Class). 

 

With all the triplets result from previous block (Chapter 4.2.1), and the 

additional triplet extraction rules discussed above, the UML specific extraction 

rules are defined as follows: 

 

1. Class extraction 

We have discussed a rule for avoiding Class extraction in the previous block: 

remove the words related to (system) design elements such as “application”, 

“system”, “user”, etc. After these unintended nouns are removed, the values of 

every subject and object from the triplet results become a UML Class.  

 

2. Attribute extraction 

If a Class (subject and object value in triplet) has a value like “name”, “date”, 

“id”, “code”, “address”, etc, which are commonly regarded as attributes when 

defining UML Class models, then it is an Attribute. We collect and store a 

predefined list including the most popular Attribute words in our program. It is 

used to check the extracted subjects and objects value from triplets. The 

predefined Attribute word list contains the words as follow: 

 

However, the word list can be extended manually rather than learning from 

user’s modification of the extracted results. To extend the attribute glossary, 

more requirements texts should be obtained for manual analysis to identify 

common attribute terms.  

 

3. Relationship extraction 

The second value (i.e., predicate expressed by verbs or a verb phrase) from 

triplets becomes the name of a Relationship between classes. For example, 



“A customer places one or more orders.”, “places” is the name of relationship 

between “Customer” and “Order”. We have mentioned in the functional 

requirements that this application focuses on three types of Relationship 

extraction. The rules utilised for Relationship type identification are: 

⚫ If the Relationship name is equal to one of the words or phrases “have”, 

“has”, “contains”, “contain”, “consists of”, “composed of”, “hold”, “include”, 

“maintain”, “maintains”, “divided to”, “has part”, “comprise”, “carry”, 

“involve”, “imply”, “embrace” and “is for”, then it indicates a Composition 

Relationship. 

⚫ If the Relationship name is equal to or includes one of the words or 

phrases like “is a”, “is a kind of”, “can be”, “is”, “are”. Then it indicates a 

Subtyping Relationship, and the Relationship name should be removed. 

⚫ If the Relationship name does not satisfy any of the previous rules, then it 

is defined as Association Relationship. 

 

4. Relationship Direction extraction 

The Direction of Relationships between classes is defined by utilizing the 

active and passive voice in the relationship name. If it is in active, the direction 

is defined from subject to object. If it is passive voice, the direction is defined 

from object to subject. For instance, “A customer places one or more orders.” 

(“Customer”, “places”, “Order”) “An order is placed by customers.” (“Order”, “is 

placed by”, “Customer”). Since the predicate in the latter triplet is in passive 

voice, the direction result for both triplets is from “Customer” to “Order”. These 

can be achieved by using Stanford Dependencies where “nsubj” represent 

active and “nsubjpass” represent passive. Therefore,  

⚫ If “nsubj” exists in dependency parsing result, the direction is from subject 

to object. 

⚫ “If “nsubjpass” exists in dependency parsing result, the direction is from 

object to subject. 

 

5. Multiplicity extraction 

Multiplicity is difficult to extract from a triplet that contains three arguments. 

Furthermore, requirement documents frequently omit explicit reference to 

association multiplicity. In addition, natural language can be ambiguous with 



respect to multiplicity. For example, an NL requirement might be described as 

“A teacher gives lectures”, whereas in real life, it happens that more than one 

teacher gives a lecture at a school or university. If the algorithm strictly follows 

the structure and content of requirement text, the accuracy of multiplicity 

identification declines. The widest range “0..*” (zero to many) is not a hundred 

percent accurate result, it is not a faulty outcome. The users can refine the 

multiplicity result into smaller range. If the Relationship type between two 

Classes is Composition, the Multiplicity is given as “1” for the starting Direction 

(from) and “0..*” to the end Direction (to). 

 

The very limited capabilities of our rule-based extraction module are: 

⚫ the identification method for Attributes is restricted to a predefined word 

set. 

⚫ The identification method for Multiplicity simply performs the widest range 

of “0..*”. The only update is based on the detection of the Composition 

Relationship type. 

 

4.3. Implementation 
 

Based on the requirements and architecture design, a web application has 

been developed in the Python environment using Django, which is a Python-

based high level web framework. The back-end NLP and Rule processing is 

also implemented in Python. The implementation covers the architecture and 

algorithm described in Chapter 4.1 and 4.2, and uses an external program 

(Ralph Driessen (2020)) and dependent libraries (i.e. NLTK, Stanford 

CoreNLP and SpeechRecognition). 

 

Our web application consists of three front-end web pages:  

- The home page enables users to upload requirement text files, audio 

files, or input text directly. A separate pane on this page displays the 

extracted UML meta data in structured textual format.  

- The second page enables users to modify uploaded requirement texts. 

- The third page integrates a prototype run-time application environment 

based on the extracted UML Class meta data (Ralph Driessen (2020)). 



This environment enables users to immediately obtain feedback on the 

UML Class meta data extracted in the form of a running prototype. It 

provides a rapid feedback mechanism on the UML Class model 

extracted from the NL requirements text by running the resulting 

application. It also contains a visual UML class modeler component to 

view the extracted meta data in that form. 

 

Home page 

The homepage of this application is displayed in Figure 11. The application 

can open and read textual requirements from two different sources including 

text files (.txt) and audio files (.wav). User can either uploads a file or input 

text in “Requirement text” area. When user click “Convert to text” button, text 

data from uploaded file will be displayed in “Requirement text” area. A title 

must be input in order to store data and enable requirement modification in 

the “Manage Requirement” page. 

 

Figure 11. Home page of application 



 

Apart from using Stanford CoreNLP and NLTK libraries, this application also 

uses SpeechRecognition, a python library for speech-to-text, or text-to-speech 

conversion, that has support for several engines and APIs online and offline 

such as Google Speech Recognition, IBM Speech to Text, Snowboy Hotword 

Detection, etc. By default, Google Speech Recognition is utilized in this 

application to transform the speech content from an uploaded .wav file to text. 

The Python code to achieve this is as follows: 

 

 

An example of converting .wav file to text is in Figure 12. The application can 

perform speech recognition of a long audio file, and handle full stops and 

silence in a speech. Due to pronunciation specifics, or background noise in an 

audio file, the conversion cannot achieve a hundred percent accurate 

conversion result. However, the user can modify the converted sentences 

directly in the text area.  



 

Figure 12. Example of audio file conversion 
 

When user clicks “Show metadata” button, there is a text area following the 

button to display the UML class metadata result (Figure 13). The backend 

implements the design architecture and algorithm of the NLP based extraction 

module. 



 

Figure 13. Example of UML class metadata result 
 

Manage Requirement 

Figure 14 shows the page for requirement modification. A select menu loads a 

previously saved requirement title from the database. The corresponding 

contents will be displayed in the text area. The user can make changes to the 

requirements text. This page implements the Read and Update functions in 

CRUD (Create, Read, Update and Delete).  



 

Figure 14. Manage requirement page 
 

Runnable Prototype 

This page integrates an application developed by Ralph Driessen (2020). The 

original purpose of the application is to execute a runnable prototype 

application based on the metadata of the UML class model entered by the 

users. Users can manually add class, attribute, operation, link relationship 

between classes with multiplicity, and create an application to link the required 

metadata. The application is activated by clicking on a “Run” button. The 

source code of the defined application will be created automatically.  

 

Integration brings a win-win situation. On the one hand, for our research, end 

users and stakeholders can obtain an initial operational prototype from their 

requirements text in a rapid way. This provides them with an easy-to-

understand solution for validating the generated UML class metadata in the 

form of an actual (prototype) application. Requirement analysts can also get 

faster feedback from end-users and business experts on the results of UML 



class metadata. On the other hand, for the tool developed by Ralph Driessen 

(2020), its software (prototype) development process extends and includes 

the stage of requirement analysis, adding the functionality of our automated 

metadata generation tool - rather than manually adding UML class metadata 

from scratch.  

 

Figure 15 displays a simple menu page including different parts of the models 

that are editable. For example, users can manually create classes by filling in 

class names and properties. The classes will be saved as meta data in a 

database. 

 

 

Figure 15. Menu page of runnable prototype page 
 

To integrate with this application, the NLP generated UML class metadata is 

saved into the database of this application by calling its methods. A simple 

example of the Python integration code to achieve this meta data integration 

is displayed in Figure 16. All of the extracted data in the form of UML Classes, 

Attributes and Relationships are stored in one go, and the application can be 

executed after a few simple steps to define an Application Model.  



 

Figure 16. An Example of Integration codes 
 

Taking the “CourseAttendance” from Figure 11 as an example, the 

corresponding metadata outputs in integrated application is shown in Figure 

17. 

 

Figure 17. Results from “CourseAttendance” in Runnable Prototype 
 



Figure 18 displays the process and an example running application when 

creating a new “coursesystem” application. We link the Class “Course” and its 

Attributes “course name”, “code” and “date” to the example application. The 

application will be running by clicking the “Run” button. After that, user can 

add any course information to the created application. The data will be saved 

in database. User can view detail information of their “course list”. 

 

Figure 18. An Example of Executable Application 



As can be seen, user can immediately obtain a runnable prototype and make 

changes. It is a way of providing end users with an initial prototype, enabling 

them evaluate the implications of their requirements, and facilitate rapid 

software development and model validation.   

 

  



5.  Example Requirements and Results 

In the previous chapter we elaborated the architecture framework, extraction 

process, and the NLP toolkits utilised for our UML class metadata generation 

application, and described its implementation.  

 

In this chapter, we will demonstrate the functionality of the tool by using a set 

of 5 sample textual requirements documents. For each of these, the 

generated UML Class meta data is shown in structured textual format, and 

also by means of a visual UML Class diagram.  

 

A number of imperfections (“bugs”) are highlighted and classified. 

Furthermore, their causes are explained – in most cases they are the result of 

bugs in the underlying libraries utilised. 

 

We conclude this chapter by discussing written feedback from an industry 

expert in UML tool development as to the functionality and desirability of our 

implementation. 

 

5.1. Input Data Preparation 

 

Ferrari et al (2017) published a dataset containing 79 public NL software 

requirement documents collected from the web, the majority of which are 

software requirement specifications (SRS). SRS is normally regarded as a 

result of the requirement engineering process after collecting requirements 

from stakeholders (Pekar et al, 2014). The SRS document contains the 

general system requirements, and specific information such as functional 

requirements, non-functional requirements and system design (e.g. UML 

diagrams, design models). However, the focus of this research is on 

extracting UML Class information from requirements expressed by 

stakeholders, rather than from well-organised documentation results from the 

process of collecting and analysing requirements. Therefore, instead of using 



this dataset directly as input in our application, five sample requirements are 

compiled with reference to some paragraphs from the dataset. 

 

5.2. “Police Station System”: Requirements and Results 
 

This section describes the “Police Station System” requirements test case, in 

terms of its input and the corresponding output results. The UML class 

diagram has been drawn manually according to the meta data results 

generated in order to give an intuitive feel. Several classes of bugs have been 

annotated to the UML diagram, and are further explained in a section 

following the diagram. Four additional example requirements (and their 

corresponding outputs) are exhibited in appendix A. 

 

Bug Classification and Causes 

To extract UML class metadata, this program relies on two NLP toolkits: 

Stanford CoreNLP and NLTK. These two toolkits provide various pre-built 

methods to accomplish different tasks in NLP. In our project, the OpenIE 

(Open Information Extraction) from Stanford CoreNLP is one of the main 

models we use to extract triplets (Subject – Relation - Object) for each 

sentence. For example, “An order is for multiple products”. The OpenIE result 

is (‘Order’, ‘is for’, ‘Products’). With this triplet, we can define there are classes 

as “Order” and “Product”, a relationship between them named as “is for”.  

 

We use OpenIE because it is useful when there is limited or no training data 

for relation extraction tasks, and it is easy to extract the information required 

from open domain triples. However, there are unexpected results for some 

particular sentences, which result in small errors emerge when identifying 

UML class metadata. In this case, we have characterized those errors into 4 

different types: 

 

⚫ Type 1: Incomplete information extraction.  

OpenIE fails to extract information from part of a sentence. An example is 

displayed in figure 19 that OpenIE extracts the relationship between “police 



officer” and “duty sergeant”, but fail to identify and include relationship 

between “police officer” and “crime officer”. 

 

 

Figure 19. Example of Failure 
 

⚫ Type2: Multiple entities problems.  

Three or more entities exist in one sentence, and those entities have 

relationships with each other. For example, “Police officer can add multiple 

case entries to a particular case.”, the OpenIE result is (‘police officer’, ‘add 

multiple case entries’, ‘case’; ‘police officer’, ‘add’, ‘case entries’)  

 

⚫ Type 3: Noun + Prep + Noun problem.  

For example, “location in supermarket” will be extracted as an object  

 

⚫ Others 

For example, OpenIE misunderstands the sentence, the sentence has co-

reference problems, or result is correct according to the sentence, but leads to 

dangle problems in the diagram, etc. 

 

The diagram will highlight the type of errors by different color and attach a 

specific error explanation. Every test case consists of requirement text, the 

output metadata from our program, and UML class diagram with error 

explanation (see Appendix A).  



 

Input scenario 1: 

Requirement title 

Police Station System 

Requirement text 

“Citizens can register their complaints by speaking to a police officer. The 

police officer is either a duty sergeant or a crime officer. The police officer 

registers the citizen’s details such as name, address, contact information 

and so on. The police officer will then assign a case, and initiate the 

investigation process.  

 

During the investigation process, the police officer collects evidence and 

facts, and records them for the relevant case. Each case has an id, a 

creation date, a crime code, and a resolution date. Furthermore, a case 

mentions the citizen that registered the complaint, and it mentions any 

suspects. Police officers can add multiple case entries to a particular case.  

 

For each case, the police officer will summon and interrogate suspects. 

When enough evidence against a suspect exists, a police officer will arrest 

the suspect. Following an arrest, court proceedings are initiated, and the 

suspect will be sent to a court. The court will then hand out a sentence, and 

the suspect may be fined, or sent to jail. ” 

 

The following is the intermediate output (i.e, triplets result after Text 

Structuring Process) based on the above requirements texts:  

 

[('citizens', 'speaking to', 'police officer'), ('citizens', 'can register', 'complaints'), 

('police officer', 'is', 'duty sergeant'), ('police officer', 'registers', 'citizen details'), 

 ('police officer', 'initiate', 'investigation process'), ('police officer', 'assign', 

'case'), ('police officer', 'collects', 'evidence'), ('police officer', 'collects', 'facts'), 

('case', 'has', 'resolution date'), ('case', 'has', 'id'), ('case', 'has', 'creation date'), 

('case', 'has', 'crime code'), ('case', 'mentions', 'citizen'), ('case', 'mentions', 

'suspects'), ('police officers', 'can add case entries to', 'case'), ('police officers', 



'can add', 'case entries'), ('police officer', 'summon', 'case'), ('police officer', 

'interrogate', 'suspects'), ('police officer', 'arrest', 'suspect'), ('court 

proceedings', 'are initiated following', 'arrest'), ('court', 'hand out', 'sentence'), 

('suspect', 'sent to', 'jail')] 

 

The UML class metadata output generated by our NLP tool: 

 





 

 



Corresponding UML class diagram 

 

Figure 20. UML class diagram from police station system 



 

Error explanation: 

Type 1: Incomplete information extraction (OpenIE fails to extract 

information from part of a sentence) 

⚫ “The police officer is either a duty sergeant or a crime officer.” Triplets: 

[('police officer', 'is', 'duty sergeant')] OpenIE fails to extract “police officer 

is a crime officer”.  

(Note: OpenIE has incomplete information extraction problem when 

processing the sentence containing the words: “can be”, “such as”, “is”, 

“are”, etc, which sometimes indicates subtyping relations. If the sentence 

contains more than one object, OpenIE will extract the first object 

appeared in the sentence.) 

⚫ “The police officer registers the citizen’s details such as name, address, 

contact information and so on.” Triplets: [('police officer', 'registers', 'citizen 

details')] The OpenIE fails to extract information from the latter part of the 

sentence. 

Type 2: Multiple entities problem (Three or more entities exist in one 

sentence, and those entities have relationships with each other) 

⚫ “Police officer can add multiple case entries to a particular case.” Triplets: 

[('police officers', 'add case entries to', 'case'), ('police officers', 'add', 

'case entries')] The ideal result is (‘case entry’, ‘is for’, ‘case’) or (‘case’, 

‘has’, ‘case entry’) accompany (‘police officers’, ‘add’, ‘case entries’) 

Others (understanding problem and dangle problem) 

⚫ “For each case, the police officer will summon and interrogate suspects.” 

Triplets: [('police officer', 'summon for', 'case'), ('police officer', 

'interrogate', 'suspects')] OpenIE separate the sentence as “for each case, 

the police will summon”; “The police officer will interrogate suspects” to 

process. 

⚫ “Following an arrest, court proceedings are initiated.” Triplets: [('court 

proceedings', 'are initiated following', 'arrest')] It is not wrong 

according to the sentence but results in dangle problem in the UML class 

diagram. 

 



5.3. Discussion of UML Experts Verification Results 
 

The results of sample requirements texts, a screen-recorded video of our 

application, and a questionnaire are delivered to twenty UML experts (from 

industry and academia) as a verification and evaluation session. In the 

questionnaire, the UML experts were asked, more specifically, to give a score 

to the accuracy of UML class metadata results, give feedback on our tool, and 

their experience and opinion on NLP-based UML model generation tools. The 

design of questionnaire is exhibited in Appendix B. Unfortunately, due to the 

recipients being busy, it resulted in only 2 responses.  

 

As explained earlier, our results point out and explain some of the errors in the 

extraction results from the use of Stanford OpenIE package. To begin with, 

respondents were asked to rate the results from two different perspectives. 

When disregarding the highlighted errors, the two evaluators gave a score of 

5 and 3 respectively (10 as maximum score). When considering that the 

situation and error was highlighted and explained, both of them gave 7 for the 

accuracy of the results, and affirmed that our tool can assist the requirement 

analysis process. One of the evaluators specified that typically, the first goal in 

elicitation process is to seek an 80/20 gain. The accuracy of our results has 

not yet achieved 80% of accuracy from his perspective because of dependent 

libraries. However, the other respondent stressed that even with the bugs 

remained, using our tool is a good way to ramp up a design rapidly. 

 

Evaluators regarded our textual extraction results easy to read and modify. 

While an evaluator embraced the opinion that textual results can be easy to 

manipulate and copy-paste, and thus reducing the time on dealing with layout, 

the other raised that visual representation is a benchmark that has been 

established in this particular UML class modelling field. Therefore, the 

diagram generation module should be added as a feature in this tool to meet 

this requirement.  

 

As for the integrated work (“Runnable Prototype” page), the evaluators gave 

positive attitude to its’ possibility on getting end users more involved during 



requirement analysis process. This integration effort is regarded as a way to 

check the understanding of requirements, correct, qualify and extend the 

requirements.  

 

The questionnaire also received suggestions on the improvement of this tool 

in the future, which are displayed as follows: 

⚫ Adding a machine learning feedback loop to improve the precision. 

⚫ Even if without machine learning applied, the tool should be improved in a 

way of maintaining synchronization between text and model results, 

particularly when users modify the results. This means that the metadata 

results can be modified by users and make changes on the original 

requirements texts. 

⚫ Parsing problems should be handled, and subtype and instance should be 

distinguished. Therefore, more efforts on improving the extraction 

methodology should be made in order to cover more elements 

identification. 

⚫ The tool cannot detect synonyms and other terminology defined in the 

text. It would be better for the tool to generate a general description of 

terminology of the extracted domain. To achieve this, ontology induction 

would be valuable to this tool. 

 

Neither evaluator had access to or used an NLP-based UML model 

generation tool, but we received some of their ideas and requests for such a 

tool. While one of the respondents claim to reduce drawing time, another UML 

expert desire a characteristic of interactivity for such a tool. A Siri-like 

conversation tool that generating and clarifying qualified questions to verify 

and correct the requirements when they are emerged would be preferred. This 

can be achieved to develop a chatbot that addressing the issue of input 

requirement regulations, and a validation process during the conversation, 

thus to generate a precise result from user’s requirement. However, 

requirement analysis process should co-ordinate various perspectives from 

different stakeholders, a chatbot is more specific to an individual. In this case, 

the involvement of a wider range of stakeholders remains an issue.  



6. Conclusion 

This thesis presents a new architecture framework from the perspective of 

assisting software requirements analysis process by combining the use of 

rules and NLP tools in a different manner. Other studies have typically limited 

the user’s requirements input text to a significant extent, indicating that the 

steps of text cleaning and structuring are left to humans, and the analysis 

process of those tools are not fully automated. The tool we have developed 

replaces this step by utilizing the NLP toolkits, i.e., transforming the 

requirements text into structured triplet text data, improving the efficiency on 

text structuring from raw requirements text.  

 

Furthermore, previous research tended to develop extraction tools for UML 

experts or requirements analysts as users. Such tools did increase the speed 

of requirements analysis to some extent, but created a separation of 

communication with the main owners of the requirements – the stakeholders 

–, and thus in responding to changes in requirements and validation feedback. 

Software nowadays needs to evolve rapidly, in which analysts are required to 

interview and communicate with all stakeholders of the software, and adapt to 

their changes and feedback immediately. Under this circumstance, instead of 

reorganising the collected requirements themselves and analysing them with 

a tool after communication, this research integrates with a run-time application 

solution developed by Driessen (2020). The integrated application allows the 

analysts to immediately acquire UML class metadata results, and a run-time 

prototype based on them, immediately after stakeholders express their 

requirements. The stakeholders can view the initial prototype from their 

requirements and modify it.  

 

6.1. Limitations 

 
While the framework developed provides an improved solution for extracting 

UML class metadata from requirements texts and the integration effort offers a 



possibility for all stakeholders involved in the requirement analysis process, 

there are few things to keep in mind. Firstly, the sample of requirements text 

data (Chapter 5.2 & Appendix A) on which these extraction results are based 

is quite small. A larger sample of realistic requirements data, perhaps spread 

across various software development organizations, is necessary to expand 

the test cases for this tool. This expansion could also allow for greater 

extraction mechanisms to be developed or evolved, particularly as software 

requirements expressed in NL are complex and most of the time contain a 

number of dedicated words or specific abbreviations. Secondly, the 

mechanism for extracting multiplicity become difficult in our frameworks since 

the structured triplet data contains three arguments, while the multiplicity is 

usually expressed in adjective or numeral words, which were neglected in 

triplet’s extraction. Thirdly, the only methodology of attribution extraction in 

this research is restricted to a set of attribute words, and the mechanism 

cannot extend the attribute glossary or Rules by catching or learning from 

user input. Fourthly, while our tool can extract less structured requirements 

texts (the tool uses NLP toolkits to process text structuring), suggestively, the 

tool becomes less effective when processing over-complex sentences or 

compound sentences (i.e, contains reference words like “which”). Lastly, the 

questionnaire produced for the evaluation of the results and tools collected 

very limited responses. Also, the only participants in the questionnaire were 

UML experts or requirements engineers. More stakeholders need to be 

included to assess our tool.  

 

6.2. Future Work 

 

Due to the limitations of requirements data, the extraction methodology in this 

research forgoes any machine learning or deep learning techniques, opting 

instead for an approach that uses NLP tools and rules. An aspect of further 

research from this might be training models for relationship and multiplicity 

prediction, or conducting supervised learning for ontology induction once 

sufficient realistic software requirements data are obtained. This can provide a 

more intelligent solution for this research field. 
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As mentioned in chapter 5, the Stanford OpenIE package we used in this tool 

failed to extract triplets from incomplete sentences. In this case, future works 

could explore other rising NLP toolkits, such as TensorFlow-based Google 

SyntaxNet, perhaps able to deal with more free text, or compare NLP toolkits 

used in the development of similar extraction tools.  

 

Furthermore, chapter 5 also mentions an extensibility problem in that the 

mechanism cannot update the glossary or create Rules based on user 

modifications. This indicates a data driven implementation in the future 

research work. For example, the extracted UML Class meta data should 

update when user changes Multiplicity, Relationship, Class value, or add a 

new Class name, new attribute in prototype application. Besides that, once 

the extracted UML Class metadata is updated, is it possible to update or 

renew the corresponding requirements text at the same time? A two-way 

integration and generation should be worked out in the future. 

 

In addition, the integration effort offered the possibility to involve all the 

stakeholders in requirement analysis process and these requirements owners 

were supposed to evaluate the results. However, they were not fully included 

in our verification questionnaire. UML experts were the only group of users 

who participated in this questionnaire and evaluated the results by giving a 

score. What could not be confirmed was the evaluation criteria they used to 

give this score, in other words, the evaluation indicators were in a black box. 

These in turn raise some further research questions, e.g., what are the 

metrics used to evaluate the accuracy of the extraction results? How do other 

stakeholders (end-users, business specialists, software developer, etc.) 

validate the results? Is there a framework to reconcile these judgements from 

different stakeholders’ perspectives? Our evaluation session is set up by 

sending results and a screen video. However, the ideal process would be to 

conduct task-based evaluations by providing a tool that the evaluator can play 

around in practice. In this case, ensure consistency of input is required and 

evaluators should be provided with input texts of similar length and similar 

complexity. Then, a series of task-based activities and questions can be 

undertaken. This was not achieved in our study due to the time-consuming 



nature of finding and contacting candidate evaluators, and such evaluation 

sessions (particularly in the absence of relevant social networks in industry 

and the uncertainty of response time), but could be carried out in the future 

studies. 

 

Another interesting research angle might be extending our tool to automate 

the generation of UML class diagrams, as our methodology focuses on 

extracting UML class metadata. In our questionnaire, there is a respondent 

who also mentioned that some people prefer a more intuitive or visual model 

(i.e., a diagram). Based on this research tool, a diagram editor can be 

developed to meet the demands of this group of users.  
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Appendix A: Sample Requirement Data and 

Results  

A.1. Input Scenario 2 (Supermarket System) 
 

Requirement title 

Supermarket System 

Requirement text 

“The supermarket is organized into aisles. Each aisle contains various 

product categories. Food, drinks, sanitary items, and cleaning products are 

all product categories. Each product category contains many products. 

These products are stacked into shelves. Each product has a name, code, 

and location in the supermarket.  

 

A customer enters the supermarket, and picks up a shopping cart. The 

desired products will be placed in the shopping cart. The customer will then 

go to the cashier desk, and pay for the products. Each cashier desk has a 

cashier, a scanner, and a till. After receiving payment from the customer, 

cashiers will hand them a receipt.” 

 
  



 
Intermediate output: 

 

[('supermarket', 'is organized into', 'aisles'), ('aisle', 'contains', 'product 

categories'), ('items', 'are', 'product categories'), ('sanitary items', 'are', 'product 

categories'), ('cleaning products', 'are', 'product categories'), ('drinks', 'are', 

'product categories'), ('food', 'are', 'product categories'), ('product category', 

'contains', 'products'), ('products', 'are stacked into', 'shelves'), ('location', 'is 

in', 'supermarket'), ('product', 'has', 'code'), ('product', 'has', 'location in 

supermarket'), ('product', 'has', 'name'), ('product', 'has', 'location'), ('customer', 

'picks', 'shopping cart'), ('customer', 'enters', 'supermarket'), ('customer', 'go 

to', 'cashier desk'), ('customer', 'pay', 'products'), ('cashier desk', 'has', 

'cashier'), ('cashier desk', 'has', 'till'), ('cashier desk', 'has', 'scanner'), 

('cashiers', 'receiving', 'payment'), ('cashiers', 'hand', 'receipt'), ('cashiers', 

'receiving payment from', 'customer')] 

  



The UML class metadata output: 

 



 

 



UML class diagram: 

 
Error explanation: 

Type 2: Multiple entities problem (Three or more entities exist in one 

sentence, and those entities have relationships with each other) 

⚫ “After receiving payment from the customer, cashiers will hand them a 

receipt.” Triplets: [('cashiers', 'receiving', 'payment'), ('cashiers', 'hand', 

'receipt'), ('cashiers', 'receiving payment from', 'customer')] The ideal 



result is [(‘cashier’, ‘receive’, ‘payment’), (‘cashier’, ‘hand’, ‘receipt’), 

(‘customer’, ‘proceed’, ‘payment’), (‘customer’, ‘receive’, ‘receipt’)] 

Type 3: Noun + Prep + Noun problem (when there is a preposition between 

two nouns) 

⚫ “Each product has a name, code, and location in the supermarket.” 

Triplets: [('location', 'is in', 'supermarket'), ('product', 'has', 'code'), 

('product', 'has', 'location in supermarket'), ('product', 'has', 'name'), 

('product', 'has', 'location')] 

Others: (Duplication problem) 

⚫ “Food, drinks, sanitary items, and cleaning products are all product 

categories.” Triplets: [('items', 'are', 'product categories'), ('sanitary items', 

'are', 'product categories'), ('cleaning products', 'are', 'product categories'), 

('drinks', 'are', 'product categories'), ('food', 'are', 'product categories')]  

 
  



A.2. Input Scenario 3 (Online Shopping System) 
 

Requirement title 

Online Shopping System 

Requirement text 

“The online shopping system allows customers to search for products by 

category, and to order them. Each category contains sub categories or 

products. Cars, bicycles and motorbikes are sub categories. Customers can 

search for products matching their search criteria. An administrator 

manages the categories and product information. Customers can create 

accounts. An account will consist of various information such as name, 

address, phone number, email, and so on. 

 

Customers can add one or more products to the shopping cart. The 

shopping cart lists the products, and shows their price. It also shows the 

total price of the items in the shopping cart. Customers can remove 

products from the shopping cart before checkout.  

 

The payment process is triggered when customers confirm the order. 

Customers will pay for the products, and receive a confirmation email. The 

confirmation email shows the order information. Order information consists 

of customer, products, prices, quantities, delivery address, and delivery 

date.” 

 
  



Intermediate output: 

 

[('shopping', 'allows', 'customers'), ('customers', 'search', 'products by 

category'), ('customers', 'search', 'products'), ('category', 'contains', 'products'), 

('category', 'contains', 'sub categories'), ('bicycles', 'are', 'sub categories'), 

('cars', 'are', 'sub categories'), ('bicycles', 'are', 'categories'), ('motorbikes', 

'are', 'categories'), ('motorbikes', 'are', 'sub categories'), ('cars', 'are', 

'categories'), ('customers', 'can search', 'products'), ('administrator', 'manages', 

'categories'), ('administrator', 'manages', 'product'), ('customers', 'can create', 

'accounts'), ('account', 'consist', 'name'), ('customers', 'add', 'products', 

'shopping', 'cart'), ('shopping cart', 'shows', 'price'), ('shopping cart', 'lists', 

'products'), ('items', 'is in', 'shopping cart'), ('customers', 'can remove products 

before', 'checkout'), ('customers', 'can remove products from', 'shopping cart'), 

('customers', 'can remove', 'products'), ('customers', 'confirm', 'order'), 

('customers', 'receive', 'confirmation email'), ('customers', 'pay', 'products'), 

('confirmation email', 'shows', 'order'), ('order', 'consists', 'quantities'), ('order', 

'consists', 'delivery date'), ('order', 'consists', 'prices'), ('order', 'consists', 

'customer'), ('order', 'consists', 'products'), ('order', 'consists', 'delivery 

address')] 

  



The UML class metadata output: 

 





 
 
  



UML class diagram: 

 
Error explanation: 

Type 1: Incomplete information extraction. (OpenIE fails to extract 

information from part of a sentence) 

⚫ “An account will consist of various information such as name, address, 

phone number, and email.” Triplets: [('account', 'consist', 'name')] 

⚫ “It also shows the total price of the items in the cart. Triplets: [('items', 'is in', 



'cart')] 

Type 2: Multiple entities problem (Three or more entities exist in one 

sentence, and those entities have relationships with each other) 

⚫ “Customers can remove products from the shopping cart before checkout.” 

Triplets: [('customers', 'remove', 'products'), ('customers', 'remove 

products from', 'shopping cart'), ('customers', 'remove products 

before', 'checkout')] The ideal result: [(‘customer’, ‘remove’, ‘products’), 

(‘shopping cart’, ‘has’, ‘products’)] 

Type 3: Noun + Prep + Noun problem (when there is a preposition between 

two nouns) 

⚫ “The online shopping system allows customers to search for products by 

category, and to order them.” [('shopping', 'allows', 'customers'), 

('customers', 'search', 'products by category'), ('customers', 'search', 

'products')] 

Others: (Duplication Problem) 

⚫ “Cars, bicycles and motorbikes are sub categories.” Triplet: [('bicycles', 'are', 

'sub categories'), ('cars', 'are', 'sub categories'), ('bicycles', 'are', 

'categories'), ('motorbikes', 'are', 'categories'), ('motorbikes', 'are', 'sub 

categories'), ('cars', 'are', 'categories')] 

 
  



A.3. Input Scenario 4 (Course Attendance System) 
 

Requirement title 

Course Attendance System 

Requirement text 

“A student will enroll for one or more courses. Business Courses and 

Science Courses are types of courses. Each course consists of multiple 

lectures, and have a course name, code and date. A course coordinator 

organizes the courses. Each course has one or more lecturers, a location, 

time slot, and set of dates.  

 

Lecturers will give lectures, and administrators will make announcements 

that are for a particular course. Each course will have assignments and an 

exam. Students must attend to the lectures, complete the assignments and 

take the exam. Lecturers will give grades. A course grade consists of an 

assignment grade and exam grade. An exam is either a first exam or a re-

take. Students will receive their course grades by email.” 

 
  



Intermediate output: 

 

[('student', 'enroll', 'courses'), ('business courses', 'are', 'courses'), ('science 

courses', 'are', 'courses'), ('course', 'have', 'course name'), ('course', 'have', 

'code'), ('course', 'have', 'date'), ('course', 'consists', 'lectures'), ('course 

coordinator', 'organizes', 'courses'), ('course', 'has', 'dates'), ('course', 'has', 

'location'), ('course', 'has', 'timeslot'), ('administrators', 'make', 

'announcements'), ('lecturers', 'give', 'lectures'), ('course', 'have', 'exam'), 

('course', 'have', 'assignments'), ('students', 'attend to', 'lectures 

'), ('students', 'complete', 'assignments'), ('students', 'take', 'exam'), ('lecturers', 

'give', 'grades'), ('course grade', 'consists', 'exam grade'), ('course grade', 

'consists', 'assignment grade'), ('exam', 'is', 'first'), ('exam', 'is', 'exam'), ('exam', 

'is', 'first exam'), ('students', 'receive', 'course grades')] 

  



The UML class metadata output: 

 



 



 

 
 
  



UML class diagram: 

 
Error explanation: 



Type 1: Incomplete information extraction. (OpenIE fails to extract 

information from part of a sentence) 

⚫ “Each course has one or more lecturers, a location, time slot, and set of 

dates.” Triplets: [('course', 'has', 'location'), ('course', 'has', 'date'), ('course', 

'has', 'time slot')] OpenIE fail to extract (‘course’, ‘has’, ‘lecturers’).  

⚫ “An exam is either the first exam or a re-take.” Triplets: ('exam', 'is', 'first 

exam'). OpenIE fails to extract (‘exam’, ‘is’, ‘re-take’) 

 

  



A.4. Input Scenario 5 (Hospital System) 
 

Requirement title 

Hospital System 

Requirement text 

“Patients will initially visit their doctor when they are ill. The doctor will then 

diagnose the patients and write a report. The diagnosis can be a physical 

one, a psychological one or a psychiatric one. The report contains illness 

conditions, diagnostic result, and suggestions that are for treatment. If the 

doctor suggests medication, the report will list the specific drugs. The 

patient will then collect their drugs from the pharmacy, and pay for the bill. If 

the doctor suggests an operation, the patient will be requested to make an 

appointment for the operation with the hospital. A surgeon and an operation 

team are assigned to perform the operation. A surgeon typically performs 

multiple operations on a particular day. Following the operation, the patient 

will receive care in the hospital. Care can involve physiotherapy, 

osteotherapy or mental support. The patients will be assigned a bed that is 

on a ward, and will be cared for by nurses. A nurse will care for several 

patients.” 

 
  



Intermediate output: 

 

[('patients', 'visit', 'doctor'), ('doctor', 'diagnose', 'patients'), ('doctor', 'write', 

'report'), ('diagnosis', 'be', 'physical'), ('report', 'contains', 'result'), ('report', 

'contains', 'suggestions'), ('report', 'contains', 'diagnostic result'), ('report', 

'contains', 'illness conditions'), ('report', 'list', 'drugs'), ('doctor', 'suggests', 

'medication'), ('patient', 'pay', 'bill'), ('patient', 'collect', 'drugs'), ('patient', 'make', 

'appointment'), ('patient', 'make', 'appointment operation'), ('doctor', 'suggests', 

'operation'), ('operation team', 'perform', 'operation'), ('surgeon', 'performs', 

'operations'), ('surgeon', 'performs operations on', 'day'), ('patient', 'receive 

care following', 'operation'), ('patient', 'receive care in', 'hospital'), ('patient', 

'receive', 'care'), ('care', 'can involve', 'osteotherapy'), ('care', 'can involve', 

'physiotherapy'), ('care', 'can involve', 'mental support'), ('care', 'can involve', 

'support'), ('patients', 'be cared', 'nurses'), ('nurse', 'care', 'patients')] 

 

  



The UML class metadata output: 

 

 





 
 
  



UML class diagram: 

 
Error explanation: 



Type 1: Incomplete information extraction. (OpenIE fails to extract 

information from part of a sentence) 

⚫ “The diagnosis can be a physical, a psychological or a psychiatric.” 

Triplets: [('diagnosis', 'be', 'physical')] 

⚫ “The patients will be assigned a bed on a ward, and will be cared for by 

nurses.” Triplets: [('patients', 'be cared', 'nurses')] 

Type 2: Multiple entities problem (Three or more entities exist in one 

sentence, and those entities have relationships with each other) 

⚫ “A surgeon typically performs multiple operations on a particular day.” 

Triplets: [('surgeon', 'performs', 'operations'), ('surgeon', 'performs 

operations on', 'day')] The ideal result should be: [(‘surgeon’, ‘performs’, 

‘operations’), (‘operation’, ‘is in’, ‘day’)], or simply (‘surgeon’, ‘performs’, 

‘operations’) 

⚫ “Following the operation, the patient will receive care in the hospital.” 

Triplets: [('patient', 'receive care following', 'operation'), ('patient', 

'receive care in', 'hospital'), ('patient', 'receive', 'care')] The ideal result 

should be: [(‘patient’, ‘receive’, ‘care’), (‘care’, ‘is in’, ‘hospital’)] 

Type 3: Noun + Prep + Noun problem (when there is a preposition between 

two nouns) 

⚫ “If the doctor suggests an operation, the patient will be requested to make 

an appointment for the operation with the hospital.” Triplets: [('patient', 

'make', 'appointment'), ('patient', 'make', 'appointment operation'), ('doctor', 

'suggests', 'operation')] OpenIE seizes “appointment for operation” as an 

object, data preprocessing in this program remove stop words like “for”, so 

the object result is “appointment operation”. 

Others (Duplication problem) 

⚫ “The report contains illness conditions, diagnostic result, and suggestions 

that are for treatment.” Triplets: [('report', 'contains', 'result'), ('report', 

'contains', 'suggestions'), ('report', 'contains', 'diagnostic result'), ('report', 

'contains', 'illness conditions')] Duplication problem with result and 

diagnostic result. 

“Care can involve physiotherapy, osteotherapy or mental support.” Triplets: 

[('care', 'can involve', 'osteotherapy'), ('care', 'can involve', 'physiotherapy'), 



('care', 'can involve', 'mental support'), ('care', 'can involve', 'support')] 

Duplication problem with the last triplet. 

 

  



Appendix B: Questionnaire  

Evaluation for UML Class Metadata Generation Tool – Online Questionnaire 

Dear UML experts, 

Thank you for taking the time out of your busy schedule to help with our 

survey work. Your contribution will take an important role in our research. 

This questionnaire consists of two parts, with 13 questions in total. The first 

part aims at asking for feedback based on the document and video we have 

sent to you by email. The second part is asking general opinions regarding 

Natural Language Processing (NLP) and requirement analysis.  

 

Your participation will greatly help us in verifying the results of our research. 

Your contribution will be personally acknowledged in the introduction of the 

thesis, and you will receive a copy of the thesis once finished. 

 

Best Regards, 

Tiantian Tang, Master student ICT in Business 

1. How would you rate the accuracy of our UML 

class metadata results if you take the identified 

bugs into consideration? 

(The bugs are rooted from the libraries we used 

for our program. In the document, we have 

identified and categorized those bugs. We have 

also marked and explained those errors in the 

UML class diagram section. For this question, 

please include the errors we have marked to 

rate the accuracy of results.) 

Compeletly inaccurate 

⚫ 1 

⚫ 2 

⚫ 3 

⚫ 4 

⚫ 5 

⚫ 6 

⚫ 7 

⚫ 8 

⚫ 9 

⚫ 10 

Compeletely accurate 



2. How would you rate the accuracy of our UML 

class metadata results exclusive of identified 

bugs? 

(For this question, please take out the identified 

errors and think our result accuracy.) 

Compeletly inaccurate 

⚫ 1 

⚫ 2 

⚫ 3 

⚫ 4 

⚫ 5 

⚫ 6 

⚫ 7 

⚫ 8 

⚫ 9 

⚫ 10 

Compeletely accurate 

3. According to the UML class metadata results 

and screen demo recording, do you think our 

application can help with software requirement 

analysis? 

⚫ Yes 

⚫ No 

⚫ Maybe 

⚫ Don’t know 

Could you please briefly explain why you gave this answer to Question 3? 

4. After watching the screen recording video, 

which of the following advantages do you think 

of our results have? 

⚫ Accurate 

⚫ Easy-to-read 

⚫ Easy-to-modify 

⚫ Other advantages 

Could you describe it more specifically if you choose "Other advantage" in 

Question 4? 

5. We did not have the time to develop a graphical 

UML Class modeler (a separate project is under 

way), but do you feel the textual metadata format is 

a readable, and useful alternative? 

⚫ Yes 

⚫ No 

⚫ Maybe 

⚫ Don’t know 

Could you please briefly explain why you gave this answer to Question 5? 

6. Do you think the "Runnable Prototype" page of 

our application makes it easier to get end users 

(your customer) more involved during the 

requirements analysis process by enabling them to 

comment on a (simple) application prototype? 

⚫ Yes 

⚫ No 

⚫ Maybe 

⚫ Don’t know 



Could you please briefly explain why you gave this answer to Question 6? 

7. Do you think our application would have value in 

real word requirements elicitation settings? (if the 

identified bugs are removed) 

⚫ Yes 

⚫ No 

⚫ Maybe 

⚫ Don’t know 

Could you please briefly explain why you gave this answer to Question 7? 

8. Do you have any other suggestion for improving our application? 

9. Have you ever used a similar UML model 

generator product (with NLP techniques applied)? 

⚫ Yes 

⚫ No 

10. If yes with question 9, are you satisfied with 

that product? 

⚫ Satisfied 

⚫ Somewhat 

satisfied 

⚫ Not satisfied 

⚫ Don’t know 

11. Could you explain the advantages and disadvantages of the NLP based 

UML tools you have used? 

12. What would you look for in an NLP based UML product? 

13. Do you have any other comments to add for what we have not covered 

in this questionnaire? 

(Optional) Would you like to provide an additional requirements text as input 

for our application? If so, please e-mail Tiantian Tang 

t.tang@umail.leidenuniv.nl and we will return the results. 

 


