
New Decision Diagram-based
Techniques for the Simulation
of Quantum Computations

Name: Martijn Swenne

Date: 28/07/2021

1st supervisor: Dr. A.W. Laarman
2nd supervisor: Dr. V. Dunjko
Daily supervisor: S.O. Brand, MSc.

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

Quantum computing promises fundamental improvements for efficient computability. Im-
pact is expected in scientific simulations in the fields of physics and chemistry, in AI
through machine learning and in solving linear equations. One obstacle however is found
in the difficulty of designing circuits in these early generations of quantum computers.

This thesis provides new algorithms for simulations of quantum circuits based on
decision diagrams, a technique that has shown promising results in practice. In order to
scale the technique, we investigate new ways to represent quantum circuits and quantum
states in decision diagrams. We also propose new algorithms to balance the trade-off
between encoding larger gates in decision diagrams and computing successor states. Our
hypothesis is that our methods provide a reduction in the size of the decision diagrams
and in the run-time.

We implemented our techniques in a new front-end for the tool Q-Sylvan, a DD-
based simulator. For empirical evaluation, we implemented several quantum algorithms.
This includes an algorithm not previously used for evaluations called Variational Quantum
Classifiers (VQC), a machine learning model that learns to categorise data into classes.

Our experiments confirm a reduction in the size of the decision diagrams. We can
also conclude that the accuracy of floating point values used to represent the real values
needed for quantum computing is a more pressing matter than previously thought.

i

Contents

1 Introduction 1

2 Background 4
2.1 Quantum Computing . 4

2.1.1 Quantum bits . 4
2.1.2 Quantum gates . 5
2.1.3 Quantum circuits . 6
2.1.4 Quantum Assembly Language 7

2.2 Decision Diagrams . 8
2.2.1 Binary Decision Diagrams . 8
2.2.2 Algebraic Decision Diagrams . 12
2.2.3 Affine Algebraic Decision Diagrams 12
2.2.4 Quantum Multi-value Decision Diagram 13

2.3 DD-based simulations of quantum circuits 14
2.3.1 Representing state vectors . 14
2.3.2 Representing gate matrices . 15
2.3.3 Simulating a quantum circuit 16
2.3.4 Measuring quantum states . 17

3 New Simulation Algorithms 18
3.1 Formal Circuit Notation . 18
3.2 Single-gate simulation . 20
3.3 Multi-gate simulation . 20
3.4 Optimization of single-gate simulation 21

3.4.1 A greedy algorithm . 21
3.5 Multi-gate vs. single-gate . 22

3.5.1 Palindromes . 22
3.5.2 A balanced algorithm . 23

4 Implementing algorithms in Q-Sylvan 24
4.1 Q-Sylvan . 24

4.1.1 Storing complex edge weights 24
4.1.2 QMDD operations . 25
4.1.3 Simulating quantum circuits . 25
4.1.4 Using Q-Sylvan . 25

ii

CONTENTS

4.2 Implementing Quantum Algorithms . 26

5 Experimental results 29
5.1 Parameter settings and hardware specifications 29
5.2 Grover’s search . 30
5.3 Grover’s search for 3-SAT . 31
5.4 Palindrome circuits . 31
5.5 Supremacy circuits . 32
5.6 Variational Quantum Classifiers . 32
5.7 Analysing results . 33

6 Conclusion and discussion 35

iii

Chapter 1

Introduction

Classical computing brought us many benefits. Algorithms will continue to be improved
and are faster and more widely used than people could foresee several decades ago.
However, some challenges today will never be solved by classical computing, due to a
lack of computational power and time. Several problems encountered nowadays are the
large amount of real-time data streams [1] which cannot be processed, large datasets
which need to be searched, companies having complex models to predict stock market
values or machine learning. To tackle these kinds of problems, we need new ways of
computation.

Quantum computing

So called quantum computers, which use quantum mechanical phenomena to perform
computations, can solve certain problems substantially faster. The quantum algorithm to
solve factorisation, invented by P. Shor [2], can give an almost exponential speedup over
classical factorisation algorithms. Another example is Grover’s algorithm [3], which can
perform a brute force database search with a quadratic speedup over classical brute force.
Other applications for quantum computers also include quantum chemistry [4], solving
linear equations [5] and quantum machine learning [6].

Quantum circuits are used to perform quantum computations [7]. These circuits
consist out of a register of qubits, represented by wires, and gate operations placed on
those wires. Gates alter the state of the qubit register. Some gates are parallel with other
gates (one gate on each wire) and some are sequential (multiple gates on one qubit). For
a gate operation to be executed, all preceding gates must be executed.

Unfortunately, we are still in the Noisy and Intermediate-Scaled Quantum (NISQ)
era [8], which means the current quantum computers are very small and noisy. Even
though there exist several algorithms that work on NISQ computers [9], there are issues,
e.g. verifying the correctness of new quantum algorithms, that create a demand for
classical simulation of quantum circuits. The most commonly used method for this is the
matrix-vector representation, where the quantum gates are represented by matrices and
the quantum states are represented by vectors [10, 11, 12]. However, these representations
grow exponentially with the number of qubits used.

1

CHAPTER 1. INTRODUCTION

DD-based simulations of quantum circuits

A Binary decision diagram (BDD) [13] is data structure, defined as a directed acyclic
graph (DAG). A BDD can represent boolean functions in a compact form by exploiting
redundancies in these functions. Several logical operations can be performed on BDDs,
e.g. a conjunction or a disjunction. All of these BDD operations have run-time propor-
tional to the size of the BDD. This data structure seems well suited as an alternate
way for representing quantum states and quantum operations, since the matrix-vector
representation usually holds a lot of redundant information.

A different decision diagram, called a quantum multi-value decision diagram (QMDD) [14],
can be used to represent both the state of a quantum system (state QMDD) and the gate
operations (gate QMDD). Here the gate QMDDs resemble the transition relation encod-
ing known from decision diagrams. Using QMDDs to represent non-entangled quantum
states can be done in polynomial time and space with QMDDs, while for the vector rep-
resentation this is exponential time and space. However, there is not much known about
the time and space complexity of QMDDs when representing entangled states. Although
the worst case complexity still remains exponential, it has been shown for several prac-
tically relevant cases that QMDDs yield substantial performance improvements where
the complexity is significantly below the exponential upper bound [14]. This is because
a lot of redundancies can be exploited using QMDDs, which is not possible with the
matrix-vector representation.

We can perform the simulation of a quantum circuit in two ways. We can directly apply
an individual gate QMDD to the state QMDD to compute the next state QMDD. We
call this single-gate simulation. We can also multiply gate QMDDs beforehand, essentially
merging multiple transition-relations into one. We call this multi-gate simulation. Most
QMDD operations have a run-time linear to their size, so compact QMDDs result in
faster QMDD operations.

Problem statement

In this thesis we focus on two subtopics. First, we focus on the fact that single-gate
simulation is usually realised by simply applying the first possible gate that still has to be
applied. However, there are usually several gates that can be applied at the same time, so
applying gates can also be done in a different order. The size of decision diagrams may
explode in size after applying a single gate. In the same way, a single gate may reduce the
size of decision diagrams drastically. Can we substantially speed up DD-based simulations
of quantum circuits by scheduling quantum gates for single-gate simulation?

Second, we look at the fact that it is unknown if DD-based simulations of quantum
circuits using multi-gate simulation has an advantage over single-gate simulation or vice
versa. The approach in [15] shows promising results for multi-gate simulation, where it
has a significant speed-up over single-gate simulation. However, this does come at a cost
in terms of space needed. Could a balanced simulation method, which uses both multi-
gate simulation and single-gate simulation, provide a substantial speed up over either of
the simulation methods individually?

2

CHAPTER 1. INTRODUCTION

Approach

We propose two new simulation methods. The first simulation method revolves around
ordering the gates applied using single-gate simulation in a greedy way. We expect that
this greedy simulation does not decrease the upper size limit when simulating a quantum
circuit, but decreases the number of states having a large size.

Second, we propose a balanced simulation method that alternates between our greedy
simulation and multi-gate simulation approach in [15]. By alternating between these sim-
ulation methods, we expect to avoid large state QMDDs using multi-gate simulation while
avoiding storing gate QMDDs by using single-gate simulation when the state QMDDs are
small. It is difficult to predict which simulation method should be used in which part of
the circuit, which is why we used a simple but effective approach, where we place barriers
in the circuit when the active simulation method should be switched with the inactive
simulation method.

Both simulation methods proposed above, along with single-gate simulation and
multi-gate simulation as proposed in [15], are implemented using a QMDD-based quan-
tum simulator called Q-Sylvan. We provide a front-end for Q-Sylvan, which translates
quantum assembly language (QASM) to Q-Sylvan operations. We implemented the sim-
ulation methods discussed above in this front-end.

Finally, we provide a tool that can be used for implementing new DD-based simula-
tion methods in Q-Sylvan. By implementing an intermediary representation for quantum
circuits in the front-end of Q-Sylvan, we provide a structure around which other simula-
tion methods can be implemented that focus on exploiting the inner structure of circuits.
Using the new Q-Sylvan front-end, we implemented several new quantum algorithms
for experimentation. Finally we performed an empirical evaluation to determine which
simulation method works best.

Experiments show that our simulation methods, compared to single-gate and multi-
gate simulations, decrease the average size of the QMDDs during a simulation of a
quantum algorithm by several factors. However, the run-time of all simulation methods
are very similar and no simulation method has a significantly faster run-time than the
other simulation methods.

Outline

The outline of this thesis is as follows. Chapter 2 elaborates on the subjects of quantum
computing, decision diagrams and the use of decision diagrams for the simulation of
quantum circuits. After this, Chapter 3 defines a formal definition of quantum circuits,
which is used to describe existing and propose new simulation techniques. Chapter 4
describes the QMDD-based quantum simulator Q-Sylvan and the Quantum Simulator
Benchmarking (QSB)-suite. Finally, Chapter 5 reports the results of the experiments
done with our proposed simulation methods, along with a summarized conclusion and
speculations about potential future work.

3

Chapter 2

Background

This chapter will explain a number of basic concepts within both quantum computing, as
well as decision diagrams. These subjects are covered in Sections 2.1 and 2.2 respectively.
After this, Section 2.3 explains in more detail how decision diagrams can be used to
represent quantum states and operations, and how these can be used to simulate the
results of a quantum circuit.

2.1 Quantum Computing

Quantum computers perform quantum computations which exploit quantum mechanical
phenomena, such as entanglement and superposition. Quantum computing makes use of
several quantum versions of their classical counterparts, such as bits, gates and circuits [7].
These alterations are formalised using the Dirac notation and linear algebra.

2.1.1 Quantum bits

Whereas classical bits are boolean variables, where a bit can be either 0 or 1, quantum
bits, or qubits, can be in a superposition of both states. The state of a qubit can be
described as a linear combination of the states 0 and 1. States are usually written in
Dirac-notation, or Bra-ket notation. In this notation we use the ket, written as |. . .〉, to
represent the state of a qubit φ, which is written as |φ〉. |0〉 and |1〉 are called basis states.
The qubit state is always written as a linear combination of the basis states, which is
defined as follows:

|φ〉 = α0 |0〉+ α1 |1〉 (2.1)

Here, α0 and α1 are amplitudes. Each amplitude can be defined by:

αi ∈ C (2.2)

When measuring a qubit, i.e. we look at what state it is in, the qubit collapses to either
|0〉 or |1〉. The Born rule states that the probability a measurement on a quantum system
will yield a given result is proportional to the absolute amplitude squared. Collapsing to
either state happens with a certain probability ; the probability of seeing |0〉 is |α0|2 and

4

CHAPTER 2. BACKGROUND

the probability of seeing |1〉 is |α1|2. Since these probabilities need to add up to 100%,
the sum of amplitudes is constraint under:∑

|αi|2 = 1 (2.3)

A register of qubits can also be defined like Equation 2.1, a linear combination of all
possible basis states. These basis states can be composed by using the tensor product
between states of the individual qubits. For instance, a qubit register ψ containing two
qubits is defined as follows:

|ψ〉 = |ψ1〉 ⊗ |ψ2〉
= (α0 |0〉+ α1 |1〉)⊗ (β0 |0〉+ β1 |1〉)
= α0β0 |00〉+ α0β1 |01〉+ α1β0 |10〉+ α1β1 |11〉
= α0 |00〉+ α1 |01〉+ α2 |10〉+ α3 |11〉

(2.4)

Mathematically, the state of a qubit register is represented by a numerical vector con-
taining all amplitudes:

|ψ〉 =
[
α0 α1 α2 α3

]T
(2.5)

These state vectors grow exponentially in size. Given an n qubit register, the computa-
tional basis states of this register are of the form |x1x2 . . . xn〉, which means the linear
combination of all basis states is specified by 2n amplitudes. This exponential number of
amplitudes is what gives quantum computation fundamentally more power than classical
computation.

2.1.2 Quantum gates

Quantum gates are used to modify the state of qubit registers. These gates usually operate
on a small number of qubits. Quantum logic gates must be reversible, which means there
is no loss of information after applying a gate. This is not the case for classical logic
gates. For instance, if we look at a classical AND gate and the output would be a 0,
there is no way of knowing the input, so we lost this information.

Quantum gates are usually represented by matrices. These matrices must be reversible
to prevent loss of information and unitary to preserve the norm. This means that, given
a quantum gate U , there exists a gate W which performs the exact opposite of U . W
is defined as the conjugate transpose of U , which will be denoted as U †. Here we can
conclude that UU † = I holds.

Given the state of qubit register φ as as described by Equation 2.1, we can simulate
the result of applying U , resulting in U |φ〉. This is done by multiplying the unitary matrix
of the single qubit gate with the state vector of the qubit register:[

u00 u01
u10 u11

] [
α0

α1

]
=

[
u00α0 + u10α1

u01α1 + u11α1

]
(2.6)

The result is a new state vector with possibly new amplitudes. When applying gate U to
one of the qubits in the qubit register in Equation 2.4, we need to apply an identity gate

5

CHAPTER 2. BACKGROUND

to the other qubit. The resulting matrix W to be applied is a tensor product of the two
matrices. Applying gate U to the second qubit is written as W = I ⊗ U , where I is the
identity gate, resolves as follows:

[
1 0
0 1

]
⊗
[
u00 u01
u10 u11

]
α0

α1

α2

α3

 =

u00 u01 0 0
u10 u11 0 0
0 0 u00 u01
0 0 u10 u11

α0

α1

α2

α3

 =

u00α0 + u01α1

u10α0 + u11α1

u00α2 + u01α3

u10α2 + u11α3

 (2.7)

Gates can also be controlled by one or more other qubits. When a gate is controlled by
a qubit register q, it means the gate is applied if all qubits in q are in the |1〉 state. The
matrix of this gate is constructed by taking the tensor of the applied gate if all qubits
in q are in the |1〉 state and the identity gate otherwise. An example of this is when we
apply gate U as in Equation 2.6, but now we control it with the first qubit:

1 0 0 0
0 1 0 0
0 0 u00 u01
0 0 u10 u11

α0

α1

α2

α3

 =

α0

α1

u00α2 + u01α3

u10α2 + u11α3

 (2.8)

Like state vectors, these resulting matrices also grow exponentially. A matrix being applied
to a register containing n qubits has the size of 2n × 2n.

2.1.3 Quantum circuits

Quantum computations are done using quantum circuits. These circuits are a sequence of
quantum logic gates working on a qubit register. Circuits are visualised using the quantum
circuit representation first presented in [16]. First the n-qubit register is set to an initial
state, usually the all-zero state |0n〉.

|0n〉 =
[
1 0 0 . . . 0

]T
(2.9)

A wire is a representation of a qubit, usually with a ket in front to show the initial state
of the qubit. On a wire, gates are portrayed to show it is applied to this qubit. All gates
in a column can be combined with a tensor product and applied to the qubit register, as
shown in Equation 2.7. The circuits representing Equation 2.6 and Equation 2.8 being
applied are shown in Figure 2.1a and Figure 2.1b respectively.

It is important to know how many qubits you need for your computation. Additional
qubits which are used to implement desired unitary transformations, are known as ancillary
qubits, or ancillas.

Current quantum computers do not have many qubits to work with. This is why
it is important to recycle your ancillas. Usually it is not possible to reset ancillas by
measuring them. This is because you do not know to which state it will collapse and
because collapsing can alter your amplitudes, which is often not a desired outcome.

Uncomputation is a technique for cleaning up temporary side effects on ancillas so they
can be re-used. Measuring the ancilla will not suffice, since the amplitudes will be reset

6

CHAPTER 2. BACKGROUND

|a〉 U |a′〉

(a) The circuit representation of
Equation 2.6.

|a〉 • |a〉

|b〉 U |b′〉

(b) The circuit representation of
Equation 2.8.

Figure 2.1: Two example circuit representations.

and there will be loss of information. For example, we want to use the result on the
second qubit of Equation 2.8 to control a gate V being applied to the third qubit. If the
results of Equation 2.8 are not needed afterwards, we can uncompute these results and
recycle the second qubit. The uncomputation in this case is shown in Figure 2.2.

|a〉 • • |a〉

|b〉 U • U † |b〉

|c〉 V |c′〉

Figure 2.2: An example of using the second qubit as ancilla qubit to
store information needed for gate V.

2.1.4 Quantum Assembly Language

Open quantum assembly language (QASM, or openQASM) is an intermediate represen-
tation for quantum instructions [17]. The language can be translated to languages of
various different back-ends. A .qasm file always starts with OPENQASM X.X;, where X.X

is the version. Currently there are only two versions:

• OPENQASM 2.0, which is the first version, as described in [17].

• OPENQASM 3.0, which is currently in development by Qiskit [18].

In this thesis we will be using OPENQASM 2.0. The .qasm can contain several different
lines of code. Each line is always closed with a semicolon and white spaces are ignored.
We can split up the lines into (non-gate) statements and gates. All relevant statements
that are possible are listed in Table 2.1.
At the top of a QASM file, the library ‘qelib1.inc’ is usually imported. This contains all
basic quantum gates, so they can be used in the file. All relevant gate-statements are
listed in Table 2.2. We can also extend these gate-statements to represent a controlled
gate. This is done by adding a ‘c’ in front of the gate-statement for each controlling qubit,
and adding the corresponding qubit as gate-argument. Note that adding more than one
‘c’ before a gate is not valid in QASM, and thus might not work on some back-ends.

7

CHAPTER 2. BACKGROUND

Statement Description Example

OPENQASM 2.0;
Denote a file in
OpenQASM format

OPENQASM 2.0;

qreg name[size];
Declare a named register
of qubits

qreg q[5];

creg name[size];
Declare a named register
of bits

creg c[5];

include ”filename”;
Open and parse another
source file

include ”qelib.inc”;

// Comment text Comment a line of text // hello!

measure qubit->bit;
Make a measurement in
Z basis

measure q[3]->c[3];

if(bit|creg==int) qop;
Conditionally apply a
quantum operation

if(c==5) x q[0];

barrier;
Prevent transformations
across this column

barrier;

Table 2.1: Relevant QASM statements that are possible in a .qasm file [17].

QASM gates
gate arguments gate arguments
i q[. . .]; h q[. . .];
x q[. . .]; sx q[. . .];
y q[. . .]; sy q[. . .];
z q[. . .]; sz q[. . .];
s q[. . .]; sdg q[. . .];
t q[. . .]; tdg q[. . .];
rx(α) q[. . .]; ry(α) q[. . .];
rz(α) q[. . .]; cx q[. . .], q[. . .];

Table 2.2: Relevant QASM gates that are possible in a .qasm file [17].

2.2 Decision Diagrams

Decision diagrams are a type of data structure that can be used to represent Boolean
functions. The decision diagrams that are used in this thesis are quantum multi-value
decision diagrams (QMDDs), which are derived from binary decision diagrams (BDDs).

2.2.1 Binary Decision Diagrams

Let us first define a formal description of a Binary Decision Diagram, as stated by
Bryant [13]. Let f be a boolean function with n arguments, written as x1, . . . , xn. A
BDD can be used to represent f . This BDD is a rooted, directed, acyclic function graph
with a node set V . This set V contains two types of nodes:

• non-terminal nodes, which have as attributes an argument var(v) ∈ {1, . . . , n}

8

CHAPTER 2. BACKGROUND

and two children low(v), high(v) ∈ V .

• terminal nodes, which have as attribute value(v) ∈ {0, 1}.

A BDD having root node v representing a Boolean function f can be recursively defined
as follows:

1. If node v is non-terminal with var(v) = i, then f can be defined as the Shannon
decomposition f(x1, . . . , xn) = x̄iflow(v)(x1, . . . , xn) + xifhigh(v)(x1, . . . , xn)

2. If node v is terminal then value(v) = f(x1, . . . , xn)

We can view the set of arguments x1, . . . , xn of f as a description of a path in the BDD.
If for node v and argument xi holds that var(v) = i, then we can say that xi determines
the child taken from v. If xi = 0 we take low(v) and if xi = 1 we take high(v). One
traversal of the BDD results in one output of f , where we start at the root node v and
recursively take one of the children low(v) or high(v) based on the arguments of f until
we reach a terminal state. In Figure 2.3 an example is shown of a truth table with its
corresponding BDD.

x1 x2 f
0 0 0
0 1 1
1 0 1
1 1 0

Figure 2.3: A BDD for an XOR function f using two variables. Here the dashed line
represents the low edge, and the solid line represents the high edge.

A BDD is said to be ordered (OBDD) when for each non-terminal node v ∈ V holds that
var(v) < var(low(v)) if low(v) is non-terminal and var(v) < var(high(v)) if high(v)
is non-terminal.

Applying operations to BDDs

Two BDDs representing the functions g1(x1, . . . , xn) and g2(x1, . . . , xn), say G1 and G2,
can be combined using an operator <op>, e.g. the intersection/AND operator or the
union/OR operator. The result of an operation applied to these two functions results in
a new function g = g1<op>g2. The resulting BDD representing the function g, say G,
can be created by recursively traversing both G1 and G2.

We start at the roots of both BDDs, say v1 and v2. We create a new node u and cal-
culate the result of the operation on both nodes: value(u) = value(v1)<op>value(v2).
If they are both terminal nodes we are done. If at least one of them is a non-terminal
node, we must recursively do the above for their children. If var(v1) = var(v2) = i, then
var(u) = i. We calculate low(u) by doing the above for low(v1) and low(v2), and we

9

CHAPTER 2. BACKGROUND

calculate high(u) by doing the above for high(v1) and high(v2). If var(v1) 6= var(v2)
we get the lowest variable, suppose var(v1). We calculate low(u) by doing the above for
low(v1) and v2, and we calculate high(u) by doing the above for high(v1) and v2. After
all nodes in both BDDs have been visited, then G will contain G1<op>G2. An example
of this is shown in Figure 2.4.

(a) A reduced BDD
representing x1 · x3.

(b) A reduced BDD
representing x1 · x3.

(c) A BDD representing
x1 · x3 + x2 · x3.

Figure 2.4: The application of an operator (+) on two BDDs. Note that the
resulting BDD is not yet reduced.

Most BDD operations have a time complexity proportional to the size of the BDDs
being manipulated. This means that BDD operations are exponentially bounded by the
number of variables. But as long as the to be represented functions lead to small BDDs,
operations on these BDDs are quite efficient.

Reduced ordered BDDs

A full BDD has an exponential number of nodes. However, a BDD can be reduced to
a compact function representation by exploiting redundancies in the BDD structure. A
BDD is said to be reduced (RBDD) if the following two rules have been applied to its
graph:

• Merge any isomorphic subgraphs.

• Eliminate any node whose two children are isomorphic.

Two (sub)graphs G and G′ are isomorphic if there exists a bijective function ω from the
nodes of G onto the nodes of G′ such that for any node v in G holds that ω(v) = v′.
There is currently no known polynomial-time algorithm for checking if two (sub)graphs
are isomorphic. However, this can be done efficiently for BDDs. For BDDs, it holds that
two (sub)graphs are isomorphic if one of the following rules holds:

• both v and v′ are terminal nodes with value(v) = value(v′)

10

CHAPTER 2. BACKGROUND

• both are non-terminal nodes with var(v) = var(v′), ω(low(v)) = low(v′) and
ω(high(v)) = high(v′)

An example of a graph containing isomorphic subgraphs and how to reduce them is
shown in Figure 2.5. In this thesis we will only use reduced and ordered decision diagrams.
From now on, when we refer to BDD, we mean an ROBDD.

(a) A BDD with isomorphic
subgraphs.

(b) The same BDD but
reduced.

Figure 2.5: Application of the reduction rules onto a BDD. The right box shows
a case where rule 1. from the previous paragraph holds. Node 3 is removed and
the remaining high edge is connected directly to the terminal node. The left
box shows a case where rule 2. of the previous paragraph holds. One of the two
subgraphs is removed and the incoming edge of that subgraphs is connected to
the remaining subgraph.

A BDD can be reduced at the same time it is created or operations are being applied
to it, as described in Section 2.2.1. The reduce operation is almost never used on its
own, since doing the reduce operation simultaneously with other operations reduces its
complexity significantly.

Time complexity of BDD operations

The BDD operations described above are commonly used to manipulate BDDs. There are
some other basic operations which are also commonly used, such as restricting a variable
in the function that the BDD represents (restrict), checking if a set of variable assignments
satisfies the function (satisfy-one), or counting the number of variable assignments that
satisfy the function (satisfy-count). The time complexity of each of these operations is
shown in Table 2.3. All BDD operations have a linear or polynomial time complexity in
the the number of nodes in the BDD.

In the worst-case, the size of a BDD might be exponential in the number of variables.
However, BDDs provide a very compact description of many practical functions, such as
those encountered in AI and verification [19, 20]

11

CHAPTER 2. BACKGROUND

Operation Time Complexity
Reduce O(|V | · log|V |)
Apply O(|V1| · |V2|)
Restrict O(|V | · log|V |)
Satisfy-one O(n)
Satisfy-count O(|V |)

Table 2.3: The time complexity of several common BDD operations [13]. Here
|V | stands for the size of the set of nodes in our BDD and n stands for the
number of variables in the function represented by this BDD.

2.2.2 Algebraic Decision Diagrams

Algebraic decision diagrams (ADDs) [21], also called multi-terminal decision diagrams
(MTBDDs) [22], are an extension of the binary decision diagram. Where the BDD has
terminal nodes which have as attribute value(v) ∈ {0, 1}, the value attribute of terminal
nodes in an ADD are defined by value(v) ∈ D, where often D = N or D = R. The
BDD operations and their corresponding time complexities discussed in Section 2.2.1 also
apply to ADDs. An example of an ADD is shown in Figure 2.6.

Figure 2.6: An ADD representing the function f(x1, x2, x3) = x1 + x2 + x3.

2.2.3 Affine Algebraic Decision Diagrams

Affine algebraic decision diagrams (AADDs) [23] are based on ADDs. It is an affine
extension to ADDs. A value pair is placed on each edge: an additive value, say c, and a
multiplicative value, say b, usually represented as <c, b>. AADDs only use one terminal
node, with a value of 0. An AADD can be defined as follows:

• If node v is non-terminal with var(v) = i, then f can be defined as the Shannon
decomposition:

– f(x1, . . . , xn) = x̄i(cl + blflow(v)(x1, . . . , xn)) +xi(ch + bhfhigh(v)(x1, . . . , xn)

• If node v is terminal then value(v) = 0.

12

CHAPTER 2. BACKGROUND

Here, ch , cl ∈ [0, 1] and bh , bl ∈ (0, 1] are real constants representing the additive
and multiplicative values of the high and low edge, respectively. Canonicity in decision
diagrams is important, because it allows for efficient detection of identical sub-functions
during the reduction. To ensure AADDs are canonical, five other constraints are added:

1. G must be ordered.

2. min(ch cl) = 0.

3. max(ch + bh , cl + bl) = 1.

4. If Fh = 0, then bh = 0 and ch > 0. Similarly for Fl.

5. If F = 0 then b = 0, otherwise b > 0.

An example is shown in Figure 2.7. This AADD represents the same function as used in
Figure 2.6, which resulted in a large decision diagram.

Figure 2.7: An AADD representing
the function f(x1, x2, x3) = x1+x2+
x3.

Figure 2.8: A QMDD representing
the vector [0 0 1

2
0 1

2
0 −1√

2
0]T .

2.2.4 Quantum Multi-value Decision Diagram

Quantum multi-value decision diagrams (QMDD) [24] are a subset of AADDs. In AADDs
the value pair on each edge has an additive value, c, and a multiplicative value, b. QMDDs
do not use the additive value, which is removed from the edges. Only the multiplicative
value is used, and b ∈ C. Since the last additive value is 0, unlike in AADDs, the value
of the single terminal node is set to 1. QMDDs can be used to represent quantum state
vectors and gate matrices. In the coming section we will elaborate on this representation,
and how it can be used to simulate quantum circuits.

13

CHAPTER 2. BACKGROUND

2.3 DD-based simulations of quantum circuits

In this section we will discuss how QMDDs, as described in Section 2.2.4, can be used
to simulate the results of a quantum circuit. Simulations of quantum circuits based on
QMDDs has first been done by A. Zulehner [14]. Sections 2.3.1 and 2.3.2 will show how
a QMDD can represent both quantum state vectors and quantum gates. Section 2.3.3
will also show how these QMDDs can be multiplied, to simulate the application of a gate
onto a state vector.

2.3.1 Representing state vectors

Figure 2.9: A QMDD
representing the quan-
tum state |010〉.

As described in Section 2.1.1, the state of a qubit register
is usually described using a state vector. This state can
also be described using a QMDD. Given a node i in the
QMDD, the probabilities of all states in which qubit i is
in state |0〉 are on the low edge, whereas the probabili-
ties of all states in which qubit i is in state |1〉 are on
the high edge. An example in Figure 2.9 shows a QMDD
representing a qubit register in the state |010〉, with nu-
merical representative in the computational basis written

as
[
0 0 1 0 0 0 0 0

]T
.

Before simulating a quantum circuit, the state vector
is usually initialised in an all-zero state |0n〉, where n is
the number of qubits. If a different initial state is desired,
it can be constructed by applying gates to an all-zero
state until the desired state vector is achieved. This will
be explained in Sections 2.3.2 and 2.3.3.

Algorithm 1 describes the process of creating an all-
zero state vector QMDD having n qubits. The algorithm
uses a tensor product between all qubits, where a tensor
product between qubit i and qubit i+ 1 in a QMDD means stacking the nodes of these
qubits on top of each other.

Algorithm 1: Generating a QMDD representing an all-zero state.

Data: number of qubits
Result: A QMDD representing an all-zero state

1 begin
2 create a terminal node vt with value(vt) = 1;
3 set vp to vt;
4 for i← n to 1 do
5 create a non-terminal node v with variable(v) = i;
6 set low(v) = vp and weight(low(v)) = 1;
7 set high(v) = vt and weight(low(v)) = 0;
8 set vp = v;

14

CHAPTER 2. BACKGROUND

2.3.2 Representing gate matrices

A gate matrix for a single qubit gate is a 2 × 2 matrix. In [14], a single qubit gate
QMDD has a node with 4 outgoing edges, one for each entry of the represented 2 ×
2 matrix. Alternatively, a 2 × 2 matrix can be encoded with two layers of variables,
with interleaved primed and unprimed variables. This is very similar to how classical
(deterministic) transition relations are often encoded in BDDs [25]. For gate QMDDs the
columns and rows are interleaved in a similar way.

A 2× 2 matrix is represented by one unprimed node, where the input edge is pointed
to, and two primed nodes containing two quadrants of the matrix on their edges each.
An example of this is shown in Figure 2.10. The structure described above will from
now on be presented as a single node with 4 outgoing edges.

U =

[
u00 u01
u10 u11

]
(2.10)

Using the tensor product between single qubit gates acting on different qubits is easily
done by stacking each single qubit gate QMDD on top of each other (while keeping the
order of the qubits intact). An example of this is shown in Figure 2.11.

Figure 2.10: A QMDD
representing the single
qubit gate matrix U
on qubit i from Equa-
tion 2.10. Note that
this is not a normalised
QMDD.

Figure 2.11: A QMDD
representing two single
qubit gate matrices U1
and U2 on qubit 1 and
qubit 2.

Figure 2.12: A QMDD
representing a con-
trolled single qubit gate
matrix U on qubit 2,
controlled by qubit 1.

There exist multiple qubit gates, which are usually controlled single qubit gates. Any
single qubit gate can be controlled by an arbitrary number of qubits. The single qubit
gate is only applied if all controlling qubits are in the state |1〉. Representing these multiple
qubit gates as a QMDD is done by splitting the 4 outgoing edges of the controlled qubit.
The edge representing matrix entry u00 will be connected to the subgraph where gate
U is not applied and the edge representing the matrix entry u11 will be connected to
the subgraph where the single qubit is applied. The other edges will be connected the

15

CHAPTER 2. BACKGROUND

terminal node with an edge weight of 0. These edges are usually represented as seen in
the example shown in Figure 2.12.

2.3.3 Simulating a quantum circuit

To create a simulation of a quantum circuit, being able to multiply QMDDs together is
crucial. Since a gate matrix can be multiplied with a state vector, as described in Equation
2.6 of Section 2.1.2, a gate QMDD and state vector QMDD must also be able to be
multiplied together. Given a gate QMDD of a gate on a single qubit, and a state vector
with a single qubit, the low edges of the gate QMDD can be multiplied with the low edge
of the state vector QMDD, creating a new node where the results will be stored on the
edges. The same is done with the high edges of the gate QMDD and the state vector
QMDD. These two nodes must still be added together, which is simply done by adding
both low edges of the nodes and both high edges of the nodes together, creating a new
low and high edge respectively. The result is the new state vector QMDD. An example
of this is shown in Figure 2.13.

(a) The multiplication of a gate QMDD and a state vector QMDD.

(b) The addition of two state vector QMDDs.

Figure 2.13: The tensor product of a gate QMDD with a state vector QMDD.

The method described above can be done for gate QMDDs and state vector QMDDs
containing multiple qubits, as long as the QMDDs contain the same number of qubits.
Using the same principle, gate QMDDs can also be multiplied with each other, which
can result in a gate QMDD representing multiple single qubit gates applied to the same
qubit. Gates can be applied directly to the state QMDD in a successive way. We call
this single-gate simulation. Gate QMDDs resemble the transition relation encoding in
BDDs, as described in Section 2.3.2. We can multiply gate QMDDs before applying them
to the state QMDD, essentially merging multiple transition-relations into one. We call
this multi-gate simulation.

16

CHAPTER 2. BACKGROUND

2.3.4 Measuring quantum states

After multiplying all gates in the quantum circuit with the initial state vector, the state
vector needs to be measured. The easiest way of doing a measurement is on the top qubit,
so if any other qubit needs to be measured, we first need to swap this qubit with the
top qubit. After this, the probability of measuring either |0〉 or |1〉 is defined by Equation
2.11.

P (q0 −→ |0〉) =
∑

x∈0{0,1}n−1

|αx|2

P (q0 −→ |1〉) =
∑

x∈1{0,1}n−1

|αx|2
(2.11)

After measuring a qubit, the edge weights are altered, where the chosen edge is changed
to 1 and the other edge is changed to 0. Finally, the remaining amplitudes must be
normalised, which can be done by dividing the incoming edge weight of the root node by√
P (q0 −→ |x〉), where x is the chosen state.

17

Chapter 3

New Simulation Algorithms

In order to minimise both the run-time and the needed memory requirements for QMDD-
based quantum simulations. Minimising the sizes of all QMDDs needed along the process
of those simulations reduces run-time, since most BDD operations have a time complexity
proportional to the size of the BDDs being manipulated. Several things can influence
the size of these decision diagrams. We can divide our problem into two separate sub-
questions:

• Can we substantially speed up DD-based quantum simulations by scheduling quan-
tum gates for single-gate simulation?

• Can a balanced algorithm, which uses both multi-gate simulation and single-gate
simulation, have a substantial speed up over either of the simulation methods
individually?

3.1 Formal Circuit Notation

We first provide an abstract definition of quantum circuits (Definition 3.1) and the pos-
sible operations that can be applied to a quantum circuit (Definition 3.2) in order to
describe the existing and new simulation methods described in Sections 3.2, 3.3, 3.4 and
3.5.

Definition 3.1 A circuit is defined as a set of n qubit wires. Let q1, . . . , qn be n qubits
and let qi,1, . . . , qi,w ∈ [w] be subsequent locations on the wire of qubit qi. We can define
Qj = {qi,j | i ∈ [n]} as a column across all wires and Q = {q | q ∈ Qj, j ∈ [w]} as the
set of all locations on the wires.

Definition 3.2 Let gate : Q −→ G be the function that returns the gate positioned at
q for q ∈ Q. For gates g ∈ G, we write Loc(g) = {q | gate(q) = g} as the set of all
locations of g. We require all gates g ∈ G to be limited to columns, i.e. Loc(g) ⊆ Qj for
some j ∈ [n].

Definition 3.3 Let cc ∈ [w]n be the circuit counter, i.e. a “program counter” at each
wire which tracks all gates that have been executed. Each index in cc is the location of

18

CHAPTER 3. NEW SIMULATION ALGORITHMS

the leftmost gate of each wire that has not been executed. A circuit counter cc splits
Q into locations prior to cc, written Qcc, and locations after cc, written Q!cc, where
cc ⊆ Q!cc. All gates g where holds that Loc(g) ⊆ Qcc have been executed, whereas all
gates g where holds that Loc(g) ⊆ Q!cc have not been executed.

Gates can be multiplied together. We need to keep track of all gates that have not been
executed, but have been multiplied with other gates.

Definition 3.4 Let M be a set of gates that have been merged. Let gc ∈ [w]n be the
gate counter, i.e. a “program counter” at each wire which tracks all gates that have been
merged but not executed. Each index in gc is the location of the leftmost gate of each
wire that has not been merged or executed. If M = ∅, then gc = cc. A gate counter gc
splits Q!cc into locations prior to gc, written Qgc, and locations after gc, written Q!gc,
where gc ⊆ Q!gc. All gates g where holds that Loc(g) ⊆ Qgc have been merged but not
executed, whereas all gates g where holds that Loc(g) ⊆ Q!gc have not been merged nor
executed.

Valid circuit counters depend on the gate function because gates g should be executed
in full, i.e. Loc(g) ⊆ Qcc or Loc(g) ⊆ Q!cc. Let V be the set of gates that are valid to be
executed, i.e. where Loc(g) ⊆ cc holds. Note that cc contains the indices of the leftmost
positions in Q!cc, which means cc ⊆ Q!cc.

Valid gate counters also depend on the gate function in the same manner the circuit
counter depends on it. Gates g should be merged in full, i.e. Loc(g) ⊆ Qgc or Loc(g) ⊆
Q!qc. Note that gc contains the indices of the leftmost positions in Q!gc, which means
gc ⊆ Q!gc. An example of this is shown in Figure 3.1.

Figure 3.1: A visual representation of all positions in Q of a circuit containing
n qubits and w columns. The circuit counter is coloured yellow and the gate
counter is coloured blue. The space between the circuit counter and the gate
counter is coloured orange, which contains gates that have been merged but
not executed, i.e. all gates in M . The green part contains all gates that have
been executed. The red part contains all gates that have not been merged nor
executed.

19

CHAPTER 3. NEW SIMULATION ALGORITHMS

Definition 3.5 Let ms = (M, gc) ∈ 2G×[w]n be the merge state of a circuit. The merge
function be Merge : (ms,G) −→ ms. A Merge action is a gate g where Loc(g) ⊆ gc,
such that it transits the system from the current state (M, gc) to a new state (M ′, gc′)
with Merge((M, gc), g) = (M ′, gc′). Here M ′ = g ∪M and Loc(g) ⊆ Qgc′ is the state
after merging gate g with all other gates in M .

We need to be able to execute single gates in cc, but we must also be able to apply the
resulting gate of the merged set M . Let m be the resulting gate of merging all gates g ∈
M , i.e. m =

∏
g∈M

I1⊗ . . . Ik−1⊗g⊗ Ik+1 · · ·⊗ In, k = Loc(g) and Loc(m) =
⋃

g∈M
Loc(g).

Definition 3.6 Let qs ∈ C2n be a quantum state |ψ〉 and let cs = (qs, cc) ∈ C2n× [w]n

be a circuit state. Let the apply function be Apply : (s,G) −→ s. An apply action is a
gate g where Loc(g) ⊆ cc or g = m, such that it transits the systems from the current
state (qs, cc) to a successor state (qs′, cc′) with Apply((qs, cc), g) = (qs′, cc′). Here, the
quantum state qs′ is the quantum state qs after applying the gate g, i.e. |ψ′〉 = g× |ψ〉,
and cc′ is the new circuit counter where Loc(g) ⊆ Qcc′ . Note that, when g = m, it also
means that cc′ = gc.

Let the initial circuit state be (qsi, cci) with cci = 1n and qsi = |0n〉. Let the initial
gate counter be gci, where gci = cci. The final circuit state (qsf , ccf) is reached when
ccf = (w + 1)n, which means Qcc = Q and Q!cc = ∅. The gate counter can reach the
end of the circuit, i.e. gcf = (w + 1)n, after which we cannot further merge gates since
Q!gc = ∅. Note that on all paths, whatever the selection of gates along the way, we end
up in the same final circuit state.

3.2 Single-gate simulation

The algorithm implementing single-gate simulation starts at state si and while we have
not reached sf , we apply the first gate in the set of all valid gates V . The implementation
is shown in Algorithm 2.

Algorithm 2: An algorithm that implements single-gate simulation.

Data: A .qasm file as defined in Section 2.1.4
1 begin
2 s = si;
3 while s 6= sf do
4 s = Apply(s, V [0]);

3.3 Multi-gate simulation

For multi-gate simulation the max-size approach of A. Zulehner [15] is used, of which
the implementation is shown in Algorithm 3. This approach consists out of multiplying

20

CHAPTER 3. NEW SIMULATION ALGORITHMS

gates together until the number of nodes in the resulting gate QMDD reaches a certain
threshold. When this happens, the resulting gate QMDD is multiplied with the state
vector and the gate QMDD is reset. This is done until all gates in the circuit have
been merged and applied to the state vector. From now on, we will refer to multi-gate
simulation as Zulehner’s max-size approach.

Algorithm 3: An algorithm that implements Zulehner’s max-size approach.

Data: A .qasm file as defined in Section 2.1.4
1 gc = gci;
2 M = ∅;
3 begin
4 s = (si, cci);
5 while gc 6= gcf do
6 Merge((M, gc), v[0]);
7 if nodecount(m) > threshold then
8 Apply(s,m);

9 if m 6= ∅ then
10 Apply(s,m);

3.4 Optimization of single-gate simulation

The order that gates are applied may have an effect on the size of the intermediary
decision diagrams of s. Since the size of decision diagrams may explode after moving
a single gate, we want to apply this gate as late as possible. In the same way, a single
gate may reduce the size of decision diagrams drastically, which is why we would want
to apply this gate as soon as possible. Although this does not decrease the upper limit
of nodes when simulating a quantum circuit, the method does decrease the number of
intermediary states which contain a large number of nodes. Finding a good algorithm to
order the gates may be key to speeding up simulations.

Definition 3.7 With nodecount : s −→ N we denote the function that returns the
number of nodes in the decision diagram that represents s.

3.4.1 A greedy algorithm

We want to minimise the node count for the successor state of s. This can be achieved
by a greedy algorithm. First we initialise two pointers, one to the best state and one the
best node count. Then we loop over all valid gates g ∈ V , calculating Apply(s, g) = st,
keeping track of the best st with the use of the lowest node count. After we applied all
gates in V once, we set our best state as our current state. We do this until we reach
the end state sf . The implementation is shown in Algorithm 4.

21

CHAPTER 3. NEW SIMULATION ALGORITHMS

Algorithm 4: An algorithm that implements the greedy single-gate simu-
lation.

Data: A .qasm file as defined in Section 2.1.4
1 begin
2 s = si;
3 while s 6= sf do
4 best state = null;
5 best count = inf ;
6 for g in V do
7 st = Apply(s, g);
8 count = nodecount(st);
9 if count ≤ best count then

10 best count = count;
11 best state = st;

12 s = best state;

3.5 Multi-gate vs. single-gate

To implement an algorithm performing multi-gate simulation, as described in Section 3.3,
we must also store the intermediary decision diagrams of these gates, instead of only the
decision diagram of s.This method might yield large gate representations, but can result
in smaller state representations. The approach in [15] shows promising results for multi-
gate simulation. However, this does come at a cost in terms of space needed. Combining
both simulation methods can lead to using both of their strengths. By alternating between
these simulation methods, we can avoid large state QMDDs using multi-gate simulation,
while we can avoid storing gate QMDDs by using single-gate simulation when the state
QMDDs are small. But first, we must find which regions are better suited for which
simulation method. Then, we must find a way to combine both simulation methods,
switching based on the regions of the circuit each simulation method is better suited for.

3.5.1 Palindromes

Some regions in the circuit may contain palindromes, for instance where a set of gates
is uncomputed (see Section 2.1.3). Combining the gates contained in the palindrome
may yield promising results compared to applying each gate separately. We want to use
multi-gate simulation on gates inside palindromes, but single-gate simulation on gates
outside palindromes. However, there are some complications which makes finding these
palindromes difficult. We cannot just use an algorithm that detects palindromes in a
string [26], since some gates can be on multiple qubits in the column, which means that
from that gate on we must also find palindromes for all qubits connected to that gate.

22

CHAPTER 3. NEW SIMULATION ALGORITHMS

Besides this is there the problem that some gates commute1, which means a set of gates
that does not hold the characteristics of a palindrome can, in the sense of its result, still
be a palindrome.

3.5.2 A balanced algorithm

For this method, we need to alternate between Algorithm 3 and Algorithm 4. But when
to do this is still not yet determined. First we need to determine which parts of the circuit
work better for which algorithm.

We know that the second half of palindromes, such as uncomputation gates, could
possibly reverse some of the complexity that is gained in the first half of the palindrome.
This is why merging a palindromes to one resulting gate could lead to skipping complex
state vectors. We would like to use Zulehner’s max-size approach to merge palindromes
and single-gate simulation for all gates outside of palindromes.

Unfortunately, palindromes are very difficult to find. This is why, for the purpose of
this thesis, we mark the beginning and end of a palindrome by barriers. Note that two
palindromes could be next to each other, which means there must be two barriers in
between, one to mark the end of the first palindrome, and one to mark the beginning of
the second palindrome. An implementation of this, switching between methods when a
barrier is encountered, is shown in Algorithm 5.

Algorithm 5: An algorithm that balances Zulehner’s max-size approach
and single-gate simulation for quantum circuit simulations.

Data: A .qasm file as defined in Section 2.1.4
1 begin
2 s = si;
3 is palindrome = false;
4 while s 6= sf do
5 while not barrier do
6 if !palindrome then
7 s = greedy(s);

8 if palindrome then
9 s = Zulehner-maxSize(s);

10 is palindrome = not is palindrome;

1Commuting gates can be placed in any order and yield the same results.

23

Chapter 4

Implementing algorithms in
Q-Sylvan

4.1 Q-Sylvan

Q-Sylvan1 is an extension to the parallel MTBDD library Sylvan2 [27], adding function-
alities for QMDDs. This section gives a brief overview of the features implemented in
Q-Sylvan, which are needed to simulate quantum circuits with QMDDs. For the purpose
of this thesis, we have implemented a front-end for Q-Sylvan, which makes for easier use
of the simulator. This front-end will be described in Section 4.1.4.

4.1.1 Storing complex edge weights

To explain how complex edge weights are added to the decision diagram implementation
of Sylvan, it is useful to first explain a bit more about how Sylvan stores decision diagrams
without them. Sylvan stores BDD nodes in a hash table where 128 bits are available for
a single node [28]. These BDD nodes are effectively a pair of edges (a low and a high
edge, 40 bits each) and variable number (24 bits).

For QMDDs, Q-Sylvan maintains a similar bit-structure as Sylvan does for BDDs, but
now also allocates a number of bits for the edge weights. Note that storing the actual
complex values on the edges would take too much space in Sylvan’s current node table
implementation: a single complex value consisting of two 64 bit floating point values
would already take up 128 bits on its own. Instead the complex values are stored in a
separate table, and indices to complex values in this table are stored as part of the nodes
in the node table. As a practical optimization we can note that due to normalization of
the edge weights, at least one of the edge weights of the child edges of a node will have
a weight in {0, 1}. This makes it so that only a single complex value needs to be stored
per pair of edges. As to interfere with Sylvan’s parallel computation capabilities as little
as possible, the complex values are stored in a lockless hash table, adapted from [29].

Finally, Sylvan’s garbage collection, which releases entries in the node hash table if

1https://github.com/sebastiaanbrand/q-sylvan
2https://github.com/trolando/sylvan

24

CHAPTER 4. IMPLEMENTING ALGORITHMS IN Q-SYLVAN

they are no longer used, is extended to also garbage collect the complex value table at
appropriate moments.

4.1.2 QMDD operations

Given the two existing simulation methods to simulate quantum circuits, described in
Sections 3.2 and 3.3, Q-Sylvan implements the main operations needed to perform both
these simulation methods, namely matrix-vector and matrix-matrix multiplication. The
functions qdd matvec mult and qdd matmat mult are recursive functions as described
in Section 2.3.3, which can now benefit from Sylvan’s multi-threaded capabilities by
computing the results of multiple recursive calls in parallel.

Additionally, Q-Sylvan allows for the application of single qubit gates and controlled
gates directly on specified target qubits, via the qdd gate and qdd cgate functions,
where the qubits not involved in the gates are left unchanged (as opposed to explicitly
being multiplied by identity). This is analogous to the application of partial transition
relations with BDDs, where the variables outside the partial relation are left untouched.

Finally, Q-Sylvan allows to do measurements on QMDDs in the computational basis
via qdd measure qubit, which measures one qubit, and qdd measure all, which mea-
sures all qubits. This is implemented as described in 2.3.3, where the QMDD after the
measurement is executed is returned. The same QMDD can be measured multiple times
if desired, resulting in multiple measurement samples, which would be impossible on a
physical quantum computer.

4.1.3 Simulating quantum circuits

To simulate quantum circuits Q-Sylvan has predefined a number of commonly used quan-
tum gates (X, Y, Z,H, S, T , among other), and also supports arbitrary single qubit ro-
tations Rx(θ), Ry(θ), and Rz(θ). All of these single qubit gates can also be used as the
target component of controlled gates.

A number of functions to make the construction of desired QMDDs easier have also
been added, a few of which are described below.

• qdd create basis state(int n, bool[] x) creates the QMDD of an n qubit
computational basis state |x〉.

• qdd create single qubit gates(int n, Gate[] U) create the n qubit matrix
QMDD U0 ⊗ U1 ⊗ . . .⊗ Un−1, for a given list of gates U .

• qdd tensor prod(QMDD a, QMDD b) returns the QMDD encoding a⊗ b for both
matrices or vectors, appropriately relabeling the qubit numbers.

4.1.4 Using Q-Sylvan

We have made a front-end Q-Sylvan to make it easier to use. Given a .qasm file as de-
scribed in Section 2.1.4, this front-end can simulate the results of the encoded circuit and
return the results. The front-end can be used using terminal commands. The command

25

CHAPTER 4. IMPLEMENTING ALGORITHMS IN Q-SYLVAN

./QASM to Sylvan along with the path to a .qasm file runs the encoded circuit using
single-gate simulation and prints out the results. Several parameters can also be given, a
few of which are denoted below:

• -r runs (int): the number of runs to perform.

• -s seed (int): the randomness seed to be used.

• -m matrix (int): runs the circuit using Zulehner’s max-size approach instead. The
value given is used as a boundary value for the node count before multiplying with
the state vector.

• -g greedy: runs the circuit using a greedy algorithm of the single-gate simulation
instead.

• -b balance (int): runs the circuit switching between Zulehner’s max-size approach
and greedy algorithm instead. The value given is used as a boundary value for the
node count before multiplying with the state vector.

For some of the simulation methods a struct is needed that stores the circuit, such that
functions can be applied to this circuit struct. This struct is a 2-dimensional array as
described in Definition 3.1. A gate struct has been defined, as described in Definition 3.2,
such that these gates can be placed in the circuit struct. All gates that are implemented
by Q-Sylvan have been predefined as gate structs.

4.2 Implementing Quantum Algorithms

To compare different methods for the simulation of quantum circuits, we must use the
exact same quantum algorithms to test the speed and memory usage of each simulation
method. This means the circuit implementation of a quantum algorithm must always be
the same. Several papers testing a simulation method have a non/semi-overlapping set
of quantum algorithms, and they do not show (or give a link to) the implementation
method of the quantum algorithms, which does not guarantee an identical experimental
setup [15, 14].

One solution to this would be a benchmarking tool which can generate circuit im-
plementations of several different quantum algorithms in a consistent way. This bench-
marking tool should take in some set of parameters for a quantum algorithm, which can
be presented in papers, such that everyone can use an identical circuit implementation
as used in those papers.

We have created a Quantum Simulator Benchmarking suite3, or QSB-suite, which
is a python library. It contains several classes, one class for each implemented quantum
algorithm. Each class has a generate function. Calling this function, along with the needed
parameters, generates a .txt file containing the QASM code describing a circuit that
implements the algorithm of the class, based on the given parameter values. Currently
the quantum algorithms that are implemented are:

3https://github.com/MSwenne/QSB-Suite

26

CHAPTER 4. IMPLEMENTING ALGORITHMS IN Q-SYLVAN

• A variational quantum classifier (VQC)

• Grover’s algorithm [3]

• Grover’s algorithm applied to K-SAT

• A Supremacy circuit [30]

• A palindrome circuit generator (synthetic)

Variational quantum classifiers

The variational quantum classifier (VQC) is a quantum machine learning circuit. A VQC
circuit can consist out of several different layers. Two basic layers are included in the
benchmarking suite: the entanglement layer and the parametrized layer. If needed, the
benchmarking suite can easily be extended such that it also supports other VQC layers.
The entanglement layers encodes a data point into the qubits. After this, the parametrized
layer alters the qubits using rotation gates. The result can be split based on some formula,
and result in a predicted label. The rotations in the parametrized layer are usually classical
variables that can be altered using machine learning. This way, the circuit “learns” to
tune the rotation variables by training on datapoints, such that it predicts the right labels.
Note that the QSB-suite only generates the circuit given the rotation variables, whereas
the training algorithm must be implemented by the user.

Grover’s algorithm

Grover’s algorithm is a quantum search algorithm that can, with high probability, find
specific answers to black box functions. Given a function f : {0, 1, . . . , 2n−1} −→ {0, 1},
Grover’s algorithms can find specific results that satisfies f(x) = 1. We initialise n qubits
in a superposition, giving every possible bitstring an equal chance of appearing. Then the
function is encoded into the circuit. This part is called the “oracle”. The amplitudes of
all bitstrings that satisfy f are negated. Then we use a mean inversion, which makes the
amplitudes of the satisfying bitstrings larger, and the amplitudes of the other bitstrings
smaller. We need to do the oracle step and the mean inversion step several times, based
on the number of qubits and the number of satisfying answers. After the correct number
of iterations, the satisfying bitstrings have a high probability of appearing.

Grover’s algorithm applied to K-SAT

The boolean satisfiability problem (SAT) is the problem of determining there exists a
satisfying solution to a boolean formula. The K-SAT problem only uses boolean formulas
in conjunctive normal form (CNF). In a CNF formula, the variables are grouped using the
logical ‘or’. These groups are called clauses, and all clauses are grouped using a logical
‘and’. Each clause can have at most K variables. An example where K = 3 is described
by Formula 4.1. A K-SAT formula can be encoded into the “oracle” of Grover’s algorithm,
which returns all satisfying solutions with a high probability.

(¬x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x2 ∨ ¬x4) ∧ · · · ∧ (¬x2 ∨ ¬x3 ∨ x1) (4.1)

27

CHAPTER 4. IMPLEMENTING ALGORITHMS IN Q-SYLVAN

A supremacy circuit

Quantum supremacy is a term describing that quantum computer can perform a compu-
tational task beyond the capabilities of state-of-the-art classical computers. This circuit
tests the capabilities of a quantum computer. It generates a pseudo-random quantum
state [30].

Synthetic benchmark: palindrome circuits

The circuit containing palindromes is generated using the random circuit definition above.
We create a palindrome by placing gates using the random circuit. Then we place a gate
that is being controlled by all other qubits. Now we place the same gates as we placed
before the controlled gate, but in reversed order and as a conjugate transpose version.
This can be done for one or more times. This circuit is specifically implemented for our
experiments to test the efficiency of our balanced algorithm on palindromes.

28

Chapter 5

Experimental results

In order to test the capabilities of all four simulation methods described in Chapter 3, we
performed experimental evaluations using the QSB-suite described in Section 4.2. These
evaluations were done using the following quantum algorithms:

• A variational quantum classifier (VQC)

• Grover’s algorithm [3]

• Grover’s algorithm applied to K-SAT

• A Supremacy circuit [30]

• A palindrome circuit generator

The results of these experimental evaluations are shown in the coming sections. All
quantum algorithms were run using each of the four simulation methods. We divided the
experiments in two parts:

1. Record the number of nodes of all QMDDs needed while simulating the results of
a circuit;

2. Record the time needed to simulate the results of a circuit.

The reason we divided the experiments is because the time taken counting the number
of nodes in a QMDD should not be included in the time to run a simulation.

5.1 Parameter settings and hardware specifications

For each circuit several parameters need to be set. Each of the coming subsections will
explain what parameter settings were used for the circuits.

All experiments are run on Windows using Windows subsystem for Linux (WSL2)
with an Intel i7-9750H CPU having 6 cores and 16GB RAM.

Each simulation method runs one algorithm several times, using a scaling parameter.
Which parameter is used for each algorithm is defined in its corresponding section below.

29

CHAPTER 5. EXPERIMENTAL RESULTS

For each value in the defined range we do one run for counting the number of nodes,
and 10 runs for measuring the time, of which we take the average as the resulting time
taken to run the algorithm.

For each run that is done as described above, we do 10 runs instead, each with
a different randomness seed. This randomness seed is needed since some circuits are
generated using some form of randomness, which will result in easier or more difficult
circuit simulations. From the results of these 10 runs we take the average as the final
results of the run. This means 10 runs are done for the node count, resulting in one array
that holds the node count along the circuit process. For the time runs, this means we do
100 runs, resulting in 10 average time measurements.

The average node count of the resulting array will be plotted over the range of the
scaling parameter, with error bars showing the standard deviation of the node count during
the run. The 10 average time measurements are also plotted over the range of the scaling
parameter, with error bars showing the standard deviation of these 10 measurements.

5.2 Grover’s search

For Grover’s search we have two parameters, the number of qubits and the oracle. We
ran Grover’s search using the qubit number as the scaling parameter, while using the
randomness seed as the oracle. This is done because different oracles cause different
oracle implementations, which results in easier or more difficult circuit simulations.

For each simulation method we started at 5 qubits, increasing the number of qubits
by one until we reach 21 qubits or until the simulator throws an error due to limited
memory space. We will explain these memory errors in more detail in the Discussion. It
is evident from Figure 5.1 that there is a sharp peak in the greedy simulation method.
We will also address this in the Discussion.

Figure 5.1: The average node count of
the state QMDD while simulating the
results of Grover’s algorithm using mul-
tiple different oracles per data point
ranged over a certain number of qubits.

Figure 5.2: The average time needed
for each simulation method to simulate
Grover’s algorithm using multiple differ-
ent oracles per data point ranged over a
certain number of qubits.

30

CHAPTER 5. EXPERIMENTAL RESULTS

5.3 Grover’s search for 3-SAT

For Grover’s search applied to K-SAT we have several parameters, the number of qubits,
the oracle, the value for K and the number of answers the oracle gives. We ran Grover’s
search using the qubit number as the scaling parameter. For these experiments, we used
K = 3 and a 3-SAT formula that always results in 1 answer as oracle. Unfortunately,
it is difficult to generate random formulas that apply to these constraints, which is why
we fixed the oracle to one formula per qubit value for these experiments. The oracle is
generated by the number of qubits, always starting with: (x1∨x2∨x3)∧(x1∨x2∨¬x3)∧
(x1∨¬x2∨x3)∧(¬x1∨x2∨x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨x2∨¬x3)∧(¬x1∨¬x2∨x3).
This fixes the values x1, x2 and x3 to be true. After this, we can append values by simply
appending one clause (¬x1 ∨¬x2 ∨ xi), i ∈ [4, n]. Since x1 and x2 are fixed to be true,
this clause can only be satisfied if xi is also true. This results in an oracle containing
the least amount of clauses that result in one solution.

For each simulation method we started at 5 qubits, increasing the number of qubits by
one until we reach 21 qubits or until the simulator throws an error due to limited memory
space. Note that, for each clause added an extra ancilla is needed. So by increasing the
number of qubits by one, the total number of qubits is actually increased by two.

Figure 5.3: The average node count of
the state QMDD while simulating the
results of Grover’s algorithm applied to
3-SAT using a certain number of qubits.

Figure 5.4: The average time needed
for each simulation method to simulate
Grover’s algorithm applied to 3-SAT us-
ing a certain number of qubits.

5.4 Palindrome circuits

The palindrome circuits can be generated with several parameters, namely the number of
qubits, the number of palindrome sections, the number of gates per palindrome section
(and reversed, so twice as many), the ratio of cZ gates and the set of gates to choose
from. Again we take the number of qubits as the scaling parameter. The universal gate
set is used, containing the gates X, Y, Z, H and t. We generate 5 palindrome sections
containing 20 gates (and reversed, so a total of 40 gates per section) and a cZ ratio of

31

CHAPTER 5. EXPERIMENTAL RESULTS

0.3. Here we use a different randomness seed since all generated gates and cZ gates are
chosen randomly.

For each simulation method we started at 15 qubits, increasing the number of qubits
by one until we reach 41 qubits or until the simulator throws an error due to limited
memory space.

Figure 5.5: The average node count of
the state QMDD while simulating a
palindrome circuit using a certain num-
ber of qubits.

Figure 5.6: The average time needed for
each simulation method to simulate a
palindrome circuit using a certain num-
ber of qubits.

5.5 Supremacy circuits

For the supremacy circuits we choose the depth as the scaling parameter. The number
of qubits is fixed, as defined by [30]. We have chosen to use 20 qubits. Several gates are
generated randomly, which is why we will use a randomness seed.

For each simulation method we started at a depth of 5, increasing the depth by one
until we reach depth 21 or until the simulator throws an error due to limited memory
space.

5.6 Variational Quantum Classifiers

For our experiments, training a variational quantum classifier (VQC) is not in our inter-
est. We just want to test the performance of simulating the results of circuits used for
VQCs. This is why we use random rotation parameters for each rotation gate. For this,
a randomness seed is used. We have fixed the number of entanglement layers and the
number of parametrized layers both to 3. The rotation gates used in the parametrized
layers are rY and rZ. The experiments on the VQC circuits are done using the number
of qubits as the scaling parameter.

For each simulation method we started at 5 qubits, increasing the number of qubits
by one until we reach 21 qubits or until the simulator throws an error due to limited
memory space.

32

CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.7: The average node count of
the state QMDD while simulating a
supremacy circuit using a certain depth.

Figure 5.8: The average time needed for
each simulation method to simulate a
supremacy circuit using a certain depth.

Figure 5.9: The average node count of
the state QMDD while simulating a
VQC circuit using a certain depth.

Figure 5.10: The average time needed
for each simulation method to simulate
a VQC circuit using a certain depth.

5.7 Analysing results

The results shown in each subsection above show several different cases. For Grover’s
algorithm the balanced simulation method stands out with a smaller average node count
than the rest. If we look at the run-time of the simulation, there is unfortunately no large
distinction between them, although the balanced simulation method is a bit faster. As
for our greedy simulation method, it unfortunately does not give an advantage over the
rest for Grover’s algorithm.

The same can be seen at Grover’s algorithm applied to 3-SAT, although here the
difference in the average node count is much more visible. Based on the results of the
average node counts, the balanced simulation method is the optimal simulation method
to use for this Grover’s algorithm applied to 3-SAT. However, if we look at the run-time of
the simulation, there is again no large distinction between each method, but the balanced
simulation method still remains the fastest of all simulation methods.

The average node count for the palindrome circuit shows promising results for both our
proposed simulation methods. The greedy simulation method has a lower average nodes

33

CHAPTER 5. EXPERIMENTAL RESULTS

than single-gate simulation or Zulehner’s max-size approach and the balanced simulation
method has the lowest average node count. When looking at the run-time, single-gate
simulation is the least effective. Other simulation methods have a similar run-time and
no simulation method really stands out.

The simulation of the supremacy circuit shows that the average node count of both
the greedy and the balanced simulation method are better than single-gate simulation
and Zulehner’s max-size approach. However, the balanced simulation method has a higher
run-time, whereas the greedy simulation method has a low run-time.

The node count for the variational quantum classifiers (VQC) is very similar in each
simulation method, although we do see more improvement in our simulation methods.
The run-time results for simulating a VQC show that single-gate simulation and the
greedy simulation method have the best run-times.

34

Chapter 6

Conclusion and discussion

The difficulty of designing circuits in these early generations of quantum computers
creates a demand for the classical simulation of quantum computations. This thesis
has investigated existing simulation methods based on decision diagrams. We proposed
two new simulation methods for DD-based simulation of quantum circuits. We have
investigated if our simulation methods provide an advantage over the existing simulation
methods by performing an empirical evaluation on several quantum algorithms that were
implemented in a benchmarking suite. This includes a quantum algorithm not previously
used for evaluations called Variational Quantum Classifiers (VQC).

Conclusion: Our results indicate that our proposed balanced simulation
method provides an advantage in terms of computational space. However,
this is not the case in terms of run-time, since the run-times of our simula-
tion methods unfortunately do not differ very much from the run-times of the
existing methods.

Limitations: We were missing several datapoints in our results, which was due to a
consistent memory error stating our complex value table was full. When looking at Figure
5.1, we can also see a clear spike in the average number of nodes during the greedy
simulation. We speculate that is can be caused by the common floating-point accuracy
problem. The complex edge weights are represented using floating-point values, which
only have a certain amount of precision. If we increase the precision, there is a chance
arithmetic errors occur. These arithmetic errors can cause a significant increase in the
size of the QMDDs.
Future: It is promising to gain a deeper understanding of the floating-point accuracy
problem. Niemann [31] proposes to work with algebraic decision diagrams (ADDs) in-
stead of QMDDs. If ADDs yield promising results in solving the floating-point accuracy
problem, it might be beneficial to extend Q-Sylvan to be also able to simulate quantum
computations using ADDs.

The Q-Sylvan front-end contains a circuit structure. This structure is suited to be
used by simulation methods that can exploit the inner structure of a circuit. For instance,
Grover’s algorithm does several iterations of the same circuit part. Merging the gates
once and re-using the resulting gate for each iteration can result in a faster simulation of
Grover’s algorithm.

35

CHAPTER 6. CONCLUSION AND DISCUSSION

With this thesis we hope to have shown several promising DD-based simulation methods,
which have an advantage over matrix-vector simulations. This advantage leads to faster
simulations of quantum circuits, which allows for easier circuit designing and quantum
algorithm verification.

36

Bibliography

[1] J. Gama and P.P. Rodrigues. Data stream processing. In Learning from Data
Streams, pages 25–39. Springer Berlin Heidelberg, 2007.

[2] P.W. Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Review, 41(2):303–332, Jan 1999.

[3] L.K. Grover. A fast quantum mechanical algorithm for database search, 1996.

[4] B.P. Lanyon, J.D. Whitfield, G.G. Gillet, M.E. Goggin, M.P. Almeida, I. Kassal, J.D.
Biamonte, M. Mohseni, B.J. Powell, M. Barbieri, A. Aspuru-Guzik, and A.G. White.
Towards quantum chemistry on a quantum computer. Nature Chemistry 2, 106 -
111 (2009), 2009.

[5] A.W. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for solving linear
systems of equations. Phys. Rev. Lett. vol. 15, no. 103, pp. 150502 (2009), 2008.

[6] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd. Quan-
tum machine learning. Nature, 549(7671):195–202, September 2017.

[7] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2009.

[8] J. Preskill. Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018),
2018.

[9] K. Bharti, A. Cervera-Lierta, T.H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. De-
groote, H. Heimonen, J.S. Kottmann, T. Menke, W. Mok, S. Sim, L. Kwek, and
A. Aspuru-Guzik. Noisy intermediate-scale quantum (nisq) algorithms, 2021.

[10] A.S. Green, P.L. Lumsdaine, N.J. Ross, P. Selinger, and B. Valiron. Quipper: A
scalable quantum programming language. ACM SIGPLAN Notices 48(6):333-342,
2013, 2013.

[11] D. Wecker and K.M. Svore. Liqui—¿: A software design architecture and domain-
specific language for quantum computing, 2014.

[12] M. Smelyanskiy, N.P.D. Sawaya, and A. Aspuru-Guzik. qhipster: The quantum high
performance software testing environment, 2016.

37

BIBLIOGRAPHY

[13] R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, 1986.

[14] A. Zulehner and R. Wille. Advanced simulation of quantum computations, 2017.

[15] A. Zulehner and R. Wille. Matrix-vector vs. matrix-matrix multiplication: Potential
in DD-based simulation of quantum computations. In 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, March 2019.

[16] A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P.W. Shor,
T. Sleator, J.A. Smolin, and H. Weinfurter. Elementary gates for quantum compu-
tation. Physical Review A, 52(5):3457–3467, Nov 1995.

[17] A.W. Cross, L.S. Bishop, J.A. Smolin, and J.M. Gambetta. Open quantum assembly
language, 2017.

[18] G. Aleksandrowicz et al. Qiskit: An open-source framework for quantum computing,
2019.

[19] G. Audemard and L. Sais. Sat based bdd solver for quantified boolean formulas.
In 16th IEEE International Conference on Tools with Artificial Intelligence, pages
82–89, 2004.

[20] R.K. Ranjan, A. Aziz, R.K. Brayton, B. Plessier, and C. Pixley. Efficient bdd algo-
rithms for fsm synthesis and verification. In In IEEE/ACM Proceedings International
Workshop on Logic Synthesis, Lake Tahoe (NV, 1995.

[21] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Algebraic decision diagrams and their applications. In Proceedings
of 1993 International Conference on Computer Aided Design (ICCAD), pages 188–
191, 1993.

[22] M. Fujita, P.C. McGeer, and J.C.Y. Yang. Multi-terminal binary decision diagrams:
An efficient data structure for matrix representation. Formal Methods in System
Design, 10(2/3):149–169, 1993.

[23] S. Sanner and D. McAllester. Affine algebraic decision diagrams (aadds) and their
application to structured probabilistic inference. In In IJCAI, pages 1384–1390, 2005.

[24] D.M. Miller and M.A. Thornton. Qmdd: A decision diagram structure for reversible
and quantum circuits. In 36th International Symposium on Multiple-Valued Logic
(ISMVL’06), pages 30–30, 2006.

[25] Tom van Dijk and Jaco van de Pol. Sylvan: multi-core framework for decision dia-
grams. International Journal on Software Tools for Technology Transfer, 19(6):675–
696, October 2016.

[26] G. Manacher. A new linear-time “on-line” algorithm for finding the smallest initial
palindrome of a string. J. ACM, 22:346–351, 1975.

38

BIBLIOGRAPHY

[27] T. Van Dijk, A. Laarman, and J. Van De Pol. Multi-core bdd operations for symbolic
reachability. Electronic Notes in Theoretical Computer Science, 296:127–143, 2013.

[28] T. van Dijk and J. van de Pol. Sylvan: multi-core framework for decision diagrams.
International Journal on Software Tools for Technology Transfer, 19(6):675–696,
2017.

[29] A. Laarman, J. van de Pol, and M. Weber. Boosting multi-core reachability per-
formance with shared hash tables. In Formal Methods in Computer Aided Design,
pages 247–255. IEEE, 2010.

[30] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, M. J.
Bremner, J. M. Martinis, and H. Neven. Characterizing quantum supremacy in
near-term devices. Nature Physics 14, 595-600 (2018), 2016.

[31] P. Niemann, A. Zulehner, R. Drechsler, and R. Wille. Overcoming the tradeoff
between accuracy and compactness in decision diagrams for quantum computation.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
39(12):4657–4668, Dec 2020.

39

	Introduction
	Background
	Quantum Computing
	Quantum bits
	Quantum gates
	Quantum circuits
	Quantum Assembly Language

	Decision Diagrams
	Binary Decision Diagrams
	Algebraic Decision Diagrams
	Affine Algebraic Decision Diagrams
	Quantum Multi-value Decision Diagram

	DD-based simulations of quantum circuits
	Representing state vectors
	Representing gate matrices
	Simulating a quantum circuit
	Measuring quantum states

	New Simulation Algorithms
	Formal Circuit Notation
	Single-gate simulation
	Multi-gate simulation
	Optimization of single-gate simulation
	A greedy algorithm

	Multi-gate vs. single-gate
	Palindromes
	A balanced algorithm

	Implementing algorithms in Q-Sylvan
	Q-Sylvan
	Storing complex edge weights
	QMDD operations
	Simulating quantum circuits
	Using Q-Sylvan

	Implementing Quantum Algorithms

	Experimental results
	Parameter settings and hardware specifications
	Grover's search
	Grover's search for 3-SAT
	Palindrome circuits
	Supremacy circuits
	Variational Quantum Classifiers
	Analysing results

	Conclusion and discussion

