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Abstract

Applications for interest point detectors and descriptors are just as broad as the field of
computer vision as a whole. Each technique has a slightly different approach to cover its niche.
With the growing number of new detectors and descriptors, it is crucial to evaluate in which
context the detector is most potent and where its struggles lie. In this paper, we will evaluate
a collection of novel and established local detectors and descriptors. First, we design a dataset
so that the methods are exposed to a diverse set of conditions. With this dataset, the stability
of interest point detectors is tested, after which the matching capabilities of the descriptors
are put to the test. The methods will also be evaluated on their capability to detect copies
from a large set of images. Finally, an existing method will be improved to make it more
robust to transformations. This study aims to help researchers identify which method is best
appropriate for their purposes.
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1 Introduction

One of the two ruling paradigms in computer vision is salient feature extraction. At the base of the
process lies the localization of interest points, regions in an image that capture the most distinctive
patterns of the image and are stable under different types of deformations, and the description
of the characteristics of these regions. Therefore, many of the algorithms responsible for feature
extraction exist in two parts: A detector part that localizes the interest points and a descriptor part
that stores the characteristics of the interest points in a feature vector. However, pure detectors
and descriptors also occur. While the process in essence is simple, the technique has a vast range of
applications: image stitching[EA14], content-based retrieval[THBL08], 3D-reconstruction[ACM11],
and object recognition[APAJ12], to name a few.

Because of this diversity, we would also expect the different types of salient point techniques
to be diverse. Many different implementations exist, each with its forte and drawbacks. A challenge
that remains is accurately mapping the performance of the still-growing lists of extraction methods.
A descriptor designed for texture recognition is likely to perform worse for visual tracking. Therefore,
it is essential that the benchmarks used to evaluate these methods can capture their performance
on this variety of applications, and the evaluation criteria used to present the performance are
unbiased towards certain types of detectors or descriptors.

In this paper, the strengths and limitations of established methods like SIFT[Low04] and KAZE[ABD12],
and novel methods like FFD[GLT21] and BEBLID[SSBB20] will be explored in the context of
matching and object recognition. Each image in a customized dataset will be matched against a
similar image under different circumstances, such as transformations or other modifications. A
trade-off between sound localization and stability will be explored by evaluating the redundant
and non-redundant repeatability rate of interest point detectors. With the help of the computed
descriptors, corresponding regions in the two images are found and verified with ground truth to
evaluate the matching performance. In this process, it is found out what dataset design is best to
draw out the strengths and weaknesses of the techniques and which evaluation criteria best capture
this information.

1.1 Thesis overview

The paper has the following structure: First, we will present a combination of novel and established
interest point techniques, and we will briefly explain their strategies. Next, a dataset containing
different types of image deformations will be designed from an existing dataset. For the evaluations,
the detectors will first be tested by measuring the repeatability score. Descriptor performance will
be measured by evaluating the recall and precision scores. The ability to detect copies in a large
dataset will be tested next. Furthermore, we will examine if an addition to the FFD detector can
make it invariant to rotations or other transformations and improve its performance on detecting
copies.
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2 Related Work

Efficient interest point detectors should have the ability to detect key points that remain stable
under different types of transformations. Earlier methods relied on detecting corners in the image,
such as the Harris Corner detector[HS88], which is invariant to photometric transformations, scales,
and rotations. A more recent implementation of a corner detector is FAST[TH98]. While efficient,
viewpoint changes prove to be a challenge to such detectors. In response, affine invariant detectors
like Harris Affine and Hessian Affine[KM02] were proposed that use the earlier methods and make
the regions affine invariant using affine shape adaptation. In this paper, detectors using a different
method will be evaluated, namely the multiscale keypoint detectors. We can describe this method
in two steps:

1. Construct a scale-space pyramid

2. Localize interest points by searching for extrema in the pyramid

More current detectors, such as superpoint[DMR17] disregard manual keypoint detection and use
learning-based methods to detect interest points.

Just as there are plenty of different detectors, a large variety of interest point descriptors exist. The
most straightforward descriptor uses features that represent a vector of pixels. The dimensionality of
these features is vast; thus, different methods have been proposed. Some descriptors use histograms
to represent specific characteristics of pixels in the detected regions. A noteworthy example is SIFT,
which describes the keypoints as a 3D histogram of gradient locations and orientations. Other
descriptors use learning-based method. Properties Optimization Point(POP)[YTX+19] uses a fully
connected convolutional neural network for detecting and describing keypoints. BEBLID uses an
ensemble of weak learners to compute the keypoints.

Performance evaluation of local detectors has been done several times[CS00][STLL03]. Interest
point evaluations were carried out in the context of texture recognition[RH99][LSP05], visual
tracking[SG11], and matching[MS05].

The following detectors and descriptors will be evaluated in this paper:

2.1 SIFT(detector/descriptor)

SIFT[Low04] is one of the most established interest point techniques. It detects keypoints using
a cascade filtering approach. First, the algorithm creates a scale space of images by constructing
progressively Gaussian blurred images. For each adjacent Gaussian image, the scale difference is
taken to get a difference of Gaussian Pyramid. Spatially and across scales, the algorithm looks for
extrema in the pyramid to find potential interest points. A quadratic surface fits the values in the
neighborhood of the found extremum, which allows the algorithm to reject candidates with low
contrast or poorly localized along the edge. In the meantime, the Taylor series expansion of DoG,
D, is used to accurately localize at which scale the extrema are located. If the value of D at the
extrema is too small, it is discarded. Finally, the hessian of the extrema’s D that are sensitive to
edge responses are rejected if the ratio of the trace and determinant exceeds a certain threshold.
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The following steps are to make the algorithm invariant to rotations and to extract the fea-
tures of the keypoints. A histogram of local gradient directions is computed for the remaining
extrema. The orientation assigned to the peak is determined by the most occurring orientation
in the neighborhood of the peak. For forming the descriptor, the gradient directions of the 16x16
neighborhood are grouped in a 4x4 histogram array with eight orientations, which results in a
descriptor of 128 dimensions.

2.2 FFD(detector)

FFD [GLT21] is a recently developed robust feature detector that aims to reduce the computational
costs of the scale-space analysis other multiscale detectors struggle with by analyzing a new
relationship between the difference of Gaussian and the Laplacian of Gaussian by formulating the
superimposition that occurs during edge transmission. FFD starts with constructing its scale-space
by first blurring the input image with a Gaussian and next extracting a coarse image from the
previous scale with a cubic spline kernel with varying σ′s at each scale level, after which the fine
scale-space is created by taking the difference of Gaussian of adjacent coarse images. A coarse
scale-space pyramid is created by taking the difference of each adjacent image. In contrast, to
SIFT, this pyramid contains no octaves, and the images are up-sampled instead of down-sampled,
intending to provide more robust responses along the edges to detect potential edges SIFT would
otherwise miss. Non-maximum suppression is applied to the fine scale-space to find interest point
candidates. Similar to SIFT, extrema with low contrast are discarded, and the quadratic Taylor
expansion is applied to locate the peak’s scale.

2.3 KAZE(detector)

KAZE, proposed by P. Alcantarilla[ABD12], being another multiscale method, also aims to detect
interest points at multiple scales by creating a scale-space. The method avoids constructing the
scale-space with linear diffusion, like a Gaussian, because of the following disadvantages: While
blurring reduces noise and emphasizes interesting features such as corners and textures, the blurring
occurs to the same degree across the image. For this reason, noise is reduced to the same degree
as details, which results in a loss of localization. KAZE opts to construct the scale-space with
nonlinear diffusion filtering. KAZE first constructs a set of blurred images with AOS schemes. To
detect keypoints, the response of the scale-normalized determinant of the Hessian is computed. The
extrema are found with a sliding window technique and considered as keypoints similarly to SIFT.

2.4 DAISY(descriptor)

DAISY, a dense descriptor proposed by Tola et al.[TLF10], was designed to yield good results
in wide-baseline stereo matching. Orientation maps are computed for each quantized direction,
comparably to SIFT. However, to efficiently compute the descriptor at each pixel for dense matching,
the weights of the SIFT orientation histogram are replaced with convolutions of the gradients in
specific degrees with several Gaussian filters. This way, DAISY keeps the exact invariance as the
SIFT descriptor while only having to compute the orientation histogram once per region.
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2.5 LUCID(descriptor)

LUCID (Locally Uniform Comparison Image Descriptor) is a binary descriptor proposed by Ziegler et
al[ZCKB12]. The algorithm constructs the descriptor as the order permutations of the concatenated
RGB color channel vector of an nxn image as seen in Image 1.

Figure 1: LUCID feature construction

Since a binary descriptor is generated, and the feature dimensionality is very low, LUCID is highly
suitable for real-time applications.

2.6 BEBLID(descriptor)

Another, more recent, binary descriptor is BEBLID (Boosted Efficient Binary Local Image
Descriptor)[SSBB20]. First, a real-valued descriptor is generated with a weak learner selection
strategy using AdaBoost. To generate an efficient descriptor, the feature extraction the weak learner
depends on is balanced to be discriminative and fast to compute. The real descriptors are simplified
to a binary descriptor when the weight of all weak learners is equal.

3 Experimental Setup

The experiments were conducted on a 64-bit operating system, with an Intel® Core™ i7-8700k CPU
@ 3.70GHZ processor and 32-GB of RAM. The implementation for the FFD detector and the code
for the non-redundant repeatability was provided by the author. The OpenCV implementations
were used for the remaining detectors and descriptors and matching strategies.
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3.1 Datasets

The datasets used for the evaluations are based on the Microsoft COCO: Common Objects in
Context dataset[LMB+14].

First, 1000 images were randomly selected from this dataset to serve as a ground truth. For
each image, data augmentation was applied to create new images by applying the following trans-
formations to the original image:

Viewpoint change: It is possible to emulate a viewpoint change in an image with an affine
transformation, which can be interpreted as a composition of a rotation and a deformation such
that:

x′ =

[
A t
0T 1

]
∗ x

, with x’ being the distorted image, x being the original image, t a translation and A the affine
matrix:

A = R(ψ) ∗R(−φ) ∗D ∗R(φ)

, with R(φ) being a rotation, R(−φ) and R(φ) being a deformation, and D being a scaling matrix
that models a tilt, t[WOBL17][RH04].

Figure 2: Reference Image Figure 3: Affine transformed query image

Scale changes: New images are created by incrementally scaling the original image.

Rotations: The original image is rotated by φ degrees to create new images.

Image zooms: New images are generated by progressively zooming in to the center of the
original image.

Other images are generated from the original image by adding salt&pepper noise to the image and
compressing or Gaussian blurring the original image.
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3.1.1 Dataset for Detector and Descriptor Evaluation

The dataset used for the detector and descriptor evaluation contains 40 affines, nine blurred images,
19 compressed images, 15 cropped images, 11 images with added noise, 23 rotated images, and ten
scaled images per original image in a dataset with 127000 images.

3.1.2 Dataset for Copy Detection Evaluation

For the purpose of copy evaluations, the image must copy closely resemble the original image to
emulate a practical situation where copy detection would be used. While image croppings and scales
are the most likely transformations contributing to the image copies found on the WWW[LTCJ+07],
all other mentioned transformations are also evaluated. For each transformation, five slightly
transformed images are generated per original image, resulting in a dataset of 35000 images.

3.2 Matching Strategy

Since we are evaluating detectors and descriptors in the context of matching and recognition, we
are interested in how well descriptors can match corresponding regions in images. A commonly
used approach is based on evaluating the number of correct matches, and incorrect matches are
established for a reference image and a query image. The process is summarized as follows:

1. Keypoints are detected in a reference image

2. Descriptors are computed for the detected keypoints and stored in a feature vector

3. For each query image in the transformed set of the reference image, detect keypoints, compute
descriptors, and store descriptors in a feature vector

4. For each feature in the reference image’s feature vector, find the feature in the query image’s
feature vector with the closest distance

5. Filter bad matches from good matches

Step 4 is where the matching starts. To find the closest neighbor most efficiently, the OpenCV
implementation of Fast Library for Nearest Neighbors is used for real descriptors. Constructing a
KD-tree index is also a used approach, but this would give no considerable improvement compared
to an exhaustive search for features with a high dimensionality[Low04]. For binary descriptors, an
LSH index is constructed, and the hamming distance is used to find the closest neighbor, which is
an efficient approach in and of itself.

Step 5 is where we can evaluate the competency of a descriptor. Since the image matching
only looks at the distance between vectors and not at a distance between their corresponding
keypoints, the closest neighbor could happen to be a feature that corresponds to a keypoint far away
from the original keypoint. First, what separates a good match from other matches is dependant on
the matching definition. In this paper, Lowe’s ratio test is used to extract good matches from all
matches[Low04]: A match is a correct match if d1 < d2 * r, where d1 is the distance between a
feature of the reference image and the closest feature of the query image, d2 the second closest,
and r a ratio set on 0.7 for this paper.
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Figure 4: Filtering bad matches with ratio test

In Image 4, an example of match filtering with We illustrate Lowe’s ratio test with an affine
transformed query image. Initially, each detection in the two images has a match. After the ratio
test, only the matched detection that is also spatially in the image close to each other are kept.

3.2.1 Copy Detection

The dataset to evaluate the copy detection is employed as follows: First, the keypoints are detected,
and descriptors are computed for each image in the dataset. Next, the copies are extracted from the
dataset. To determine whether an image matches as a copy or not, we used the following heuristic:
If the amount of correct matches between two images is larger than a certain percentage of total
matches, the query image is classified as a copy of the reference image. This can be summarized as:

if #correspondences > threshold * min(kps1, kps2):

image = copy

Each original image is matched against the whole set of transformed images. The threshold variable
first starts at 100, so all matches need to be correct for the image to be classified as a copy. The
threshold is slowly decreased until it hits 0. This gives us the number of copies a descriptor was
able to retrieve at each rank. Since we know a priori if the query image is an actual copy, we can
get the number of true positives and false positives at each rank to use as evaluation criteria.

3.3 Evaluation criteria

The following section gives an overview of the evaluation criteria used to measure the performance
of local detectors and descriptors.

3.3.1 Repeatability

To evaluate the performance of keypoints detectors, the most widely used criterion is the repeatability[CS00].
It can be understood as the proportion between interest points detected at the same relative position
across two images related by a homography H, and the minimal amount of detections in the images:

rep =
#repeatable keypoints

min(kps1, kps2)
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Multiple definitions on when keypoints are repeated exist. The ones used in this paper are:

• Using an overlap error[KM04]: A pair of detections are considered repeated if:

1− Axb ∩ Axab

Axb ∪ Axab

≤ ε

where Axb is, the area of the detected region of image B and Axab is the area of the projection
of the detected region in image A on image B with homography H. ε is the maximum overlap
error allowed for a correspondence. For most purposes. ε is set to 0.4.

• Distance between keypoint centers: A detector that arbitrarily selects a large scale for keypoints
could attain a higher repeatability rate. Therefore, the following definition will also be used
to measure the repeatability score:

||xb −H ∗ xa|| < ε

xa and xb are the keypoints of image A and B, respectively, and H is the homography that
maps xa to image B. According to [CS00], ε is set to 1.5.

3.3.2 Non Redundant Repeatability:

As we have seen with the overlap criterion, the repeatability can be biased towards certain detectors
that select keypoints in such a way, the repeatability score gets inflated. Detectors that select a large
number of keypoints, that may be poorly localized could also inflate the repeatability score. The
problem with this is that more storage is required, matching takes longer, and the extra descriptors
will not be unique[ZR11]. The repeatability no longer reflects the performance of the detector.

Several methods such as supervised regression to rank keypoints, and using entropy to penal-
ize keypoints that are poorly localized[ZR11] have been suggested to eliminate this bias. However,
in this research, alongside the conventional repeatability, the non-redundant repeatability proposed
by [RDM14] will be evaluated:

First, a mask function with a truncated Gaussian is assigned to each detector pair. The masks are
normalized so that we can get the number of keypoints by taking the sum of the integral over the
image domain of each mask. In essence, the masks indicate how much each pixel contributes to a
detection. One pixel may contribute to multiple detections. If this is the case, only one keypoint
would be necessary, while the other keypoints are redundant. Because of this, we can get the number
of nun redundant keypoints by taking the integral over the image domain of the maximum of the
masks. This way, overlapping keypoints will count as one non-redundant detection.

Now we can formulate the non redundant repeatability as:

nr rep =

∫
Ω
maxk∈Kr , fk(x)dxdy

min(kp1, kp2)

where Kr is the set of repeated detections, and fk is the mask function:

fk(x) = Ke
− 1

2ζ2
(x−xk)TΣ−1

k (x−x)

where (x− xk)TΣ−1
k (x− x) encodes the elliptical region of a detection, K the set of detections, and

ζ a control variable dependant on the type of descriptor used.
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3.3.3 Recall and Precision

For evaluating the performance of descriptors and copy detection, we use recall and (1-) precision[MS05].
Recall describes the descriptors ability to match corresponding regions of two images correctly,
while precision is an indicator on how well the descriptor can compute descriptors that correctly
match in proportion to all computed descriptors:

recall =
TP

TP + FN

precision =
TP

TP + FP

The way TP, FP, and FN are defined differs for descriptor evaluation and copy detection evaluation:

Descriptor evaluation:

• TP = #correct matches

• FP = #false matches

• FN = #unmatched correspondences

Copy detection evaluation:

• TP = #correct copies

• FP = #false copies

• FN = #undetected copies

3.4 Improving the FFD Detector

The FFD detector was proposed to be an interest point detector with a performance as well or
even better than SIFT while being faster in detecting keypoints. The method it uses to detect
keypoints also resembles SIFT’s method. The SIFT detector indicates the keypoint orientation for
the descriptor to achieve rotation invariance. FFD only indicates the position and scale. Due to
the already low complexity, FFD is a suitable candidate to test if it is possible to achieve rotation
invariance by assigning orientations to keypoints.

Three different versions based on the baseline FFD detector that each use a different orienta-
tion assignment technique will be evaluated on rotated images with the same criteria as the
descriptor evaluation. One of these versions also will be included in the copy detection evaluation.
The three techniques used are the following:
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3.4.1 Histogram Orientation Assignment

The first method to assign orientations to keypoints is the same method the SIFT detector uses to
assign orientation, as explained in Section 2.1. First, orientations are computed for each keypoint
in a neighborhood that depends on the keypoint’s scale. An orientation can range from 0 to
360 degrees. From these orientations, a histogram with 36 bins is constructed. For example, an
orientation of 0 degrees will be put in bin 1, 10 degrees in bin 2, and so on. The importance of
each orientation depends on the gradient magnitude between the keypoint and the location of the
current orientation. This results in a histogram where the peak is the most dominant orientation
of the neighborhood. This orientation is assigned to the keypoint. If other bins are greater than
0.8∗peak, the keypoint is duplicated, and that orientation is assigned to the newly created keypoint.

The following two orientation methods were used in [GTH11] to evaluate different types of orienta-
tion assignments for different detectors

3.4.2 Taylor’s Method

A straightforward method proposed by [TD11] that is also fast to compute but is affected more by
noise than the other techniques:

Figure 5: Intensity difference between opposite
pixels

Figure 6: Appended difference vectors

The method starts by computing vectors for the opposite pixel pairs (radius 7 in this paper) as
seen in Image 5. Then, the vectors are weighted by the intensity difference between two opposite
pixels. Next, the vectors are appended starting from (0,0). Then, a line is drawn from the origin
to the point where the appended vector ends up. The orientation assigned to the keypoint is the
degrees of this line and the positive x-axis.
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3.4.3 Center of Mass

This technique aims to compute the balance point that uses the weighted intensity of each pixel as
the mass of a circular image patch and uses its direction relative to the keypoint as the orientation.
More formally the location cx, cy, of the center of mass is calculated by the following two sums:

cx =
1

S

∑
(x,y)∈R

w(r) ∗ (x− xp) ∗ I(x, y) ; cy =
1

S

∑
(x,y)∈R

w(r) ∗ (y − yp) ∗ I(x, y)

Where I(x, y) is the gray-value intensity of that pixel, w(r) is a weighting function that determines
the weight of the intensity based on the distance of the current pixel and the keypoint r. The
further away the current pixel is from the keypoint, the lower the weight, ans S is determined by:

S =
∑

w(r) ∗ I(x, y)

Since FFD is a detector that detects keypoints at sub-pixel locations, for both methods, the intensity
of sub-pixel locations is used as well, which are computed with interpolation.

For the evaluation, the detector variants must be paired with a descriptor that uses the ori-
entation information to compute its descriptors. Therefore, we chose to pair the detectors with
the SIFT descriptor. For the regular descriptor evaluation, only rotated images are used from the
dataset since we are interested in the impact of the orientation assignment on rotated images alone.
The recall and precision will be plotted. The AUC of the plots and the time it takes on average
to assign the orientation for each keypoint per image will be presented in a table. For Taylor’s
method, a radius of 7 pixels was used, and for the center of mass method, a radius of 9 was used
for the pixel neighborhood.

For the copy detection, only the histogram assignment will be evaluated. However, this method
will be evaluated for all images in the copy detection dataset in the same way the other descriptors
are evaluated for copy detection.

4 Results and Discussion

4.1 Detector Evaluation

In this section, the results of the detector evaluation will be presented and discussed. The overlap
error and the distance error ε, as discussed in Section 3.3.1, will be set at 0.4 and 1.5 respectively.
The figures are using the overlap criterion to compute the repeatability.
First, the regular repeatability per transformation in Images 7 and 8.
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Figure 7: Repeatability rate per transforma-
tion

Figure 8: Repeatability rate for blurred im-
ages

First of all, the FFD detector attains considerably smaller rates than the other two detectors. In
Table 2, the detectors’ repeatability with the distance error is shown as well. The values the
FFD detector achieves is far more competitive in comparison. This has the following explanation.
The FFD detector selects a smaller scale for the keypoints in comparison to the other detectors.
The overlap with keypoints of the query image that would normally be in the neighborhood of
the original keypoint, if the distance error was used, is too small to result in a correspondence.
This could also be the explanation for the inflated repeatability rates for blurred images: The
SIFT and KAZE detectors select a large scale for every keypoint so that the amount of overlapping
keypoints will be larger than the minimum amount of keypoints in the reference image or query
image. This hypothesis is backed up by Table 1.

detector affine blurred compress cropped noise rotated scaled

FFD 2.214 5.417 2.263 2.436 2.381 2.244 2.070

KAZE 12.443 17.963 8.432 7.676 5.832 9.677 9.919

SIFT 6.311 22.226 4.458 4.667 3.651 4.792 5.094

Table 1: Average keypoint scale per transformation

The reason for still using the overlap method over the distance method for creating the figures is
since the distance criterion is not scale-invariant[RDM14].
Next, the non redundant repeatabilty per transformation in Image 9.
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Figure 9: Non redundant repeatability rate

Only measuring the repeatability with non-redundant keypoints impacts the KAZE detector the
most. The likely reason for this is the higher repeatability the detector attains in comparison
to FFD and SIFT. The proportion of keypoints that remain repeatable with the KAZE detector
is smaller than the proportion of FFD and SIFT, which could indicate that KAZE is prone to
selecting overlapping keypoints.

For now, we only looked at the overall repeatability rate per transformation. To see if certain
viewpoint changes, or certain rotations affect the repeatability more than others, Figure 10 and 11
are presented.

Figure 10: Repeatability rate per degrees
Figure 11: Repeatability rate for different view-
points

The values on the x-axis of Figure 11 corresponds to all permutations of φ, ψ and t, with φ ∈ {0, 1, 2},
ψ ∈ {0, 1, 2}, and t ∈ [2, 6].
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Finally, Table 2 containing the results of the detector evaluation.

overlap = 0.4 dist = 1.5

#rep. kps rep. #nr-rep. kps nr-rep. #rep. kps rep.

overall

FFD 166.97157 0.2376734 135.7312 0.1996715 278.714483 0.458073

KAZE 610.53 0.78191 438.3519 0.57164 374.5302 0.3938

SIFT 516.990857 0.6704241 343.69814 0.45103 491.07417 0.50673

affine

FFD 36.3484 0.0425155 36.0769 0.042033 137.078 0.167835

KAZE 365.213 0.342425 317.102 0.291897 108.291 0.0974645

SIFT 177.472 0.144875 143.126 0.116743 250.523 0.201091

blurred

FFD 52.3876 0.175841 48.8114 0.170414 81.9396 0.236964

KAZE 270.387 1.45613 200.719 1.10534 145.168 0.316967

SIFT 201.485 1.79936 143.847 1.21143 123.665 0.373325

compressed

FFD 420.334 0.512681 345.174 0.42846 516.813 0.631823

KAZE 1031.62 0.938747 706.787 0.649803 714.483 0.603008

SIFT 799.534 0.622841 545.879 0.434184 892.386 0.69102

cropped

FFD 128.765 0.279279 110.485 0.247958 297.03 0.900166

KAZE 400.821 0.754206 289.075 0.557304 332.693 0.580305

SIFT 324.011 0.490533 212.789 0.335309 508.063 0.87685

noise

FFD 40.062 0.0608043 38.1881 0.0581252 88.2153 0.140304

KAZE 489.798 0.446638 372.633 0.341295 341.607 0.27455

SIFT 204.861 0.171351 156.97 0.131674 245.24 0.193503

rotated

FFD 220.951 0.276136 200.07 0.252676 551.211 0.671348

KAZE 927.391 0.832065 640.305 0.576969 604.939 0.490303

SIFT 959.283 0.735301 629.959 0.495245 926.568 0.704561

scaled

FFD 269.953 0.316457 171.313 0.198034 - -

KAZE 788.48 0.703151 541.842 0.478876 - -

SIFT 952.29 0.728708 573.317 0.432636 - -

Table 2: Results of the detector evaluation

Where #rep. kps means the number of detected repeatable keypoints, rep. the repeatability,
#nr-rep. kps the number of non redundant detected repeatable keypoints, and nr-rep. the non
redundant repeatability.
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4.2 Descriptor Evaluation

Next, the results of the descriptor evaluation. The same dataset has been employed. To obtain
the recall vs 1-precision curves, the threshold values are first set to 0, and slowly incremented.
Because of the stringent thresholds early in the process, virtually no matches are kept. When the
thresholds start rising, more and more matches will be deemed correct. A competent detector hits a
recall value of 1 early in the process, when the 1-precision is still low. A less competent detec-
tor will only achieve correct matches with a high threshold when many false positives are kept as well.

The curves of each separate transformation will be compared, to investigate the effect of each
transformation on the descriptors’ exactness.
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Figure 12: Recall vs 1-precision for viewpoint(a), blurred(b), compressed(c), cropped(d), noise(e),
and rotations(f)
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Figure 13: Recall vs. 1-precision scaled

All descriptors suffer the most from viewpoint changes. For SIFT and BEBLID, the descriptors
seem to perform well on scales, rotations, and image compressions and reasonably for the other
modifications. LUCID and DAISY seem sensitive to all modifications, while LUCID performs
slightly better under transformations, and DAISY outmatches LUCID for compressed images.

4.3 Copy Detection

For the next section, the same detector/descriptor pairs are evaluated, this time on the copy
detection dataset. In addition, two other pairs are evaluated. First, the baseline FFD detector
with the SIFT descriptor, and secondly, the modified FFD detector with the SIFT descriptor.
The reason for this is to test the efficacy of the modified FFD detector compared to the base-
line method. Later on in this section, the two will be evaluated separately from the other descriptors.

To test how well a descriptor performs on detecting copies, we will look at the percentage of
detected copies at each threshold rank. Since varying this rank also lowers the specificity of the
descriptor, it is also helpful to investigate how the precision is affected by varying the rank.
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Figure 14: Percentage of copies detected per
rank

Figure 15: Precision per rank

Figure 14 shows the percentage of copies found at each rank. Again, we determine if a copy is
found if #correct matches > (100− i) ∗min(kp1, kp2), where i is the rank where the copy is found.
Figure 15 shows the precision at each rank. The SIFT descriptor is able to find all copies at the
lowest rank, followed by BEBLID. LUCID is only able to find all copies when the threshold to
determine an image match is very low. For the precision at each rank, we see that the initial
specificity of most descriptors is high at the rank the first copies are found. LUCID is the exception
since it only starts finding copies at a high rank, where the threshold of determining a copy is less
stringent, and more non-copy images are being labeled as copies. The BEBLID descriptor performs
very well based on its precision across the ranks being around the max in the range the first
copies are found, and the rank hits 100.

Finally, to show how well each descriptor performs per transformation, Table 3 shows the AUC
score for each transformation.

descriptor affine blurred compress cropped noise rotated scaled

BEBLID 57.615 69.042 92.407 83.510 74.292 57.908 55.294

DAISY 45.328 44.402 65.509 60.756 59.447 45.898 41.730

FFD 63.778 77.717 93.459 86.912 73.421 63.851 60.018

LUCID 10.458 5.793 45.467 40.395 26.381 10.821 8.359

modFFD 53.871 71.899 87.728 81.567 73.689 55.485 49.103

SIFT 66.516 74.915 93.241 86.130 77.775 65.466 67.104

Table 3: Average keypoint scale per transformation
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To demonstrate what image types different descriptors commonly confuse with the query image
while detecting copies, Figure 16 is presented:

Figure 16: Images typically confused with a query image. From left to right: the first image is
the query image, the next two images are deemed identical to the query image (100% of matches
are correct), the fourth image is an image found at a low rank (10-20), the last image at a high
rank(65-70).

The central theme with images confused as copies is foggy images with few distinctive characteristics.
LUCID is the main exception. While the confused images are somewhat blurry, recognizable entities
are present in the images, even at low ranks. With DAISY, this starts happening with images
marked as a copy at higher ranks. BEBLID confuses an image with contrasting color to the query
image with a copy, which is remarkable, since it is the descriptor with the highest overall precision.
A reason for this could be that the BEBLID descriptor does not put a high emphasis on color.

4.4 Evaluating modFFD

4.4.1 Descriptor Evaluation

Figure 17: Recall vs. 1-precision FFD variants
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technique AUC average time per image(ms)

baseline 0.2414 57.0373

histogram 0.6945 240.794

Taylor’s 0.6558 61.9887

center of mass 0.9134 106.899

Table 4: Detector metrics

In Figure 17, the recall vs 1-precision of the modified FFD versions are shown, while in Table
4, the area under curve and average time to detect all keypoints in an image are shown. The first
thing that becomes clear is that the baseline method is in no way rotation invariant, which was to
be expected. The center of mass method performs the best by far and hits a recall value of 1 at a
relatively low precision value. The other two methods perform better than the baseline, but the
histogram method does not provide enough stability for matching rotating images compared to
the extra time cost. A case can be made for Taylor’s method, while it performs worse than the
histogram method. With Taylor’s method, only 4 ms are required extra to provide a somewhat
robust orientation assignment, which makes it preferable to use for real-time matching, especially if
combined with a binary descriptor that can use the orientation assignment. A reason for the lacking
performance of the histogram orientation assignment could be since the method is developed for
usage with SIFT keypoints. SIFT detects keypoints at certain octaves, and when constructing the
orientation histogram, it uses the Gaussian image of the octave where the keypoint is detected.
This feature is added to make the orientation assignment more resistant to noise[Low04]. FFD does
not detect keypoints at octaves, and therefore calculating the orientation this way does not provide
any benefits or even hamper providing stability for matching rotated images.

4.4.2 Copy Detection

The first peculiar thing is the amount of copies modFFD can find from rank 0. The baseline method
quickly catches up to modFFD and can find each copy at a relatively low rank. At first glance,
the baseline seems preferable to the modified version; however, when we look at the specificity of
the two detectors, a case can be made for the modified version. The modified version retains a
very high specificity, while it can find a decent amount of copies before the precision starts to
drop. The FFD detector has initially been modified to make the detector rotation invariant with
the added orientation of the SIFT detector. If we take a look at Table 3, the AUC for rotations
is lower than the original implementation. At least for detecting rotated copies, the orientation
implementation did not succeed.

20



4.5 General Statistics

Finally, some miscellaneous metrics for the detectors and descriptors:

detector average kps detected average time per 1000 kps(ms)

FFD 1879.579 63.929

KAZE 1958.259 309.673

SIFT 2460.642 92.361

Table 5: Detector metrics

Table 5 shows the number of keypoints each detector detects on average for each image in the
datasets and the average time it takes to detect 1000 keypoints in milliseconds.

detector descriptor type descriptor size description time matching time

BEBLID Binary 32/64 14.038 46.643

DAISY Real 800 250.032 25.604

LUCID Binary 3.375 2.937 47.935

SIFT Real 512 210.813 23.521

Table 6: Descriptor metrics

Table 6 shows the type of the descriptors that are computed (binary or real), the storage in bytes
per descriptor, the time it takes on average to describe all keypoints detected in the image in ms,
and the average time it takes to match descriptors and filter suitable matches in ms. What is
interesting to note, is that the description time is heavily associated with the size of the produced
descriptor. The matching time, however, is faster than those of binary descriptors, probably due to
the efficient implementation of FLANN compared to the bruteforce LSH index matching.

5 Conclusions and Further Research

In this study, a set of interest point detectors and descriptors was evaluated on a dataset containing
multiple transformations ranging from slight to highly disruptive. The KAZE detector seemed to
provide the highest amount of stable keypoints based on the overlap repeatability criterion, while
SIFT outmatched KAZE if the distance criterion was used. The non-redundant repeatability rate
proved to be a helpful criterion for determining the amount of distinct stable keypoints a detector
could localize. For the descriptor evaluation and copy detection evaluation, the SIFT descriptor
proved to be the most efficient regarding most transformations, closely followed by BEBLID. BE-
BLID showed to be more robust under affine transformations compared to other descriptors. SIFT
outperforming the other descriptors overall might seem strange considering the age of the method.
The characteristics of the other descriptors can explain the reason for this. First of all, LUCID is a
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binary descriptor that only uses gray-scale intensity to compute its descriptors. While it provides a
very fast descriptor, it disregards scales the keypoints are detected at and keypoints’ orientations,
making it not invariant to these transformations. DAISY performing worse than SIFT could be
because it is designed for dense matching, and the context of this research was matching using well-
localized keypoints. If it were to be used with dense keypoints, it might improve the performance of
DAISY. Finally, BEBLID is outperformed by SIFT but only slightly. It shows the exact invariance
as SIFT and is more efficient since it is a binary descriptor. It also performs better on affine
transformations, making it an excellent descriptor when real-time matching is required and a good
performing descriptor otherwise. An existing method, namely the FFD detector, was modified to
include an orientation of the interest point region as an indication for the descriptor to use. Rotation
invariance has been achieved using the center of mass method, and the performance of rotated
images has been improved with the orientation histogram method and Taylor’s method. While it
was not established that the orientation histogram method improved copy detection for rotated
images, it helped detect copies if the threshold determining a matched image is a copy was stringent.

For future research, the following concepts would be interesting to investigate. First of all, a
more theoretical evaluation could give more insight into how detectors and descriptors operate. For
instance, why do interest point detectors find keypoints at a larger scale for blurred images than
for other transformations? Also, why does the component that makes the SIFT detector invariant
to rotations not help make a detector that works similarly to SIFT robust to rotations? Finally, a
follow-up study could be carried out to investigate how the orientations assigned to the keypoints
change for different rotations. Secondly, for designing the dataset, the parameters for changing the
viewpoint were chosen to be broad without having too many permutations. It is a real possibility
that some of the resulting images have a viewpoint that is unlikely to occur in real life. A new
study investigating which parameters result in plausible viewpoints would help design new datasets
for comparative studies.
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