
Opleiding Informatica

Composing instrumentation tools for Android apps

Arthur van der Staaij

Supervisors:
Olga Gadyatskaya & Nathan D. Schiele

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl July 23, 2021

www.liacs.leidenuniv.nl

Abstract

Many apps are developed for the mobile operating system Android every day, and they
are used by an ever increasing amount of people. This has given rise to a growing need to
analyse these apps, most importantly for security purposes. Many Android app analysis
tools use a technique called dynamic analysis, which involves executing apps and gathering
information while they are running. These analysis tools often have no access to the
source code of the application under analysis: they have to make do with the compiled
Android package. Therefore, many dynamic analysis tools for Android involve bytecode
instrumentation: the modification of the compiled app code. Such instrumentation tools
have all kinds of purposes, ranging from the measurement of code coverage to malware
detection. Given this variety, it may be useful to work with multiple tools that use
instrumentation at the same time. The composition of such tools may however lead to all
kinds of problems, since their changes to the applications under analysis may conflict with
each other. To facilitate the composition of multiple instrumentation tools, we propose a
two-step approach involving instrumentation blueprints, reports of the instrumentation
changes a tool needs to apply. We have designed a prototype syntax for these blueprints,
adapted a modern instrumentation tool to emit them and implemented a prototype
blueprint application program. Although there are still some limitations, our evaluation
shows that our proposed approach can indeed work in practice.

Contents

1 Introduction 1

2 Background 2
2.1 Android . 2
2.2 Application structure . 2
2.3 Android application analysis . 3
2.4 Dalvik bytecode and the Smali representation 4
2.5 Instrumentation . 6
2.6 Register management . 8
2.7 ACVTool . 9
2.8 Composition of instrumentation tools . 10

3 Instrumentation blueprints 12
3.1 Approach . 12
3.2 Motivation . 12
3.3 Blueprint design . 13
3.4 The syntax . 15

4 Implementation 17
4.1 Generation of instrumentation blueprints for ACVTool 17
4.2 Blueprint applicator . 18

5 Evaluation 23

6 Limitations 26

7 Conclusions and Further Research 27

References 28

1 Introduction

Over the last few years, the market of mobile phones has continued to grow. According to [1],
approximately 6.648 million people use a smartphone as of 2021, and this number is expected
to grow even further. The most common mobile operating system is Android, with a market
share of around 72.8% [2, 3]. Many apps are developed for the operating system every day: in
February 2021, a total of approximately 88 500 apps were released through Google’s app store,
and that was a relatively slow month [4]. As the prevalence of Android increases, so does the
demand for tools that analyze its apps. And indeed, many such tools are available.

There are various ways in which Android apps can be analyzed. The techniques can broadly
be split into two categories: static analysis and dynamic analysis. The former is based on
analyzing an Android package “from the outside”, without running it. The latter, on the other
hand, involves executing the application in some form and gathering information from its
behavior. Of course, tools may also use a combination of static and dynamic analysis. Analysis
tools can also be categorized into white-box and black-box tools. White-box tools require access
to the source code of an application, whereas black-box tools can perform their analysis using
only the compiled application package. This thesis concerns black-box dynamic analysis tools,
tools that involve running applications and which do not require source code access.

Black-box dynamic analysis tools often use a technique called instrumentation: they modify
the (compiled) code of the application in order to gather information while it is running.

Even though a multitude of systems and frameworks related to instrumentation is continually
being developed, a topic that has not been considered in detail is the composition of instrumen-
tation tools: using multiple such tools at once. One can expect various issues to arise when
combining multiple instrumentation tools, as they are generally not designed with other tools
in mind.

In order to facilitate the composition of instrumentation tools, this thesis introduces the concept
of instrumentation blueprints: specifications of the instrumentation changes applied by a tool.
Instead of instrumenting applications directly, tools can output a blueprint, and an applicator
system can subsequently apply multiple such blueprints at once. Because the applicator has
knowledge of all the required code changes of the different tools at once, it can avoid issues
that would otherwise be caused by the composition of the tools.

Besides introducing the concept of instrumentation blueprints and providing a basic syntax
for them, this thesis also includes the implementation of a tool that can apply them and a
practical implementation of blueprint output for ACVTool, a recent black-box code coverage
tool that employs instrumentation [5].

To summarize, the contributions of this work are:

1. The design of an approach for the composition of instrumentation tools, based on
instrumentation blueprints.

2. The definition of a prototype syntax for instrumentation blueprints.

3. The implementation of blueprint output for ACVTool.

4. The implementation of a prototype blueprint applicator program.

1

2 Background

This section contains background information that is necessary to understand the subject and
contributions of this work. To begin, we will describe some internals of the Android operating
system and the structure of Android applications. We will then move to the current approaches
to Android application analysis. After that, we will go into more detail on the format of the
code to which Android applications are compiled, and how and why this code is instrumented.
Finally, we will give some background on the main topic of this thesis: the composition of
instrumentation tools.

2.1 Android

We will first describe the basics of the environment in which Android applications are executed:
the Android operating system. Android consists of multiple layers, which are commonly referred
to as the Android stack. Figure 1 on the following page gives an overview.

At its core, Android is based on the Linux kernel, but there are many abstractions between it
and the applications that the operating system supports. Of particular interest is the Android
Runtime (ART), a virtual machine similar to the Java Virtual Machine: it executes code that
has been compiled to low-level, machine code-like bytecode. The bytecode supported by the
Android Runtime is called Dalvik, a remnant of the older Dalvik Virtual Machine that Android
used before. Android applications are typically written in a high-level language such as Java,
and then compiled to bytecode, which is run on the Android Runtime. They may however
include native machine code as well, which needs to be compiled for the various different kinds
of underlying hardware that phones may use. This work deals heavily with Dalvik bytecode,
so we will come back to it further down.

On top of — among other components — the Android Runtime, a Java API framework is
available to develop applications against. Android applications notably do not have a single
defined entry point. Instead, they consist of multiple “app components” like UI screens, which
are classes from the API framework. The Android operating system activates these components
based on user interactions. Applications may also invoke components of other apps through
a system called inter-component communication (ICC). For example, an app that requires a
photo can send a message requesting a camera app to open and return the photo that was
taken. This architecture is what gives the Android operating system its interconnectivity [7].

2.2 Application structure

Applications for Android come in the form of an Android Package, or APK for short. An APK
contains all components that make up an application, such as Dalvik bytecode, native code and
assets like images and XML files. They also include a manifest file, which is an XML file that
holds the name of the package, its components, required permissions and other metadata.

Packages must also be given a cryptographic signature before they can be installed. This
signature can be used to verify whether different packages have been created by the same
developer. This is important for the secure delivery of updates, for example.

2

Figure 1: The Android Stack [6]

2.3 Android application analysis

Many tools are available for the analysis of Android applications. The purposes of these tools
range from performance measurements to automated testing. Possibly the most important
reason to analyse applications, however, is security. The widespread use of Android has made
it an attractive target for malware authors. Phones often contain a wealth of information
about their user, such as contacts and location, so the stakes can be high. Because we cannot
always establish trust in the developers of Android applications, there is a need to be able to
analyze these apps. New analysis tools continue to be developed to detect new kinds malware,
and they use a variety of techniques to do so.

3

As touched upon in the introduction, there are multiple ways in which Android analysis tools
can be categorized. Firstly, tools generally perform either static analysis or dynamic analysis,
although hybrids do exist. Orthogonally to this, it is possible to distinguish between white-box
and black-box tools. The contributions of this thesis apply specifically to black-box dynamic
analysis tools. We will now discuss each categorization in a bit more detail.

White-box tools require the original source code of an application, usually written in Java.
Black-box tools, on the other hand, can analyze compiled application packages without
additional information: they operate on the level of Dalvik bytecode. White-box tools may be
able to provide more information than black-box tools do, but they can generally only be used
by the developers of the analyzed app. For other cases, black-box analysis is often the only
option. Any tool that is meant to analyze apps from other parties, like security analysis tools,
must be black-box.

Static analysis involves the examination of an application from an outside perspective. In
contrast, dynamic analysis is based on executing an application in some way (usually in an
isolated environment) and observing how it behaves in practice. Black-box static analysis tools
generally look at an application’s manifest file and analyze patterns and information flows in
their code. On the other hand, black-box dynamic analysis tools rely on techniques like system
call monitoring and bytecode instrumentation (the main subject of this work).

One might wonder why tools would resort to dynamic analysis instead of static analysis. After
all, static analysis provides the certainty that apps are analyzed fully, something that is not
guaranteed for dynamic analysis. There are multiple reasons for this. One is that some metrics,
such as performance, can only be accurately determined dynamically. Another reason, one that
is of particular importance for security analysis, is that many kinds of behavior are not easily
captured with static analysis alone. Examples include behavior that depends on user input,
dynamic loading of code [8, 9, 10], and inter-component communication [11, 12]. The use of
advanced code obfuscation, involving techniques like Java reflection or bytecode encryption,
can also prevent static analysis tools from fully understanding an app’s behavior [13].

The primary trade-off of dynamic analysis compared to static analysis is that it can only detect
behaviors that are actually exhibited by an app while it is being analyzed. In fact, there are
some known techniques that malicious apps can use to exploit this weakness. They may not
run any malicious code unless some highly specific conditions are met (a logic bomb) [14], or
they may detect whether they are running in an emulated environment and not execute any
malicious code if this is the case [15]. Since neither static nor dynamic analysis is perfect, both
analysis styles are used in practice.

2.4 Dalvik bytecode and the Smali representation

Dalvik bytecode is in many ways similar to real machine code, consisting of low-level instructions
like add and goto. There are however some significant differences as well. First of all, many
high-level concepts of the source code (usually Java) remain visible in the bytecode. These
include things like classes, fields, methods and types. Second, the Android Runtime is a

4

register-based virtual machine. This means that there are no memory access instructions in the
bytecode, and there is no stack. Instead, functions have parameter registers and declare the
amount of local registers they need. A total number of 65 536 registers is supported, far more
than most real-world machines have.

Because Dalvik bytecode is a machine-like language of zeroes and ones, we don’t deal with it
directly. Instead, we use a human-readable assembly-like representation of it. There are two
such representations that are commonly used: Smali [16] and Jimple [17]. Smali, the output of
Gruver’s smali/baksmali tool, has been designed specifically for Dalvik bytecode and stays
very close to it. Jimple is a bit more abstract, and was primarily created for Java bytecode.
This work uses the Smali representation.

We use Apktool [18], which relies on smali/baksmali, to disassemble APKs into smali files. A
separate file is used for every Java class. Figure 2 on the next page shows an example of a
Java class and its Smali representation. For clarity, we have removed some debug information
and optional reflection metadata from the Smali code. Note how the class Foo, its methods
bar and baz (and its implicit constructor) and its field value can all still be identified. The
lines that start with a dot are called directives.

For each method in the original Java code, there is a corresponding .method/.end method
block. Such a block begins with a header containing the method descriptor: the name of the
method, its parameters and its return type. For example, the descriptor of bar is bar(I)V, as
it requires one parameter of type int (I), and its return type is void (V).

The first line after the method header declares how many local register the method uses. All
methods in the example use one. Instead of using .locals, as in the example, methods can also
use .registers to specify the total number of registers (local and parameter). Inside a function,
local registers are referenced with v<number>. The registers containing the method’s parameters
use the p prefix instead. All non-static methods also have an implicit this-parameter, which
is placed in p0.

Although local and parameter registers use different names, there is actually no distinction:
parameters are simply placed in the last registers of the method. If a method has n local
registers, the first parameter register is vn. The p-names refer to the exact same registers; they
are merely aliases. Table 1 shows the relation between the v- and p-registers for a non-static
method with two local registers and three parameters (including the this-parameter).

The rest of the method body consists mostly of instructions, which are marked with red. Those
who are familiar with assembly languages may recognize some similarities. The full instruction
list can be found at [19].

v0 First local register
v1 Second local register
v2 = p0 First parameter register (this)
v3 = p1 Second parameter register
v4 = p2 Third parameter register

Table 1: Example register layout (adapted from [20])

5

1 package com.example;
2
3 public class Foo {
4 private void bar(int count) {
5 for(int i = 0; i < count; i++) {
6 baz(i);
7 }
8 }
9

10 private void baz(int i) {
11 value += i;
12 }
13
14 private int value = 0;
15 }

1 .class public Lcom/example/Foo;
2 .super Ljava/lang/Object;
3 .source "Foo.java"
4
5 # instance fields
6 .field private value:I
7
8 # direct methods
9 .method public constructor <init>()V

10 .locals 1
11 invoke-direct {p0}, Ljava/lang/Object;-><init>()V
12 const/4 v0, 0x0
13 iput v0, p0, Lcom/example/Foo;->value:I
14 return-void
15 .end method
16
17 .method private bar(I)V
18 .locals 1
19 const/4 v0, 0x0
20 :goto_0
21 if-ge v0, p1, :cond_0
22 invoke-direct {p0, v0}, Lcom/example/Foo;->baz(I)V
23 add-int/lit8 v0, v0, 0x1
24 goto :goto_0
25 :cond_0
26 return-void
27 .end method
28
29 .method private baz(I)V
30 .locals 1
31 iget v0, p0, Lcom/example/Foo;->value:I
32 add-int/2addr v0, p1
33 iput v0, p0, Lcom/example/Foo;->value:I
34 return-void
35 .end method

(a) Java (b) Smali

Figure 2: Example Java file and corresponding Smali code

2.5 Instrumentation

Many black-box dynamic analysis tools modify the bytecode of the apps under analysis. This
technique is called instrumentation. The term is somewhat overloaded, though: it is also
sometimes used to describe the modification of the Android operating system itself [21]. We
can again distinguish two different types of bytecode instrumentation: static instrumentation
and dynamic instrumentation (not to be confused with static and dynamic analysis). With
static instrumentation, applications are modified in one go, prior to analysis. With dynamic
instrumentation on the other hand, the app is continuously modified as it runs. Dynamic
instrumentation is more complex and appears to be less frequently used.

Examples of analysis tools that use static instrumentation are ICCInspect [11], AspectDroid [22],
DroidFax [23], APIMonitor [24] (a system that was used in a version of DroidBox [25, 26]) and
some unnamed tools [20, 27, 28]. AppTrace [29] is an example of a dynamic instrumentation
tool.

6

The contributions of this thesis apply to only one of these two categories: the one of static
instrumentation. From this point on, we will refer tools that use some form of static Dalvik
bytecode instrumentation as simply instrumentation tools.

Some instrumentation tools analyze instrumented versions of applications in an isolated
environment using automated tests. For others, applications are actually installed on user
devices with instrumentation changes left in, in order to gather information while the app
is being used by the end user. In the latter case, the performance overhead caused by the
instrumentation is of course especially important. Our contributions apply to both of these
approaches.

Instrumentation tools have a variety of purposes. DroidFax [23] and the tool developed by
Somarriba et al. [27] monitor and visualize the runtime behavior of apps, the latter focusing
on malware detection. ICCInspect [11] provides statistics and visualizations for the runtime
usage of Android’s ICC system. The tool from Hu et al. [28] analyzes the energy consumption
of methods and API calls, helping developers with the optimization of their apps.

Another common use for instrumentation is taint tracking. Some calls to the Android API
provide sensitive information about the owner of the phone, such as their contact list or location.
These calls are taint sources; the registers that receive the data are tainted with information.
Whenever a register receives information based on a tainted register, that register is tainted as
well. API calls that send information to the outside world, for example via internet or SMS,
are called taint sinks. Clearly, we do not want apps to send sensitive information to the outside
world without the consent of the user. The Android permission system is however not always
sufficient to prevent this: benign apps may very well require permissions for both information
access and transmission, even if they do not intend to transmit sensitive information. Taint
tracking tools detect whether any sensitive information reaches a taint sink at runtime by
keeping track of which registers are tainted. AspectDroid [22], DroidBox [25] and the tool
developed by Will [20] are examples of taint tracking tools.

There are also a number of frameworks for the development of instrumentation tools. Examples
are Apkil [24], I-ARM-Droid [30] and InsDal [31]. An interesting system that also somewhat
fits in this category is Repackman [32], which can repackage apps with arbitrary payloads in
order to evaluate other tools that detect such repackaging.

Note that although we have thus far only spoken of analysis tools, some instrumentation tools
do take it a step further: they instrument apps in order to improve them, usually focusing
on security and privacy. If instrumentation is used for this purpose, it is often called bytecode
rewriting or app hardening. One such tool is introduced by [33], describing the use cases of
advertisement removal and the injection of a more fine-grained permission system. The system
from [34] also involves bytecode instrumentation to make the Android permission system more
fine-grained. Aurasium [35] is yet another example. An overview of techniques of this family is
given by [36].

Finally, an interesting group of instrumentation tools is formed by tools that measure black-box
code coverage, i.e. how much of the bytecode of the application under test is actually executed
during analysis. As we mentioned before, the primary weakness of dynamic analysis is that it
can only detect behaviors that actually occur. Knowledge of code coverage is therefore quite
valuable for dynamic analysis tools, and is also useful for their evaluation. The metric is also
valuable for tools that automatically generate tests, which are often used by dynamic analysis

7

tools. For more information about automatic testing, we refer to the systematic review by
Kong et al. [37]. Examples of instrumentation tools that measure code coverage are Ella [38],
CovDroid [39], the tools described in [40] and [41], and ACVTool [5]. ACVTool appears to be
the most mature tool of this group, and [5] describes many more tools, alternative approaches
and uses for code coverage measurements.

Although bytecode instrumentation is used by a variety of tools, it does have some significant
limitations. Instrumented apps must be repackaged, and malicious apps could detect this
repackaging and then not execute any malicious code (again capitalizing on the general
weakness of dynamic analysis). Apps can, for example, verify their own signature: changing
the bytecode of an application invalidates its signature, so instrumentations tools must re-sign
them before installation. Another limitation is that instrumentation may sometimes break
the application under test: Pilgun reports that instrumentation success rates (the fraction of
apps that remains functional after instrumentation) of older code coverage tools lie between
36% and 65% [5]. Pilgun’s own tool ACVTool has a much higher success rate, but it cannot
successfully instrument every app either.

As an alternative to bytecode instrumentation, many tools (e.g. [42, 43, 44, 45, 46, 47, 48])
instead change or substitute some component of the Android operating system itself, like the
Android Runtime or the API framework. Usually, these tools use an emulator to run the
modified operating system. A notable disadvantage of these techniques compared to bytecode
instrumentation is that the tools need to be updated as the Android OS changes. The bytecode
specification is sometimes changed in updates as well, but these changes are usually fairly
small.

2.6 Register management

A challenge that nearly all instrumentation tools face is the management of registers. Because
Dalvik bytecode is register-based, almost any meaningful addition to it will require a register.
Instrumentation code could use the existing local registers if the method already has enough of
them, but unless code is added only at the beginning or at the end of the method, doing so
without disturbing the original code is very difficult, and not always possible. In most cases,
additional registers have to be allocated.

In principe, this can be done by simply increasing the number after .locals or .registers.
However, this has a problematic side-effect: the parameter registers are always the last ones,
so increasing the number of local registers will shift them upwards. The p-registers will still
point to the correct registers after the change, so the problem does not lie there. Rather, it lies
in the fact that some Dalvik instructions cannot handle the full range of registers.

A method can have a total of 65 536 registers, which are therefore indexed with 16 bits, but
some instructions have register index fields of only 4 bits (16 registers) or 8 bits (256) long.
According to Google [19], this was done because it is common for methods to need more than
8 registers, but uncommon for them to need more than 16.

8

If the parameter registers are shifted upwards because of the addition of local registers, they
could be shifted from the 4-bit to the 8-bit range, or from the 8-bit to the 16-bit one. It is
possible that the instructions that use them cannot handle the larger range, causing the program
to become malformed. Instrumentations tools have to take this problem into consideration [5,
20, 40].

An alternative solution to the register management issue is to add entirely new functions
containing the code to insert, and to add calls to these functions to existing methods instead
of changing them directly [40]. This can however quickly cause the program to exceed the
maximum number of methods [5, 40] (which is also 65 536 [19]). Indeed, [40], which uses this
technique, reports a repackaging success rate of only 36% because of this issue.

2.7 ACVTool

Our work involves the instrumentation tool ACVTool made by Pilgun [5] in particular. As
mentioned, ACVTool is a tool that measures black-box code coverage. ACVTool sets itself
apart from older code coverage tools with its high instrumentation success rate (96.9%) and
its ability to measure coverage at the instruction level (most other tools only measure at the
method level). Pilgun also introduced the concept of dynamic binary shrinking with his related
tool ACVCut [5]. This is a technique where code that has not been executed during testing
is removed from the application. This aggressive approach removes the primary weakness of
dynamic analysis entirely.

ACVTool instruments code using the Smali representation. It appends tracking code after
almost every instruction in a method. Figure 3 on the next page shows how ACVTool
instruments the baz method from our earlier example in Section 2.4. The newly inserted lines
are highlighted.

ACVTool also adds the tool/acv/AcvReporter class to the code, which contains a Boolean
array for every existing class of the application. These arrays have a value for every method and
every instruction, which is set to true if that method or class has been covered (i.e. reached).
In Figure 3b, line 5 loads the Boolean array for Foo, lines 6 to 8 mark the method as covered,
and the other inserted lines mark each individual instruction as covered. See [5] for the specific
details of the approach. ACVTool requires three additional registers per method, which is why
the number of local registers of baz has been increased from one to four.

ACVTool solves the register management problem in a very robust way: it adds instructions
at the beginning of the method that copy the values from the parameter registers back to
their original positions, and replaces each occurrence of a p-register in the method with the
v-register that corresponds with the original position of the p-register. This ensures that the
registers used by the original instructions remain the same, and frees up the last three registers
for ACVTool to use. This approach was described in an earlier work from Will [20] as well.

In the example from Figure 3, the p0 and p1 registers used to correspond to v1 and v2
respectively, as there was only one local register. After increasing the number of local registers
to four, they correspond to v4 and v5. Lines 3 and 4 of Figure 3b copy the values from p0/v4
and p1/v5 back to v1 and v2, and each occurrence of p0 or p1 in the method has been replaced
with v1 or v2 (for example in line 9).

9

1 .method private baz(I)V
2 .locals 1
3 iget v0, p0, Lcom/example/Foo;->value:I
4 add-int/2addr v0, p1
5 iput v0, p0, Lcom/example/Foo;->value:I
6 return-void
7 .end method

1 .method private baz(I)V
2 .locals 4
3 move-object/16 v1, p0
4 move/16 v2, p1
5 sget-object v3, Ltool/acv/AcvReporter;->LcomexampleFoo583:[Z
6 const/16 v4, 0x1
7 const/16 v5, 0xe
8 aput-boolean v4, v3, v5
9 iget v0, v1, Lcom/example/Foo;->value:I

10 goto/32 :goto_hack_2
11 :goto_hack_back_2
12 add-int/2addr v0, v2
13 goto/32 :goto_hack_1
14 :goto_hack_back_1
15 iput v0, v1, Lcom/example/Foo;->value:I
16 goto/32 :goto_hack_0
17 :goto_hack_back_0
18 return-void
19 :goto_hack_0
20 const/16 v5, 0xb
21 aput-boolean v4, v3, v5
22 goto/32 :goto_hack_back_0
23 :goto_hack_1
24 const/16 v5, 0xc
25 aput-boolean v4, v3, v5
26 goto/32 :goto_hack_back_1
27 :goto_hack_2
28 const/16 v5, 0xd
29 aput-boolean v4, v3, v5
30 goto/32 :goto_hack_back_2
31 .end method

(a) Original (b) Instrumented

Figure 3: An example of ACVTool’s instrumentation

After running the instrumented app, ACVTool can generate a report of which instructions
have been covered by using the information gathered by the injected ACVReporter class.

2.8 Composition of instrumentation tools

Given the variety of instrumentation tools that are available, it may be useful to work with
multiple of them at the same time. Example use cases are composing multiple analysis tools to
scan for different kinds of behavior at the same time, combining a tool that looks for malicious
behavior with a code coverage tool in order to gain information on how trustworthy the results
are, and composing multiple app hardening tools to gain the benefits of each of them. To our
knowledge, not much research has been done in this area.

For analysis tools, a simple approach to composition would be to repeat the same input for
differently instrumented versions of an app. This is however not always possible: even with
the same input, apps don’t always behave in the same way, since they may use some form of
external input like the internet, their behavior may depend on the current time, or they may
just contain random elements. The time overhead of such a scheme might also be quite large.
And of course, it does not apply at all in the case of app hardening.

10

Instrumenting an application with multiple tools may however cause problems, as instrumenta-
tion tools generally assume that no changes have been applied to the application before, and
no changes will be applied after. Applying instrumentation tools one after the other will cause
the later tools to instrument the code added by the earlier ones, which may result in undesired
behavior: we do not want to measure the coverage of the code inserted by other tools, or
to analyze such inserted code for malicious behavior. It may even lead to a combinatorial
explosion of added code, significantly increasing the overhead of the instrumentation. Multiply
instrumented apps may also fail to run altogether, since we already know that success rate of
individual tools can be quite low.

The composition of instrumentation tools is the subject we set out to investigate in this work.

11

3 Instrumentation blueprints

In order to better facilitate the composition of instrumentation tools, we will now introduce
our main contribution: the concept of instrumentation blueprints. We will first explain what
blueprints are, how they address the problem of composition and why we chose this approach,
and then we will describe how we designed them. Finally, we will explain their syntax in full
detail.

3.1 Approach

As stated in Section 2.8, the main disadvantage of using instrumentation tools one after the
other is that they will instrument each other’s changes, possibly leading to problems. In order
to avoid these problems, we essentially need to instrument an application with both tools
at the same time. This is exactly what we aim to make possible by using instrumentation
blueprints.

An instrumentation blueprint is a file that contains all the changes that an instrumentation
tool wants to apply to the bytecode. It is essentially a kind of diff, but a bit richer. Our
proposed composition architecture works as follows: instead of instrumenting an application
directly, tools output a blueprint file with the changes they want to apply. A separate applicator
program can then receive multiple of such blueprints and apply all of them at once. Because
the applicator has knowledge of all the changes that need to be made, it is able to avoid certain
problems that would otherwise arise, or to at least warn the user in the case that composition
is not possible.

Figure 4 on the following page shows a diagram of how instrumentation tool composition
works with and without instrumentation blueprints. Without blueprints, the tools are used
one after the other. The use of the second tool may break the changes of the first tool, or lead
to the instrumentation of the first tool’s instrumentation code. With blueprints, each tool first
outputs a blueprint individually, and the applicator then applies these blueprints at the same
time. This allows it to avoid the issues inherent to the composition.

3.2 Motivation

Our approach has the disadvantage that it requires internal changes to existing instrumentation
tools, in order to make them output blueprints. It is however highly generic: tools that generate
blueprints will be more composable with any future tool that does so as well. The landscape
of instrumentation tools is quite varied, and it changes rapidly: new tools appear and old ones
deprecate in quick succession. A generic way to compose these tools may therefore be of great
value.

12

Without blueprints

APK Instrumented
APK

Instrumented
APK

Tool 1 Tool 2

With blueprints

APK

Blueprint

Blueprint

Applicator Instrumented
APK

Tool 1

Tool 2

Figure 4: Process flow for instrumentation composition with and without blueprints

Blueprints may also simplify the creation of instrumentation tools. Although they are not
intended as a fully-fledged instrumentation framework, they could still be a helpful abstraction
on top of direct code instrumentation (for reasons that we are yet to explain). Instrumentation
frameworks could be implemented on top of this intermediate abstraction level, which would
have the additional benefit of automatic blueprint generation for any tool implemented with
such a framework. Furthermore, blueprints may open up possibilities to meta-analyze the
instrumentation methodologies of instrumentation tools, since they represent the changes they
apply in a systematic way.

Initially, the direction of this thesis was more practical: studying issues that might arise from
specific combinations of instrumentation tools. An additional reason for the switch to the
more generic approach of instrumentation blueprints was the lack of availability of a large
amount of tools. Although many tools are described in literature (as shown in Section 2.5), a
great deal of them are simply not publicized. Furthermore, those that are available often do
not run without hiccups. Publicized tools are often poorly documented, and time limitations
did not allow us to figure out how to properly install and use enough of them to execute a
thorough practical analysis of issues caused by composition. Instrumentation blueprints are
both a generalization and specialization of the topic of instrumentation composition: they can
be used with any instrumentation tool, but they can also be implemented and tested using
only a single one of them.

3.3 Blueprint design

Our main goal when designing a prototype syntax for instrumentation blueprints was to make
them highly expressive in order to support as many instrumentation tools as possible, while at
the same time giving them enough structure to actually help with composition.

13

Blueprints represent code using the Smali representation, because it makes the code human-
readable and easier to work with while still remaining very close to the original bytecode. It
may be harder to implement blueprint output for instrumentation tools that are based on
a more abstract representation like Jimple, but since all representations must eventually be
converted back to bytecode, it should still be possible. Converting changes at a lower-level
representation to a higher-level would certainly be more difficult.

The blueprint syntax is line-based: the smallest unit whose change can be represented is a single
line of Smali code. Lines can can be changed in three distinct ways: code can be prepended to
them, appended to them, or they can be entirely replaced. In principle, all code changes can be
represented using replacements (or by using additions and deletions like diff), but including
the intention behind the change is what allows us to compose multiple blueprints.

Distinguishing prepend-additions from append-additions may also seem superfluous, as ap-
pending to line n is equivalent to prepending to line n+1. However, when multiple blueprints
are combined, the difference can actually be meaningful. For example, a tool could append a
(conditional) jump instruction after line n that may cause code prepended to line n+1 to not
be reached. Again, we aim to capture the intention behind the code changes, and separating
prepend from append yields a bit more expressivity in that regard.

Currently, the only requirement for two blueprints to be composable is that they do not include
a replacement for the same line. Instrumentation tools should therefore refrain from using
the replacement option whenever possible. We believe that most instrumentation tools do
not need to replace lines, since they usually aim to analyze the code that already exists in
a transparent manner (i.e. without changing its behavior). We expect that replace-conflicts
are only unavoidable when tools are inherently not composable, for example when two app
hardening tools try to modify the same part of a program, but we did not investigate this
thoroughly.

There is however one important exception to this: tools may need to replace lines of code whose
behavior they don’t intend to change for the purpose of register management. For example, as
we explained in Section 2.7, ACVTool needs to change every line that contains a parameter
register. For this reason, we designed the blueprint syntax to abstract register management
away.

Blueprints consist of a series of method entries, each containing the line changes for a single
method. Every method entry specifies how many additional registers the instrumentation code
needs. The included smali code can then refer to these additional instrumentation registers
using the names i0, i1, i2 and so on (the i stands for instrumentation). Of course, the
normal v- and p-registers can still be used as well. The applicator program will then ensure
that the registers are managed correctly (the way in which it does this will be described in
Section 4.2).

14

3.4 The syntax

All instrumentation changes to an APK file are condensed into a single blueprint file. As we
already touched upon, blueprint consist of a list of method entries. These method entries
consist of a header, followed by a list of line entries. Line entries have a header as well, and
optionally Smali code contents.

The format of these entries is shown in Figure 5. The <method> field specifies the fully qualified
descriptor of the method, and the <register-count> field specifies the required number of
instrumentation registers. Lines are identified by their line number relative to the method
(starting at zero), which is placed in the <line-number> field. The <operation> field contains
a character that identifies type of line operation. The options are shown in Table 2. Finally, the
<content> field may consist of any amount of Smali instructions, optionally using i-registers.
Multiple method entries for the same method, or multiple line entries for the same line and
operation, are permitted.

@@<method>:<register-count>
<line entry>
<line entry>
...

(a) Method entry

@<line-number>:<operation>
<content>

(b) Line entry

Figure 5: Formats of method and line entries

Character Operation Description
a Append Add <content> after the line
p Prepend Add <content> before the line
r Replace Replace the line with <content>

Table 2: Possible line entry operations

Both method and line entry headers can appear directly after a line of Smali code, so we have
to be able to distinguish these headers from Smali. This is achieved by beginning both headers
with an @-character, since beginning a line with one is not legal in Smali. Its “at”-meaning
also fits rather well. Method entry headers have an additional @ to distinguish them from line
entry headers.

Because we identify lines using their line number, we need to be very precise about which lines
are counted. Generally, the fewer lines are counted, the easier the implementation of blueprint
output for instrumentation tools becomes, but changes to lines that are not counted cannot be
represented in a blueprint. We decided to count every line, except for the following ones:

• Empty lines.

• The line containing .locals or .registers.

• Lines containing debug information.

15

The lines that we consider to be debug lines are those containing a .line, .local or .prologue
directive. We do not count these lines because they are optional, they do not alter the state of
the program, and we cannot think of any reason to instrument them: they are equivalent to
empty lines. Any change to a debug line can instead be represented as a prepend entry for the
line that comes after it.

The syntax is still a prototype: there are multiple code modifications that it currently cannot
represent. We will discuss these shortcomings in Section 6. A concrete example of the blueprint
syntax will be given in Section 4.1.

16

4 Implementation

We have implemented our blueprint system from two directions: we extended ACVTool to
generate blueprints, and we created a program that can apply blueprints to Smali files. In this
section, we describe how we went about each of these directions.

4.1 Generation of instrumentation blueprints for ACVTool

We have extended ACVTool to generate a blueprint as a side-effect of instrumentation. Because
ACVTool uses Smali and instruments almost every line, it is a good test of both the expressivity
of our syntax and the correctness of our applicator (Section 4.2).

ACVTool is written in Python and its source code is publicly available [49]. Although the
code contains very little documentation, it is fairly self-explanatory. The detailed explanation
of the instrumentation process in [5] was also very helpful for understanding the purpose of
certain parts of the code. The tool uses a modified version of Apkil, a bytecode instrumentation
library that was originally created for APIMonitor [24]. Apkil discards lines containing debug
information at an early stage, which partly influenced our decision to not count those lines for
the blueprint syntax.

We identified all locations in ACVTool’s code where Smali was inserted into the application
and added blueprint generation code for each of them. ACVTool already created an auxillary
.pickle file, which it used to generate a report from the analysis results. We made ACVTool
additionally create a blueprint file at the same location.

Figure 6 on the next page shows the blueprint segment corresponding to the ACVTool-
instrumentation example from Figure 3. The lines that are highlighted in Figure 6b which also
appear in Figure 6c are highlighted there as well.

The blueprint begins with a header specifying the method baz(I)V from com/example/Foo.
ACVTool needs three instrumentation registers per method, so the header ends with :3. Below
that, the blueprint contains five line entries: @0:p, @0:a, @1:a, @2:a and @3:a. The first entry
contains the prepended lines that load in the coverage array and mark the method as covered.
The other entries contain the appended lines that mark each of the original instructions as
covered. Note that the blueprint uses the i0, i1 and i2 registers where the instrumented code
uses v3, v4 and v5. The first two instructions added by ACVTool are omitted, since they only
served to copy the values of the parameters to their original positions, in order to free up the
v3, v4 and v5 registers (as explained in Section 2.7). Since register management has been
abstracted away by the i-register system, these two instructions should not be included in the
blueprint.

17

1 .method private baz(I)V
2 .locals 1
3 iget v0, p0, Lcom/example/Foo;->value:I
4 add-int/2addr v0, p1
5 iput v0, p0, Lcom/example/Foo;->value:I
6 return-void
7 .end method

(a) Original bytecode

1 .method private baz(I)V
2 .locals 4
3 move-object/16 v1, p0
4 move/16 v2, p1
5 sget-object v3, Ltool/acv/AcvReporter;->

↪→ LcomexampleFoo583:[Z
6 const/16 v4, 0x1
7 const/16 v5, 0xe
8 aput-boolean v4, v3, v5
9 iget v0, v1, Lcom/example/Foo;->value:I

10 goto/32 :goto_hack_2
11 :goto_hack_back_2
12 add-int/2addr v0, v2
13 goto/32 :goto_hack_1
14 :goto_hack_back_1
15 iput v0, v1, Lcom/example/Foo;->value:I
16 goto/32 :goto_hack_0
17 :goto_hack_back_0
18 return-void
19 :goto_hack_0
20 const/16 v5, 0xb
21 aput-boolean v4, v3, v5
22 goto/32 :goto_hack_back_0
23 :goto_hack_1
24 const/16 v5, 0xc
25 aput-boolean v4, v3, v5
26 goto/32 :goto_hack_back_1
27 :goto_hack_2
28 const/16 v5, 0xd
29 aput-boolean v4, v3, v5
30 goto/32 :goto_hack_back_2
31 .end method

1 @@Lcom/example/Foo;->baz(I)V:3
2 @0:p
3 sget-object i0, Ltool/acv/AcvReporter;->

↪→ LcomexampleFoo583:[Z
4 const/16 i1, 0x1
5 const/16 i2, 0xe
6 aput-boolean i1, i0, i2
7 @0:a
8 goto/32 :goto_hack_2
9 :goto_hack_back_2

10 @1:a
11 goto/32 :goto_hack_1
12 :goto_hack_back_1
13 @2:a
14 goto/32 :goto_hack_0
15 :goto_hack_back_0
16 @3:a
17 :goto_hack_0
18 const/16 i2, 0xb
19 aput-boolean i1, i0, i2
20 goto/32 :goto_hack_back_0
21 :goto_hack_1
22 const/16 i2, 0xc
23 aput-boolean i1, i0, i2
24 goto/32 :goto_hack_back_1
25 :goto_hack_2
26 const/16 i2, 0xd
27 aput-boolean i1, i0, i2
28 goto/32 :goto_hack_back_2

(b) Instrumented bytecode (c) Blueprint segment

Figure 6: An example blueprint segment for ACVTool

4.2 Blueprint applicator

Besides designing a prototype blueprint syntax and extending ACVTool to generate blueprints,
we also created the prototype blueprint applicator program applybp. We wrote the program
in C++. It has two functions: apply and merge. The primary function apply is capable of
applying any amount of blueprints to a specified set of Smali files. The additional function
merge merges multiple blueprints into a single one and outputs the result. This allows us to
examine the result of combining two blueprints without actually applying them.

18

For either function, before looking at any Smali file, applybp first parses all specified blueprint
files and merges them into a single data structure. We do this primarily for register management
purposes and to detect incompatible blueprints early, but it has performance advantages as
well. If the original program consists of n lines, and the blueprints to apply have a total sum
of m line entries, the simple approach of looking up all line entries that affect a smali line for
every line would result in a time complexity of O(n ·m). By first merging all blueprints into a
single data structure, we can improve on this.

The blueprint syntax has a natural “method entry → Smali line number → line operation”
tree structure. The blueprint data structure stores this tree using lookup maps (std::map).
Creating the structure therefore has a time complexity of O(m log(m)): inserting an element
into the tree has a complexity of O(log(m)), and there are m lines to insert. After parsing all the
blueprint files, applying them to the smali code has a time complexity of O(n log(m)): looking
up a line entry in the data structure is logarithmic. The total complexity therefore becomes
O(m log(m) + n log(m)). If we assume that m grows about as fast as n, which seems realistic
(more lines means more instrumented lines), then O(m log(m)+n log(m)) = O(n log(n)), which
is better than O(n ·m) = O(n2).

If multiple method entries for the same method are encountered, they are merged together.
When method entry B is merged into method entry A, the instrumentation register count of A
is set to the sum of the counts of A and B. Every line entry from B is added to A, but all
instrumentation register indices are increased with the original instrumentation register count
of A. For example, if A used three instrumentation registers (i0, i1 and i2) and B used two
(i0 and i1), the combined method entry uses five, and all line entries that came from B refer
to i3 and i4 instead of i0 and i1. This ensures that the added lines from each of the method
entries do not affect each other.

If multiple line entries for the same line and operation type (append/prepend/replace) are
encountered, one of two things happens: If the operation is append or prepend, the Smali
contents are simply concatenated. However, like we stated in Section 3.3, if there are two
replacements for the same line, the blueprints are considered non-composable, and applybp
aborts with an error message.

Note that the blueprint syntax does not prohibit multiple method entries for the same method
or multiple line entries for the same line, so merges (and even replace-conflicts) can occur
within a single blueprint. In fact, concatenating multiple blueprint files and then passing them
to applybp as one large file is equivalent to passing them separately. Using applybp’s merge
function with only a single blueprint as input will squash all duplicate entries.

If the merge function was chosen, applybp prints the result from the merge and exits. Figure 7
on the following page shows an example result of merging two blueprints. Both blueprints
have a method entry for Lcom/example/Foo;->bar(I)V. Blueprint 1’s version uses three
instrumentation registers and blueprint 2’s version uses two. In the merged blueprint, this
method entry therefore uses 3 + 2 = 5 of them. The @0:a line entry from blueprint 2
is is added to the @0:p and @0:r line entries from blueprint 1 without problems. Both
Lcom/example/Foo;->bar(I)V method entries have a @1:a line entry, so the merged blueprint

19

contains the contents of both. Note how the indices of all instrumentation registers used by
the line entry contents that came from blueprint 2’s Lcom/example/Foo;->bar(I)V method
entry have been incremented by three. A method entry for baz only appears in blueprint 2, so
it is included in the merged blueprint without any modifications.

1 @@Lcom/example/Foo;->bar(I)V:3
2 @0:p
3 add-int i0, i1, i2
4 @0:r
5 sub-int i0, i1, i2
6 @1:a
7 mul-int i0, i1, i2

1 @@Lcom/example/Foo;->bar(I)V:2
2 @0:a
3 div-int i0, i1, v0
4 @1:a
5 rem-int i0, i1, v0
6 @@Lcom/example/Foo;->baz(I)V:1
7 @0:a
8 neg-int i0, v0

1 @@Lcom/example/Foo;->bar(I)V:5
2 @0:p
3 add-int i0, i1, i2
4 @0:r
5 sub-int i0, i1, i2
6 @0:a
7 div-int i3, i4, v0
8 @1:a
9 mul-int i0, i1, i2

10 rem-int i3, i4, v0
11 @@Lcom/example/Foo;->baz(I)V:1
12 @0:a
13 neg-int i0, v0

(a) Blueprint 1 (b) Blueprint 2 (c) Merged

Figure 7: The result of merging two blueprints

If the apply function was chosen, applybp will proceed with applying the merged blueprint to
the specified Smali targets. Targets can be either files or directories: in the case of directory,
applybp applies the blueprints to all files in the directory recursively.

To manage registers, applybp uses the same method as ACVTool [5] and the tool described by
Will [20], because Pilgun has shown that this method is very robust [5]. We increment the
number of local registers by the amount of instrumentation registers, then copy the values of
the parameters to the v-registers corresponding to their original positions, and then replace all
p- and i-register references with their v-equivalents.

Figure 8 illustrates the register management process for an example method with one original
local register, two parameter registers and three instrumentation registers. Initially, the method
has three registers in total, and p0 and p1 are aliases of v1 and v2. After incrementing the
local register count with three, there are now five registers in total, and the parameter registers
point to v4 and v5. The values of the parameter registers are then copied back to v1 and v2,
leaving v3, v4 and v5 available as instrumentation registers.

v0
v1 = p0
v2 = p1

v0
v1
v2
v3
v4 = p0
v5 = p1

v0
v1 = p0
v2 = p1
v3 = i0
v4 = i1
v5 = i2

(a) Initial layout (b) Additional local registers (c) Parameters moved

Figure 8: Register management process

20

When applying the merged blueprint, applybp will read the Smali files line by line, generally
copying them directly to its output. When it encounters a method, it will look up if the
blueprint contains an entry for it, and if it does, it will apply its line entries. The number
in the .locals/.registers line is incremented as specified by the method entry, and move
instructions are added to move the parameters to v-registers. Dalvik contains a few different
move instructions; the specific one to use depends on the type of the parameter.

The application of line entries is fairly straightforward: prepend contents are added before the
line, append contents are added after, and if there is a replace entry, the line is replaced with
its contents. For every line of Smali that is written in an instrumented method — whether it
comes from the original code or from the blueprint — all p- and i-registers are replaced with
their v-equivalents (as in Figure 8c).

After applying the merged blueprint to a file, the result is written to a file with the same name
in a user-specified output directory. If a directory of Smali files is specified as a target, the
directory structure is mirrored in the output directory.

Our program needs to parse two languages: the blueprint language, and Smali (the blueprint
language also contains a subset of the Smali language). We wrote two simple recursive descent
parsers for this purpose. Our Smali parser is very limited: it only parses exactly what applybp
needs to function, and leaves everything else as strings. An advantage of this is that the parser
is fairly future-proof. For example, it does not care about specific instructions, so it will not
be affected if new instructions are added to Dalvik.

We ran into quite a few issues while implementing the application part of applybp, mostly
because the Smali syntax lacks extensive documentation. We used the Android Emulator in
combination with the debug tool logcat [50] to discover and fix any issues we came across.
Some notable examples are:

• Two of the types supported Smali, long and double, are “wide”: their values occupy
two registers instead of one. We had to take this into account for the code that copies
p-registers to v-registers. Figure 9 on the following page shows an example register layout
with one local register and three parameters, where the first and third parameters are
wide types. Note that the p1 name is skipped.

• Methods that are abstract or native (implemented in native code) are empty in Smali:
they do not even contain a .locals/.registers line. Our program ignores these methods
when applying blueprints.

• Instead of the operation arg1, arg2, arg3 syntax that is used by almost all Smali
instructions, method calls use lists of registers. For example: invoke-direct {p0, v0},
<method-descriptor> (see Figure 2b on page 6). The variant {v0 .. v3} is sometimes
used as well.

• Before we clearly defined our policy of which lines are counted for the purpose of blueprint
line entry line numbers, some “block-directives” caused the counts of applybp and our
ACVTool blueprint output to become mismatched. An example of such a block-directive is
.packed-switch/.end packed-switch, which corresponds to the packed-switch-payload
as described in [19].

21

v0
v1 = p0
v2
v3 = p2
v4 = p3
v5

Figure 9: Example register layout with wide parameters p0 and p3

Our program is still a prototype, and as such, it still has a few limitations. We will discuss
these limitations in Section 6.

22

5 Evaluation

We tested the correctness of our ACVTool blueprint-generation extension and our blueprint
application program applybp using a few apps from F-droid1. We generated blueprints for the
apps, applied them to the originals using applybp and checked whether the resulting apps ran
without problems on the Android Emulator.

Because of a number of limitations of our prototype blueprint syntax (which we will further
discuss in Section 6), it is currently not actually capable of representing all of ACVTool’s app
changes. Two changes that cannot be represented are that ACVTool adds some entries to the
manifest file, and that it injects a few extra classes (like tool/acv/AcvReporter). In order
to evaluate the application of the changes that our syntax does support (changes to method
contents), we used a procedure that circumvents these limitations:

1. We instrument the original app with ACVTool, which generates a blueprint as a side-effect.

2. We unpack the original app with Apktool.

3. We apply the blueprint to the Smali files of the original app with applybp.

4. We unpack the ACVTool-instrumented app with Apktool.

5. We copy the Smali files emitted by applybp to the unpacked ACVTool-instrumented
app, overwriting existing ones.

6. We repack, re-sign and install the resulting app.

The manifest file changes and the added files did therefore not pass through our system.

After several rounds of bugfixes, all examined F-droid apps that ran successfully with ACVTool’s
instrumentation also did so after being instrumented according the the above procedure.

To verify whether ACVTool’s coverage-measuring code still functioned correctly when applied
through applybp, we generated a code coverage report with both a directly instrumented
version and an applybp-instrumented version of Lesser Pad, a simple note-taking app from F-
droid2. For both versions, we installed the app on the Android Emulator, opened it, interacted
with it for a few seconds, closed it, and then made ACVTool generate a coverage report using
the gathered data. The experiment was rather informal: we did not use a testing framework to
repeat the exact same inputs for each version.

Figure 10 on the following page shows screenshots of the top levels of both generated web
reports. As can be seen at a glance, both reports are virtually the same.

Although we did not perform extensive systematic experiments, these results suggest that our
ACVTool blueprint-generation and applybp blueprint application implementations are indeed
correct.

1https://www.f-droid.org/
2https://f-droid.org/en/packages/org.pulpdust.lesserpad/

23

https://www.f-droid.org/
https://f-droid.org/en/packages/org.pulpdust.lesserpad/

(a) Direct instrumentation (b) Blueprint application

Figure 10: ACVTool coverage reports for differently instrumented versions of Lesser Pad

We must note that the performance of the blueprint parsing step of applybp is rather bad. We
expected the difference in speed of the parsing and the application steps to be a small constant
factor (see the time complexity discussion in Section 4.2). The blueprint application step is
virtually instant, so we expected the parsing step to be similarly fast. However, the parsing
step takes significantly longer. On our machine, it took ACVTool 8.29 seconds to instrument
Lesser Pad (including the unpacking, repacking and re-signing steps) and it took our program
9.91 seconds to parse the blueprint. As the size of the instrumented application increases, the
blueprint application time seems to grow faster than the instrumentation time, but we did not
investigate this in detail.

The bad blueprint parsing performance may be caused by the fact that the blueprint files
generated by ACVTool are extremely large: the blueprint for Lesser Pad consisted of 619 235
lines. The reason for this size is that ACVTool instruments every method, even those from
additional libraries provided by Google. Only 29 384 of the 619 235 blueprint lines (about
5%) were for Lesser Pad-specific code. Perhaps the blueprint parsing performance could be
improved if blueprints were split into separate files for every class. Do note that the bad parsing
performance is not a huge issue, since it only affects the offline blueprint application time. There
is no difference in the runtime performance of directly instrumented and applybp-instrumented
apps.

24

We expect that our composition system will work for a large amount of instrumentation tools.
Most tools aim to be transparent, i.e., to not affect the original functioning of the app. For
those tools, we expect that every individual inserted (appended or prepended) block of code
does not affect the state of the original code. It is in theory possible that this is not the case:
for example, a tool could insert a block of code that modifies the value of a register which is
not used by the next original line, only to restore the register’s value in a block of code inserted
after that line. However, it seems very unlikely to us that transparent instrumentation tools
would use such manipulations. Furthermore, our instrumentation register system ensures that
the internal states of the code added by each instrumentation tool are not mixed: the code
added by one tool cannot affect the instrumentation registers of the code added by another
tool. We therefore expect that insertions from transparent tools will not affect each other.

On the other hand, replacements may lead to problems, since our system does not allow
the composition of two tools that replace the same line. We expect that most transparent
instrumentation tools do not use replacements, since replacements usually change the behavior
of the app. There is however one transparent use of replacement that we did come across:
APIMonitor [24] and I-ARM-Droid [30] both insert code by replacing function calls with calls to
a new function that contains both the code to insert and the original function call. Our system
cannot compose two tools that use this pattern, even if their additions should theoretically not
conflict with each other. Still, these tools do not have to use this technique: their changes can
also be represented as insertions, and if they are, there is no problem. Using normal insertions
instead of additional methods may even be more robust, since it does not risk exceeding the
maximum amount of methods.

Our system may run into issues when non-transparent tools are involved. If two tools attempt
to change the same parts of the code by means of replacements (or even deletions), our system
cannot compose the tools. However, we expect that in such cases, it would make more sense to
apply the tools one after the other rather than using our composition system, since each tool
is in fact interested in the changes applied by the other. When we aim to compose two tools
and one of them intends to change the app, it seems logical to apply this one first, and the
transparent one afterwards. For example, to compose ACVCut (which removes parts of an
app’s code) and ACVTool, we can simply apply ACVCut first and ACVTool afterwards, since
we are interested in code coverage information of the modified app. When we aim to compose
multiple tools that change an app’s behavior, we should probably apply them one after the
other as well.

25

6 Limitations

Although we believe that our blueprint composition approach is promising, it does have a
number of limitations. Our prototype blueprint syntax and applicator program still have some
limitations as well.

Our blueprint system can only be used with static instrumentation, since all instrumentation
changes have to be known before they are combined. It also requires internal changes to
existing instrumentation tools (although a limited form of automatic blueprint generation may
be possible, which we discuss in Section 7). Furthermore, since we use the Smali representation,
the implementation of blueprint output will be more difficult for tools that are based on other
representations like Jimple. We stated our reasons for using Smali in Section 3.3. It may be
possible to integrate a translation of Jimple changes to Smali changes into our system, since
Jimple is more high-level than Smali. Another limitation of our system is that it does not
support instrumentation of native code. Integrating native code modifications may be possible,
but would require a substantial amount of additional work.

We already touched upon the limitations of our prototype blueprint syntax in Section 5. These
limitations are particularly significant. Blueprints can currently only represent changes to
method contents: they cannot represent changes to classes, method descriptors, fields or any
other components of Smali. They also cannot represent changes to an application’s manifest
file. Many instrumentation tools need to change the manifest file in order to function. Our
current blueprint prototype cannot represent added or removed files either.

These syntax limitations can likely all be alleviated by extending the blueprint syntax. Special
entry types could be added to represent added or removed methods, fields or classes (files), and
method entry headers could be given additional fields for information such as return value and
parameter modifications. The manifest file has a well-defined structure, so a more semantical
syntax could be created to represent changes to it, with entries such as “add <contents> to
<xml element>”.

A minor limitation of our prototype applicator program is that application unpacking and
repacking are currently not built in: it can only operate on Smali files or directories thereof.
Users have to manually unpack, repack, re-sign and install applybp-instrumented apps. This
shortcoming can be addressed with updates to the program. Another minor limitation is the
bad blueprint parsing performance. This could perhaps be improved by further optimizing the
program or by redesigning blueprints to use multiple files.

Finally, a general limitation of our work is that we did not perform extensive experiments, and
that the experiments we did perform only involved a single instrumentation tool. We therefore
do not have empirical evidence that shows whether our approach works for most tools, nor
whether it actually improves the success rate of instrumentation composition.

26

7 Conclusions and Further Research

To address problems that may occur from the composition of instrumentation tools, we have
proposed a two-step approach involving instrumentation blueprints and the application thereof.
We have defined a prototype syntax for these blueprints, we have extended the code coverage
tool ACVTool [5] to emit blueprints, and we have implemented the program applybp that can
apply them.

We have performed a limited set of experiments that show that our approach can work in
practice, although a number of limitations still apply. Our proposed blueprint system may
also offer benefits for the creation of new instrumentation frameworks or the meta-analysis of
instrumentation tools.

There are still many aspects that can be explored in future work. First of all, as explained in
Section 6, a large amount of the limitations of our prototype implementation can be alleviated.
Doing so would improve the practical usability of our system. Furthermore, we have only
implemented blueprint output for a single instrumentation tool, so a larger-scale investigation
of the effectiveness of our system, involving multiple instrumentation tools, is still in order.

Another interesting subject to explore is the automatic generation of blueprints, based on
comparing the original app with the instrumented one. This would remove the need to change
existing instrumentation tools internally, which would again enhance the usability of our
system. Although automatically generated blueprints may not represent the intention behind
the changes with perfect accuracy (for example, prepended and appended lines are impossible
to distinguish after the fact), they could still be useful.

Finally, more research could be done towards discovering the problems that arise from the
composition of instrumentation tools in practice. Our system currently only addresses various
theoretical problems, like tools instrumenting lines added by other tools, but it provides a
base for future enhancements. With more empirical knowledge of composition conflicts, our
blueprint syntax and application program could be improved to solve more of them.

27

References
[1] S. O’Dea. Number of smartphone subscriptions worldwide from 2016 to 2026. Statista. July 7,

2021. url: https://www.statista.com/statistics/330695/number- of- smartphone-
users-worldwide/ (visited on 07/21/2021).

[2] S. O’Dea. Statista. June 29, 2021. url: https://www.statista.com/statistics/272698/
global-market-share-held-by-mobile-operating-systems-since-2009/ (visited on
07/21/2021).

[3] Mobile Operating System Market Share Worldwide. StatCounter. June 2021. url: https:
//gs.statcounter.com/os-market-share/mobile/worldwide (visited on 07/21/2021).

[4] Average number of new Android app releases via Google Play per month from March 2019
to February 2021. Statista. July 6, 2021. url: https://www.statista.com/statistics/
1020956/android-app-releases-worldwide/ (visited on 07/21/2021).

[5] Aleksandr Pilgun. “Instruction Coverage for Android App Testing and Tuning”. Ph.D. disserta-
tion. University of Luxembourg, Nov. 2020.

[6] Android Developers - Platform Architecture. Google. May 7, 2020. url: https://developer.
android.com/guide/platform (visited on 03/05/2021).

[7] Application Fundamentals. Google. Feb. 23, 2021. url: https://developer.android.com/
guide/components/fundamentals (visited on 07/08/2021).

[8] Julian Schütte, Rafael Fedler, and Dennis Titze. “ConDroid: Targeted Dynamic Analysis of
Android Applications”. In: 2015 IEEE 29th International Conference on Advanced Information
Networking and Applications (AINA). Vol. 1. IEEE Computer Society, Mar. 2015, pp. 571–578.
doi: 10.1109/AINA.2015.238.

[9] Rafael Fedlerand Marcel Kulicke and Julian Schütte. “Native Code Execution Control for
Attack Mitigation on Android”. In: Proceedings of the ACM Conference on Computer and
Communications Security. Nov. 2013. doi: 10.1145/2516760.2516765.

[10] Min Zheng, Mingshen Sun, and John C.S Lui. “DroidTrace: A Ptrace Based Android Dynamic
Analysis System with Forward Execution Capability”. In: IWCMC 2014 - 10th International
Wireless Communications and Mobile Computing Conference. Aug. 2014, pp. 128–133. doi:
10.1109/IWCMC.2014.6906344.

[11] John Jenkins and Heipeng Cai. “ICC-Inspect: Supporting Runtime Inspection of Android
Inter-Component Communications”. In: 2018 IEEE/ACM 5th International Conference on
Mobile Software Engineering and Systems (MOBILESoft). May 2018, pp. 80–83. doi: 10.1145/
3197231.3197233.

[12] Ke Xu, Yingjiu Li, and Robert Deng. “ICCDetector: ICC-Based Malware Detection on Android”.
In: IEEE Transactions on Information Forensics and Security 11 (June 2016). doi: 10.1109/
TIFS.2016.2523912.

[13] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. “DroidChameleon: Evaluating Android anti-
malware against transformation attacks”. In: ASIA CCS 2013 - Proceedings of the 8th ACM
SIGSAC Symposium on Information, Computer and Communications Security. May 2013,
pp. 329–334. doi: 10.1145/2484313.2484355.

[14] Yanick Fratantonio et al. “TriggerScope: Towards Detecting Logic Bombs in Android Applica-
tions”. In: 2016 IEEE Symposium on Security and Privacy (SP). May 2016, pp. 377–396. doi:
10.1109/SP.2016.30.

28

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.statista.com/statistics/1020956/android-app-releases-worldwide/
https://www.statista.com/statistics/1020956/android-app-releases-worldwide/
https://developer.android.com/guide/platform
https://developer.android.com/guide/platform
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://doi.org/10.1109/AINA.2015.238
https://doi.org/10.1145/2516760.2516765
https://doi.org/10.1109/IWCMC.2014.6906344
https://doi.org/10.1145/3197231.3197233
https://doi.org/10.1145/3197231.3197233
https://doi.org/10.1109/TIFS.2016.2523912
https://doi.org/10.1109/TIFS.2016.2523912
https://doi.org/10.1145/2484313.2484355
https://doi.org/10.1109/SP.2016.30

[15] Thanasis Petsas et al. “Rage against the virtual machine: hindering dynamic analysis of Android
malware”. In: Proceedings of the 7th European Workshop on System Security, EuroSec 2014.
Apr. 2014. doi: 10.1145/2592791.2592796.

[16] Ben Gruver. Smali/baksmali. Mar. 3, 2021. url: https://github.com/JesusFreke/smali
(visited on 07/11/2021).

[17] Raja Vallée-Rai and L. Hendren. Jimple: Simplifying Java Bytecode for Analyses and Transfor-
mations. Jan. 2004.

[18] Connor Tumbleson and Ryszard Wiśniewski. Apktool. A tool for reverse engineering Andriod apk
files. Dec. 2, 2020. url: https://ibotpeaches.github.io/Apktool/ (visited on 07/12/2020).

[19] Dalvik Bytecode. Google. Sept. 1, 2020. url: https://source.android.com/devices/tech/
dalvik/dalvik-bytecode (visited on 04/24/2021).

[20] Christopher Will. “A Framework for Automated Instrumentation of Android Applications”.
Bachelor’s Thesis. Oct. 15, 2013.

[21] Parvez Faruki et al. “Android Security: A Survey of Issues, Malware Penetration, and Defenses”.
In: IEEE Communications Surveys & Tutorials 17.2 (2015), pp. 998–1022. doi: 10.1109/COMST.
2014.2386139.

[22] Aisha Ali-Gombe et al. “AspectDroid: Android App Analysis System”. In: Proceedings of the
Sixth ACM Conference on Data and Application Security and Privacy. CODASPY ’16. New
Orleans, Louisiana, USA: Association for Computing Machinery, Mar. 9, 2016, pp. 145–147.
isbn: 9781450339353. doi: 10.1145/2857705.2857739.

[23] Haipeng Cai and Barbara G. Ryder. “DroidFax: A Toolkit for Systematic Characterization of
Android Applications”. In: 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME). Sept. 2017, pp. 643–647. doi: 10.1109/ICSME.2017.35.

[24] Kun Yang. apkil. An APK instrumentation library and DroidBox APIMonitor. Apr. 23, 2013.
url: https://github.com/kelwin/apkil (visited on 07/18/2021).

[25] Patrik Lantz. DroidBox. Dynamic analysis of Android apps. Oct. 17, 2019. url: https :
//github.com/pjlantz/droidbox (visited on 07/18/2021).

[26] Kun Yang. Beta Release of DroidBox for Android 2.3 and APIMonitor. url: https://web.
archive.org/web/20161219204143/https://www.honeynet.org/node/940 (visited on
07/18/2021).

[27] Oscar Somarriba et al. “Detection and Visualization of Android Malware Behavior”. In: Journal
of Electrical and Computer Engineering 2016 (Mar. 2016), pp. 1–17. doi: 10.1155/2016/
8034967.

[28] Yan Hu et al. “Lightweight Energy Consumption Analysis and Prediction for Android Applica-
tions”. In: Science of Computer Programming 162 (May 2017), pp. 132–147. doi: 10.1016/j.
scico.2017.05.002.

[29] Lingzhi Qiu et al. “AppTrace: Dynamic trace on Android devices”. In: 2015 IEEE International
Conference on Communications (ICC). June 2015, pp. 7145–7150. doi: 10.1109/ICC.2015.
7249466.

[30] Benjamin Davis et al. “I-arm-droid: A rewriting framework for in-app reference monitors for
android applications”. In: Proceedings of the Mobile Security Technologies 2012, MOST ’12.
IEEE. 2012.

29

https://doi.org/10.1145/2592791.2592796
https://github.com/JesusFreke/smali
https://ibotpeaches.github.io/Apktool/
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://doi.org/10.1109/COMST.2014.2386139
https://doi.org/10.1109/COMST.2014.2386139
https://doi.org/10.1145/2857705.2857739
https://doi.org/10.1109/ICSME.2017.35
https://github.com/kelwin/apkil
https://github.com/pjlantz/droidbox
https://github.com/pjlantz/droidbox
https://web.archive.org/web/20161219204143/https://www.honeynet.org/node/940
https://web.archive.org/web/20161219204143/https://www.honeynet.org/node/940
https://doi.org/10.1155/2016/8034967
https://doi.org/10.1155/2016/8034967
https://doi.org/10.1016/j.scico.2017.05.002
https://doi.org/10.1016/j.scico.2017.05.002
https://doi.org/10.1109/ICC.2015.7249466
https://doi.org/10.1109/ICC.2015.7249466

[31] Jierui Liu et al. “InsDal: A safe and extensible instrumentation tool on Dalvik byte-code for
Android applications”. In: 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER). Feb. 2017, pp. 502–506. doi: 10.1109/SANER.2017.
7884662.

[32] Aleieldin Salem, F. Franziska Paulus, and Alexander Pretschner. “Repackman: A Tool for
Automatic Repackaging of Android Apps”. In: Proceedings of the 1st International Workshop
on Advances in Mobile App Analysis. A-Mobile 2018. Montpellier, France: Association for
Computing Machinery, Sept. 4, 2018, pp. 25–28. isbn: 9781450359733. doi: 10.1145/3243218.
3243224.

[33] Alexandre Bartel et al. “Improving Privacy on Android Smartphones Through In-Vivo Bytecode
Instrumentation”. In: ArXiv abs/1208.4536 (2012).

[34] Jinseong Jeon et al. “Dr. Android and Mr. Hide: Fine-Grained Permissions in Android Applica-
tions”. In: Proceedings of the Second ACM Workshop on Security and Privacy in Smartphones
and Mobile Devices. SPSM ’12. Raleigh, North Carolina, USA: Association for Computing
Machinery, Oct. 2011, pp. 3–14. isbn: 9781450316668. doi: 10.1145/2381934.2381938.

[35] Rubin Xu, Hassen Saïdi, and Ross J. Anderson. “Aurasium: Practical Policy Enforcement for
Android Applications”. In: Proceedings of the 21st USENIX Conference on Security Symposium.
Security’12. Bellevue, WA: USENIX Association, 2012.

[36] Hao Hao, Vicky Singh, and Wenliang Du. “On the effectiveness of API-level access control
using bytecode rewriting in Android”. In: Proceedings of the 8th ACM SIGSAC Symposium
on Information, Computer and Communications Security. ASIA CCS ’13. Hangzhou, China:
Association for Computing Machinery, 2013, pp. 25–36. isbn: 9781450317672. doi: 10.1145/
2484313.2484317.

[37] Pingfan Kong et al. “Automated Testing of Android Apps: A Systematic Literature Review”.
In: IEEE Transactions on Reliability 68 (2019), pp. 45–66.

[38] Saswat Anand. ELLA: A Tool for Binary Instrumentation of Android Apps. May 26, 2016. url:
https://github.com/saswatanand/ella (visited on 07/14/2021).

[39] Chao-Chun Yeh and Shih-Kun Huang. “CovDroid: A Black-Box Testing Coverage System for
Android”. In: 2015 IEEE 39th Annual Computer Software and Applications Conference. Vol. 3.
July 2015, pp. 447–452. doi: 10.1109/COMPSAC.2015.125.

[40] Chun-Ying Huang et al. “Code Coverage Measurement for Android Dynamic Analysis Tools”.
In: 2015 IEEE International Conference on Mobile Services (2015), pp. 209–216. doi: 10.1109/
MobServ.2015.38.

[41] Ferenc Horváth et al. “Code Coverage Measurement Framework for Android Devices”. In: Acta
Cybernetica 21 (2014), pp. 439–458.

[42] Thomas Bläsing et al. “An Android Application Sandbox system for suspicious software
detection”. In: Proceedings of the 5th IEEE International Conference on Malicious and Unwanted
Software, Malware 2010. Nov. 2010, pp. 55–62. doi: 10.1109/MALWARE.2010.5665792.

[43] Sven Bugiel et al. XManDroid: A New Android Evolution to Mitigate Privilege Escalation
Attacks. Tech. rep. 2011-01.

[44] Vaibhav Rastogi, Yan Chen, and William Enck. “AppsPlayground: Automatic Security Analysis
of Smartphone Applications”. In: Proceedings of the Third ACM Conference on Data and
Application Security and Privacy. CODASPY ’13. San Antonio, Texas, USA: Association for
Computing Machinery, Feb. 2013, pp. 209–220. isbn: 9781450318907. doi: 10.1145/2435349.
2435379.

30

https://doi.org/10.1109/SANER.2017.7884662
https://doi.org/10.1109/SANER.2017.7884662
https://doi.org/10.1145/3243218.3243224
https://doi.org/10.1145/3243218.3243224
https://doi.org/10.1145/2381934.2381938
https://doi.org/10.1145/2484313.2484317
https://doi.org/10.1145/2484313.2484317
https://github.com/saswatanand/ella
https://doi.org/10.1109/COMPSAC.2015.125
https://doi.org/10.1109/MobServ.2015.38
https://doi.org/10.1109/MobServ.2015.38
https://doi.org/10.1109/MALWARE.2010.5665792
https://doi.org/10.1145/2435349.2435379
https://doi.org/10.1145/2435349.2435379

[45] Victor van der Veen. Dynamic Analysis of Android Malware. Aug. 2013. doi: 10.13140/2.1.
2373.4080.

[46] Yuan Zhang et al. “Vetting Undesirable Behaviors in Android Apps with Permission Use
Analysis”. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communica-
tions Security. CCS ’13. Berlin, Germany: Association for Computing Machinery, Nov. 2013,
pp. 611–622. isbn: 9781450324779. doi: 10.1145/2508859.2516689.

[47] William Enck et al. “TaintDroid: An Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones”. In: ACM Transactions on Computer Systems 32.2 (June 2014).
issn: 0734-2071. doi: 10.1145/2619091.

[48] Kimberly Tam et al. “CopperDroid: Automatic Reconstruction of Android Malware Behaviors”.
In: NDSS. Jan. 2015. doi: 10.14722/ndss.2015.23145.

[49] Aleksandr Pilgun. ACVTool. Oct. 12, 2020. url: https://github.com/pilgun/acvtool
(visited on 07/18/2021).

[50] Google. Logcat command-line tool. June 22, 2021. url: https://developer.android.com/
studio/command-line/logcat (visited on 07/19/2021).

31

https://doi.org/10.13140/2.1.2373.4080
https://doi.org/10.13140/2.1.2373.4080
https://doi.org/10.1145/2508859.2516689
https://doi.org/10.1145/2619091
https://doi.org/10.14722/ndss.2015.23145
https://github.com/pilgun/acvtool
https://developer.android.com/studio/command-line/logcat
https://developer.android.com/studio/command-line/logcat

	Introduction
	Background
	Android
	Application structure
	Android application analysis
	Dalvik bytecode and the Smali representation
	Instrumentation
	Register management
	ACVTool
	Composition of instrumentation tools

	Instrumentation blueprints
	Approach
	Motivation
	Blueprint design
	The syntax

	Implementation
	Generation of instrumentation blueprints for ACVTool
	Blueprint applicator

	Evaluation
	Limitations
	Conclusions and Further Research
	References

