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Abstract

With a market share of 72.84% [1] in June 2021, Android is the worlds most used operating
system for mobile devices. In order for developers to test the applications they create, random
testing can be an attractive option. Additionally, when third-party applications have to be
tested that the source code is not available for, automated testing is a good approach. Exerciser
Monkey [2] is Google’s official tool that uses a simple random approach in order to test Android
apps. Prior studies show that Monkey’s simple approach to testing beats more sophisticated
tools. However, these types of tools almost never fully explore an application. Earlier work
on Monkey’s code coverage usually does not test many different parameter combinations. In
order to maximize the code coverage of an application that gets covered by Monkey, in this
paper, the code coverage obtained by the different parameters and runtimes of Monkey are
investigated and compared, as well as the amount of applications that crash while being tested.
The experiment is tested on a dataset of 50 applications with 10 different parameter options.
It is shown that changing the parameters of Monkey can have a positive influence on code
coverage and application crashes found.
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1 Introduction

1.1 Overview

With over 6.3 billion active smartphone subscriptions in 2021 and an estimated 7.5 billion in 2026
[3], interest in creating applications for mobile devices is ever growing. According to Google, over 3
billion active Android devices are in circulation. Google Play [4], the largest place for Android users
to download and install apps, offers more than 2.8 million [5] apps to its users, with an average of
nearly 3000 apps published daily [6]. With consumer spending reaching numbers as high as 64.9
billion dollars in the first half of 2021 [7], this highlights the incredible stakes in the mobile app
development world.

android

Figure 1: The Android Logo

Android is an open-source mobile operating system primarily designed for mobile devices with
touchscreens. It was first shown in 2007 and was developed by Google and the Open Handset
Alliance [8]. The most recent stable version of Android is Android 11. Currently Android is main-
tained and developed by Google and the Android Open Source Project (ASOP) [9].

The Android software stack contains a couple distinct major components, being the following (see
Figure 2):

1. Linux Kernel

2. Hardware Abstraction Layer
3. Android Runtime

4. Native C/C++ Libraries

5. Java API Framework

6. System Applications

The Android operating system runs on a version of the Linux kernel that has changes made by
Google. The specific kernel depends on the device. The kernel handles things such as device drivers,
security, resource accessing, power management, managing memory and more. The Hardware
Abstraction Layer (HAL) is a layer that contains interfaces to connect hardware to the Java API
framework, for example a Bluetooth module. Next is Android Runtime (ART), which was the
Dalvik before Android version 5.0 or API 21, consisting of processes run by applications with each
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having their own instance of the Android Runtime. The Native C/C++ Libraries layer contains many
core components that are used to build other parts such as ART and HAL. Part of these libraries
can also be exposed to the Java framework APIs, allowing application developers to use them. The
Java API Framework (Android Framework in Figure 2) houses the Android APIs, written in Java.
These API functionalities contain many classes and interfaces used for application development and
simplifies reuse of core components. The highest layer is the System Applications layer, holding the
core applications as well as third party and developer applications.

Apps

Android Framework

Native Libraries

Android Runtime

HAL/HIDL

Linux Kernel

Figure 2: Android Software Stack. Source: [9]

1.2 Android Applications

Applications for the Android platform are mostly written in Java and Kotlin using the Android
Software Development kit (SDK), with other programming languages also being supported. The
SDK houses many features to support with the development of Android applications such as an
emulator, testing tools, debugger, libraries, documentation and more. Third-party applications can
be installed on a user’s device by using an application store, with Google Play being the biggest, or
via downloading and installing an Android Application Package (APK for short).

An APK can by created by compiling and packaging all parts of a program using Android
Studio. Thus, an APK file contains every component of the program required for it to run. APK
files contain the following components [10]:

e META-INF/: A directory containing the manifest file, the list of resources and the certifi-
cate/signature of the application.



e 1lib/: A directory that has the compiled code of the application which are split up into native
libraries for specific device architectures.

e res/: A directory that has the resources that were not compiled into resources.arsc.
e assets/: A directory with raw resources and assets.

e AndroidManifest.xml: A file that that describes the name, version, access rights and contents
of the APK file.

e classes.dex: The compiled classes of the application (in the .dex format) that are to be run
on the device.

e resources.arsc: Pre-compiled resources that are used by the application, .arsc files.

1.3 Application Activities

Android applications have multiple entry points, for example a user can launch an application
simply by opening it from the application icon on the homescreen or by tapping a notification
produced by the application, which then opens the application. This is why applications differ
from more traditional desktop programs, opening the program or application does not always start
from the same point. Applications can be launched from many different points, such as via other
applications, and the previously mentioned ways. “An activity is the entry point for interacting
with the user” [11]. These activities are launched when an application uses a different application,
while also being the interaction point with the user of the application. Applications usually consist
of multiple of these activities, that together form the whole application but are not strongly linked
together. The main activity is generally the first screen one sees when opening an application,
after which users can launch other activities and thus use the application. So, applications can be
launched and entered via many different ways and points, including via other applications.

1.4 Development Challenges

Developers of Android applications face numerous challenges when creating their apps. Among the
biggest challenges are [12, 13, 14]:

1. Multiple platforms and devices: Mobile devices and versions have differences that require
developers to make platform and/or version specific changes.

2. Testing of applications: The majority of developers test their applications manually. Trust in
automated test tools is not very high and thus manual testing is most common.

3. Monitoring Tools: Tools for monitoring the status of an application and it’s device are
insufficient.

4. Problems with emulators: The emulators that provide developers with a hardware environment
for Android devices seem to lack some real features that makes testing on these more difficult.

With the many challenges that developers face along with time and budget concerns, automated
testing plays an important role in lowering the workload and gaining confidence in the robustness
and quality of an application.



1.5 Automated Testing

Effective stress testing and quality assurance of Android applications is becoming more and more
important with the growth of the Android platform. Developers want to be sure that their developed
applications are ready to be used and up to their expected level of quality. Most testing in the
world of mobile development is still done manually. Due to the earlier challenges in development
mentioned above, having to spend time manually testing applications on multiple devices and
versions can quickly become very time and cost consuming.

Besides testing applications that are in development, testing and analyzing behaviour of third-party
applications whose source code is not available is also important. Security is a big concern when
downloading or working with an application from an untrustworthy source. Automated testing
can be a solution to this problem, being able to execute an application and then analyzing it’s
behaviour. From these kinds of analyses, potentially malicious or otherwise unwanted behaviour
can be identified. Important here is that automated testing tools should explore as much of an
application as possible, in order to identify if those parts of the application are harmful.
Following these concerns, automating the test process for the development of mobile applications
could solve many of these issues and lead to an increase in the overall quality of developed applica-
tions. Moreover, having an automated tool that can efficiently explore as much of an application as
possible is important for analyzing third-party applications from a security standpoint, to produce
accurate analyses and save time and resources.

Automated input testing is a method to test an application by generating inputs and events,
such as screen touches or rotations, and then simulating these inputs and events to the applica-
tion that is being tested. Ultimately, the goal of such a testing approach is to cover as much of
the application’s functionality and behaviour as possible, or to crash the application. Tools for
automated testing can use a variety of strategies when deciding what type of events or inputs to
send to the application that is being tested. Strategies can range from simple randomly chosen
events and inputs to complex models that are generated based on an application’s characteristics.
A systematic overview/mapping of tools produced can be found at [15] and [16].

Applications that are to be tested can be looked at as black-box, white-box or grey-box. When
testing an application in a black-box setting, no prior information about the internal workings of
the application is available. The white-box setting has access to all information, including source
code, of the application. In a grey-box setting, information about the internals of the application
is available. The amount of information available can determine which tools can be used, or how
these tools operate.

In order to quantify and measure how much of an application is actually explored by an au-
tomated testing tool, a code coverage measurement is used. Code coverage is a measurement that
keeps track of how much of a program’s source or byte code is executed during a test run. Coverage
can be measured at multiple levels, such as the class, method or instruction level.

Measuring code coverage in a white-box setting is supported by Android Studio along with other
tools. However, in order to measure coverage in a white-box setting, one must have access to the
source code. When wanting to test a third-party application, this will not always be the case.

In a black-box setting, code coverage can also be measured. This is done by instrumenting the byte



code. This approach is more suited for third-party applications, since the source code is not always
available. Several tools exist to measure code coverage in a black-box setting, more is explained in
the related work and methods sections.

In this paper, Monkey [2] is analyzed. It is part of the Android SDK and is thus maintained
by Google. Monkey is a tool that can automatically generate pseudo-random streams of user events.
By default, Monkey runs on any emulator or device and is used to stress test applications. While
Monkey runs it’s events, it also analyzes the system, catching errors and other exceptions, as well
as attempts to navigate to other packages installed on the device. Multiple parameters or options
can also be used, such as event frequency and amounts. This is explained in more detail in the
Methods section. Monkey follows a black-box approach, not needing any source code or other
internal information about an application in order to function. Monkey is one of the easiest and
most used tools for this purpose, thus making understanding it and exploring different ways to use
Monkey important.

While there are multiple papers and studies that test the effectiveness of Monkey in terms of code
coverage, few explore different combinations of parameters and other settings of the Monkey in
order to achieve the best possible performance. In this thesis the performance in terms of code
coverage and crashes of multiple different parameters and event distributions is evaluated on a
benchmark of 50 applications.

Aside from the default event distribution, 10 different event distributions are tested on the ap-
plication benchmark for 5 minutes per application and their code coverage is measured on the
instruction, method and class level. The amount of applications that crash during the testing is
also reported. Results show that changing the event distribution can increase code coverage as well
as the amount of crashes during testing with Monkey.

A link to the code used for performing experiments and parsing results can be found at:
https://github.com/kw-corne/monkey-coverage

The rest of this thesis is structured as follows:

e The related work on what others have found and tried in the past is analyzed.

e Methods and tools used to setup the experiments are explained in detail.

Findings and results are presented.

Discussion about the results that were produced.

Conclusions based on the findings are made clear.

Future research is proposed.


https://github.com/kw-corne/monkey-coverage

2 Related Work

In this section, we look at related work when it comes to automated testing of Android apps in
general, various ways to measure the code coverage in a black box setting and some studies on the
Exerciser Monkey itself.

2.1 Automated Testing

A survey conducted by Vésquez et al. [17] on how Android developers test their applications found
that although there are a lot of different tools for automated testing, they still have a low usage
rate. 60.78% of the participants reported that they had no experience with using tools for random
testing such as Monkey. Only 11 participants out of the surveyed 102 reported that they used
Monkey in more than 10% of their testing efforts. According to the survey the tools still face issues
such as the impact of the discovered bugs/crashes, difficulties in reproducing steps and a lack of
expressiveness. The survey found that the majority of testing is still done manually.

Villanes et al. [18] analyzed questions asked on Stack Overflow regarding mobile testing. They
found that Appium, Espresso, Monkey, and Robotium had increasing interest among developers on
the Android platform.

Besides Monkey, many different tools have been developed for the automated testing of An-
droid apps, such as for example: Sapienz [19], Stoat [20], WCTester [21] and Dynodroid [22], among
others. Almeida et al. [16] carried out a systematic mapping of 80 of these tools and found that 42%
of them use model-based testing, and another 40% implement GUI testing. Model based testing is a
technique where a model is first generated based on information about an application, after which
this model is used to generate inputs and events. GUI testing is a method whereby an application’s
GUI is dynamically analyzed in order to generate inputs and events. They also mapped out the
differences between some tools when it comes to the various techniques and methods these tools
use.

Choudhary et al. [23] compared the effectiveness of multiple automated testing tools on four
metrics: code coverage, fault detection, ability to work on multiple platforms and their ease of use.
Their conclusion was that even though more sophisticated exploration techniques exist, they were
still outperformed by the random exploration techniques from Monkey and Dynodroid. Based on
the four criteria mentioned earlier they concluded that Monkey is the winner among the tools they
evaluated, due it achieving the best coverage and reporting the most failures. Moreover they also
found it was very easy to use and available on all platforms. But they also thought that because
every tool has a strong point that one should consider which tool to use in which case.

Wang et al. [24] found that among multiple state-of-the-art tools for generating tests on real-
world industrial apps Monkey still achieved the highest method and activity coverage on over half
of the apps that were tested. They advise to use a combination of tools to achieve the highest
coverage rates and reported crashes.

From the above findings and papers, we can see that Monkey remains one of the most user



friendly and widely used tools when it comes to automated testing.

2.2 Measuring Code Coverage

In order to measure the code coverage achieved by an automated testing tool, we need a tool
that can measure code coverage in a black-box setting, so without any source code available.
Multiple tools have been created for this purpose, such as: ACVTool [25], COSMO [26], ELLA [27],
BBoxTester [28] and InsDal [29].

ACVTool [25] measures code coverage at the instruction level, using the smali representation of
Android bytecode. According to the authors ACVTool can successfully instrument and execute
96.9% of Android applications. This also makes it suitable for large scale testing, as it does not
add too much overhead or long instrumentation times. ACVTool generates reports by combining
runtime reports and instrumentation reports to map probes to their original instructions. Reports
generated are available in html and xml formats making them useful for visual inspection as well
as automated report inspection and processing.

COSMO [26] is an automated instrumenter that works on Gradle-based [30] as well as on compiled
apps. A compiled app is first instrumented by instrumentng the Java bytecode with JaCoCo [31].
The instrumented version is converted back to Dalvik and added to the original APK file. Once the
app has been installed and explored a report can be generated. The authors report that the main
difference between ACVTool and COSMO for the compiled app process is that developers do not
need to grant additional permissions to the instrumented apps. COSMO succesfully instruments
86.9% of apps and 71.6% run without errors.

ELLA [27] is another tool that can be used to measure code coverage for Android apps. It
instruments apps at the method level, by inserting probes and tracking their execution. It can also
track the trace of executed methods and the values of the arguments passed at call-sites and more.
Sadly, ELLA is no longer supported. Reports are generated containing a list of method signatures
and a list of method identifiers that were executed. Like ELLA, InsDal [29] also measures code
coverage at the method level.

BboxTester [28], proposed by Zhauniarovich et al., is a tool that can be used to generate code
coverage reports and other coverage metrics for apps that the source is not available of. BBoxTester
instruments jar files using EMMA [32], which are then assembled back into a new APK. BBoxTester
instruments 65% of apps succesfully.

Considering the different tools, ACVTool is used in the experiments that are performed for
its high instrumentation rate, low instrumentation times and low overhead. ACVTool is also suited
for lage scale testing and easy to be integrated into a testing/experiment pipeline. The reports are
also clear and easy to parse.



2.3 Monkey Testing

As previously discussed, Choudhary et al. [23] compared multiple automated testing tools and
found Monkey to be the best performing. Their application benchmark consisted of 68 applications
retrieved from papers about automated testing tools. They used the Monkey with a 200 millisecond
delay between actions. From their experiments they reported the mean coverage over a 60 minute
period to be about 45%. From their data we can also see that after 5 minutes, code coverage
stagnates heavily for the tools they tested. No different parameter settings using Monkey were
tested in their experiments.

Patel et al. [33] studied how Monkey’s parameters affect code coverage on the line, block, method
and class levels. Applications tested were 15 very famous applications, and 64 popular applications.
They also compared code coverage achieved by Monkey against code coverage achieved by manual
exploration. They found that changing Monkey’s event distribution did not lead to any significant
increases in achieved coverage. From their testing they also found that Monkey is on average
2-3% behind manual exploration when it comes to code coverage. However, when testing different
event distributions they only tested increasing the touch, motion, trackball, navigation and major
navigation events at 75%. The apps were tested for 5 minutes.

An empirical study conducted by S. Paydar [34] on how effective Monkey is in testing Android
applications on robustness and responsiveness found that Monkey is a very effective and highly
recommended tool for these purposes. The study tested Monkey on real-world applications and
fault-injected applications, so applications where the errors are known before testing. 150 applica-
tions from F-Droid and 150 Iranian applications were tested for the real-world application part.
They defined some metrics, being: crash rate, ANR-rate, failure rate, crash delay, ANR-delay and
failure delay. 67% of the apps in first dataset (F-droid applications) did not crash, 52% of apps
in their second dataset (Iranian applications) did not crash. Thus, Monkey seems very reliable in
detecting robustness errors in real-world applications. They also found that the default Monkey in
the Android Studio IDE has a low focus of 5.5%, and that the Monkey is less sensitive to faults
that cause a delay lower than 5 seconds. As future work they proposed more experiments on the
distribution of events generated by Monkey. They did however not test any different parameters of
the Monkey.

Mohammed et al. [35] studied the difference between human and Monkey testing of Android
applications. They investigated dynamic event traces of five Android apps and compared these
against traces generated by eight users who tested the applications manually. Five different testing
times for Monkey were used (5, 20, 25, 30, and 60 minutes), and the authors did not find a
correlation between the testing time and Monkey’s event coverage (such as Ul events and lifecycle
events, see [36]). Event coverage is a metric to identify how many of these events are triggered. The
same held true for human testing of the same applications. Further, it was found that human testing
and Monkey testing worked indistinguishably differently when it came to event coverage. From
their testing they found that system events were the most generated events. Furthermore, Monkey
most of the time generated a lower percentage of Ul events compared to human testing. For 3 of
the applications they investigated Monkey could mimic human testing behaviour. They concluded
that Monkey works best when testing simple applications with a lot of operable widgets and no



required ordering of operations. Monkey does not work as well when testing complex applications
that require the user to have domain knowledge.

From a study performed by [37] that compared automated exploration tools we can also see
that coverage stops increasing by much at around the 5 minute mark. In their study they compared
four different tools and found Monkey to be the second best performing when it came to method
coverage, the best being TestLab [38].

A lot of studies have measured and compared the effectiveness of Monkey in coverage related metrics,
but almost none test the different parameters of Monkey when performing their experiments. Most
studies show that Monkey performs very well against other similar tools and remains among the
most used.

Application benchmarks used are usually famous real world applications or application gath-
ered from sources such as F-Droid. The amount of applications tested is usually around 50-100
applications, so this is comparable to the application benchmark used in this thesis.

Because multiple studies show that coverage stops increasing by much at around the 5 minute mark
we test the applications in our experiments for 5 minutes.



3 Methods

3.1 Tools

This section explains components of the experiment pipeline in detail.

3.1.1 App Benchmark

In order to measure the code coverage and number of application crashes achieved by Monkey
with various parameters, first a collection of APKs/applications is needed in order to be able to
benchmark the performance of Monkey. A number of applications were collected from F-droid [39],
a catalogue of open-source Android applications. After downloading some amount of applications
from each category on F-droid during May and July 2021 and after removing applications that did
not work properly with the selected tools or crashed when opened in the Android emulator, 50
applications were chosen from those that worked properly with the tools used for conducting the
experiments and did not crash right away when opened in the Android emulator. A full list of the
applications as well as some statistics about the applications used can be found in Appendix A.
The applications are instrumented for coverage using ACVTool (see 3.1.4).

3.1.2 Emulator

The applications that are being tested by Monkey are installed on the emulator of the Android
SDK. Experiments were performed on Ubuntu 20 operating system, with a 64-bit, 8 GB RAM
machine having an Intel i7-8550U 4 core CPU. For every app, the emulator is reset to it’s default
state (all data wiped) to ensure that all applications have the same starting point and do not
potentially influence each other. Exact specifications of the emulator can be found in Table 1.

Spec Value

Device Pixel 3a

Release Name | Oreo

API Level 26

Target Android 8.0 (Google APIs)
CPU/ABI x86

Table 1: Emulator specs used for performing experiments.

3.1.3 Monkey

Monkey has a number of parameters that can be chosen, changing the behaviour of the Monkey in
various ways, such as the distribution of events or delay between events. A description of relevant
parameters and events can be found in Table 2.
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Parameter/Event

Description

seed

The random seed that determines the sequence of events.

throttle Fixed delay between events. Defaults to sending events as fast as possible.
nav Up/down/left /right inputs from a directional device
touch Down-up event in a single place

majornav Major events like center button or menu button

trackball Random movements, can be followed by click

anyevent Evens that do not fit in any other category

motion Down event, random movements, up event

syskeys Keys reserved for the system like Home or volume control
appswitch Percentage of activity launches

pinchzoom Pinch or zoom movements

rotation Screen rotations

Table 2: Command line arguments for event types and frequencies [2].

3.1.4 ACVTool

Event Percentage
nav 25.0%
touch 15.0%
majornav | 15.0%
trackball | 15.0%
anyevent 13.0%
motion 10.0%
syskeys 2.0%
appswitch | 2.0%
pinchzoom | 2.0%
rotation 0.0%

Table 3: Default distribution of Monkey events

ACVTool [25] can instrument Android APK files and generate a code coverage report, without
needing access to the APK’s original source code. ACVTool’s workflow for one APK boils down to

the following 6 steps:

Instrument
Install
Start

Test

Stop

ANl

Report
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The steps are explained in detail below.

Instrument: ACVTool measures coverage by inserting probes after each smali instruction of
the decompiled APK. Apktool [40] is used to decompile as well as reassemble the application, along
with apksigner [41] and zipalign [42] to produce a working application that can be installed on a
real device or emulator. An instrumented version of the APK is produced that can be used in the
next step. An instrumentation report is also created which is used to map probes to their smali
instructions.

Install: The instrumented version of the APK that was produced in the previous step is installed
on the emulator or device, using adb [43], ready to be opened.

Start: The instrumentation process in the emulator is started, prompting the process of runtime
information collection.

Test: During this step the application is tested and exercised, either manually or by a tool. In this
case we use Monkey to generate the inputs and events on the application that is being tested.
Stop: The process of runtime information collection is halted and the information collected during
the runtime is stored in a report on the device or emulator.

Report: During this phase, the runtime report and the instrumentation report are used to map
probes back to their instructions, in order to generate the coverage report. The coverage report is
available in both xml and html format, the former being more suited towards automated processing
and the latter to visual inspection. Within the report, coverage on the class, method and instruction
levels.

3.2 Experiment Pipeline

Exp.
Params.
) ) Monkey: ) ACVTool:
e > ACUTOOE ot S L ACVIOO s apore > AQTOOE 5 Goner
Application Report
v
Report
v
Android Emulator Process
Report

Figure 3: Experiment process for 1 APK
Green = ACVTool, Orange = Monkey, Blue = Custom report processing program

Figure 3 shows the structure of the experiment process for a single APK. This process is repeated
for all 50 APKs in the application benchmark.
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At the start, a fresh emulator is started that does not contain any prior data or state. Once
the emulator has finished loading, the next step starts. First of all, an APK is selected from the
application benchmark. ACVTool then proceeds to instrument this APK, producing an instrumented
APK version. After this the instrumented APK is installed on the emulator. Following this, Monkey
will explore the application according to the test parameters. After the time expires, Monkey stops
and ACVTool stops the runtime information collection. Next, ACVTool generates the report which
is then collected by the report processing program, see section 3.3. After the report is collected, the
process starts again for the next APK.

3.3 Report Processing

After instrumentation, the xml coverage report generated by ACVTool after testing the application
has to be parsed. ACVTool reports the coverage on the instruction, method and class levels. In
order to extract coverage metrics from the xml report, we use the ElementTree XML API [44] from
the Python standard library [45].

The xml report is structured as can be seen in Figure 4. At the root of the tree is the report
element. Below the report node are all the packages of the application, below the package nodes
are the class nodes. Contained in the class nodes are the method nodes. Summarizing, the order
goes:

report — package — class — method.

In the method nodes, counter elements containing information about the amount of covered and
missed instructions/methods are located. The class elements also contain counter elements about
the overall covered and missed instructions/methods of that class.
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@ report
Opac<age @name=com/stericson/RootShell/containers
@ class @name=com/stericson/RootShell/containers/RootClass$l
@ method | @name= @desc=()V

counter
fcovered=0
Bmissed=22
@type=INSTRUCTION

counter :
ifcovered=0
Bmissed=1
@type=METHOD

counter :
covered=0
Bmissed=22
@type=INSTRUCTION

counter :
ifcovered=0
Pmissed=1
Dtype=METHOD

Figure 4: Example of the structure of an XML-report generated by ACVTool.

Exact coverage metrics determined from these xml reports are the percentage of covered lines,
percentage of covered methods and the percentage of covered classes. The total amount of lines,
methods and classes is also extracted.

Instruction and method coverage is calculated by summing up all the counter elements information,
that are direct children of class nodes, and calculating the percentage of covered lines/methods
by dividing the amount of lines by the total amount of lines/methods.

Class coverage is determined by checking if the covered element of the method counter node, that
is a direct child of the class node is bigger than zero. The total amount of classes is then divided
by the amount of covered classes to produce the percentage of covered classes.

All these calculated percentages along with the total amount of lines, method and classes are stored
in a csv file along with the corresponding package name of the APK.

3.4 Tested Monkey Parameters

In order to better understand how much each parameter affects the measured code coverage, 10
different event distributions are tested and evaluated on the application benchmark. To compare
these results, the default distribution of events is also tested at two different execution times.

First, the four most frequent events of the default distribution are tested at 100.0% for 5 minutes
to see how much these events cover on their own. This produces the following 4 distributions.
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1. 100.0% touch event
2. 100.0% nav event
3. 100.0% majornav event
4. 100.0% trackball event
Second, the 6 most frequent events of the default distribution are set to 50.0%, with the remaining
50.0% being divided to the other events according to the default distribution. Thus the following
distributions are tested for 5 minutes each:
50.0% touch event
50.0% nav event
50.0% majornav event
50.0% trackball event

50.0% anyevent event

SEANEE I

50.0% motion event

Lastly, the default distribution of Monkey’s events is tested at 1 minute of execution time and 5
minutes of execution time.
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Coverage %

4 Results

4.1 Code Coverage

In this section, the results of the previously described experiments to determine the coverage and
number of crashes are presented.

After instrumenting the applications in the benchmark using ACVTool, each instrumented appli-
cation is installed on a fresh emulator and tested for 5 minutes (except for the 1 minute default
event distribution) by Monkey with the specified event distribution. Afterwards the coverage report
is generated by ACVTool and the average coverage metrics over the application benchmark are
calculated. It is also tracked whether the application crashed during the testing process.

Figure 5 shows the average instruction, method and class coverage achieved by the different
event distributions. Tables 4, 5 and 6 display the average instruction, method and class coverage

per event distribution ordered from highest to lowest.

Coverage % per event distribution

25.00

20.73

20.00 19.44 19.71 19.57
18.57 18.33 18.51 18.39
17.22
16.45
15.00
15.00 14.2 14.51 14.0 14.3
13.3 13.2
12.8 12.6!
11.8 12.0 11.8 118
11.1¢
10. 10.7 10.6!
10.0
9.4
10.00 B8 9.33
7.8
7.2
5.00 | |
0.00
1 min. default 5 min. default 100% touch 100% nav ~ 100% majornav 100% trackball  50% touch 50% nav 50% majornav  50% trackball 50% anyevent 50% motion

M Instruction Coverage % W Method Coverage % M Class Coverage %

Figure 5: Average instruction, method and class coverage per event distribution in %, each tested
for 5 minutes per application, except for 1 minute default.
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Parameter Instruction Coverage % Parameter Method Coverage %
50% trackball | 12.80 50% trackball | 14.39
100% touch 12.06 100% touch 14.20
50% touch 11.87 50% touch 14.07
1 min. default | 11.19 1 min. default | 13.55
50% anyevent 10.76 50% motion 13.26
50% motion 10.65 50% majornav | 12.79
50% majornav | 10.54 50% anyevent | 12.69
50% nav 10.48 50% nav 12.62
100% majornav | 10.06 5 min. default | 11.84
5 min. default | 9.46 100% majornav | 11.83
100% trackball | 7.86 100% trackball | 9.33
100% nav 7.24 100% nav 8.89

Table 4: Instruction coverage ordered from
highest to lowest

4.2 Crashes

Table 5: Method coverage ordered from
highest to lowest

Parameter Class Coverage %
50% motion 20.73
100% touch 19.71
50% nav 19.57
1 min. default 19.44
50% touch 18.57
50% trackball 18.51
50% anyevent 18.39
50% majornav | 18.33
100% majornav | 17.22
5 min. default 16.45
100% trackball | 15.00
100% nav 14.51

Table 6: Class coverage ordered from highest to lowest

While testing the applications from the benchmark, the amount of crashes was also recorded, as
visible in Figure 6. In Table 7, the number of crashes ordered from high to low can be seen. A crash
in this case is defined as an exception that does not get handled and causes the application to exit.
This means the number of crashes can be seen as the amount of applications that were unable to
continue working while being tested by Monkey during the experiment’s allocated time. Discussion
about the results is found in the next section.
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Figure 6: Amount of crashes per event distribution

Number Of Crashes

a3
28
19 - 20
17
15

100% nav 100%
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100% trackball 50% touch

Parameter Num. Crashes
50% touch 33
5 min. default 28
50% motion 26
50% anyevent | 25
50% trackball | 24
50% majornav | 23
50% nav 20
100% touch 19
100% trackball | 18
1 min. default 17
100% majornav | 15
100% nav 1

Table 7: Amount of crashes ordered from high to low
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5 Discussion

In this section, the results presented in the previous section are discussed and explained.

5.1 Code Coverage

From the code coverage metrics in Figure 5 and Tables 4, 5 and 6 we can see that the default
event distribution of Monkey achieves an instruction coverage of 9.46%, a method coverage of
11.84% and a class coverage of 16.45%. Compared to these numbers from the 5 minute default event
distribution, only the 100% trackball and 100% nav event distributions perform worse. Interestingly,
the 1 minute default distribution does better than the 5 minute default distribution, the explanation
for this is that due to Monkey’s random nature, different applications crashed at different moments
causing the average code coverage to go down. ACVTool also does not generate an intermediate
report after the application crashes which can cause the 1 minute distribution to do better in code
coverage than the 5 minute distribution.

The best performing event distribution when it came to the instruction coverage metric was
the 50% trackball distribution. For method coverage 50% trackball was also the best performing.
When it came to class coverage, 50% motion did the best.

Between instruction coverage and method coverage, the order of best performing remains rel-
atively similar. However when it comes to class coverage, the order is changed somewhat. This
indicates that certain event distributions can cover more classes than others.

From the data we can see that changing the event distribution can have a positive effect on
the code coverage achieved by Monkey. Although the effect is not incredibly large, compared to 5
minutes of the default settings, the biggest positive difference in instruction coverage was about
3.3%. But compared to 1 minute of default settings the difference was only 1.6%. These differences
are about the same when comparing instruction coverage to method coverage and class coverage.
An overall instruction coverage of 12.8% (the highest achieved from the tested event distributions)
is still not very high. Exploring only about 12.8% of an application is definitely not enough to rely
on automated testing for testing an entire application. Adding to that, from a security standpoint
it also leaves way too much room for uncertainty regarding what the code of the application does
that was not covered.

Contrary to the study by Patel et al. [33] which tested the code coverage achieved by chang-
ing 5 of Monkey’s parameters to 75% event distribution and did not find it to lead to an average
coverage increase, the event distributions that were tested in this thesis did lead to an increase in
coverage. This means that altering the parameters of Monkey can lead to an increase in average
code coverage on a wider range of applications and not just in isolated cases as stated by Patel et
al.
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5.2 Crashes

Figure 6 and Table 7 show the amount of applications that crashed per event distribution, with
the table showing the same data as the figure but ordered from high to low. The default Mon-
key event distribution at 5 minutes of runtime crashed 28 out of the 50 applications, over half of them.

The event distribution that crashed the most applications was 50% touch, with 33 crashes. 100%
nav did the worst, with 1 application crashed. 100% nav also did the worst when it came to
code coverage, which could explain why it crashed so little applications compared to the other
distributions.

The 5 minute runtime default event distribution of Monkey crashed a lot more applications
than the 1 minute version, 28 compared to 17. The 5 minute runtime did however achieve a lower
code coverage than the 1 minute runtime, which could be due to the amount of crashes.

From Table 7 we can see that changing the event distribution of Monkey can increase the amount of
crashes, but the default distribution already does very well in this regard. This means that Monkey
is very effective at crashing applications, making it useful for stress testing applications.

In line with [34] and [33], the experiments performed in this thesis also show that Monkey is
very good at crashing applications. The default distribution crashed more than half of the applica-
tions in the benchmark with the 50% touch doing even better than that. Monkey could thus be
very useful in helping developers save time by automatically having their applications stress tested.

5.3 Limitations

There are some limitations that came with testing the effectiveness of the different Monkey event
distributions on the application benchmark. First of all, it takes a lot of time to test applications
for 5 minutes each, it does not simply take 5 minutes to test one application, there is also added
overhead from opening/wiping the emulator, installing applications, etc. If more time and resources
would have been available, the application benchmark could have been larger, allowing for more
reliable data to be gathered.

The amount of different distributions tested could also have been larger if more time and re-

sources were available. Testing more event distributions could give more insight into how the
different events affect code coverage and crashes.
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6 Conclusions and Further Research

In this thesis, a study was conducted on the effectiveness of the automated testing tool Monkey
when comparing different parameters and event distributions. Experiments were performed on an
application benchmark consisting of 50 applications and testing each for 5 minutes. It was found
that changing the event distribution of Monkey can lead to an increase in code coverage as well as
an increase in crashes when testing applications. The 50% trackball event distribution achieved the
highest code coverage of 12.80%, with the 50% touch distribution crashing the most applications,
33 in total. Changing the event distribution can have a positive influence in achieving a higher
average code coverage on a large amount of applications. This shows that automated testing still
has a long way to go when it comes to code coverage. In a black-box setting covering only 12.80%
of instructions is not enough to make informed decisions about the nature of an application in a
security context. This number is also too low to give developers confidence the entirety of their
application is being tested. However, the high amount of crashes that Monkey triggers proves it’s
usefulness in stress testing applications and finding potential faults.

In this thesis 10 event distributions of Monkey were tested that were not the default distri-
bution on 50 applications. If more time and resources could be used, more event distributions and
parameters of Monkey could be evaluated on a larger dataset of applications. Since the difference
in code coverage rates is not very large, it is hard to say what to use in which situation. As future
work, the scale of the experiments could be made way larger to gain more data on the effect of the
event distributions as well as gain more trust in the produced data.
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Appendix

A Application Benchmark

Package Name

File Size (MB)

com.smartpack.kernelprofiler

1.8

com.metallic.chiaki 8.4
dummydomain.yetanothercallblocker 8.0
com.allansimon.verbisteandroid 11.0
net.moasdawiki.app 1.8
com.fgrim.msnake 0.1
org.strawberryforum.pollywog 1.3
de.markusfisch.android.shadereditor 1.6
me.blog.korn123.easydiary 21.2
eu.veldsoft.ithaka.board.game 4.2
com.tnibler.cryptocam 6.1
com.nicobrailo.pianoli 3.6
org.ninthfloor.copperpdf 0.4
org.woheller69.weather 11.5
com.smartpack.smartflasher 2.0
digital.selfdefense.lucia 2.5
fr.ralala.hexviewer 1.7
de.jbservices.nc_passwords_app 27.5
com.maxistar.textpad 1.5
org.getdisconnected.libreipsum 2.1
com.DartChecker 2.5
jp-takke.cpustats 2.1
taco.scoop 1.6
de.k3b.android.intentintercept 1.2
de.msal.muzei.nationalgeographic 3.2
com.conceptltech.instalate 3.6
com.releasestandard.scriptmanager 3.4
ca.cmetcalfe.locationshare 0.9
org.segin.bfinterpreter 1.3
de.bulling.barcodebuddyscanner 3.7
com.appmindlab.nano 3.4
com.tunjid.fingergestures 2.5
com.aragaer.jtt 0.2
com.github.ashutoshgngwr.tenbitclockwidget | 1.1
com.zorinos.zorin_connect 6.4
dev.corruptedark.openchaoschess 1.1
org.epstudios.morbidmeter 1.7
ch.hgdev.toposuite 2.4
com.dosse.airpods 1.4
com.dozingcatsoftware.kumquats 19.0
com.chessclock.android 0.1
de.eidottermihi.raspicheck 3.8
com.sunilpaulmathew.debloater 1.9
net.tjado.usbgadget 2.2
com.adonai.manman 2.9
com.nathaniel.motus.umlclasseditor 2.7
net.sourceforge.x11basic 3.1
de.dennisguse.opentracks 21.6
com.smartpack.scriptmanager 1.8
io.github.lufte.lona 1.9

Table 8: Application benchmark
used in experiments
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Average Size 4.5
Median Size 2.3
Min Size 0.1
Max Size 27.5
Standard Deviation | 5.9

Table 9: Statistics about the sizes
in MB of the application bench-
mark
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