
Master Computer Science

Hindsight Policy Gradient Interpolation

Name: Pavlos Skevofylax
Student ID: s2440857

Date: 07/08/2021

Specialisation: Advanced Data Analytics

1st supervisor: Aske Plaat
2nd supervisor: Thomas Moerland

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

Reinforcement Learning (RL) with sparse rewards remains a major challenge. Hindsight
Experience Replay (HER) is an enhancement for off-policy methods that addresses this
issue by allowing the agent to learn from failed goal attempts by treating them as de-
sired pseudo-goals. The goal of this thesis is to combine HER with on-policy algorithms.
We consider the fact that off-policy RL methods are difficult to tune and tend to be
unstable, while on-policy methods are easier to tune and more stable in order to build
a hybrid HER method. We propose Proximal Policy Gradient Interpolation (PPGI), a
hybrid RL algorithm that combines on-policy and off-policy updates. This allows us
to introduce HER on the off-policy part of PPGI, achieving hindsight combined with
on-policy updates. PPGI interpolates between the updates of two state of the art RL
methods, Proximal Policy Optimization (PPO) and Deep Deterministic Policy Gradi-
ents (DDPG). We evaluate PPGI in 7 locomotion control tasks and hindsight PPGI in
1 simple and 2 complex goal-based navigational tasks. Our results show that PPGI can
outperform PPO in one case and have a satisfactory performance in most locomotion
tasks. In combination with HER, our method during interpolation outperforms the tra-
ditional off-policy HER method on the simple goal-based navigational task significantly.
Regarding the 2 complex tasks, hindsight PPGI improves the performance of one while
it deteriorates the performance of the other.

i

CONTENTS

Contents

Abstract i

1 Introduction 1
1.1 Research Goal . 2
1.2 Approach . 2
1.3 Overview . 2
1.4 Results . 3

2 Reinforcement Learning 4
2.1 Markov Decision Process . 4
2.2 Agent-Environment Interaction . 4
2.3 Policies . 4
2.4 Value Functions . 5
2.5 Model-free Methods . 7
2.6 Variance and Bias Trade-off . 8
2.7 Exploration and Exploitation . 9
2.8 On-policy and Off-policy methods . 9
2.9 Importance Sampling . 10
2.10 Policy Gradients . 10
2.11 Actor-Critic Methods . 11
2.12 Goal-Conditioned Reinforcement Learning . 12

2.12.1 Sparse-Reward Problem . 12
2.12.2 Universal Value Function Approximators 13

3 Deep Learning 13
3.1 Perceptron . 13
3.2 Activation Functions . 14
3.3 Multi-layer Perceptron . 14

4 Deep Reinforcement Learning 14
4.1 Function Approximation . 15
4.2 Modeling Policies for Continuous Tasks . 15
4.3 Deep Q Network . 15
4.4 Deep Deterministic Policy Gradient . 16
4.5 Trust Region Policy Optimization . 17
4.6 Proximal Policy Optimization . 18
4.7 Interpolated Policy Gradients . 18

5 Method 19
5.1 Hindsight Experience Replay . 19
5.2 Proximal Policy Gradient Interpolation . 19

5.2.1 PPGI with ν = 1 . 20
5.3 Hindsight PPGI . 22

6 Experiments 23
6.1 Experimental Setup . 23

ii

CONTENTS

6.2 Experimental Results for Dense Reward Settings 23
6.2.1 Optimal ν value . 24
6.2.2 Control Variate and η . 25
6.2.3 Extension to More Control Tasks . 25

6.3 Experimental Results for Sparse Reward Settings 25
6.3.1 PPGI with Hindsight Interpolation . 26
6.3.2 Hindsight PPGI on Complex Tasks and Trajectory Analysis 27
6.3.3 Hindsight PPGI on Complex Tasks with More Data 29
6.3.4 Hindsight Interpolation Effect on Complex Tasks 30
6.3.5 Hindsight Interpolation Annealing . 31

7 Related Work 32
7.1 Hybrid RL algorithms . 32
7.2 Addressing sparse rewards . 33
7.3 On-policy hindsight approaches . 33

8 Discussion 33

9 Conclusion 35

Bibliography 36

A Appendix 41
A.1 General information of our project . 41
A.2 Environments . 41
A.3 Hyperparameters . 41
A.4 Effect of Normalization . 42
A.5 Hyper-parameter Sweep for Goal-based Tasks 43

iii

Introduction

1 Introduction

Reinforcement Learning (RL) is a sub-field of Machine Learning, where an agent interacts with
an environment in order to achieve a certain goal through trial-and-error. We use the formal
definition by Sutton and Barto (2018) where the RL problem is defined as a decision-making
framework, in which the agent receives a state, performs an action, and the environment yields
a learning signal (reward) and a new state in response. Each action is performed through a
sequence of discrete time-steps. The goal of the agent is to learn a policy that maximizes the
cumulative reward throughout the time-steps, by selecting appropriate actions.

In recent years, RL has been combined with Deep Learning (DL), forming the field of Deep
Reinforcement Learning (DRL). In this field, (a part of) the solution is represented by deep
neural networks. This improved the RL framework by allowing function approximators to learn
from high dimensional state representations. The first big breakthrough that vastly popularized
the field of DRL took place in 2013, where Mnih et al. (2013) combined convolutional neural
networks with a variant of a popular RL algorithm called Q-learning (Watkins and Dayan,
1992). Their method, called Deep Q-Networks (DQN), learns a function approximator from
raw pixels, making this the first RL algorithm that is able to fully solve some of the Atari games,
using only the games’ pixels as a state representation. Tesauro (1995) is an older work that
combines neural networks with RL in a method called TD-Gammon, a program that managed
to develop skills similar to the world champion of Backgammon in 1992. Unlike DQN, this
method uses additional handcrafted heuristics in order to succeed, as well as a method called
self-play. These two successful methods laid an important foundation on the field of RL, which
led to the development of more DRL breakthroughs, that are able to learn complex games
given no rules, such as Go, at a super-human level, beating world champions (Silver et al.,
2016, 2017; Schrittwieser et al., 2020).

In parallel with these recent breakthroughs, DRL advancements also developed in simulated
robotics. Robotic tasks usually use a continuous action space (e.g. degrees of an arm) in
contrast with Atari and board games, where the action space is discrete (e.g. (x, y) position
on the Tic-Tac-Toe board). The number of actions in a continuous action space environment
is technically infinite, therefore there are different RL approaches to tackle such tasks. A vast
majority of these simulators include locomotion control, where the agent needs to control the
angle of a robot’s joints in its arms and legs in order to balance. Other tasks include the
navigation of the agent to a certain point in the environment. The latter most commonly has
a sparse-reward setting, because it only receives a positive reward once the agent reaches the
goal destination. Tasks with a sparse-reward setting are more challenging because the only way
for the agent to learn is if it accidentally reaches the goal destination and receives a learning
signal. Since this is an unlikely scenario, there are many enhancements in RL that deal with
sparse rewards (Matiisen et al., 2019; Pathak et al., 2017; Florensa et al., 2017; Held et al.,
2018; Andrychowicz et al., 2017). Hindsight Experience Replay (HER) (Andrychowicz et al.,
2017) is a method for navigational robotics that addresses the sparse reward problem. It is
inspired by the human cognition of learning from undesired outcomes. In this framework, when
the agent reaches an undesired destination, the method treats it as if it was a desired one.
This triggers the learning signal that teaches the agent how to reach that unwanted position.
Upon convergence, the agent is able to navigate to any given position in the environment.

The presented thesis explores the capabilities of HER when combined with hybrid RL algo-
rithms. The intuition behind our approach is to combine the stability of on-policy methods and

1

Introduction

the sample efficiency of off-policy approaches with the success of HER. We start by reproduc-
ing our own variant of the hybrid RL algorithm Interpolated Policy Gradients (IPG) (Gu et al.,
2017) which we call Proximal Policy Gradient Interpolation (PPGI). We test our method on
7 different locomotion environments and compare our results and findings with the ones from
Gu et al. (2017). Afterwards, we apply HER on PPGI and test it on 3 navigational robotic
tasks with a sparse-reward setting.

1.1 Research Goal

Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) and its variants (Fang et al.,
2019) have shown great potential in multi-goal based environments. It is usually combined
with off-policy methods as it doesn’t require additional mathematical operations to achieve
good results in contrast with on-policy hindsight approaches. On the one hand, despite being
sample efficient, off-policy methods are unstable and hard to tune. On the other hand, on-
policy methods are easier to configure and more stable, but usually at the cost of sample
efficiency. The goal of this research project is to effectively combine on-policy and off-policy
methods into a new hybrid RL algorithm in order to achieve off-policy hindsight with the
benefits of on-policy approaches. Previous work with hybrid RL algorithms already exist (Gu
et al., 2016, 2017; Fakoor et al., 2020; Wang et al., 2016; O’Donoghue et al., 2016), but
none of them combine their approaches with hindsight. We achieve this using techniques from
Interpolated Policy Gradients (IPG) (Gu et al., 2017), a method that combines Trust Region
Policy Optimization (TRPO) (Schulman et al., 2015) and Deep Deterministic Policy Gradients
(DDPG) (Lillicrap et al., 2015), as recommended by Plappert et al. (2018).

We will address the following research questions:

• Can the on-policy part of IPG be extended from TRPO to a more state-of-the-art
algorithm like Proximal Policy Optimization (PPO) (Schulman et al., 2017)?

• How does the implementation of HER with a hybrid RL algorithm perform in comparison
with the traditional HER method?

1.2 Approach

The thesis is separated into two parts. First we reproduce a variant of the IPG method with
improved algorithmic versions, which we call Proximal Policy Gradient Interpolation (PPGI).
The original IPG method is a hybrid algorithm which combines TRPO and DDPG. We instead
use PPO, an improved version of TRPO, and DDPG. We apply this method on locomotion
tasks with a dense-reward setting. Second, we implement the HER method on the off-policy
part of the algorithm, apply it on navigational robotic tasks with a sparse-reward setting and
evaluate its performance with and without interpolation.

1.3 Overview

Section 2 provides a general background for the field of Reinforcement Learning with a strong
emphasis on the things that are important for this thesis, such as variance and bias trade-
off, exploration, exploitation, importance sampling and goal-conditioned RL, which includes
the sparse-reward problem and Universal Value Function Approximators (UVFA). Section 3
introduces the reader to deep learning and the architecture of Multi-layer Perceptrons (MLP).

2

Introduction

Section 4 gives an overview of the field of Deep Reinforcement Learning (DRL) and introduces
4 DRL algorithms that laid the foundation for our PPGI method. In section 5 we present our
method. We explain how we achieve interpolation with PPO and DDPG and how we combine
PPGI with HER. In section 6 we show our experimental set up and results. Our set-up includes 2
parts, one that evaluates the overall PPGI method on 7 locomotion control tasks with a dense-
reward setting and one that evaluates our method with HER on 3 goal-based environments
with a sparse-reward setting. Section 7 provides related work prior to our method for hybrid
RL algorithms, methods that address the sparse-reward problem and on-policy hindsight. In
section 8 we discuss our results and in section 9 we conclude our work.

1.4 Results

The main hyper-parameter of our method is the interpolation, which controls the trade-off
between off-policy and on-policy updates. We evaluate our PPGI method on 7 locomotion tasks
with different interpolation parameters. In comparison to PPO, in 1 case interpolation improves
the performance, in 2 cases it performs similar to PPO, in 2 cases it performs sub-optimal and
in 2 cases it performs poorly. In addition, we try a control variate (CV) technique mentioned
in the Appendix of Gu et al. (2017) that is used for variance reduction. We evaluate PPGI
with and without the CV in two locomotion tasks and the results show that the performance
deteriorates. Lastly, we try two different sampling methods for the off-policy part of PPGI
in two locomotion tasks, sampling random transitions and sampling recent transitions. The
performance in both tasks is very similar, with random sampling performing insignificantly
better.

We evaluate our hindsight PPGI approach on 3 goal-based environments, 1 simple and 2
complex. In the case of the simple task, our hindsight PPGI method significantly outperforms
the traditional HER method by combining the advantages of both on-policy and off-policy
updates. The interpolation effect is very apparent because this simple task can be solved using
PPO without any enhancements. In the case of 1 complex task, the interpolation effect is not
obvious, but it still manages to improve the traditional HER method using a small amount of
on-policy updates. For the final complex task, our method doesn’t outperform the complete
off-policy HER approach, which is an indicator that our method can reach its limit depending
on the environment complexity.

3

Reinforcement Learning

2 Reinforcement Learning

The following section is based on Sutton and Barto (2018) and David Silver’s RL lectures
(David Silver, blog), except sub-section 2.6 which is based on Seungjae Ryan Lee’s blog
post (Seungjae Ryan Lee, blog), sub-section 2.11 which is based on Chris Yoon’s blog post
(Chris Yoon, blog) and sub-section 2.12. We cover basic Reinforcement Learning concepts that
are crucial for understanding the methods for the research project presented in this thesis.

2.1 Markov Decision Process

We consider the standard RL formulation, in which the RL problem is defined as a Markov
Decision Process (MDP). An MDP is a mathematical decision-making framework, in which a
decision maker is being modeled to act. In RL, an MDP is a fully observable environment. It
consists of a set of valid states s ∈ S, a set of valid actions a ∈ A, a reward function R and
a transition probability p(s′|s, a). The reward function gives feedback to the decision maker
regarding how good an action is at a given a state. The transition probability describes the
environment’s dynamics, and tells us the probability of observing state s′ given state s and
action a. For this report, we consider the finite-MDP, in which every observable element in
{S,A,R} is finite.

2.2 Agent-Environment Interaction

In the RL framework, the agent interacts with an environment through episodes. An episode
corresponds to a sequence of discrete time-steps t. For each time-step, the agent reads the
environment state st ∈ S and performs an action at ∈ A. The agent then receives a scalar
reward rt+1 ∈ R, where rt+1 = R(st, at) and a new state st+1 as a result of its action.
This feedback loop generates a sequence of states, actions and rewards that form a trajectory
τ = {s0, a0, r1, s1, a1, r2, ..., sT−1, aT−1, rT}, where T denotes the final time-step (we also refer
to T as the time-step horizon). A trajectory represents the path of the agent from time-step
0 to time-step T .

2.3 Policies

A policy is a mapping function that maps an observation from the state space S to the action
space A. A policy can be either deterministic π(s), where π : S 7→ A or stochastic π(a|s),
where π : S × A 7→ [0, 1]. Deterministic policies output a single action for a state with a
probability of 1. Stochastic policies are probability distributions over each possible discrete
action a ∈ A given a state s, such that:

∑|A|
i=0 π(ai|s) = 1, where |A| denotes the length of

set A.

In RL, we want to model an optimal policy π∗ that maximizes the future cumulative reward
Rt from a current state st at time-step t:

Rt =
∞∑
k=0

γkrk+t+1 (1)

where γ ∈ [0, 1] is a discount factor. The discount factor assigns an importance weight to
future rewards throughout an episode. Most commonly γ is close to the value of 1, making
the agent strongly consider future rewards, but assign higher importance on immediate ones.

4

Reinforcement Learning

2.4 Value Functions

The majority of the RL algorithms include the estimation of state-value functions V π(s) and
action-value functions Qπ(s, a) with a current policy π. V π(s) measures the expected future
return starting from a particular state s and afterwards following the current policy π. The
state-value function is formally given as:

V π(s) = E[Rt|St = s] = E

[
∞∑
k=0

γkrk+t+1

∣∣∣∣∣St = s

]
(2)

Similarly, Qπ(s, a) measures the expected future return starting from a state s and taking an
action a. It is formally given as:

Qπ(s, a) = E[Rt|St = s, At = a] = E

[
∞∑
k=0

γkrk+t+1

∣∣∣∣∣St = s, At = a

]
(3)

The value functions have a property in which they satisfy a recursive relationship, called
”Bellman” equation. The Bellman equation for the state-value function is derived as follows:

V π(s) = E[Rt|St = s]

= E

[
∞∑
k=0

γkrk+t+1

∣∣∣∣∣St = s

]

= E

[
rt+1 + γ

(
∞∑
k=0

γkrk+t+2

)∣∣∣∣∣St = s

]
= E [rt+1 + γRt+1|St = s]

= E [rt+1 + γE[Rt+1|St+1]|St = s]

= E [rt+1 + γV π(St+1)|St = s]

(4)

In Equation 4 we use the law of iterated expectation in order to arrive to the final expectation.
The last expectation can be expanded to:

V π(s) =
∑
a∈A

π(a|s)

(
R(s, a) + γ

∑
s′∈S

p(s′|s, a)V π(s′)

)
(5)

Similarly, the Bellman equation of the state-action value function can be written as:

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

p(s′|s, a)
∑
a′∈A

π(a′|s′)Qπ(s′, a′) (6)

Bellman equations form the problem of RL in a recursive manner. They tell us that the value
of the current state is equal to the immediate reward added to the value of the following state.

The recursion starts from a state s and goes through all possible successor states. It then
backups the information to state s averaged according to the model dynamics. Since MDPs

5

Reinforcement Learning

are stochastic, the environment dynamics p control the uncertainty of the model. For example,
in Fig. 1 we see that if we take action a1 from state s, there is a 0.6 chance to end up in state
s′1 and 0.4 chance to end up in s′2. Similarly, if we take action a2, there is a 0.8 chance to end
up in s′3 and 0.2 to end up in s′4. Due to the environment dynamics, the same action can yield
different states.

Figure 1: Showcase of the environment dynamics.

For a policy π to be better than a policy π′, its expected return for every state needs to be
greater or equal than that of policy π′. Therefore, for an optimal policy π∗, we have:

V π∗(s) = max
π

V π(s) (7)

Qπ∗(s, a) = max
π

Qπ(s, a) (8)

With V π∗ we know the best expected return starting from a state. With Qπ∗, we know the
best expected return, and which action yields it. Therefore, an MDP is considered solved once
we have an optimal action-value function. Thereafter, we can find an optimal policy π∗ by
maximizing over Qπ∗.

The Bellman equations for the optimal value functions can be written in a way that maximize
the reward, rather than averaging it. Since the optimal policy that is being followed is greedy,
it always chooses the action that maximizes the value. This form of Bellman equation is called
Bellman Optimality equation. The Bellman Optimality equation for the state-value function
is given as:

V π∗(s) = max
a
R(s, a) + γ

∑
s′∈S

p(s′|s, a)V π∗(s′) (9)

Similarly, the Bellman Optimality equation for the action-value function is given as:

Qπ∗(s, a) = R(s, a) + γ
∑
s′∈S

p(s′|s, a) max
a′

Qπ∗(s′, a′) (10)

where a′ denotes the available actions that can be taken from a state s′.

The Bellman Optimality equations form a system that can be solved in order to find the
optimal value functions. Eq. 9 and 10 can be solved if we know the model dynamics. For
this thesis, we consider model-free RL methods, in which the model dynamics is unknown
and we estimate the value functions using experience collected from the policy at the agent-
environment interaction. Methods that attempt to estimate the model dynamics are called
model-based methods, but they are beyond the scope of this thesis.

6

Reinforcement Learning

2.5 Model-free Methods

Model-free RL methods use sampling techniques in order to estimate the value functions. They
assume that the transition probability of the model dynamics is not known. Estimating the
value functions can be achieved using Monte-Carlo (MC) learning and Temporal-Difference
(TD) learning.

MC methods estimate value functions from collected experience. Assuming the episodes can
reach a terminal state within a finite time-step horizon T , we can estimate the state-value
function for a state st by sampling trajectories τ following our policy until we hit a terminal
state sT . We can use the sampled cumulative rewards Rt to estimate the state-value function.
This way, the expectation in Eq. 2 can be rewritten as:

V (st) =
1

c

N∑
i=1

R
(i)
t (11)

where c =
∑N

i=1 1{st ∈ τ (i)} is the number of trajectories that include st, N is the number

of sampled trajectories and R
(i)
t denotes the total discounted reward starting from state st at

trajectory i. We can use Eq. 11 on every state that appears in the sampled episodes to find
their corresponding estimated state-value approximation.

By the law of large numbers, the estimated value function can reach the expectation of the
real one, given that N → ∞. This method is the first-visit Monte-Carlo evaluation, where c
only counts the first state appearance in each episode. A similar MC method to the first-visit
one is the every-visit Monte-Carlo evaluation, where c counts every state appearance in a
trajectory, rather than the first one. Another approach is the incremental MC method, which
updates the value function on-line using the following update rule:

V (st) = V (st) + α(Rt − V (st)) (12)

where α is a step size parameter (learning rate). In this method, V (st) is updated by getting
closer to the error between the true observed cumulative reward and the estimation. We refer to
the value inside the error calculation that comes before the subtraction of the value estimation
as the target value.

TD learning methods learn from episode experience as well, with the advantage that they
don’t require an episode to reach a terminal state in order to estimate the value function.
They estimate the state-value function online, as the episode progresses. In contrast with MC
methods, in TD learning we can estimate the future cumulative reward, rather than observing
it, making TD learning methods applicable to continuing (non-episodic) tasks. The simplest
TD method, TD(0), updates the state-value function as follows:

V (st) = V (st) + α(rt+1 + γV (st+1)− V (st)) (13)

For every step taken in the environment, we calculate the TD-error inside the parentheses. This
error measures the difference of the state-value function before and after taking a step. For the
estimation of the reward after taking a step (target value), we use the immediate reward given
by the environment after taking an action and estimate the rest of the future return starting
from the following state st+1. For the estimation of the reward before taking a step, we use
the state-value of the initial state st. The TD-error returns a direction in which the state-value

7

Reinforcement Learning

estimator can move in order to improve. The value function gets updated by moving towards
the error with a step size of α. The algorithm SARSA (Rummery and Niranjan, 1994) is an
on-policy TD algorithm that extends the idea of TD(0) to estimate an action-value function.
The action-value function updates as follows:

Q(st, at) = Q(st, at) + α(rt+1 + γQ(st+1, at+1)−Q(st, at)) (14)

where all actions a are generated by the current policy. The algorithm Q-learning is an off-
policy version of TD(0), where in the target value, the action that maximizes the action-value
of the next state is chosen. Following is the update equation of Q-learning :

Q(st, at) = Q(st, at) + α(rt+1 + γmax
a
Q(st+1, a)−Q(st, at)) (15)

where at is generated from the behavioural policy and a is a greedy action that maximizes the
action-value for state st+1 (see Section 2.8 for the distinction between off-policy and on-policy
methods).

TD methods have laid the foundation for the majority of the state of the art RL algorithms.
Those methods include Deep Deterministic Policy Gradients (DDPG) (Lillicrap et al., 2015)
and Proximal Policy Optimization (PPO) (Schulman et al., 2017), both of which are imple-
mented for this thesis.

TD(0) takes one step in the environment in order to get the following immediate reward. This
method can be extended to n-steps. For n-step TD, Eq. 13 becomes:

V (st) = V (st) + α(R
(n)
t − V (st)) (16)

where R
(n)
t = rt+1 + γrt+2 + ... + γn−1rt+n + γnV (st+n) is the n-step target. Depending on

the problem we are trying to solve and the environment, the ideal value of n may vary.

2.6 Variance and Bias Trade-off

Both variance and bias appear in RL methods when we want to estimate value functions and
they both affect the estimators negatively. Methods that attempt to minimize both include
IPG (Gu et al., 2017), P3O (Fakoor et al., 2020) among others. We use our own variant of
IPG for this thesis in order to address this issue as well.

In Machine Learning, a high variance indicates over-fitting, meaning that the estimators are
optimized heavily around the data which leads to bad generalization. A high bias indicates
under-fitting, meaning that the estimations are poor due to the fact that the model failed to
find enough patterns in the data.

In RL, high variance comes from MC methods. Due to the environment and policy stochasticity,
sampled trajectories have noisy rewards, which leads to noisy value estimations. The advantage
of MC methods is that they are completely unbiased. By definition, the bias is defined as the
expectation of the estimator minus the true value. In MC methods, the expectation of the
estimator is Rt which is equal to the true value of V π, therefore the bias is zero.

TD-learning approaches have lower variance due to the fact that only the immediate reward is
considered for the update (i.e TD(0) in Eq. 13) rather than the whole trajectory. Because of
bootstrapping, at the start of training the estimator is far from the true state-value, therefore

8

Reinforcement Learning

it’s biased. As training progresses, the bias decreases. The n-step TD method in Eq. 16
can directly interpolate between variance and bias depending on the value of the steps. As
n becomes larger, we get closer to the MC method, therefore the bias decreases and the
variance increases. As n becomes smaller, we get closer to the TD(0) method, therefore the
bias increases and the variance decreases.

2.7 Exploration and Exploitation

Both MC and TD methods follow the principle of the Dynamic Programming approach Gener-
alized Policy Iteration (GPI). This method consists of computing the state-value function fol-
lowing a policy π (policy-evaluation), and then act greedily by choosing actions that maximize
the current state-value (policy-improvement). When policy-evaluation and policy-improvement
interact in sequence, we can eventually find an optimal value function and policy.

Exploration refers to the process of introducing randomness (noise) during action selection in
order to get new values for different actions. Exploitation refers to the process of selecting the
best actions so far. In order to estimate an optimal action-value function Q∗ in the process of
policy-evaluation, we need to maintain exploration for the policies, such that all actions have
a probability to get chosen, not just the best ones. Exploration strategies can be implemented
on both stochastic and deterministic policies. Stochastic policies maintain exploration through
their stochastic probability distribution, where sampling from that distribution introduces some
noise by default. Deterministic policies require external methods to achieve this. A very com-
mon strategy is the ε-greedy. It assigns a probability of ε to non-greedy actions, and 1 − ε
to deterministic actions. A variant of this method starts by assigning a high value to ε which
results to more exploration and as training progresses, the ε value slowly decreases, making
the actions more probable to be greedy, resulting into exploitation.

2.8 On-policy and Off-policy methods

The field of RL includes two approaches: on-policy and off-policy methods. Each approach has
its advantages and disadvantages.

On-policy methods update the same policy that is used to collect data and make decisions.
They use stochastic policies, such that π(a|s) > 0,∀s ∈ S,∀a ∈ A. Stochastic policies by
default are more exploratory in the beginning of their training, but become less random as
training progresses.

Off-policy methods collect data using a behavioural policy β and evaluate a target policy
π in order to estimate the value functions. Both policies are usually deterministic, with the
exception that the behavioural policy uses an exploration strategy to make decisions.

On-policy approaches are n-step methods, therefore by definition they have high variance and
low bias. While they are sample inefficient, they usually result into stable learning and are easy
to implement. Off-policy methods are 1-step methods, where they update the action-value
function by acting greedily on the next state (see Section 4.3), therefore they suffer from
high bias. Most state-of-the-art off-policy methods reuse old data, which makes them sample
efficient. Regardless, due to the high bias, off-policy methods are less stable in comparison to
on-policy algorithms and are more difficult to implement.

9

Reinforcement Learning

In this thesis we present a hybrid RL method that combines both on-policy and off-policy
updates in order to gain the advantages of both approaches (see Section 5.2).

2.9 Importance Sampling

In off-policy TD methods, the update equation estimates according to an action taken under
a behavioural policy, but updates the value function of the target policy. This can lead to bad
value estimations if the behavioral policy and the target policy differ by a large factor. Actions
taken under β need to be similar to actions that would have been taken under π for successful
estimations. A mechanism for dealing with this issue is the Importance Sampling (IS).

IS is a general technique in statistics where one can estimate the expected value of samples of
some distribution, using samples from a different distribution. In Eq. 17 we derive the expected
value of sampling from a distribution p using distribution q.

EX∼p[f(X)] =
∑

p(X)f(X)

=
∑

q(X)
p(X)

q(X)
f(X)

= EX∼q
[
p(X)

q(X)
f(X)

] (17)

We start by opening the expectation of distribution p, multiply and divide q with p and then
form the expectation over q. This leaves us with the final expectation, where the value of
f(X) is multiplied with a ratio in order to match the expected value of distribution p while
sampling from q. This ratio is called the importance sampling ratio.

The same can be applied to RL policies. We can correct the estimation of taking an action
under a different policy by weighting the TD target with the importance sampling ratio of the
policies. To correct the off-policy version of TD updates in Eq.13, we can multiply the target
in the brackets with the IS ratio. For the 1-step version of TD, Eq.13 becomes:

V (st) = V (st) + α

[
π(at|st)
β(at|st)

(rt+1 + γV (st+1))− V (st)

]
(18)

State of the art off-policy algorithms, such as DQN (Mnih et al., 2013), DDPG (Lillicrap
et al., 2015) and TD3 (Fujimoto et al., 2018) don’t require IS. They are successors of the Q-
learning algorithm (Watkins and Dayan, 1992), which uses actions from both the behavioural
and target policy in order to update its action-value function. Nevertheless, the majority of
the state of the art on-policy algorithms, such as TRPO (Schulman et al., 2015) and PPO
(Schulman et al., 2017), utilize IS in order to re-use the collected data for multiple policy
updates, saving time and computational power as they become more sample efficient.

2.10 Policy Gradients

Policy gradient (PG) methods utilize parametarized models of a policy, with parameters θ.
Using gradient ascent, the parameters of the model change in order to maximize the ob-
jective function. The objective function is formed as the expected reward of the policy πθ

10

Reinforcement Learning

(Lilian Weng, blog):

J(θ) = Eπθ [V
π] =

∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s, a) (19)

where dπ(.) is the stationary distribution of the Markov chain (MC) under πθ. The stationary
distribution dπ(s) = P (s = st|s0, πθ) belongs to the model dynamics, and it tells us the
probability of reaching state st given that we started from state s0 and followed the policy
with parameters θ. We take the gradient of the objective function ∇θJ(θ) in order to find
towards which direction the parameters θ should move in order to maximize the objective.

We can get rid of the environment dynamics in Eq. 19 by applying the likelihood-ratio trick.
Using the identity ∇f = f∇ log f , we can formulate ∇J(θ) as follows:

∇J(θ) =
∑
s∈S

dπ(s)
∑
a∈A

∇θπθ(a|s)Qπ(s, a)

=
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)∇θ log πθ(s|a)Qπ(s, a)

= Eπθ [Q
π(s, a)∇θ log πθ(a|s)]

(20)

We start by opening the expectation in Eq. 19 and take the gradient with respect to θ. In Eq.
20, we use the identity we mentioned which allows us to include two policies, one whose log
probabilities is multiplied with the gradients and one unaffected. This allows us to form the
expectation again, which gives us a model-free solution where we can calculate the derivatives
of the objective function by sampling and observing rewards.

2.11 Actor-Critic Methods

Actor-critic methods combine policy and value function approximators. Depending on the
algorithm, the critic is either a state-value function Vw(s) or an action-value function Qw(s, a)
with parameters w. The actor is a policy πθ with parameters θ. The policy parameters update
towards the direction suggested by the critic the same way as the final expectation in Eq.
20, but instead of a real value function, an approximator is used. Actor-critic is a general
framework which is widely adapted by many state-of-the-art RL algorithms.

Policy gradients by default (Eq. 20) introduce variance due to noisy rewards and value estima-
tions. Many actor-critic approaches, such as Advantage Actor Critic (A2C, on-policy variant
of Mnih et al. (2016)) utilize a baseline in order to reduce the variance. A baseline is sub-
tracted from the cumulative reward or the value estimation which scales down the estimation,
resulting into smaller policy gradient updates. The most common baseline used in on-policy
actor-critic methods is a pamateterized state-value function. The result of the subtraction is
the advantage function, denoted with A(., .). In this case, we update the policy parameters as
follows:

∇J(θ) = Eπθ [A(s, a)∇ log πθ(a|s)] (21)

where A(s, a) = Qw(s, a)−Vu(s). We can avoid using two critics for the advantage function,
by calculating the action-values using the state-value network. Q(st, at) can be re-written as
the immediate reward of taking action at added to the state-value of the following state. The
advantage function then becomes: A(st, at) = rt + Vu(st+1)− Vu(st). More recent on-policy
actor-critic approaches such as TRPO (Schulman et al., 2015) and PPO (Schulman et al.,

11

Reinforcement Learning

2017) use an estimator for the advantage function. Other examples of actor-critic methods
include off-policy approaches, such as DDPG (Lillicrap et al., 2015). DDPG is a 1-step method,
therefore it doesn’t utilize a baseline as it already has a low variance. Instead, it uses a critic
that directly provides the gradient directions to the policy (see Eq. 29).

2.12 Goal-Conditioned Reinforcement Learning

The second part of our thesis focuses on goal-conditioned RL, where we combine our main
hybrid RL method with an approach for goal-based environments called Hindsight Experience
Replay (HER) Andrychowicz et al. (2017).

Goal-conditioned RL refers to the RL problem where the agent’s task is to reach a goal state
within a limited time-step horizon. Early work on this problem was done by Kaelbling (1993)
and Kaelbling (1993). Both of these works replace the classic value functions in RL with a
cost value function D(s, a, g), that corresponds to the cost of reaching a goal state g from
a state s after taking action a and following the policy thereafter. Kaelbling (1993) uses an
approach similar to Q-learning (Watkins and Dayan, 1992), where the action-value function
is replaced with the state-to-goal cost function. In this case, D(s, a, g) corresponds to the
expected number of steps needed to reach state g from state s after taking an action a. In
contrast with Q-learning, they update the value function by choosing actions that minimize
it. Kaelbling (1993) is an extension of the former paper, where they construct a connectivity
graph between all possible landmarks. Given a state s and a goal-state g, the algorithm starts
by finding the nearest landmark to s and the nearest landmark to g. If those landmarks match,
the policy performs the best local action a to get to goal g, where a = minaD(s, a, g). If
the landmarks do not match, their method finds the second closest landmark to s and g. This
process repeats until the closest landmarks of s and g match.

For this thesis, we consider the same components of goal-conditioned RL as in most recent
work in the field (Andrychowicz et al., 2017; Fang et al., 2019; Florensa et al., 2017; Held
et al., 2018; Schaul et al., 2015). We denote the goal-space with G, which includes valid goals
g in (x, y) or (x, y, z) positions. We use the binary reward function in Eq. 22, where δ is a
distance threshold and d(., .) denotes the distance between the goal g and the agent’s current
position p.

R(s, g, a) =

{
0, if d(p, g) ≤ δ

−1, otherwise
(22)

A binary reward function indicates that the RL task is under a sparse-reward setting, where a
learning signal is rarely achieved.

2.12.1 Sparse-Reward Problem

In RL, sparse reward settings are difficult to solve, due to the fact that most of the time the
reward is negative, retrieving no learning signal for the agent to learn. In the goal-conditioned
setting, the reward is positive only when the goal is reached, and negative otherwise (see Eq.
22). In complex goal-based environments, reaching a desired goal-state by accident is highly
unlikely. Typical RL approaches can’t work without enhancements. For this thesis, we combine
Hindsight Experience Replay (HER) (Andrychowicz et al., 2017), a method that addresses the
sparse reward problem, with our PPGI approach.

12

Deep Learning

2.12.2 Universal Value Function Approximators

Schaul et al. (2015) introduce the Universal Value Function Approximators (UVFAs). They
suggest three approaches where the parametarized value functions can be trained such that
they generalize among unseen goals as well, rather than only states. We use the more general
and most commonly used approach, where the states s ∈ S and goals g ∈ G are concatenated
together, forming higher dimensional observations, resulting into value functions V (s, g) and
Q(s, g, a).

3 Deep Learning

The field of Deep Reinforcement Learning combines RL methods with Deep Learning ap-
proaches, leading to policies that are able to perform on complex environments and high
dimensional observations. Our method combines the algorithms Proximal Policy Optimization
(PPO) (Schulman et al., 2017) and Deep Deterministic Policy Gradients (DDPG) (Lillicrap
et al., 2015), both of which belong to the Deep RL field. In this section, we introduce a basic
neural network architecture so the reader can better understand the following section regarding
Deep RL.

Deep Learning (DL) methods model black-box differentiable functions in the form of multi-
layer Neural Networks (NN). Neural Network architectures are considered deep when they have
at least 3 layers. Deep Neural Networks (DNN) have achieved state-of-the-art results in the
fields of image recognition (Krizhevsky et al., 2012), speech generation (Oord et al., 2016),
image generation (Bau et al., 2020) among others. They are able to extract complex patterns
and features from the data which leads to great performance.

3.1 Perceptron

Neural Networks, inspired by the functionality of the human brain, are used for complex ML
tasks. They consist of artificial neurons which are represented by computational nodes. These
nodes are mathematical operators that compute the weighted sum of the input features x,
add a bias term and output the result. Each input feature is weighted in accordance to its
corresponding weight w.

The simplest NN type is a single-node NN called perceptron (Rosenblatt, 1958), used for
binary classification problems. Illustrated in Fig. 2, the perceptron takes a vector of values
x as input, calculates the weighted average of each input according to its weight w, adds a
bias term b, passes the result to an activation function f and outputs the result o, where
f : x 7→ [−1, 1] (Eq. 24) and o = f(

∑
iwixi + b). The prediction can then be y1 if o ≤ 0

and y2 if o ≥ 0 . Once we have the prediction of the model, we calculate the error e = d− y,
where d is the true label of x and y is the predicted one. The weights can then be updated
with: w = w + αex. This optimization process repeats multiple times until convergence to
the optimal weights. The update rule for the perceptron is derived from the Gradient Descent
(GD) algorithm (Goodfellow et al., 2016).

13

Deep Reinforcement Learning

x2 w2 Σ f

Activate
function

o

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 2: Illustration of the perceptron.

3.2 Activation Functions

Neural networks are extended versions of previous linear ML models such as logistic regression.
They perform more computations and utilize different activation functions in order to learn
complex, non-linear patterns. The most common activation functions include: the Sigmoid
(Eq. 23), the Hyperbolic Tangent Activation Function (Eq. 24) and Rectified Linear Unit (Eq.
25),

sigmoid(z) =
1

1 + e−z
(23)

tanh(z) =
ez − e−z

ez + e−z
(24)

ReLU(z) = max(0, z) (25)

where z is the weighted average of the network’s input (see Section 3.1), sigmoid : z 7→ [0, 1],
tanh : z 7→ [−1, 1] and ReLU 7→ {0, z}. Depending on the task that needs to be solved, the
appropriate activation function can be chosen.

3.3 Multi-layer Perceptron

Multi-layer Perceptron (MLP) is the extension of the perceptron, where between the input and
output there exists at least one hidden layer, performing more computations on the data. As
shown in Fig. 3, the output of each layer is passed as an input to the neurons of the following
layer, getting filtered through more activation functions and multiplied with more weights.
Similar to the perceptron, an error function is used in order to update the weights after one
forward pass. MLPs are commonly used to model RL policies and value functions due to their
ability of extracting useful information from complex data.

4 Deep Reinforcement Learning

RL has its limitations when in comes to high dimensional state representations. In such cases,
we need to model value functions and policies that are able to generalize among similar states.
This can be achieved by combining deep learning with RL. This section includes two state-of-
the-art Deep RL algorithms, PPO and DDPG (Schulman et al., 2017; Lillicrap et al., 2015),
which we combine to create our own variant of the Interpolated Policy Gradients method

14

Deep Reinforcement Learning

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Output 1

Output 2

Figure 3: Illustration of a simple Multi-layer Perceptron with 1 hidden layer.

(Gu et al., 2017) in Section 5.2, and their predecessors that laid the foundation for such
advancements.

4.1 Function Approximation

Function approximation is a Machine Learning (ML) method in the field of Supervised Learning
(SL), in which a function can be estimated using domain data. Neural networks are a type of
function approximators. Given domain data (e.g. images of dogs, cats and their corresponding
labels), we can train a neural network into a mapping function f , that maps an input image i
from the image space I to a label f : I 7→ {cat, dog}. Function approximators can generalize
well with previously unseen observations, given that they are trained with enough data. Similar
to SL, in RL we can model value functions and policy estimators with neural networks and
optimize them.

4.2 Modeling Policies for Continuous Tasks

We consider stochastic policies for continuous action spaces (Sutton and Barto, 2018). A policy
can be a model parametarized by θ that outputs the parameters of a Gaussian distribution,
the mean (µ) and the standard deviation (σ), such that:

πθ(a|s) = N(µθ(s), σθ(s)) (26)

Afterwards, an action can be sampled from that distribution given a state s, a ∼ N(µθ(s), σθ(s)).
In this case, some exploration is already provided since the mean of the distribution acts as
the deterministic action and the standard deviation acts as the exploration. Sampling from the
distribution already provides noise given by σ.

For this thesis, we use a variant of a Gaussian policy, where only µθ is parametarized and σ
is a constant. We model the policy using a 2-layer MLP with a Tanh activation function (Eq.
24).

4.3 Deep Q Network

Deep Q Network (DQN) (Mnih et al., 2013) is an extension of the RL algorithm called Q-
learning (Watkins and Dayan, 1992). Q-learning is an off-policy TD learning method that

15

Deep Reinforcement Learning

approximates the action-value function (Eq. 15). Q-learning is off-policy because it uses the
greedy action of the next state to update its Q values, while SARSA (Eq. 14) uses the same
policy to collect data and update.

Mnih et al. (2013) apply deep learning techniques with Q-learning that result to the Deep Q
Network method (DQN). Specifically, they use down-sampled and cropped raw pixel represen-
tations of Atari games as state inputs. Since the state is an image representation, they model
the action-value function with a convolutional neural network (Goodfellow et al., 2016). In
addition, they use an experience replay buffer, first introduced by Lin (1992). Each transi-
tion (s, a, r, s′) is stored in the replay buffer, where s′ is the following state after s. During
training, a mini-batch of transitions {sj, aj, rj, s′j}Nj=0 of size N is sampled at random. They
optimize the action-value model by minimizing the mean squared TD-error using the sampled
mini-batch:

Lw =
1

N

N∑
j=0

(yj −Qw(sj, aj))
2 (27)

where yj = rj + γmaxaQw′(s′j, a). To increase stability, when calculating the TD target (yj),
a past snapshot w′ of the parameters of the network is used, also called target network. DQN
was the first method to achieve decent performance in 5 Atari games and outperform humans
in 2 Atari games.

4.4 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradients (DDPG) (Lillicrap et al., 2015) is an off-policy actor-critic
method that combines techniques used for DQN and Deterministic Policy Gradients (DPG)
(Silver et al., 2014). DPG introduces deterministic policies to the actor-critic framework for
both on-policy and off-policy in continuous action space tasks. For the off-policy part of
DPG, rather than using a stochastic policy π(a|s), they use a deterministic policy π(s) and a
stochastic behavioural policy β(a|s). Starting from the policy improvement part in GPI, they
update the policy’s weights using gradient descent steps, rather than a greedy maximization
over Q:

θk+1 = θk + αEs∼ρβ
[
∇θQ

πk(s, πθ(s))
]

= θk + αEs∼ρβ
[
∇θπθ(s)∇aQ

πk(s, a)|a=πθ(s)
] (28)

where ρβ is the state distribution of the behavioural policy. The final expectation of Eq. 28
is derived by applying the chain rule. Following, they extend this method to the actor-critic
framework by replacing the true action-value function Qπ with an approximator Qw that gets
optimized with Q-learning updates.

DDPG is a combination of the DPG method and the DQN algorithm, such that it works
on continuous action spaces. It combines the deterministic off-policy actor-critic method of
DPG with the replay buffer and target network of DQN. Both the actor and the critic models
are represented by two separate MLPs. The actor is a deterministic policy that maps states
to specific actions. To maintain exploration, data is collected using a behavioural policy β,
where β(s) = π(s) + N and N is an exploration strategy. At each time-step, a transition
(s, a, r, s′) is stored in the replay buffer B. Following, a mini-batch {sj, aj, rj, s′j}Nj=0 of N
transitions is sampled from B and the critic is updated by minimizing the loss in Eq. 27, where

16

Deep Reinforcement Learning

yj = rj + γQw′(s′j, πθ′(s
′
j)) and θ′ denotes the target policy’s parameters. The actor weights

update similar to Eq. 28 as follows:

∇θJ(θ) =
1

N

N∑
j=0

[
∇θπθ(s)∇aQw(s, a)|s=sj ,a=πθ(s)

]
(29)

In contrast with DQN where the target network is just a snapshot of the previous parameters,
in DDPG the target networks update as follows:

w′ = %w′ + (1− %)w

θ′ = %θ′ + (1− %)θ
(30)

where % ∈ [0, 1] is the polyak parameter.

4.5 Trust Region Policy Optimization

Trust Region Policy Optimization (Schulman et al., 2015) is the predecessor of PPO. It in-
troduces an actor-critic method that uses trust region updates with policy gradients, rather
than line search updates. Gradient descent falls into the line search updates category. Such
methods start by finding the steepest direction that maximize the objective function and take
a small step α toward that direction. Trust region methods set a step-size δ and create a circle
region around the current parameters, with radius δ. This circle (trust region) is treated as
a sub-problem of the original objective function and is solved independently. Following, the
optimal point within that trust region is located. This new local optimal point, acts as the
center of the next trust region. This process repeats until convergence.

The intuition of trust region updates on on-policy methods is that we can get better policy
updates by locating an optimal point within a region, rather than a step towards one direction.
The latter can potentially perform a large step that ends up in an inefficient parameter space
area and never recover. To approximate the original objective function locally, a quadratic
model is used, which is obtained using the Taylor expansion up to the second derivative.

TRPO solves the following constrained problem per iteration:

max
θ

Es∼ρπθk ,a∼πθk

[
πθ(a|s)
πθk(a|s)

Âθk(s, a)

]
s.t Es∼ρπθk [DKL(πθk(.|s), πθ(.|s))] ≤ δ

(31)

where DKL is the KL-divergence, δ is the maximum radius of the region and Â is the Gen-
eralized Advantage Estimation (GAE) (Schulman et al., 2015). The KL-divergence measures
the difference between two policies, therefore the trust region includes policies that are within
a divergence of δ from the current policy πθk .

GAE uses a value function estimator Vu in order to estimate the advantage function in Eq. 21.
After the policy update in Eq. 31, the value function updates using the mean squared error as
follows:

Lu =
1

ET

E∑
e=0

T∑
t=0

(Vu(st)− γtRt)
2 (32)

17

Deep Reinforcement Learning

where E is the total number of trajectories (episodes) in a batch, Vu(st) is the predicted return
from time-step t in a trajectory and Rt is the observed return from a time-step t.

4.6 Proximal Policy Optimization

Proximal Policy Optimization (PPO) (Schulman et al., 2017) is the successor of TRPO. TRPO
requires calculations of second derivatives to solve the constraint problem in Eq. 31 through
Taylor expansion, which is computationally expensive and doesn’t scale well as the network
parameters become larger. PPO addresses this issue by adding soft constraints on the update
method, leading into a first order derivative solution that can be solved with line search
methods.

PPO with the clipped objective performs multiple policy updates per training iteration. Since
the batch data is collected from the policy before the updates, the importance sampling ratio
is used in order to correct the advantage estimation after each iteration. The objective function
of PPO with the clipped objective is given as:

JCLIP (θ) = E[min(r(θ)Âθk(s, a), clip(r(θ), 1− e, 1 + e)Âθk(s, a))] (33)

where r(θ) = πθ(a|s)/πθk(a|s) is the importance sampling ratio. r(θ)Âθk is essentially the
objective function of TRPO in Eq. 31. To avoid large policy updates, PPO uses a constraint
on the IS ratio to guarantee that it stays within the interval [1 − e, 1 + e] by clipping it if it
exceeds 1 + e or if it falls below 1 − e. Following, the objective function keeps the minimum
value between the clipped objective and the normal one. This process has a similar effect as
TRPO by avoiding large policy updates, which results into a method that can be optimized
with line-search methods, making PPO more efficient than TRPO.

4.7 Interpolated Policy Gradients

Interpolated Policy Gradients (IPG) (Gu et al., 2017) is a hybrid RL algorithm that com-
bines the TRPO and DDPG methods in order to interpolate between on-policy and off-policy
updates. The intuition behind this method is to combine the advantages of both on-policy
and off-policy approaches, such as the low variance of off-policy methods and the low bias of
on-policy methods.

The following update rule is applied in IPG:

∇θJ(θ) = (1− ν)Eρπθ [∇θ log πθ(a|s)Âθ(s, a)] + νEρη [∇θQw(s, µθ(s))] (34)

where ν is the interpolation parameter and µθ(.) is the mean of the Gaussian distribution that
πθ outputs for a state s. The parameter η in the right hand side of Eq. 34 indicates the replay
buffer sampling method for Qw, which includes random or recent transitions.

To further reduce the variance of the estimator, a control variate (CV) (Ross, 2006) can be
applied on the policy gradient term that has a similar effect as a baseline. With the CV, the
update rule becomes:

∇θJ(θ) = (1− ν)Eρπθ [∇θ log πθ(a|s)(Âθ(s, a)− Aw(s, a))] + Eρη [∇θQw(s, µθ(s))] (35)

where Aw(s, a) = Qw(s, a)− Q̄w(s, a) and Q̄w(s, a) is the CV. The authors of IPG apply the
CV that is used in the Q-Prop method (Gu et al., 2016), where Q̄w(s, a) is the first-order
Taylor expansion of the off-policy critic.

18

Method

The idea behind the control variate from Gu et al. (2016) comes from the observation that
an off-policy critic is biased with low variance, therefore it can be used as a type of CV to the
policy gradient term. In a policy gradient setting with a Monte Carlo action-value estimator
(i.e estimator of Qπ in Eq. 20), only Aw(s, a) can be used as the advantage function in Eq.
35, instead of the subtraction term in the parentheses (i.e Q̄w(s, a) would act as a baseline).
According to Gu et al. (2016), the reason the update rule takes the form in Eq. 35 is because
we want to use an advantage function estimator, therefore the update rule needs to be written
in terms of advantages.

IPG updates the actor using trust region updates, therefore the left hand side of Eq. 34 uses
the constraint problem in Eq. 31. The off-policy critic Qw is trained the same way as DDPG.

5 Method

So far we have covered the preliminaries required for understanding the components of this
research project. In this section we move to the methodology, where we introduce our contri-
bution for the main topic of research. We cover our own variant of the IPG hybrid algorithm
which we call PPGI and afterwards we cover our implementation of HER on the off-policy part
of our approach.

5.1 Hindsight Experience Replay

Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) is an experience replay en-
hancement for sparse-reward settings in goal-conditioned RL. Since it requires a replay buffer
to work, HER is implemented with off-policy methods, such as DQN (Mnih et al., 2013) and
DDPG (Lillicrap et al., 2015). This method is inspired by the human capability of learning
from undesired outcomes. If an unwanted goal is reached within the environment, HER treats
it as a desired one, yielding a positive reward. This populates the replay buffer with transitions
of achieved goals and their corresponding rewards.

The augmentation part of the HER method is presented in Algorithm 1. Andrychowicz et al.
(2017) use several strategies for achieved-goal selection. We use the strategy called future.
After the episode simulation, each original transition is stored in the replay buffer, as well as
K duplicates of this transition with different future achieved goals and their corresponding
rewards.

5.2 Proximal Policy Gradient Interpolation

Proximal Policy Gradient Interpolation (PPGI) is our own version of IPG. We replace the trust
region updates in Eq. 34 with line search updates. Specifically, we use the PPO update rule
to achieve this (see Section 4.6), which yields the following update rule for PPGI:

∇θJ(θ) = (1− ν)Eρπθ [∇θ min(r(θ)Âθk(s, a), clip(r(θ), 1− e, 1 + e)Âθk(s, a))]

+ νEρη [∇θQw(s, µθ(s))]
(36)

In contrast with the IPG method where it uses the control variate from Gu et al. (2016), we
use the CV mentioned in the Appendix of Gu et al. (2017). For our CV, given a Gaussian MLP

19

Method

Algorithm 1: Hindsight Experience Replay with future strategy

Input : Policy πθ, buffer B
1 E 7→ total number of episodes
2 T 7→ time-step horizon
3 K 7→ Number of future goals to choose
4 for 0 to E do
5 Sample a goal g.
6 τ = ∅ 7→ temporarily trajectory
7 for t=0 to T do
8 Sample action at ∼ πθ(a|st, g)
9 Execute at and observe st+1, rt|g.

10 τ =τ ∩ (st, at, rt|g, st+1, g)

11 end
12 B = B ∩ τ
13 for t=0 to T do
14 for k=0 to K do
15 Choose random achieved goal g(k) from τ that occurred after t.

16 Calculate new reward rt|g(k)
17 B = B ∩ (st, at, rt|g(k), st+1, g

(k))

18 end

19 end

20 end

policy, we have:
Q̄w(s, a) = Ee∼N(0,1)[Qw(s, µθ(s) + eσ)] (37)

where Q̄w(s, a) is subtracted from the critic Qw(s, a) and the result is subtracted from the
advantage function estimation on the left hand side of Eq. 36, the same way as Eq. 35. We
choose this CV because it doesn’t require the use of Taylor expansion in contrast with the CV
in Gu et al. (2016), which is computationally expensive as it requires the calculation of second
derivatives.

The whole process of PPGI is shown in Algorithm 2. We start by collecting a batch of data
using the current policy and appending it in the replay buffer. After the data collection, we
fit the off-policy critic for multiple training iterations using the replay buffer and update the
target networks. Afterwards, we compute the GAE values using the batch data and the on-
policy critic, and set these values as learning signals. In case of the CV usage, we instead
set the learning signals by calculating the critic-based estimate, subtracting it from the GAE
values and setting ν = 1 for the off-policy update (b value in line 16), the same way as the IPG
method. During the policy update, we sample new transitions from the replay buffer according
to η for the off-policy part of the update and use the batch data for the on-policy part of the
update. Finally, we fit the on-policy critic for multiple training iterations.

5.2.1 PPGI with ν = 1

In the extreme cases of ν, where ν ∈ {0, 1} we have either completely on-policy or completely
off-policy updates. While ν = 0 is the exact PPO method, ν = 1 is not the exact DDPG. ν = 1

20

Method

Algorithm 2: Proximal Policy Gradient Interpolation

Input: ν, η, useCV ,where useCV is a Boolean
1 Initialize:

Off-policy critic Qw, target network Qw′ , on-policy critic Vu, stochastic policy πθ
(we denote the expected action of πθ with µθ) and replay buffer B = ∅

2 epochs 7→ total epochs
3 E 7→ episodes per epoch
4 T 7→ time-step horizon
5 N 7→ off-policy batch size
6 M 7→ off-policy batch size for the policy update
7 for 0 to epochs do
8 Collect batch data D = {τe}Ee=0 where τ = {st, at, rt, s′t}Tt=0 using current

policy πθk
9 B = B ∪D

10 Fit off-policy critic Qw using B:
Sample {sj, aj, rj, s′j}Nj=0 ∼ B
Compute yj = rj + γQw′(s′j, µθk(s

′
j)) and update w according to Eq. 27.

11 Update target w′ ← %w′ + (1− %)w, where % is the polyak parameter

12 Compute Âθk using D and Vu.
13 if useCV then
14 Compute Q̄w using Eq. 37
15 Compute critic-based estimate Aw = Qw − Q̄w

16 Set learning signals l = Âθk − Aw, and b = 1

17 else

18 Set learning signals l = Âθk and b = ν
19 end
20 Sample {sj, aj, rj, s′j}Mj=0 from B according to η

21 Update the policy parameters for multiple iterations using Eq. 36:

∇θJ(θ) = (1−ν)
ET

E∑
e=0

T∑
t=0

∇θ min
(
πθ(at|st)
πθk (at|st)

l, clip
(
πθ(at|st)
πθk (at|st)

, 1− e, 1 + e
)
l
)

+ b
M

M∑
j=1

∇θQw(sj, µθ(sj))

22 Fit on-policy critic Vu using D according to Eq. 32.

23 end

is a variant of DDPG, where instead of a deterministic policy and an exploration strategy, we
only use a stochastic policy. In addition, the original DDPG method updates the critic and
the actor one time after each time-step is performed. In our variant, we first collect a batch
of data, then update the critic for many iterations and afterwards update the actor for many
iterations as well. An important hyperparameter in our setting is the number of iterations for
fitting the off-policy critic. We asked Shixiang Gu, the main author of IPG (Gu et al., 2017)
for the hyperparameter they use in their work. According to him, they fit the off-policy critic
using the same number of iterations as the batch size. For example, if the batch data consists
of 5000 transitions, the off-policy critic gets fit with 5000 iterations. We use the same logic
for our PPGI method as well.

21

Method

5.3 Hindsight PPGI

The last part of our thesis consists of implementing hindsight with our PPGI method. This
can be achieved by two approaches. One approach is to evaluate a whole trajectory under
a hindsight goal for the on-policy part of PPGI and correct the estimation using importance
sampling (Rauber et al., 2017; Zhang et al., 2019). The second approach is to apply the
exact HER method on the off-policy buffer of our PPGI method. While both approaches
can be implemented on PPGI, we implement the latter and leave the implementation of the
former for future work. Implementing HER on the off-policy part of our algorithm is simple
and easier than implementing hindsight on the on-policy part. The reason behind this is that
off-policy methods perform 1-step backups, therefore we can simply assign hindsight goals in
every transition since the data is not correlated to each other in a way that would affect the
off-policy updates. Off-policy HER in PPGI allows us to fit the off-policy critic with hindsight
transitions. Following, interpolation allows us to update the policy parameters towards the
direction recommended by the hindsight critic, resulting into an off-policy HER method that
can interpolate with on-policy updates. Our hindsight PPGI method combines the stability of
on-policy algorithms which is a result of the n-step backups, the low variance of the off-policy
estimators which is a result of the 1-step backups (see Section 2.8) and the efficient use of
data for goal-based tasks provided by the HER enhancement.

In contrast with vanilla DDPG, where the networks update after each time-step is performed,
in HER (Andrychowicz et al., 2017) they update the networks after each cycle for 40 iterations,
where each cycle consists of 16 episodes and each epoch consists of 50 cycles. As we mentioned
in Section 5.2.1, the authors of IPG update their off-policy critic using the same number
of iterations as the batch size. This number is the same number of updates vanilla DDPG
performs, but rather than updating after each time-step they perform the updates in an
accumulated manner after each batch of data is collected. Using the same logic, we treat
one batch collection as one cycle, therefore we use 40 training iterations per batch collection
for our off-policy hindsight critic to closely imitate the updates of the original HER method
(Andrychowicz et al., 2017). Since our method partially utilizes PPO, we switched the number
of cycles with the number of episodes, such that each cycle contains more data for PPO to
train on. In the case of vanilla HER, each cycle contains 16 episodes, which corresponds to a
total of 16× 50 = 800 time-steps (the time-step horizon of each episode is set to 50). Instead
of using 50 cycles per epoch and 16 episodes per cycle, we use 16 cycles per epoch and 50
episodes per cycle. This results into the PPO batch update to contain a total of 50×50 = 2500
transitions.

The whole process of hindsight PPGI is similar to that of PPGI in Algorithm 2 except that
the off-policy buffer B is populated with hindsight transitions, therefore the off-policy critic
update in line 10 and the off-policy update in the right hand side of the equation in line 21
utilize hindsight transitions. Each hindsight goal g′ corresponds to the achieved position of
the agent in a state during the episode simulation. Similar to Eq. 22, the hindsight reward is
calculated as follows:

R(st, g
′) =

{
0, if d(ψ(st), ψ(s′)) ≤ δ

−1, otherwise
(38)

where g′ = ψ(s′), st is the current state, s′ is a future state that occurred after time-step
t (chosen randomly), d(., .) denotes the Euclidean distance between two goals and ψ(.) is a

22

Experiments

function that projects an observation from the state-space S to the goal-space G.

6 Experiments

6.1 Experimental Setup

In this section we provide experimental results that answer the following questions:

1. Does our PPGI method extend to more control tasks than those in IPG (Gu et al.,
2017)?

2. Does our PPGI method outperform IPG?

3. What is the optimal interpolation parameter ν for dense reward settings?

4. Does the control variate improve PPGI?

5. What is the optimal interpolation parameter ν for PPGI with HER for sparse reward
settings?

6. How does PPGI with HER perform in complex goal-based environments?

To answer the first question, we use 5 locomotion tasks from OpenAI gym (Brockman et al.,
2016). The environments include Hopper, Walker2d, Reacher, InvertedPendulum and Inverted-
DoublePendulum (see Fig. 14 in Appendix). The agents in these environments are 3D models
with multiple joints where the task is to achieve control and move in a forward direction. For
the second question, we compare our findings with the results in Gu et al. (2017). To answer
the third and fourth questions we use two of the most common environments, HalfCheetah and
Ant. For the third question, we run a sweep of ν ∈ {0.2, 0.4, 0.6, 0.8} the same way as in Gu
et al. (2017) to see if we can get similar results. To answer the fifth question, we use a simple
goal-based environment called FetchReach. To answer the last question, we use two complex
goal-based environments that were used in the original HER experiments in Andrychowicz
et al. (2017), FetchPickAndPlace and FetchPush, and try different values of ν for each task
to observe the effect of interpolation between hindsight off-policy updates and non-hindsight
on-policy updates.

The tasks for the goal-based environments are the following:

• FetchReach (Fig. 4a): A fetch robot needs to navigate to a given goal position at
(x, y, z) coordinates.

• FetchPickAndPlace (Fig. 4b): A fetch robot needs to pick up a solid block and place it
on a given goal position at (x, y, z) coordinates.

• FetchPush (Fig. 4c): A fetch robot needs to push a solid block to a given goal position
at (x, y, z) coordinates.

6.2 Experimental Results for Dense Reward Settings

In this section we show our empirical results of our PPGI method on dense reward tasks.

23

Experiments

(a) FetchReach (b) FetchPickAndPlace (c) FetchPush

Figure 4: The environments in this figure are goal-based environments designed specif-
ically Goal-conditioned RL. The red sphere in the figures represent the goal position that
the Fetch robot needs to navigate to. These environments also belong to the OpenAI gym
[5] framework.

6.2.1 Optimal ν value

We test our method for the optimal interpolation parameter in two locomotion environments,
where the agent is controlled by 2 legs with 4 actuated joints (HalfCheetah) and by 4 legs
with 8 actuated joints (Ant). The task is to make the agent walk in a forward direction as
fast as possible. We run a parameter sweep for ν ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. We see in Fig.
5a that we manage to improve PPO (ν = 0) when ν = 0.2. This matches the results of IPG
where their optimal value for ν is 0.2 for the HalfCheetah environment. For the special case
of ν = 1 (see Section 5.2.1), we see that in both environments in Fig. 5 it provides the worst
performance. This contrasts the results in IPG, where their method for ν = 1 outperforms
both TRPO and vanilla DDPG in the Ant environment (IPG with ν = 1 is similar to our DDPG
variant in Section 5.2.1). This shows that trust region updates might be more crucial for the
stability of the algorithm, rather than the clipping method of PPO. Another explanation might
be that the hyper-parameter combination of the off-policy critic with our PPGI setting is not
optimal for every task.

� ν = 0.0 (PPO) � ν = 0.2 � ν = 0.4 � ν = 0.6 � ν = 0.8 � ν = 1.0

(a) HalfCheetah (b) Ant

Figure 5: Results for the ν variants. Fig. 5a displays the results for HalfCheetah and
Fig. 5b the results for Ant. The y-axis indicates the total reward. The x-axis shows the
epochs, where each epoch includes 4 episodes and each episode contains 1000 time-steps.
Both plots are averaged over 5 seeds.

24

Experiments

6.2.2 Control Variate and η

We evaluate PPGI with and without the control variate in Eq. 37. In addition, we evaluate
different update methods η for the off-policy part of the policy update rule in Eq. 36. Our
two settings of η include updating either with random samples (dashed line in Fig. 6) or with
recent samples (straight line in Fig. 6) from the replay buffer.

� CV � No CV random sampling recent sampling

(a) HalfCheetah (b) Ant

Figure 6: Effect of the control variate and sampling strategy η on the HalfCheetah and
Ant environments. For this experiment, ν is set to 0.2 and the off-policy batch size is the
same as the on-policy one, which is 4000 samples (4 episodes of 1000 time-steps each).
The results are averaged over 5 seeds.

The GAE (Schulman et al., 2015) used by PPO already provides strong variance reduction for
stochastic policies. In Fig. 6a and Fig. 6b we see that using the control variate as a baseline
to the GAE estimator (lines 15, 16 in Algorithm 2) alters the learning signals in a way that
deteriorates the performance of our method. In addition, we see that for either configuration
of the CV, random transitions are superior than recent transitions. A possible explanation for
this is that the policy over-fits due to the absence of experience diversity. Similar findings
were mentioned in Mnih et al. (2013), where they show that breaking the correlation of the
transitions by random sampling reduces the variance of the estimator.

6.2.3 Extension to More Control Tasks

To better evaluate our algorithm, we run it on 5 additional locomotion control tasks from
Brockman et al. (2016). We compare the cases of completely off-policy (ν = 1), completely
on-policy (ν = 0) and interpolation with ν = 0.2, which is the best performing value of ν in
Fig. 5a. In Fig. 7 we see that our method can be extended to some of the tasks. With some
interpolation, it can perform sub-optimal in one case (Fig. 7a), perform similar to PPO in two
cases (Fig. 7c, 7d) and perform poorly in two cases (Fig. 7b, 7e).

6.3 Experimental Results for Sparse Reward Settings

In this section we show results of the PPGI method combined with the HER method. We
evaluate under sparse reward settings on 3 goal-based robotic tasks.

25

Experiments
� ν = 0 (PPO) � ν = 0.2 � ν = 1

(a) Hopper (b) Walker2d (c) Reacher

(d) InvertedPendulum (e) InvertedDoublePendu-
lum

Figure 7: Results of PPGI on 5 locomotion tasks. The y-axis indicates the total reward
and the x axis shows the epochs. Each epoch consists of 4 episodes and each episode
contains 1000 time-steps. The results are averaged over 5 seeds.

6.3.1 PPGI with Hindsight Interpolation

To evaluate our hindsight PPGI method, we measure its performance with different interpo-
lation parameters on the FetchReach task. Since interpolation can improve the performance
of PPO in some cases (Fig. 5a), we show results with and without HER, where we sample
uniformly from the replay buffer. This gives us a better intuition on the effect of HER on PPGI.
The results are shown in Fig. 8, where the top row (Fig. 8a) displays PPGI with hindsight
and the bottom row (Fig. 8b) displays the results without hindsight. For ν = 1 we see that
PPGI without hindsight learns nothing while hindsight PPGI quickly picks up learning. In the
case of PPO (where ν = 0), HER has no effect as the contribution of the off-policy critic
to the policy update is zero. Despite this, we see that the algorithm converges at around 40
epochs. On the other extreme case (where ν = 1) we notice that it quickly reaches close to
the maximum success rate (∼ 8 epoch) but it never converges because as it keeps training
the performance deteriorates. A possible explanation for this is that the off-policy critic starts
over-fitting, therefore an earlier stopping criteria can be used to address this issue. In Fig. 8a,
as we start increasing the interpolation parameter, we notice that our method combines the
best out of the two extreme cases. When ν is close to complete PPO updates (where ν = 0.2
and ν = 0.4), we see that we get the early quick boost that ν = 1 provides while still managing
to converge without deteriorating the performance, which is an effect of our method when
ν = 0. As we get closer to completely off-policy updates (where ν = 0.8), we notice that the
convergence rate decreases, getting closer to not converging at all. The result with hindsight
where ν = 0.6 shows how efficient and robust PPO is. Despite the fact that the majority of
the policy updates follow the off-policy critic, it still manages to keep the convergence property
of PPO. We can conclude the same from the results without hindsight. In all of the graphs in
Fig. 8b we notice that the performance in all of the interpolation cases is carried completely

26

Experiments

by the PPO updates, even when ν = 0.8, while ν = 1 barely passes the success rate of 0.3.

� ν = 0.0 (PPO) � ν = 0.2 � ν = 0.4 � ν = 0.6 � ν = 0.8 � ν = 1

(a) Evaluation of PPGI with HER

(b) Evaluation of PPGI without HER

Figure 8: Results of PPGI when combined with HER (Fig. 8a) and without HER (Fig.
8b) on the FetchReach environment. The y-axis indicates the success rate and the x-axis
the epochs. Each epoch consists of 10 cycles and each cycle consists of 50 episodes of 50
time-steps each. The off-policy batch size is set to 256. The results are averaged over 5
seeds.

6.3.2 Hindsight PPGI on Complex Tasks and Trajectory Analysis

We evaluate our method on two complex goal-based environments. In contrast with our results
in Fig. 8a, our method performs poorly in more complex tasks. Fig. 9 shows the results for
ν = 1 in the complex goal-based environments FetchPush (Fig. 4c) and FetchPickAndPlace
(Fig. 4b) with different learning rates for the off-policy critic, an off-policy batch size of 256
and 100 epochs. In both environments, the average success rate is less than 0.12 regardless
of the learning rate value.

� lr = 0.01 � lr = 0.001 � lr = 0.0001

(a) FetchPickAndPlace (b) FetchPush

Figure 9: Results of our hindsight PPGI method for ν = 1 in the FetchPush and Fetch-
PickAndPlace complex environments. Each epoch consists of 16 cycles and each cycle con-
sists of 50 episodes of 50 time-steps each (1 epoch = 800 episodes = 40, 000 time-steps).
The off-policy batch size is 256 and the results are averaged over 5 seeds.

In this section, we analyze the trajectories of each complex environment in different parts during
training, given the same hyper-parameter configuration that was used for the FetchReach
environment in section 6.3.1, in order to get a better intuition about our method’s poor
performance.

27

Experiments
FetchPush Environment

(a) After 1400 updates (b) After 1500 updates (c) After 1600 updates

FetchPickAndPlace Environment

(d) After 1400 updates (e) After 1500 updates (f) After 1600 updates

Figure 10: Results of our trajectory analysis, where the top row is the FetchPush envi-
ronment and the botom row is the FetchPickAndPlace environment. Each color represents
an episode run. The star marker represents the start position, the circle represents the
desired goal of the episode and the line represents the trajectory. We plot the paths during
evaluation using the mean output of our stochastic policy. The trajectories are based on
the robot’s grip position and not the achieved goal. For plotting, we use the default hyper-
parameter settings, which include a σ = 0.6, off-policy critic learning rate = 0.001 and
batch size = 256.

In Fig. 10 we show 5 sequential trajectories per plot every 100 policy updates, where each
trajectory is plotted after 1 policy update. For example, Fig. 10a and Fig. 10d contain trajec-
tories at updates 1401, 1402, 1403, 1404 and 1405. We plot the last 3 cases per environment.
Each line corresponds to a trajectory, each circle corresponds to the desired goal for the line
with the same color and the star symbol represents the start position of each trajectory. For
visibility purposes, the x, y, z limits of each graph are different such that it suits the trajectories
that are displayed. For the FetchPush environment, we see in each case that the policy learns
and performs similar paths, regardless of the start state distribution or the desired goals. In
Fig. 10a and Fig. 10b we see that the fetch robot performs fast paced left-right or up-down
moves, causing the paths to look like they have a rectangular shape. In Fig. 10c, Fig. 10d
and Fig. 10e, some paths completely cover the others, due to the fact that they have a very
similar trajectory. In Fig. 10f we see that in two cases, the paths have a rectangular shape, and

28

Experiments

one case where the purple path completely overlays the blue path. Depending on the number
of updates, the policy learns a couple of paths and keeps repeating them, regardless of the
goal positions. This indicates over-fitting and is usually due to the lack of exploration. As we
show in Appendix A.5, exploration doesn’t seem to be the issue for the batch size of 256. In
addition we show that the learning rate of the off-policy critic and the standard deviation don’t
influence the performance. We run more experiments with different off-policy batch sizes and
we manage to pick some learning with a success rate of 0.23 for the FetchPush environment
with an off-policy batch size of 1024 and a learning rate of 0.001. We also try an exploration
strategy (SE in Table 2) for the batch size of 1024 which shows some learning, but we manage
to get a slightly better performance with a standard deviation of 0.4 for our stochastic policy.
This indicates that our approach requires more data in order to learn, in contrast with the
original HER method (Andrychowicz et al., 2017) which requires 100 epochs to reach at least
a sub-optimal performance. In the following section we explain why this is the case and show
empirical results.

6.3.3 Hindsight PPGI on Complex Tasks with More Data

So far we have covered the complex tasks with a maximum of 100 epochs, which corresponds
to a total of 4, 000, 000 time-steps. In this section, we run experiments for 1000 epochs, which
corresponds to 40, 000, 000 total time-steps. Due to limited time, we choose a working hyper-
parameter configuration (similar to the one from Section 6.3.1) and only run experiments with
a different batch size, where we set ν = 1 and the standard deviation at 0.4.

batch size = 256 batch size = 512 batch size = 1024

(a) FetchPickAndPlace (b) FetchPush

Figure 11: Results of our hindsight PPGI method for ν = 1 in the FetchPush and
FetchPickAndPlace complex environments with different batch size for the off-policy critic
and more epochs. The results are averaged over 3 seeds. In contrast with Fig. 9, we see
that the main hyperparameters that heavily influence the performance is the batch size and
the number of epochs. The learning rate here is set to 0.001.

Our results in Figure 11 indicate that the main hyper-parameter that vastly influences the
performance given more data, is the batch size. For both environments we see that the larger
the batch size gets, the performance increases. With the batch size of 256 (dashed line),
FetchPush (Fig. 11b) starts learning at around 500 epochs while FetchPickAndPlace starts
learning at around 400 epochs. In both cases the maximum success rate doesn’t exceed 0.3.
For the batch size of 512 (dotted line), we see a significant improvement in both environments,
where the agent starts learning at around 100 epochs. In Fig. 11b at 800 epochs we see a similar
effect to Fig. 8 with ν = 1, where the performance starts getting worse as training progresses.

29

Experiments

For the batch size of 1024 we see in FetchPickAndPlace (Fig. 11a) that the learning starts at
around 75 epochs and for FetchPush (Fig. 11b) the learning starts at around 50 epochs. In
both environments, the progress with the off-policy batch size of 1024 is significantly better
throughout the training process in contrast with the other batch size values. The original HER
method (Andrychowicz et al., 2017) shows optimal results with a batch size of 256, while
our approach needs a larger batch size. The reason behind this has to do with our hindsight
design choice. As we mentioned in Section 5.3, our method uses more transitions per cycle and
less cycles per epoch in contrast with the original HER method (Andrychowicz et al., 2017).
Therefore, a larger batch size is needed in order to match the performance of the original HER
method since we update the networks less frequently and with more data gathered. Another
possible solution is to train the off-policy critic for more iterations instead of using a larger
batch size or a combination of both.

As we managed to make our hindsight DDPG variant from Section 5.2.1 work, in the following
section we proceed and introduce interpolation with non-hindsight on-policy updates.

6.3.4 Hindsight Interpolation Effect on Complex Tasks

We believe that a larger batch size (2048 and possibly 4096) can further improve the perfor-
mance in Fig. 11. Since we want to examine the effect of interpolation and whether it can
improve the traditional HER method, we use the batch size of 1024 for the following exper-
iments, as optimal performance is beyond the scope of this thesis. The results of hindsight
PPGI with interpolation are shown in Fig. 12. As expected, the closer the interpolation is to
completely off-policy updates (ν = 1) the better it performs. For the FetchPickAndPlace en-
vironment (Fig. 12a) we only see some learning occurring with ν = 0.6 and ν = 0.8, with the
latter performing significantly better. In comparison with ν = 1 and the off-policy batch size of
1024 in Fig. 11a, interpolation doesn’t seem to improve complete off-policy updates. For the
FetchPush environment (Fig. 12b) we see some learning occurring for ν = 0.4, ν = 0.6 and
ν = 0.8, where ν = 0.8 performs significantly better than the rest ν values. In contrast with
the FetchPickAndPlace environment, in the case of FetchPush, interpolation with ν = 0.8
improves the case of ν = 1 with 1024 off-policy batch size in Fig. 11b. With ν = 0.8, the
success rate is more stable, sustainable and after 500 epochs it is very close to 1, while the
success rate in Fig. 11b is more unstable and only passes the success rate of 0.9 in certain
points during training without sustaining its performance. This matches the results of the
FetchReach task in Fig. 8, where the inclusion of on-policy updates improved the stability and
the sustainability of the success rate.

The results of different interpolation parameters for the complex tasks in Fig. 12 vastly differ
from the results for the simpler FetchReach task in Fig. 8. While the positive effect of interpo-
lation in the simpler task is obvious, it is not the case for the complex tasks. This shows that
the difficulty of the environment plays a crucial role for the performance of our method. For
a static interpolation approach (meaning that the interpolation parameter is the same during
the whole training process), the positive effect is apparent only when PPO (ν = 0) has a
chance to learn the task. In complex environments with sparse reward settings, it is hard to
pick up a learning signal that would trigger learning by accident. PPO’s performance doesn’t
scale for complex sparse-reward setting environments as it does in dense reward environments.
This indicates that while hindsight PPGI with interpolation can improve the traditional HER
method in some cases (i.e Fig. 8 and Fig. 11b), it has a limit when it comes to more complex

30

Experiments
� ν = 0.2 � ν = 0.4 � ν = 0.6 � ν = 0.8

(a) FetchPickAndPlace

(b) FetchPush

Figure 12: Results of PPGI when combined with HER for two complex environments.
Each epoch consists of 16 cycles and each cycle consists of 50 episodes of 50 time-steps
each. The off-policy batch size is set to 1024. The results are averaged over 3 seeds.

tasks.

6.3.5 Hindsight Interpolation Annealing

In Sections 6.3.1 and 6.3.4 we showed our method’s results with hindsight and different in-
terpolation parameters that were static throughout the training process. As we discussed in
Section 6.3.4, our method has its limitations when it comes to more complex environments. In
this section, we evaluate our method with an annealing value of ν for the complex tasks. We
want to see if annealing the interpolation can deteriorate our method’s limitations by starting
with complete off-policy updates and slowly decreasing it to complete on-policy (non-hindsight)
updates. Our setting is the following: we train the agent with ν = 1 until a satisfactory success
rate is reached. Following, every 100 epochs, we start decreasing the value of ν by 0.2 until we
reach complete on-policy updates (ν = 0), where training continues until termination. Specif-
ically, according to Fig. 11, we believe that in both environments, a satisfactory success rate is
reached at 400 epochs, therefore that’s when we start decreasing the interpolation parameter.
At epoch 800, ν reaches the value of 0, where it keeps training for 200 more epochs.

The results of the interpolation annealing are shown in Fig. 13. For both environments, when
annealing starts the performance of the agent vastly deteriorates. The lower the value of ν
gets, the worse the performance becomes. This indicates that non-hindsight on-policy updates
can’t perform satisfactory in goal-based environments with sparse reward settings even with
the help of an off-policy hindsight critic. Our method can perform optimal with a static value
of ν throughout the training process, as in Fig. 8a and Fig. 12. While some interpolation can
improve complete off-policy hindsight updates (as in Fig. 12b for ν = 0.8), the change in
the update rule during training seems to affect the learning process negatively even when the
value of ν is close to complete off-policy updates (ν = 0.8). Another explanation we have
regarding this is that 100 epochs of training during the interpolation change is not enough
for our method to recover from its drop in performance. Regardless, more training iterations
beats the purpose of this thesis, which is to improve complete off-policy hindsight updates
by interpolation. A better distribution of annealing or even smaller change in the value of ν

31

Related Work
� ν = 0.0 (PPO) � ν = 0.2 � ν = 0.4 � ν = 0.6 � ν = 0.8 � ν = 1

(a) FetchPickAndPlace (b) FetchPush

Figure 13: Results of hindsight PPGI with annealing interpolation for two complex tasks.
We start by complete off-policy hindsight with ν = 1 for the first 400 epochs. Afterwards,
we decrease the value of ν by 0.2 every 100 epochs. From epoch 800 to 1000 we have
the PPO method (ν = 0). We use the same configuration as in Fig. 12. The results are
averaged over 3 seeds.

throughout training could have better results, but we strongly believe that the performance in
contrast with ν = 1 would still get worse with the value of ν decreasing.

7 Related Work

7.1 Hybrid RL algorithms

Our work builds upon the work of QProp (Gu et al., 2016) and PGQL (O’Donoghue et al.,
2016). PGQL is a similar method to IPG (Gu et al., 2017), where it combines policy gradient
updates with Q-learning updates through an interpolation parameter ν. In contrast with IPG,
O’Donoghue et al. (2016) derive a method that can estimate the off-policy critic using the
policy. QProp is the predecessor of IPG. Similar to its successor, QProp combines the stability
of on-policy methods and the sample efficiency of off-policy methods. The main contribution of
QProp is that it uses an action-value function that is trained off-policy as a control variate for
Monte Carlo policy gradients. While IPG focuses more on interpolating between off-policy and
on-policy updates, QProp focuses more on the control variate aspect. Overall they are similar
methods and they both achieve high performance when they combine TRPO with DDPG and
the QProp control variate.

ACER (Wang et al., 2016) is another hybrid method built on the A3C framework (Mnih et al.,
2016), that addresses the problem of sample efficiency and application in both discrete and
continuous action spaces. It uses the Retrace estimator (Munos et al., 2016) to estimate
the off-policy critic, a clipped importance sampling weight to ensure bounded variance and
trust region updates, specifically TRPO (Schulman et al., 2015). Policy-on Policy-off Policy
Optimization (P3O) (Fakoor et al., 2020) considers the fact that previous work on hybrid
approaches require a lot of tuning, such as the ν parameter in IPG and the clipping threshold
in ACER. Their update method combines on-policy gradient, the off-policy gradient of ACER
with the truncated importance weight and the KL divergence between the behavioural and
target policy multiplied with a regularization coefficient. They manage to automate their main
hyperparameters, the clipping threshold and the KL regularization coefficient by using a variant

32

Discussion

of the Effective Sample Size (ESS) method derived by Kong (1992).

7.2 Addressing sparse rewards

Hindsight Experience Replay can be viewed as a form curriculum learning (CL) (Bengio et al.,
2009). CL approaches address the sparse reward problem by creating easier sub-tasks which
the agent can achieve at its current state of learning. Ideally, as training progresses, the
sub-tasks come closer to the desired task. Recent methods, including HER, have managed
to automate the process of generating sub-tasks. Florensa et al. (2017) propose a reversed
curriculum technique that alters the start state distribution. They start by generating start
states close to the desired goal and as the agent improves, they alter the start distribution
such that it samples states further away from the desired goal. Held et al. (2018) use a variant
of the Generative Adversarial Networks (GAN) (Goodfellow et al., 2014; Mao et al., 2017)
that is trained to generate sub-tasks of appropriate difficulty for the agent. Curriculum-guided
HER (Fang et al., 2019) improves HER by introducing a curriculum sampling technique that
balances the trade-off between the proximity and the diversity of the achieved goals. Other
methods achieve automatic curriculum through self-play. Sukhbaatar et al. (2017) use an agent
with two different set of parameters and objectives, one that proposes a task of appropriate
difficulty and another one that tries to achieve it. Through self-play and internal rewards, this
method achieves efficient environment exploration and learns to achieve the target task faster.
Liu et al. (2019) introduce another HER enhancement. They propose a multi-agent approach
for single based environments that re-labels goals through a self-play competition in a way
that encourages exploration.

7.3 On-policy hindsight approaches

To our knowledge, there are only two methods that combine hindsight with on-policy ap-
proaches, Hindsight Policy Gradients (HPG) (Rauber et al., 2017) and Hindsight TRPO
(HTRPO) (Zhang et al., 2019). In contrast to our method, they apply hindsight on completely
on-policy approaches. HPG introduces the idea that a sampled trajectory given a desired goal
can be evaluated under an achieved goal using importance sampling. HTRPO extends the
HPG method to TRPO, where they use a variant of the KL-divergence that further reduces
the variance that comes from the evaluation of the trajectories under different tasks. They
further improve their method by a technique called hindsight goal filtering, which chooses
hindsight goals that are close to the original goal region. The advantage of our method over
HPG and HTRPO is that we utilize the benefits of off-policy updates as well rather than just
on-policy. With the success of HER with off-policy methods, we believe it is crucial to include
off-policy hindsight updates for an optimal performance, since off-policy HER outperforms
both HPG and HTRPO.

8 Discussion

In this work we described a method that’s able to combine off-policy hindsight with the robust-
ness of on-policy methods. We first tested our method without hindsight on 7 locomotion tasks
with a dense reward setting in order to observe the performance of the interpolation between
off-policy and on-policy updates. Our results showed that interpolation doesn’t outperform
complete on-policy updates as it performed sub-optimal in most cases and only outperformed

33

Discussion

it in one case. We attempted to further reduce the variance of our method by using a con-
trol variate, but it deteriorated the performance. Afterwards, we introduced hindsight to the
off-policy part of our method and tested it on 3 goal-based tasks with a sparse reward set-
ting. On the simplest goal-based environment, we showed that interpolation improved both
complete off-policy and on-policy cases by combining both of their advantages. Our on-policy
part reaches a high success rate slowly and converges. Our off-policy part reaches a high suc-
cess rate fast, but as training progresses the success rate deteriorates. During interpolation,
we showed that our method can reach a high success rate fast, which is a feature of the
off-policy part, and converge as training progresses which is a feature of the on-policy part.
Finally, we evaluated our method on 2 complex goal-based environments with 100 epochs and
analyzed the agent’s trajectories during different stages of training. The trajectories indicated
that the policy learns specific paths and aims to reproduce them regardless of the start state
distribution and the desired goal-position, which resulted into a poor performance. By using
more epochs and a larger off-policy batch size for the complex tasks, we managed to achieve a
good performance in our complete hindsight off-policy setting as well as improve it with some
interpolation for the FetchPush environment. Moreover, we tried a different setting for the
complex tasks, where we slowly annealed the interpolation parameter throughout the train-
ing process. We believed that doing so, the on-policy updates would benefit more from the
hindsight off-policy critic and perform better. Our results showed that interpolation annealing
doesn’t perform optimal in contrast with a static interpolation throughout training, which
improved the performance in two out of three goal-based environments.

The drawbacks of our approach is that it combines two methods, the hybrid RL algorithm
and hindsight, both of which are hard to configure. HER is very sensitive to hyper-parameters
and normalization (see Appendix A.4) and hindsight PPGI’s performance highly depends on
different interpolation parameters, depending on the task. As we showed in our results for the
dense-reward setting, interpolation can either outperform, perform similar or perform worse
than the complete on-policy case, depending on the environment and the interpolation pa-
rameter. In addition, in the sparse-reward setting, we achieved successful performance in 2
goal-based environments and poor performance in one using different hyper-parameter config-
urations. We also showed that our method can reach its limit depending on the environment
complexity. To that extend, we believe that our approach can be limiting and unable to gener-
alize among different tasks with the same or similar hyper-parameter configurations, especially
the interpolation amount.

We left the implementation of hindsight on the on-policy part of our method for future work.
This can be achieved by using techniques that were utilized in HPG or HTRPO (Rauber et al.,
2017; Zhang et al., 2019). Other future directions include the automatic tuning during training
for the interpolation parameter, the use TD3 techniques (Fujimoto et al., 2018) in order to
improve the off-policy part of our method and non-random hindsight sampling methods, like
curriculum guided HER (Fang et al., 2019) and prioritized experience replay (Schaul et al.,
2015). Another direction we find interesting is how would our method perform with curriculum-
learning approaches, such as reverse curriculum generation (Florensa et al., 2017) or automatic
goal generation (Held et al., 2018). We are also curious about our method’s performance in
more complex tasks, such as Maze Ant. Liu et al. (2019) show sub-optimal results of the
vanilla HER in such complex tasks. It would be interesting to see how our method would
perform in comparison with their findings. Lastly, our method’s components are orthogonal,
therefore any on-policy algorithm can replace PPO, such as ACKTR (Wu et al., 2017) and

34

Conclusion

any off-policy algorithm that utilizes a replay buffer can replace our variant of DDPG, such as
TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018).

9 Conclusion

We propose a method that introduces hindsight to on-policy approaches by interpolating be-
tween on-policy and off-policy updates using a method that we call PPGI. We first evaluate
PPGI without hindsight on 7 locomotion tasks. While interpolation slightly deteriorates the
performance in most cases, it allows us to use hindsight on the off-policy critic and eval-
uate it on goal-based environments. The off-policy critic is trained with hindsight data in
order to partially direct the policy gradient updates. Empirically, we observe that on a sim-
ple goal-based environment, interpolation helps and manages to improve the performance by
combining features of both on-policy and off-policy methods. In complex environments the
effect of interpolation is not that apparent, but it can still improve the performance of com-
plete hindsight off-policy updates in one case out of two. The limitation of our approach is
that for different tasks, the optimal interpolation parameter is different, which indicates lack
of generalization. Another limitation of our method is that interpolation doesn’t improve the
performance of complete off-policy hindsight when the task is highly complex. Regardless of
our method’s drawbacks, our results show that it is promising. To our knowledge, there is no
other work that combines hindsight methods with hybrid RL algorithms and we believe that
it is a promising path for future research.

35

REFERENCES

References

[1] Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

[2] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter
Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight
experience replay. arXiv preprint arXiv:1707.01495, 2017.

[3] David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, and Antonio Torralba.
Rewriting a deep generative model. In Proceedings of the European Conference on
Computer Vision (ECCV), 2020.

[4] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum
learning. In Proceedings of the 26th annual international conference on machine
learning, pages 41–48, 2009.

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[6] Lisandro Dalćın, Rodrigo Paz, Mario Storti, and Jorge D’Eĺıa. Mpi for python:
Performance improvements and mpi-2 extensions. Journal of Parallel and Distributed
Computing, 68(5):655–662, 2008.

[7] Rasool Fakoor, Pratik Chaudhari, and Alexander J Smola. P3o: Policy-on policy-off
policy optimization. In Uncertainty in Artificial Intelligence, pages 1017–1027. PMLR,
2020.

[8] Meng Fang, Tianyi Zhou, Yali Du, Lei Han, and Zhengyou Zhang. Curriculum-guided
hindsight experience replay. 2019.

[9] Meng Fang, Tianyi Zhou, Yali Du, Lei Han, and Zhengyou Zhang. Curriculum-guided
hindsight experience replay. 2019.

[10] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel.
Reverse curriculum generation for reinforcement learning. In Conference on robot
learning, pages 482–495. PMLR, 2017.

[11] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In International Conference on Machine Learning, pages
1587–1596. PMLR, 2018.

[12] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning,
volume 1. MIT press Cambridge, 2016.

[13] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
arXiv preprint arXiv:1406.2661, 2014.

[14] Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E Turner, and Sergey
Levine35. Qprop: Sample-efficient policy gradient with an off-policy critic. 2016.

[15] Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E Turner, Bernhard
Schölkopf, and Sergey Levine. Interpolated policy gradient: Merging on-policy and
off-policy gradient estimation for deep reinforcement learning. arXiv preprint
arXiv:1706.00387, 2017.

36

REFERENCES

[16] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In
International Conference on Machine Learning, pages 1861–1870. PMLR, 2018.

[17] David Held, Xinyang Geng, Carlos Florensa, and Pieter Abbeel. Automatic goal
generation for reinforcement learning agents. 2018.

[18] Leslie Pack Kaelbling. Hierarchical learning in stochastic domains: Preliminary results.
In Proceedings of the tenth international conference on machine learning, volume 951,
pages 167–173, 1993.

[19] Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, pages 1094–1099. Citeseer,
1993.

[20] Augustine Kong. A note on importance sampling using standardized weights. University
of Chicago, Dept. of Statistics, Tech. Rep, 348, 1992.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing systems,
25:1097–1105, 2012.

[22] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep
reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[23] Long-Ji Lin. Reinforcement learning for robots using neural networks. Carnegie Mellon
University, 1992.

[24] Hao Liu, Alexander Trott, Richard Socher, and Caiming Xiong. Competitive experience
replay. arXiv preprint arXiv:1902.00528, 2019.

[25] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen
Paul Smolley. Least squares generative adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2794–2802, 2017.

[26] Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher–student
curriculum learning. IEEE transactions on neural networks and learning systems, 31(9):
3732–3740, 2019.

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[28] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for
deep reinforcement learning. In International conference on machine learning, pages
1928–1937. PMLR, 2016.

[29] Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc G Bellemare. Safe and
efficient off-policy reinforcement learning. arXiv preprint arXiv:1606.02647, 2016.

[30] Brendan O’Donoghue, Remi Munos, Koray Kavukcuoglu, and Volodymyr Mnih.
Combining policy gradient and q-learning. arXiv preprint arXiv:1611.01626, 2016.

37

REFERENCES

[31] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A
generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[32] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven
exploration by self-supervised prediction. In International Conference on Machine
Learning, pages 2778–2787. PMLR, 2017.

[33] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn
Powell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal
reinforcement learning: Challenging robotics environments and request for research.
arXiv preprint arXiv:1802.09464, 2018.

[34] Paulo Rauber, Avinash Ummadisingu, Filipe Mutz, and Juergen Schmidhuber.
Hindsight policy gradients. arXiv preprint arXiv:1711.06006, 2017.

[35] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

[36] Sheldon M. Ross. Simulation, Fourth Edition. Academic Press, Inc., USA, 2006. ISBN
0125980639.

[37] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist
systems, volume 37. University of Cambridge, Department of Engineering Cambridge,
UK, 1994.

[38] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function
approximators. In International conference on machine learning, pages 1312–1320.
PMLR, 2015.

[39] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience
replay. arXiv preprint arXiv:1511.05952, 2015.

[40] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent
Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel,
et al. Mastering atari, go, chess and shogi by planning with a learned model. Nature,
588(7839):604–609, 2020.

[41] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International conference on machine learning, pages
1889–1897. PMLR, 2015.

[42] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
High-dimensional continuous control using generalized advantage estimation. arXiv
preprint arXiv:1506.02438, 2015.

[43] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[44] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller. Deterministic policy gradient algorithms. In International conference on
machine learning, pages 387–395. PMLR, 2014.

38

REFERENCES

[45] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

[46] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al.
Mastering chess and shogi by self-play with a general reinforcement learning algorithm.
arXiv preprint arXiv:1712.01815, 2017.

[47] Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and
Rob Fergus. Intrinsic motivation and automatic curricula via asymmetric self-play. arXiv
preprint arXiv:1703.05407, 2017.

[48] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[49] Gerald Tesauro. Temporal difference learning and td-gammon. Communications of the
ACM, 38(3):58–68, 1995.

[50] Chris Yoon, blog. Chris Yoon understanding actor critic methods.
https://towardsdatascience.com/

understanding-actor-critic-methods-931b97b6df3f. Accessed: 2021-06-25.

[51] David Silver, blog. David Silver reinforcement learning lectures.
https://www.davidsilver.uk/teaching/. Accessed: 2021-06-15.

[52] Lilian Weng, blog. Lilian Weng policy gadient algorithms. https://lilianweng.

github.io/lil-log/2018/04/08/policy-gradient-algorithms.html/.
Accessed: 2021-07-09.

[53] Seungjae Ryan Lee, blog. Seungjae Ryan Lee bias-variance tradeoff in reinforcement
learning. https://www.endtoend.ai/blog/

bias-variance-tradeoff-in-reinforcement-learning/. Accessed: 2021-06-21.

[54] Tianhong Dai, github. Tianhong Dai hindsight-experience-replay.
https://github.com/TianhongDai/hindsight-experience-replay. Accessed:
2021-06-25.

[55] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 5026–5033, 2012. doi: 10.1109/IROS.2012.6386109.

[56] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray
Kavukcuoglu, and Nando de Freitas. Sample efficient actor-critic with experience replay.
arXiv preprint arXiv:1611.01224, 2016.

[57] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):
279–292, 1992.

[58] Yuhuai Wu, Elman Mansimov, Shun Liao, Roger Grosse, and Jimmy Ba. Scalable
trust-region method for deep reinforcement learning using kronecker-factored
approximation. arXiv preprint arXiv:1708.05144, 2017.

39

https://towardsdatascience.com/understanding-actor-critic-methods-931b97b6df3f
https://towardsdatascience.com/understanding-actor-critic-methods-931b97b6df3f
https://www.davidsilver.uk/teaching/
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html/
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html/
https://www.endtoend.ai/blog/bias-variance-tradeoff-in-reinforcement-learning/
https://www.endtoend.ai/blog/bias-variance-tradeoff-in-reinforcement-learning/
https://github.com/TianhongDai/hindsight-experience-replay

REFERENCES

[59] Hanbo Zhang, Site Bai, Xuguang Lan, David Hsu, and Nanning Zheng. Hindsight trust
region policy optimization. arXiv preprint arXiv:1907.12439, 2019.

40

A Appendix

A Appendix

A.1 General information of our project

This project was recommended by a ”request for research” paper from OpenAI [33]. For the
code implementation, we built upon the PPO baseline of OpenAI’s spinningup framework [1].
In addition, we used classes for the HER sampling and state normalization from Tianhong
Dai’s HER project [54]. Our code can be found in here: https://github.com/pavlosSkev/
hindsight-pgi.

A.2 Environments

In this section we give more details about the environments we used in our experiments. The
task in Fig. 14a, Fig. 14b, Fig. 14c and Fig. 14d is to go in a forward direction as fast as
possible. The task in Fig. 14e is to navigate to the red goal position and the task in Fig. 14f
and Fig. 14g is to balance the pole in an upward direction. All of the environments have a
continuous state and action space.

(a) HalfCheetah (b) Hopper (c) Walker2d (d) Ant

(e) Reacher (f) InvertedPendulum (g) InvertedDoublePen-
dulum

Figure 14: This figure shows the locomotion environments we used for our experiments.
They belong to the OpenAI gym framework [5] and they are implemented with the Mujoco
physics engine [55].

A.3 Hyperparameters

Our Gaussian policy is a 2-layer neural network with a size of 64 and a Tanh activation function
for the hidden-layer output. The on-policy critic is a 2-layer network with a size of 64 and a
Tanh activation function. The off-policy critic is a 2-layer neural network with a size of 100
and a ReLU activation function. We use γ = 0.99, 80 training iterations for the on-policy actor
and critic and GAE with λ = 0.95. For the off-policy critic, we use 4000 training iterations for
the locomotion tasks and 80 iterations for the goal-based tasks. We collect 4 episodes of 1000

41

https://github.com/pavlosSkev/hindsight-pgi
https://github.com/pavlosSkev/hindsight-pgi

A Appendix

time-steps each per batch data for the locomotion tasks and 50 episodes of 50 time-steps each
for the goal-based tasks. The reason we use different updates for the off-policy critic depending
on the task is because for the locomotion tasks we want to mimic the DDPG updates, where
the models update after each time-step. For the goal-based hindsight tasks, we want to mimic
DDPG with HER [2], where instead of updating after each time-step, they update for multiple
iterations after collecting 16 episodes. In our case, we choose 50 episodes in contrast with [2]
because PPO requires more data to perform optimal. In addition, we apply normalization only
for the hindsight part of our thesis. All of our experiments are implemented with parallelization
on 4 CPUs using the MPI framework [6].

A.4 Effect of Normalization

The input scaling we use is similar to the original one used in the HER method [2]. We utilize
a moving average and standard deviation in order to normalize the states such that they have
a mean of 0 and standard deviation of 1. The effect of this normalization on our variant of
DDPG with hindsight shows in Fig. 15. This is another indicator of how sensitive off-policy
algorithms and HER can be. In our case, normalization makes the difference between learning
and not learning at all.

(a) No Normalization (b) Moving Average Normalization

Figure 15: Effect of normalization for the FetchReach environment under our hindsight
approach when ν = 1.

42

A Appendix

A.5 Hyper-parameter Sweep for Goal-based Tasks

We run a hyper-parameter sweep for the complex goal-based tasks. We try different learning
rates for the off-policy critic, different standard deviations for sampling actions, a strong
exploration strategy (SE in Tables 1, 2) and a different batch size for training the off-policy
critic and for the off-policy part of the update in Eq. 36. For the SE setting we try to replicate
the exploration used in the original HER paper in [2]. Their behavioural policy works as follows:
with a probability of 80%, they use the deterministic action that’s output by the actor network
and add a small Gaussian noise to it with mean 0 and standard deviation of 0.5. With a
probability of 20%, they use a complete random action sampled from the space of valid actions
of the environment. We use the same exploration settings but rather than adding noise to a
deterministic action, we sample from our parametarized Gaussian distribution with a standard
deviation of 0.6.

Due to limited time and a mistake made when running the sweep, the experiments in both
tables for the strong exploration (SE) with the batch size of 512 are averaged over 3 seeds
rather than 5. In addition, for both environments, all of the experiments with a batch size of
256 are also averaged over 3 seeds instead of 5.

43

A Appendix

Learning rate Standard Deviation SE Batch Size Success rate

0.01 0.001 0.0001 0.4 0.6 0.8 - 256 512 1024 -
X X X 0.04
X X X 0.046
X X X 0.06
X X X 0.039

X X X 0.02
X X X 0.04
X X X 0.06
X X X 0.066

X X X 0.033
X X X 0.046
X X X 0.053
X X X 0.033

X X X 0.026
X X X 0.033
X X X 0.033
X X X 0.02

X X X 0.04
X X X 0.11
X X X 0.08
X X X 0.046

X X X 0.026
X X X 0.066
X X X 0.006
X X X 0.026

X X X 0.028
X X X 0.056
X X X 0.04
X X X 0.027

X X X 0.056
X X X 0.08
X X X 0.06
X X X 0.052

X X X 0.048
X X X 0.032
X X X 0.02
X X X 0.044

Table 1: Results of hyperparameter sweep for the FetchPickAndPlace environment [4b].
The results are averaged over 5 seeds, except the SE configurations for the batch size of
512, except the SE configurations for the batch size of 512 and all the configurations with
a batch size of 256.

44

A Appendix

Learning rate Standard Deviation SE Batch Size Success rate

0.01 0.001 0.0001 0.4 0.6 0.8 - 256 512 1024 -
X X X 0.06
X X X 0.086
X X X 0.093
X X X 0.093

X X X 0.08
X X X 0.053
X X X 0.1
X X X 0.073

X X X 0.066
X X X 0.066
X X X 0.1
X X X 0.053

X X X 0.053
X X X 0.053
X X X 0.066
X X X 0.073

X X X 0.046
X X X 0.093
X X X 0.09
X X X 0.066

X X X 0.06
X X X 0.10
X X X 0.093
X X X 0.08

X X X 0.024
X X X 0.092
X X X 0.012
X X X 0.064

X X X 0.23
X X X 0.096
X X X 0.092
X X X 0.21

X X X 0.068
X X X 0.076
X X X 0.056
X X X 0.064

Table 2: Results of hyper-parameter sweep for the FetchPush environment [4c]. The
results are averaged over 5 seeds, except the SE configurations for the batch size of 512
and all the configurations with a batch size of 256.

45

	Abstract
	Introduction
	Research Goal
	Approach
	Overview
	Results

	Reinforcement Learning
	Markov Decision Process
	Agent-Environment Interaction
	Policies
	Value Functions
	Model-free Methods
	Variance and Bias Trade-off
	Exploration and Exploitation
	On-policy and Off-policy methods
	Importance Sampling
	Policy Gradients
	Actor-Critic Methods
	Goal-Conditioned Reinforcement Learning
	Sparse-Reward Problem
	Universal Value Function Approximators

	Deep Learning
	Perceptron
	Activation Functions
	Multi-layer Perceptron

	Deep Reinforcement Learning
	Function Approximation
	Modeling Policies for Continuous Tasks
	Deep Q Network
	Deep Deterministic Policy Gradient
	Trust Region Policy Optimization
	Proximal Policy Optimization
	Interpolated Policy Gradients

	Method
	Hindsight Experience Replay
	Proximal Policy Gradient Interpolation
	PPGI with =1

	Hindsight PPGI

	Experiments
	Experimental Setup
	Experimental Results for Dense Reward Settings
	Optimal value
	Control Variate and
	Extension to More Control Tasks

	Experimental Results for Sparse Reward Settings
	PPGI with Hindsight Interpolation
	Hindsight PPGI on Complex Tasks and Trajectory Analysis
	Hindsight PPGI on Complex Tasks with More Data
	Hindsight Interpolation Effect on Complex Tasks
	Hindsight Interpolation Annealing

	Related Work
	Hybrid RL algorithms
	Addressing sparse rewards
	On-policy hindsight approaches

	Discussion
	Conclusion
	Bibliography
	Appendix
	General information of our project
	Environments
	Hyperparameters
	Effect of Normalization
	Hyper-parameter Sweep for Goal-based Tasks

