
Opleiding Informatica

A Comparison of Breadth-First Search Implementations

for Real-World Networks on a Modern GPU

Cem Sevingil

Supervisors: Dr. F.W. Takes & Dr. K.F.D. Rietveld

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 22/06/2021

www.liacs.leidenuniv.nl

Abstract

The Breadth-First Search (BFS) algorithm is often considered as the foundation for traversing
and processing graph data structures, such as in network analysis. There are many different
BFS implementations which are able to exploit the parallel architecture of a graphics processing
unit (GPU). In this thesis, we consider three state-of-the-art BFS implementations in which
each implementation is able to exploit the parallel architecture of a modern GPU in a different
manner. We consider a range of real-world networks to investigate two research questions:
which of the three state-of-the-art BFS implementations has the best overall performance and
do particular characteristic network properties of real-world networks have an impact on the
overall performance of the BFS implementation? Our evaluation on a modern GPU reveals
that one of the three state-of-the-art BFS implementations has a tipping point in terms of time
taken to complete one BFS (running time) and Traversed Edges Per Second (TEPS) when
the diameter of the networks that were used in this thesis surpasses a certain threshold. This
allows us to predict to a certain extent, based on network properties, which BFS algorithm we
should use to get the best overall performance.

2

Contents
1 Introduction 1

2 Background 2
2.1 Networks . 2
2.2 Real-World Networks vs. Random Networks . 2
2.3 Network Generators . 3
2.4 Breadth-First Search . 4
2.5 Parallel Programming on a GPU . 5

3 Related Work 6

4 Methods 7
4.1 GPU Challenges . 7
4.2 UIUC BFS . 7
4.3 Warp BFS . 8
4.4 Enterprise BFS . 8

5 Experiments 10
5.1 Data Properties . 10
5.2 Experimental Setup . 10
5.3 Results . 11
5.4 Exploring Enterprise . 16

6 Limitations 20

7 Conclusions and Further Research 20

References 24

A Properties of Generated Networks 24

1 Introduction
Graphs are widely used in computer science, mathematics and network analysis to model connec-
tivity, and to understand or solve certain problems, such as path and matching problems. When
graphs represent real-world data [19] or a real system, such as connections between users in social
media, they are often called (real-world) networks. Our work focuses on real-world networks in
which we mainly consider social networks. With the processing or analysing of social networks,
we are able to gather more information about relationships amongst groups of people in the real
world [23]. Moreover, it allows us to discover new relationships which may help to understand
certain patterns in a social network. Graph traversal algorithms, such as Breadth-First Search
(BFS), plays an important role in gathering such information.

In the last decade, there has been a lot of development in the usage of Graphics Processing Unit
(GPU). Nowadays, GPUs are widely used for their computational power. The unique architecture
of a GPU allows it to perform the same instruction on multiple data, also called Single Instruction,
Multiple Data (SIMD), which is very pleasing for parallel computing. BFS has the potential to
benefit from the SIMD architecture when taking into account how BFS actually works, which is
explained in Section 2.4. Graph traversal algorithms are often very computationally expensive (i.e.,
it takes a great amount of time to complete it). Nowadays, real-world networks can contain up
to a few hundred million nodes, which for large inputs may take a considerable amount of time
to completely analyse. An increase in overall performance of BFS, for example by exploiting the
highly parallel architecture of a GPU, means that we can process or analyse graph data struc-
tures, especially very large ones, much faster. To analyse a network completely it is often required
to run BFS more than once. For example, to compute a ranking of nodes based on a node cen-
trality measure such as closeness centrality, a BFS has to run n times for a network that has n nodes.

In this thesis, we study three state-of-the-art BFS implementations for the GPU [14, 16, 18]. The
goal is to investigate the following two research questions.

1. Which of the three state-of-the-art BFS implementations has the best overall performance?

2. Do particular characteristic network properties of real-world networks have an impact on the
overall performance of the BFS implementation?

Our work approaches these two problems by presenting a systematic comparison between the three
state-of-the-art BFS implementations on empirical networks and artificially generated networks.
Furthermore, we manipulate particular characteristic real-world network properties, such as global
clustering coefficient or the number of triangles in a network, to observe if it has an effect on the
overall performance of the BFS implementation. BFS performance was measured by observing
and comparing the running time of one BFS and the number of Traversed Edges Per Second
(TEPS) of the BFS implementations on these networks. Finally, the NVIDIA System Management
Interface (nvidia-smi) [6] was used to monitor the GPU its activity and memory usage. The
hypothesis is that the performance of BFS tends to be dependent on the network it has to traverse.
Adjusting these characteristic real-world network properties potentially allows us to understand the
performance of the three state-of-the-art BFS implementations.

1

The remainder of this thesis is organised as follows; Section 2 contains the background information
that is necessary to understand this thesis; Section 3 describes previous work that are related to
the subject of the thesis. Section 4 explains how the three state-of-the-art BFS implementations
work. Section 5 describes the experiments and their outcome; Section 6 discusses the limitations of
the thesis; Section 7 concludes this thesis.

2 Background

This section contains the background information to understand this thesis; Section 2.1 describes
networks; Section 2.2 explores the di�erences between real-world networks and random networks.
Section 2.3 explains network generators, and the benchmarks of generating and acquiring certain
network properties; Section 2.4 reveals how the BFS algorithm works. Section 2.5 discusses parallel
programming on a GPU.

2.1 Networks

A network consists of nodes and edges. Networks can either beundirected, the edges indicate
a two-way relationship (the edges are bidirectional), ordirected, the edges indicate a one-way
relationship (the edges are directional). In this thesis, only undirected networks were used. A path
is a sequence of edges which connects a sequence of nodes. The shortest path is the path in which a
sequence of nodes is connected by the smallest number of edges. The distance between two nodes in
a network is equal to the number of edges in the shortest path that connects them. The degree of a
node in a network is the number of edges that are connected to it. Regular networks are networks
in which the degree of every node is the same. The size of a network is often measured in terms of
the number of nodes and edges. Networks can have clusters, which are groups of densely connected
nodes. A network is said to be complete if every node is connected to all the other nodes. Finally,
networks that are dense refer to the fact that there are relatively many connections between a set
of nodes.

2.2 Real-World Networks vs. Random Networks

To really distinguish a network from another network one has to take a look at its characteristics.
These network properties describe a network in a more detailed manner. There are many network
properties. In this thesis, we consider four important network properties:

ˆ Diameter (d) : maximum distance between any two nodes.

ˆ Global clustering coe�cient (c) : the level of clustering in a network, also called transitivity.
The global clustering coe�cient can be calculated by dividing the number of actually present
triangles by the number of triplets [17, 29]. A triplet consists of three nodes that are connected
by either two (open triplet) or three (closed triplet) edges. A triangle consists of three triplets.
For example, the network (a) in Figure 3 contains 8 triplets and 1 triangle.

ˆ Network density (n) : the number of edges that exist in the network divided by the number of
possible edges that would exist if the network was complete.

2

ˆ Average path length (̀) : the average distance between all node pairs.

Random networks, such as the Erd®s-Rényi model [9] have a uniformly random degree distribu-
tion, whereas real-world networks are often considered scale-free (and often follow a power-law
distribution). This often results in very di�erent network properties. Figure 1 describes the degree
distribution of real-world networks and random networks. Real-world networks are known for their
high clustering (they have a substantial number of clusters), short average path length (the so-called
small-world phenomenon), sparsity (low network density), and often but not always their short
diameter. Random networks can be useful for more theoretical research. For example, random
networks can be used to answer or prove if there are networks that exist with certain properties.

Figure 1: Degree distribution of random networks (left) vs. real-world networks (right) [21].

2.3 Network Generators

Random network models can be used to model networks with certain properties. Network generators
use these type of network models to generate random networks. We have to take certain network
properties, such as the ones mentioned in Section 2.2, into account when we are trying to generate
networks that to a certain extent resemble real-world networks. There are many di�erent network
generators available that can do this [4]. The Barabási-Albert model [1], which was published in
1999, is a well-known network model which is able to model scale-free networks using preferential
attachment. Preferential attachment is a probability mechanism in which a node with a high number
of neighbours has a higher chance to get more neighbours attached to it. This is also referred to the
'rich get richer' phenomenon. The network density and diameter of the networks generated with
this model are primarily determined by the parameterm, which a�ects the number of edges to add
from a new node to existing nodes while generating a network. Holme and Kim published [13] an
improved version of the Barabási-Albert model. They concluded that the Barabási-Albert model
was adequate for modelling scale-free networks, but that it failed in describing networks with high
clustering. They introduced a new parameter into the Barabási-Albert model which controls the
number of triangles in a network and therefore also the clustering coe�cient. This parameter (p)
regulates the probability of adding a triangle after having added a random edge. In general, a
higher p value results in more triangles in a network, and thus a higher global clustering coe�cient.
In this thesis, we use Holme and Kim's algorithm to generate networks. This allows us to control
the number of triangles in a network. Figure 2 shows two networks that are generated with the

3

	Introduction
	Background
	Networks
	Real-World Networks vs. Random Networks
	Network Generators
	Breadth-First Search
	Parallel Programming on a GPU

	Related Work
	Methods
	GPU Challenges
	UIUC BFS
	Warp BFS
	Enterprise BFS

	Experiments
	Data Properties
	Experimental Setup
	Results
	Exploring Enterprise

	Limitations
	Conclusions and Further Research
	References
	Properties of Generated Networks

