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Abstract

The Breadth-First Search (BFS) algorithm is often considered as the foundation for traversing
and processing graph data structures, such as in network analysis. There are many different
BFS implementations which are able to exploit the parallel architecture of a graphics processing
unit (GPU). In this thesis, we consider three state-of-the-art BFS implementations in which
each implementation is able to exploit the parallel architecture of a modern GPU in a different
manner. We consider a range of real-world networks to investigate two research questions:
which of the three state-of-the-art BFS implementations has the best overall performance and
do particular characteristic network properties of real-world networks have an impact on the
overall performance of the BFS implementation? Our evaluation on a modern GPU reveals
that one of the three state-of-the-art BFS implementations has a tipping point in terms of time
taken to complete one BFS (running time) and Traversed Edges Per Second (TEPS) when
the diameter of the networks that were used in this thesis surpasses a certain threshold. This
allows us to predict to a certain extent, based on network properties, which BFS algorithm we
should use to get the best overall performance.
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1 Introduction
Graphs are widely used in computer science, mathematics and network analysis to model connec-
tivity, and to understand or solve certain problems, such as path and matching problems. When
graphs represent real-world data [19] or a real system, such as connections between users in social
media, they are often called (real-world) networks. Our work focuses on real-world networks in
which we mainly consider social networks. With the processing or analysing of social networks,
we are able to gather more information about relationships amongst groups of people in the real
world [23]. Moreover, it allows us to discover new relationships which may help to understand
certain patterns in a social network. Graph traversal algorithms, such as Breadth-First Search
(BFS), plays an important role in gathering such information.

In the last decade, there has been a lot of development in the usage of Graphics Processing Unit
(GPU). Nowadays, GPUs are widely used for their computational power. The unique architecture
of a GPU allows it to perform the same instruction on multiple data, also called Single Instruction,
Multiple Data (SIMD), which is very pleasing for parallel computing. BFS has the potential to
benefit from the SIMD architecture when taking into account how BFS actually works, which is
explained in Section 2.4. Graph traversal algorithms are often very computationally expensive (i.e.,
it takes a great amount of time to complete it). Nowadays, real-world networks can contain up
to a few hundred million nodes, which for large inputs may take a considerable amount of time
to completely analyse. An increase in overall performance of BFS, for example by exploiting the
highly parallel architecture of a GPU, means that we can process or analyse graph data struc-
tures, especially very large ones, much faster. To analyse a network completely it is often required
to run BFS more than once. For example, to compute a ranking of nodes based on a node cen-
trality measure such as closeness centrality, a BFS has to run n times for a network that has n nodes.

In this thesis, we study three state-of-the-art BFS implementations for the GPU [14, 16, 18]. The
goal is to investigate the following two research questions.

1. Which of the three state-of-the-art BFS implementations has the best overall performance?

2. Do particular characteristic network properties of real-world networks have an impact on the
overall performance of the BFS implementation?

Our work approaches these two problems by presenting a systematic comparison between the three
state-of-the-art BFS implementations on empirical networks and artificially generated networks.
Furthermore, we manipulate particular characteristic real-world network properties, such as global
clustering coefficient or the number of triangles in a network, to observe if it has an effect on the
overall performance of the BFS implementation. BFS performance was measured by observing
and comparing the running time of one BFS and the number of Traversed Edges Per Second
(TEPS) of the BFS implementations on these networks. Finally, the NVIDIA System Management
Interface (nvidia-smi) [6] was used to monitor the GPU its activity and memory usage. The
hypothesis is that the performance of BFS tends to be dependent on the network it has to traverse.
Adjusting these characteristic real-world network properties potentially allows us to understand the
performance of the three state-of-the-art BFS implementations.
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The remainder of this thesis is organised as follows; Section 2 contains the background information
that is necessary to understand this thesis; Section 3 describes previous work that are related to
the subject of the thesis. Section 4 explains how the three state-of-the-art BFS implementations
work. Section 5 describes the experiments and their outcome; Section 6 discusses the limitations of
the thesis; Section 7 concludes this thesis.

2 Background
This section contains the background information to understand this thesis; Section 2.1 describes
networks; Section 2.2 explores the differences between real-world networks and random networks.
Section 2.3 explains network generators, and the benchmarks of generating and acquiring certain
network properties; Section 2.4 reveals how the BFS algorithm works. Section 2.5 discusses parallel
programming on a GPU.

2.1 Networks

A network consists of nodes and edges. Networks can either be undirected, the edges indicate
a two-way relationship (the edges are bidirectional), or directed, the edges indicate a one-way
relationship (the edges are directional). In this thesis, only undirected networks were used. A path
is a sequence of edges which connects a sequence of nodes. The shortest path is the path in which a
sequence of nodes is connected by the smallest number of edges. The distance between two nodes in
a network is equal to the number of edges in the shortest path that connects them. The degree of a
node in a network is the number of edges that are connected to it. Regular networks are networks
in which the degree of every node is the same. The size of a network is often measured in terms of
the number of nodes and edges. Networks can have clusters, which are groups of densely connected
nodes. A network is said to be complete if every node is connected to all the other nodes. Finally,
networks that are dense refer to the fact that there are relatively many connections between a set
of nodes.

2.2 Real-World Networks vs. Random Networks

To really distinguish a network from another network one has to take a look at its characteristics.
These network properties describe a network in a more detailed manner. There are many network
properties. In this thesis, we consider four important network properties:

• Diameter (d): maximum distance between any two nodes.

• Global clustering coefficient (c): the level of clustering in a network, also called transitivity.
The global clustering coefficient can be calculated by dividing the number of actually present
triangles by the number of triplets [17, 29]. A triplet consists of three nodes that are connected
by either two (open triplet) or three (closed triplet) edges. A triangle consists of three triplets.
For example, the network (a) in Figure 3 contains 8 triplets and 1 triangle.

• Network density (n): the number of edges that exist in the network divided by the number of
possible edges that would exist if the network was complete.
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• Average path length (`): the average distance between all node pairs.

Random networks, such as the Erdős-Rényi model [9] have a uniformly random degree distribu-
tion, whereas real-world networks are often considered scale-free (and often follow a power-law
distribution). This often results in very different network properties. Figure 1 describes the degree
distribution of real-world networks and random networks. Real-world networks are known for their
high clustering (they have a substantial number of clusters), short average path length (the so-called
small-world phenomenon), sparsity (low network density), and often but not always their short
diameter. Random networks can be useful for more theoretical research. For example, random
networks can be used to answer or prove if there are networks that exist with certain properties.

Figure 1: Degree distribution of random networks (left) vs. real-world networks (right) [21].

2.3 Network Generators

Random network models can be used to model networks with certain properties. Network generators
use these type of network models to generate random networks. We have to take certain network
properties, such as the ones mentioned in Section 2.2, into account when we are trying to generate
networks that to a certain extent resemble real-world networks. There are many different network
generators available that can do this [4]. The Barabási-Albert model [1], which was published in
1999, is a well-known network model which is able to model scale-free networks using preferential
attachment. Preferential attachment is a probability mechanism in which a node with a high number
of neighbours has a higher chance to get more neighbours attached to it. This is also referred to the
’rich get richer’ phenomenon. The network density and diameter of the networks generated with
this model are primarily determined by the parameter m, which affects the number of edges to add
from a new node to existing nodes while generating a network. Holme and Kim published [13] an
improved version of the Barabási-Albert model. They concluded that the Barabási-Albert model
was adequate for modelling scale-free networks, but that it failed in describing networks with high
clustering. They introduced a new parameter into the Barabási-Albert model which controls the
number of triangles in a network and therefore also the clustering coefficient. This parameter (p)
regulates the probability of adding a triangle after having added a random edge. In general, a
higher p value results in more triangles in a network, and thus a higher global clustering coefficient.
In this thesis, we use Holme and Kim’s algorithm to generate networks. This allows us to control
the number of triangles in a network. Figure 2 shows two networks that are generated with the

3



Barabási-Albert model and Holme and Kim’s algorithm.

(a) Barabási-Albert model [1]. (b) Holme and Kim’s algorithm [13].

Figure 2: Example networks that are generated with random network generators [1, 11, 13].

NetworkX [11] is a well-known Python [26] package which is very useful for generating and analysing
networks. In this thesis, we use NetworkX to generate and analyse networks. Gathering certain
properties of a network, such as the diameter and the average path length, can be very time
consuming. Operations that are required to gather these properties are very computationally
expensive, because they often require the network to be traversed from every node to all the other
nodes. This is especially time consuming when traversing large networks (millions of nodes and
edges). Sampling is often used to address this issue. Thus, instead of traversing the network from
every node, we traverse a random small sample. This gives us an estimation of the diameter and
the average path length instead of the exact value [27].

2.4 Breadth-First Search

BFS is a graph traversal algorithm for traversing graph data structures, such as networks. BFS
is widely used to solve many graph problems. BFS is often implemented with one or two data
structures: a queue and an array. BFS can be performed in many ways. The most basic variant of
BFS uses a frontier queue, which contains nodes (frontiers) in which their adjacent nodes (neighbour
nodes) need to be visited, and a status array, which keeps track of the nodes that have already been
visited. This variant of BFS starts with a selected node v, marks it in the status array and adds it
to the frontier queue. Node v is now the only member of the frontier. Thereafter, the adjacent nodes
of v are being visited, marked and added to the frontier queue. Node v is removed from the frontier
queue if all of its adjacent nodes are visited. The next node in the frontier queue will be the new
node v. This whole process will be repeated until all the nodes have been visited or until the frontier
queue is empty. BFS can either be done in a top-down (traditional) fashion in which BFS traverses
the nodes from top downwards (from frontiers to neighbour nodes), or a bottom-up fashion in
which BFS traverses the nodes from bottom upwards (from neighbour nodes to frontiers). There is
also a hybrid variant of BFS which makes use of both the top-down and the bottom-up approach.
Figure 3 shows an example on how top-down and bottom-up BFS with the use of a frontier queue
and a status array works. Previous research [2] has shown that the bottom-up approach tends to
traverse more efficiently compared to the top-down approach when the frontier queue contains a
substantial number of nodes. This is because, in a top-down approach every node in the frontier
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has to traverse all of its neighbours, whereas in a bottom-up approach every unvisited node (a
node that is not in the frontier and not visited) is trying to find a parent node which is part of the
frontier queue. This often results in checking less edges compared to the top-down approach [2].
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Figure 3: BFS examples on (a) undirected network consisting of 6 nodes and 6 edges with the use
of a frontier queue and a status array. (b) Top-down BFS on the example network with node 1 as
the active node in the frontier. (c) Bottom-up BFS on the example network with nodes 2, 3, and 4
as the active nodes in the frontier. Moreover, F, V and X indicate a node in the frontier, a visited
node, and an unvisited node. In (b) and (c), gray nodes represent the current nodes in the frontier.

2.5 Parallel Programming on a GPU

GPUs are widely used in parallel programming. This is often done with the use of an Application
Programming Interface (API), such as Compute Unified Device Architecture (CUDA). CUDA [5] is
a well-known API for C/C++, which allows processes to be run on a GPU. Processes can contain
mathematical operations, such as addition or multiplication. These kind of operations are performed
by an Arithmetic Logic Unit (ALU). In parallel programming on a GPU, all threads execute the
same process (kernel) in lock-step (at the same time), but on different data. The ID of a thread
determines on which data it has to work. Threads are often grouped in blocks (in CUDA this is
often referred to as CUDA blocks or CTA), of up to 1024 threads in CUDA, in which each block
contains shared memory. Furthermore, a kernel is executed as a grid, which is a group of blocks.
Shared memory can be accessed (read or write) by all threads in the same block. Shared memory
has a higher memory bandwidth compared to global memory, but is much smaller in size. Memory
bandwidth is the rate at which data can be accessed, which is often measured in gigabytes per
second (GB/s). Streaming Multiprocessors (SMs) on a GPU schedule threads in groups of 32 called
warps. The advantage of warps is that threads within a warp are often required to simultaneously
access global memory. Memory accesses to global memory is very expensive. Therefore, with the
use of warps it is possible to reduce multiple memory accesses to one memory access. This is also
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referred to the coalescing of memory (memory coalescing). Figure 4 shows a simplified schematic
view of the execution model in CUDA.

Figure 4: Thread execution model in CUDA [14].

3 Related Work
Over the past decade, there has been a lot of research done on executing BFS on GPUs. Many will
consider the Harish and Narayanan BFS implementation [12] as the first one that is able to run
on a GPU. This implementation executes BFS on a GPU with CUDA [5] in a top-down manner,
which operates in a similar manner as the BFS procedure mentioned in Section 2.4. Throughout
the years, the computational power and memory size of GPUs increased drastically. This resulted
in GPUs becoming more popular for operations that are able to utilise the parallel architecture of
a GPU and for operations which demand a high computational power or a considerable amount of
memory. Several works [10, 14, 16, 18, 20, 28] were able to built upon the Harish and Narayanan
BFS implementation. Their main goal was to improve the overall performance, such as running
time and TEPS, of the BFS implementation. This introduced state-of-the-art BFS implementations
with the potential to better utilise GPUs. Prior work [16, 18] has shown an immense increase
in BFS performance on a GPU compared to BFS on a CPU. However, many of those GPUs
are considered outdated nowadays. To fully utilise a GPU in processing graph data structures
one has to take into account the fact that its architecture can have several major issues, such as
memory management and workload imbalances [25]. Several papers have been published which
address these issues by introducing different optimisations, such as thread classification [16, 20] or
per-warp distribution [14]. These optimisations tend to rely on the hardware of the GPU. Prior
work [14, 16, 18] has shown that the effect of optimisation techniques tend to fall off after a certain
point. This is often caused by the GPU being the bottleneck and is especially noticeable when
processing considerably large networks. Our work focuses on the systematic comparison of three
state-of-the-art BFS implementations on generated networks and empirical networks to assess,
based on certain network properties, which BFS algorithm has the best performance.
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4 Methods
This section explores the optimisation techniques of the three state-of-the-art BFS implementations;
Section 4.1 presents several common challenges of BFS on a GPU; Section 4.2 explains the
optimisation techniques of UIUC BFS [18]. Section 4.3 describes the optimisation techniques of
Warp BFS [14]; Section 4.4 reveals the optimisation techniques of Enterprise BFS [16].

4.1 GPU Challenges

To efficiently perform BFS on a GPU one has to take several challenges into account. In this thesis,
we focus on two common challenges of running BFS on a GPU. First, GPU threads that need to
access (read or write) the same data. In parallel computing it is often the case that several threads
simultaneously access the same data (race conditions). The consequences of race conditions is that
it often results in presenting the wrong outcome. Thread synchronisation techniques, mechanisms
which ensure that only one thread can access a certain resource at a given point in time, can be
used to prevent the occurrence of race conditions. In the case of BFS, threads are assigned to
frontiers in which every thread has to access the same status array. This may lead to race conditions
in the status array, such as writing to the status array or reading from the status array, if thread
synchronisation mechanisms are not correctly implemented. However, such mechanisms are often
very expensive which may lead to a significant overhead. Second, assigning threads to frontiers
(workload imbalance). The degree distribution of real-world networks are often sparse. Therefore,
nodes that have a high degree will most certainly need more threads compared to nodes that
have a substantial smaller degree. As a result, threads assigned to frontiers with a small degree
are expected to finish their task earlier than frontiers with a much higher degree. The incorrect
assignment of threads may result in threads being wasted, they are idle threads (do nothing useful).
Thereby, the workload imbalance increases. Table 1 gives an overview of the methods that the three
BFS implementations use to address these two challenges.

4.2 UIUC BFS

UIUC BFS is a BFS implementation on the GPU which accelerates graph traversal for sparse
and near-regular graphs on a GPU. It uses a hierarchical frontier queue management to prevent
race conditions. Luo et al. [18] build the hierarchical queue structure from the lower-level queues to
the higher-level queues. The hierarchical frontier queue consists of three levels. First, W-Frontiers,
which are the lowest level queues that can only be accessed by threads from a single warp. Second,
B-Frontiers that consists of eight W-Frontiers. Third, the G-Frontier, the highest level frontier
queue that stores the complete new frontier queue for the next iteration. Figure 5 gives a schematic
view of the hierarchical frontier queue management. The use of a hierarchical queue structure
reduces thread synchronisation, because the queue has been partitioned such that different CUDA
threads will not access the same element. However, thread synchronisation is still required at the
end of each level. To achieve this, a global barrier synchronisation, a barrier in which threads
wait (idle) until all the other threads have reached this point, needs to be implemented. This
synchronisation technique inflicts a huge kernel-launch overhead. Every time the frontier queue
gets too large, which depends on the number of multiprocessors of the GPU, this global barrier
synchronisation has to be launched to correctly implement BFS.
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Figure 5: Hierarchical frontiers [18].

4.3 Warp BFS

Warp BFS is a warp-centric based BFS implementation that works on the GPU. This BFS
implementation is able to considerably improve the performance of applications with heavily
imbalanced workloads or heavy scattering memory accesses. Hong et al. [14] use a virtual warp-
based top-down BFS approach of different sizes to execute distinct tasks in serial. The virtual
warp-based approach enables threads to access the same shared memory within a warp, which
reduces latency and has the potential to increase performance because of it having a higher memory
bandwidth compared to global memory. Furthermore, the virtual-warp based approach divides the
warp size of 32 in multiple virtual warps of different sizes. Multiple virtual warps are then located
in one physical warp in which each virtual warp executes a different task instead of a (physical)
warp executing one task. This approach may increase the utilisation of the ALUs and reduce the
workload imbalance inside warps. However, the virtual-based approach does bring some difficulties
with it. For example, the workload imbalance inside warps are to a greater or lesser extent resolved,
but there is still the possibility of workload imbalance existing between warps. Warp BFS addresses
this issue by introducing dynamic workload distribution in which each warp dynamically fetches
a certain amount of work to process it. Unfortunately, dynamic workload distribution has the
potential to cause a considerable amount of overhead.

4.4 Enterprise BFS

Enterprise BFS is a GPU-based BFS implementation that is able to reach very high TEPS,
especially when run on large (real-world) networks. This implementation addresses three issues to
remove potential bottlenecks. First, Liu et al. [16] believe that constructing an optimal frontier queue
is key in gaining better performance. An optimal frontier queue prevents the traversal of duplicate
nodes and the need of thread synchronisation. However, constructing optimal frontier queues does
carry some overhead with it, because it takes time to identify the frontiers. Second, real-world
networks are often very sparse (skewed degree distribution). Enterprise implements dynamic thread
scheduling in which the frontiers are classified in four different frontier queues based on their degree.
The frontier queues are classified as follows: SmallQueue, consists of frontiers with fewer than 32
edges, MiddleQueue, contains frontiers that have between 32 and 256 edges, LargeQueue, holds
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frontiers that have between 256 and 65536 edges, and ExtremeQueue, contains frontiers with more
than 65536 edges. Instead of assigning a fixed number of threads to frontiers, Enterprise assigns a
certain number of threads to frontiers based on the specific frontier queue. Figure 6 gives a schematic
view of the GPU workload balancing. Although dynamic thread scheduling further removes valuable
GPU threads being wasted by not having idle threads, there is still some overhead caused by the
classification of frontiers. Third, Enterprise uses a one-time switch from top-down BFS to bottom-up
BFS to increase its performance even further. As mentioned in Section 2.4, bottom-up BFS is
considered more efficient than top-down BFS when the frontier queue contains a substantial number
of frontiers. Enterprise uses the ratio of hub nodes (nodes with high clustering) in the frontier queue
as an indicator to switch from top-down BFS to bottom-up BFS. Furthermore, Enterprise tries to
cache these hub nodes in GPU shared memory during and after direction switching to reduce the
overhead of random global memory accesses. However, since GPU shared memory (L1 cache) is
often small it is not always possible to cache all the hub nodes.

Figure 6: GPU workload balancing [16].

Name Thread synchronisation Workload imbalance

UIUC
BFS

Only uses thread synchronisation at the highest
level (G-Frontier).

Fixed number of threads for
frontiers. Therefore, some threads
are not being utilised.

WARP
BFS

Removes thread synchronisation, because every
warp works independently from one another.

Fixed number of threads for
frontiers. Therefore, some threads
are not being utilised.

Enter-
prise
BFS

Eliminates the need for thread synchronisation by
scanning the status array first before the frontier
queue gets generated.

Dynamic thread assignment based
on degree of frontiers.

Table 1: Methods used by the three BFS implementations to address the common challenges of
BFS on a GPU.
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5 Experiments
This section describes the experiments and their outcome; Section 5.1 explains the data that was
conducted for the experiments; Section 5.2 describes how the experiments were setup; Section 5.3
discusses the results that were acquired from the experiments. Section 5.4 explores the performance
of Enterprise.

5.1 Data Properties

In our experiments, we observe the four network properties that are mentioned in Section 2.2. All
the networks that were used in this thesis are represented by two different formats:

• Edge list: stores the data of a network as a list in which every line contains two nodes, a from
node and a to node, which represent an edge.

• Compressed Sparse Row (CSR): stores the data of a network as a sparse matrix.

5.2 Experimental Setup

In this thesis, we use a machine from Leiden Institute of Advanced Computer Science (LIACS)
Research and Education Laboratory (REL) Data Science lab that is intended for processes that
work on the GPU. This machine contains 16 Intel Xeon E5-2650 2.00Ghz processors with two
NVIDIA Geforce RTX 2080 Ti GPUs. This GPU was released late 2018 and is being powered
by NVIDIA’s Turing GPU-architecture [7]. All the experiments in this thesis were conducted on
a single NVIDIA RTX GeForce 2080 Ti. This GPU has a base clock speed of 1350MHz up to
1545MHz, 11 GB (gigabyte) GDDR6 of memory with a memory bandwidth of 616.0 GB/s and
68 streaming multiprocessors (SM), which every SM has a L1 cache of 64kB (kilobyte), with 4352
NVIDIA CUDA cores. Every NVIDIA CUDA core has its own ALU. Moreover, the NVIDIA Geforce
RTX 2080 Ti contains a single L2 Cache of 5.5MB (megabyte) which is shared by all SM’s. In our
work, all source code are compiled with NVIDIA nvcc 11.2 and GCC 4.8.5 [24].

The source code that was used in this thesis was acquired from the following GitHub reposi-
tories:

• Scaleable HeterOgeneous Computing (SHOC) benchmark suite [8]: benchmark suite which
contains a collection of benchmark programs, including two BFS implementations [14, 18].

• Enterprise: version of the source code from the official authors [16].

SHOC uses the METIS format, which is an adaptation of the edge list, whereas Enterprise uses
the CSR format. Previous research has shown that the Compressed Sparse Row (CSR) [3] is more
efficient than the edge list.

In our work, we use m ∈ {2, 4, 8, 10} and p ∈ {0.1, 0.2, 0.3, ..., 1.0}. These values allow us to generate
networks that resemble the characteristic properties of real-world networks. If m gets too large
then the network will get too dense, whereas real-world networks are often very sparse. In addition,
if p gets too low then the network will to a greater or lesser extent represent a network that is
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generated with the Barabási-Albert model, which fails in describing networks with high clustering.
The experiments conducted in this thesis are repeated ten times to increase the accuracy of the
results and reduce experimental bias.

5.3 Results

The first experiment involved both programs (SHOC and Enterprise) in which they were run on
several different social network data sets. SHOC was run twice as much as Enterprise, because it
includes two different implementations (one with the UIUC BFS implementation and the other with
the Warp BFS implementation). Table 2 describes the properties of the social networks [15, 22] that
were used for this experiment. Figure 7 shows the acquired results from the experiment. UIUC BFS
tends to fall behind the other two implementations in overall performance, especially on the social
network data sets com-youtube and soc-youtube in which both networks have a low global clustering
coefficient and are generally larger in size compared to the other social networks. This difference
in overall performance is up to 10 times slower in terms of time taken to complete one BFS and
up to two times less in the number of TEPS. The results show that UIUC BFS cannot benefit as
much from its hierarchical frontier queue management when the network gets too large, because of
its huge kernel-launch overhead which occurs every time the frontier queue gets overcrowded. The
results also show that Enterprise gets slightly worse overall performance compared to Warp BFS
when a network is small to medium sized or when it has a considerable high diameter. Of all the
three BFS implementations, note that Enterprise has the most optimisation techniques in which
each leads to some overhead, whereas Warp BFS only has a considerable amount of overhead when
each warp has to dynamically fetch a certain amount of work. This may be one of the main reasons
why Enterprise tends to fall behind in overall performance on the social networks from Table 2
compared to Warp BFS.

Name Nodes Edges Triangles d c n `

com-Amazon 334863 925872 667129 44 0.3967 1.6514e-05 11.77
com-youtube 1134890 2987624 3056386 20 0.0808 4.6392e-06 4.24209
ego-Facebook 4039 88234 1612010 12 0.6055 1.0899e-02 3.65807
feather-deezer-social 28281 92752 45034 21 0.125 2.3194e-03 6.2528
feather-lastfm-social 7624 27806 40433 15 0.19 9.5688e-03 5.21808
fb-pages-sport 13865 86858 140023 11 0.276188 9.0358e-03 4.24062
soc-flickr 513969 3190452 58771288 18 0.1676 2.1455e-05 4.2044
soc-youtube 495957 1936748 2443886 21 0.1101 1.5747e-05 4.00465

Table 2: Properties of social networks.
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(a) Time taken to complete one BFS (b) Traversed Edges Per Second (TEPS)

Figure 7: Benchmark of the three BFS implementations on social networks [15, 22].

The second experiment involved generated networks that resemble the characteristic properties
of real-world networks in which we control the parameter p. Figure 8 describes the important
properties of the networks that were used for this experiment. Similar to the first experiment, SHOC
and Enterprise were run on these networks. Figures 9, 10, 11, and 12 show similar to the previous
experiment that UIUC falls drastically behind in overall performance compared to the other two
BFS implementations. The results show that the performance of all the three BFS implementations
are affected when manipulating the number of triangles in a network. This does not necessarily
mean that we can conclude that the global clustering coefficient is the cause of this, because the
results show that the diameter of the network is also changing. Although Enterprise is always able to
reach the highest TEPS on these networks, its performance in terms of time taken to complete one
BFS is still slightly worse than Warp BFS on the 545K networks. We can see that the performance
of Enterprise drastically increases when the networks get larger in size. This is where Warp BFS
tends to lose from Enterprise in terms of overall performance, because large networks often require
more distribution of work which leads to more overhead in Warp BFS. Enterprise achieves 1.2x to
3x speedup in terms of TEPS when compared to Warp BFS. Enterprise shows remarkable results
when observing the Figures 9, 10, 11, and 12. However, these four figures also show that Enterprise
has a tipping point in overall performance at p = 1.0. To understand why this is happening, we
have conducted a third experiment on Enterprise.
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(a) Diameter (d) (b) Global clustering coefficient (c)

(c) Average path length (`)

Figure 8: Several properties of the generated networks from Table 4.
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(a) Time taken to complete one BFS (b) Traversed Edges Per Second (TEPS)

Figure 9: Benchmark of the three BFS implementations on networks labelled as 545K from Table
4.

(a) Time taken to complete one BFS (b) Traversed Edges Per Second (TEPS)

Figure 10: Benchmark of the three BFS implementations on networks labelled as 2M from Table 4.
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(a) Time taken to complete one BFS (b) Traversed Edges Per Second (TEPS)

Figure 11: Benchmark of the three BFS implementations on networks labelled as 3M from Table 4.

(a) Time taken to complete one BFS (b) Traversed Edges Per Second (TEPS)

Figure 12: Benchmark of the three BFS implementations on networks labelled as 20M from Table
4.
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Similar to the second experiment, the third experiment involved generated networks that resemble
the characteristic properties of real-world networks, but instead of only regulating the parameter p
we also regulated the parameter m. Figure 13 shows the results of Enterprise on these networks and
Figure 14 describes several important properties of the networks that were used for this experiment.
The results show us that Enterprise is able to reach a very high number of TEPS on the networks
with a short diameter (d < 8). Furthermore, the results also show us that when p = 1.0 that the
diameter of the network gets significantly higher than the ones in which p < 1.0. The clustering
coefficient increases as well, but not as significantly as the increase in diameter. The decrease in
overall performance between p = 0.1 and p = 1.0 is up to 80% in which most of the decrease in
overall performance occurs between p = 0.9 and p = 1.0 (up to 60%). This might be the reason why
Enterprise falls behind in overall performance when run on the social networks from Table 2. One
of Enterprise its optimisation techniques is the caching of hub nodes. This technique is obsolete
when there are hardly any hub nodes present in the network. The results of Figure 15 show us that
the degree distribution of the networks for p = 0.1 up to p = 1.0 does not significantly change. It
still follows a power-law distribution, and thus shows us that the clustering coefficient cannot be
the main cause for this tipping point in overall performance. Figure 12 shows that after a certain
point Warp BFS gets a better performance in terms of time taken to complete one BFS compared
to Enterprise.

5.4 Exploring Enterprise

We have gathered several GPU metrics while running networks from Table 5 on Enterprise. See
Table 3 for a summary of the gathered metrics. From this table we can conclude that the decrease in
overall performance is mainly caused by the increase in invocations (calls) of the following kernels:

• THD_expand_sort

• WAP_expand_sort

• CTA_expand_sort

These three kernels expand the frontier queues (adding nodes to the frontier queue by examining the
neighbours of the current frontiers). Nearly all the networks that were used for the third experiment
have the same diameter for a particular value of m. However, when we observe the networks with
p = 1.0 we see a significant rise in diameter and average path length compared to the other networks.
The hypothesis is that Enterprise has to traverse more levels when the diameter, and thus average
path length increases, which may explain the increase in invocations of the kernels. We have also
noticed that in the case of a tipping point that the individual performance of these three kernels
gets worse over time (i.e., later calls of the same kernel are significantly more expensive). We
perceived this by observing the following metrics: the instruction count, the number of bytes that
are being read from DRAM (global memory), the transaction count, and the branch efficiency. The
metrics that increase drastically over time are the number of bytes that are being read from DRAM
and the transaction count. To understand why especially these metrics are getting worse over time,
it is helpful to explore the source code of Enterprise.
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Kernel name Invocations Time (%)

THD_expand_sort 265 14.0
WAP_expand_sort 265 4.0
CTA_expand_sort 265 18.0
reaper 1524 9.0
__insp_pre_scan 1524 9.0
__insp_post_scan 1524 1.0

(a) On network with m = 10 and p = 0.9

Kernel name Invocations Time (%)

THD_expand_sort 368 26.0
WAP_expand_sort 368 10.0
CTA_expand_sort 368 21.0
reaper 2109 5.0
__insp_pre_scan 2109 4.0
__insp_post_scan 2109 < 1.0

(b) On network with m = 10 and p = 1

Table 3: Summary of the gathered metrics while running Enterprise on networks from Table 5.

Enterprise has to traverse more levels when the diameter increases. As a result, the frontier queues
are getting more crowded, because after every level (iteration) new frontiers are added to the queue.
After a brief observation of Enterprise its source code, we observed that in the expand kernels data
has to be prefetched from DRAM for every thread id (tid). More frontiers will result into more
threads being assigned, which means that the number of tid’s will increase. Therefore, more data is
being prefetched. This may explain why there is an increase in the number of bytes being read from
DRAM and in the transaction count in the later calls of the kernel. However, a further in-depth
investigation of Enterprise its source code is required to accurately answer why the performance of
the kernels gets worse over time, which we will leave for future work.

(a) Time taken to complete one BFS (b) Traversed Edges Per Second (TEPS)

Figure 13: Benchmark of Enterprise on networks from Table 5.
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(a) Diameter (d) (b) Global clustering coefficient (c)

(c) Average path length (`)

Figure 14: Several properties of the generated networks from Table 5.
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(a) Degree distribution of a network labelled as 5M with
m = 10 and p = 0.1.

(b) Degree distribution of a network labelled as 5M with
m = 10 and p = 0.9.

(c) Degree distribution of a network labelled as 5M with
m = 10 and p = 1.0.

Figure 15: Degree distributions of networks from Table 5.
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6 Limitations
Working on a GPU may cause several limitations, such as out of memory. For example, the machine
on which the experiments were conducted is accessible by all students from the LIACS department
at any moment in time. Thus, the hardware of the machine is shared among all students who access
it. Therefore, it is possible that at a certain point in time while the tests were running that other
students were also running their program on the GPU. Though very unlikely, this could lead to the
GPU being the bottleneck and eventually have an effect on the results that were gathered from the
experiments. However, we execute BFS multiple times from the same start node to prevent such
exceptions (i.e., the experiments are repeated several times).

7 Conclusions and Further Research
In this work, we used three state-of-the-art BFS Implementations [14, 16, 18] on a modern GPU to
investigate which implementation has the best overall performance. Moreover, we investigated if
particular characteristic network properties of real-world networks have an impact on the overall
performance of the BFS implementation. This was achieved by running several experiments with
the three BFS implementations on various networks.

UIUC BFS falls behind in terms of overall performance compared to Warp BFS and Enterprise on
all networks that were used in this thesis. Warp BFS tends to get the best overall performance
out of the three BFS implementations on considerably small to medium sized social networks,
because on these networks every warp only has to dynamically fetch work a few times. Therefore,
Warp BFS is expected to have the least amount of overhead on these type of networks. Enterprise
shows remarkable results in terms of overall performance and seems to be the best option when
the size of the networks gets considerably large. On large networks, Enterprise is able to utilise
its optimisation techniques more efficiently. Moreover, large networks require more distribution of
work, which leads to a significant amount of overhead in Warp BFS.

Regulating the number of triangles in a network has shown to have an effect on the overall per-
formance of all three BFS implementations. However, it is practically impossible to only change
one property of a network. In our work, the parameter p does not only cause the global clustering
coefficient to change, but it changes the diameter of the network as well. Enterprise show signs
of a tipping point when the diameter of a network gets too high, it surpasses a certain threshold
(approximately 8 on the networks run in this thesis). At this point it might be better to use Warp
BFS instead of Enterprise to get a better overall performance. Figure 16 presents a flowchart which
can be used to determine the best BFS implementation based on the networks that were used in
this thesis.

As future research, there is the possibility to investigate the two research questions mentioned in
this thesis, but then on BFS implementations that are able to run on multiple GPUs simultaneously
and on even larger (real-world) networks. Our evaluation of the three BFS implementations on a
modern GPU has shown that we can determine beforehand, based on the value of certain network
properties, which of these implementations we should use to get the best overall performance.
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Figure 16: Flowchart on choosing BFS implementations based on the networks that were used in
this thesis.
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A Properties of Generated Networks

Name Nodes Edges m p Triangles d c n `

545K 5.45× 105 2.18× 106 4 0.1 166680 8 0.036 1.4679e-05 4.5337
5.45× 105 2.18× 106 4 0.2 332666 8 0.081 1.4679e-05 4.4971
5.45× 105 2.18× 106 4 0.3 502491 8 0.128 1.4679e-05 4.4823
5.45× 105 2.18× 106 4 0.4 680127 8 0.144 1.4679e-05 4.452
5.45× 105 2.18× 106 4 0.5 866338 8 0.196 1.4679e-05 4.4789
5.45× 105 2.18× 106 4 0.6 1068207 8 0.24 1.4679e-05 4.5398
5.45× 105 2.18× 106 4 0.7 1286745 8 0.309 1.4679e-05 4.4964
5.45× 105 2.18× 106 4 0.8 1532163 8 0.362 1.4679e-05 4.577
5.45× 105 2.18× 106 4 0.9 1810394 9 0.408 1.4679e-05 4.8453
5.45× 105 2.18× 106 4 1.0 2136024 11 0.501 1.4679e-05 5.4096

2M 2.0× 106 8.0× 106 4 0.1 603913 8 0.043 3.9999e-06 4.6963
2.0× 106 8.0× 106 4 0.2 1213925 8 0.074 3.9999e-06 4.6538
2.0× 106 8.0× 106 4 0.3 1838307 8 0.129 3.9999e-06 4.6615
2.0× 106 8.0× 106 4 0.4 2490341 8 0.165 3.9999e-06 4.586
2.0× 106 8.0× 106 4 0.5 3176017 8 0.213 3.9999e-06 4.617
2.0× 106 8.0× 106 4 0.6 3910329 8 0.241 3.9999e-06 4.668
2.0× 106 8.0× 106 4 0.7 4709561 8 0.29 3.9999e-06 4.7434
2.0× 106 8.0× 106 4 0.8 5611226 9 0.381 3.9999e-06 4.7248
2.0× 106 8.0× 106 4 0.9 6635009 10 0.414 3.9999e-06 5.0587
2.0× 106 8.0× 106 4 1.0 7846321 12 0.469 3.9999e-06 5.9276

3M 3.0× 106 1.2× 107 4 0.1 905268 8 0.044 2.6666e-06 4.7343
3.0× 106 1.2× 107 4 0.2 1818003 8 0.094 2.6666e-06 4.6523
3.0× 106 1.2× 107 4 0.3 2758575 8 0.127 2.6666e-06 4.6664
3.0× 106 1.2× 107 4 0.4 3731467 8 0.159 2.6666e-06 4.5745
3.0× 106 1.2× 107 4 0.5 4756351 8 0.189 2.6666e-06 4.6181
3.0× 106 1.2× 107 4 0.6 5861636 8 0.244 2.6666e-06 4.6295
3.0× 106 1.2× 107 4 0.7 7062594 8 0.297 2.6666e-06 4.8093
3.0× 106 1.2× 107 4 0.8 8407478 9 0.324 2.6666e-06 4.8138
3.0× 106 1.2× 107 4 0.9 9946021 9 0.396 2.6666e-06 5.0187
3.0× 106 1.2× 107 4 1.0 11776198 12 0.506 2.6666e-06 6.2198

20M 2.0× 107 8.0× 107 4 0.1 6024009 8 0.03 3.9999e-07 4.9223
2.0× 107 8.0× 107 4 0.2 12112922 8 0.08 3.9999e-07 4.8934
2.0× 107 8.0× 107 4 0.3 18356372 8 0.095 3.9999e-07 4.8783
2.0× 107 8.0× 107 4 0.4 24842475 8 0.177 3.9999e-07 4.8503
2.0× 107 8.0× 107 4 0.5 31693440 8 0.206 3.9999e-07 4.8096
2.0× 107 8.0× 107 4 0.6 39034169 8 0.288 3.9999e-07 4.7596
2.0× 107 8.0× 107 4 0.7 47072035 8 0.293 3.9999e-07 4.9128
2.0× 107 8.0× 107 4 0.8 56040249 9 0.346 3.9999e-07 5.0055
2.0× 107 8.0× 107 4 0.9 66325574 9 0.426 3.9999e-07 4.8804
2.0× 107 8.0× 107 4 1.0 78421646 10 0.506 3.9999e-07 5.0525

Table 4: Properties of undirected networks.
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Name Nodes Edges m p Triangles d c n `

5M 5.0× 106 1.0× 107 2 0.1 501115 10 0.087 7.9999e-07 6.122
5.0× 106 1.0× 107 2 0.2 1000569 10 0.13 7.9999e-07 6.1018
5.0× 106 1.0× 107 2 0.3 1497666 10 0.215 7.9999e-07 6.2544
5.0× 106 1.0× 107 2 0.4 2002127 10 0.31 7.9999e-07 6.2358
5.0× 106 1.0× 107 2 0.5 2502287 10 0.344 7.9999e-07 6.3049
5.0× 106 1.0× 107 2 0.6 3002694 11 0.431 7.9999e-07 6.3881
5.0× 106 1.0× 107 2 0.7 3502016 11 0.491 7.9999e-07 6.3648
5.0× 106 1.0× 107 2 0.8 4000484 11 0.584 7.9999e-07 6.3469
5.0× 106 1.0× 107 2 0.9 4500684 12 0.7 7.9999e-07 6.9728
5.0× 106 1.0× 107 2 1.0 4999997 16 0.765 7.9999e-07 7.8186
5.0× 106 4.0× 107 8 0.1 3553008 5 0.024 3.1999e-06 3.9417
5.0× 106 4.0× 107 8 0.2 7106175 5 0.052 3.1999e-06 3.8849
5.0× 106 4.0× 107 8 0.3 10728317 5 0.07 3.1999e-06 3.8318
5.0× 106 4.0× 107 8 0.4 14468920 5 0.088 3.1999e-06 3.7993
5.0× 106 4.0× 107 8 0.5 18388977 5 0.106 3.1999e-06 3.802
5.0× 106 4.0× 107 8 0.6 22636241 5 0.129 3.1999e-06 3.7681
5.0× 106 4.0× 107 8 0.7 27514852 5 0.171 3.1999e-06 3.824
5.0× 106 4.0× 107 8 0.8 33561043 5 0.189 3.1999e-06 3.9547
5.0× 106 4.0× 107 8 0.9 42366853 6 0.229 3.1999e-06 4.0498
5.0× 106 4.0× 107 8 1.0 58515125 8 0.295 3.1999e-06 4.0195
5.0× 106 5.0× 107 10 0.1 4600240 5 0.013 3.9999e-06 3.7897
5.0× 106 5.0× 107 10 0.2 9177923 5 0.03 3.9999e-06 3.6864
5.0× 106 5.0× 107 10 0.3 13812120 5 0.053 3.9999e-06 3.6637
5.0× 106 5.0× 107 10 0.4 18591819 5 0.072 3.9999e-06 3.6309
5.0× 106 5.0× 107 10 0.5 23560996 5 0.088 3.9999e-06 3.6699
5.0× 106 5.0× 107 10 0.6 28930466 5 0.098 3.9999e-06 3.6247
5.0× 106 5.0× 107 10 0.7 35084286 5 0.133 3.9999e-06 3.7089
5.0× 106 5.0× 107 10 0.8 42934967 5 0.149 3.9999e-06 3.7577
5.0× 106 5.0× 107 10 0.9 55256038 5 0.189 3.9999e-06 3.7363
5.0× 106 5.0× 107 10 1.0 82813921 8 0.289 3.9999e-06 5.2532

Table 5: Properties of undirected networks.
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