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classes, as well as José Visser for her friendly support along my educational journey

and graduation.

I would also like to thank the ’Studienstiftung des deutschen Volkes’ for their broad

support throughout my studies, not least for connecting me with inspiring fellow

scholars.



Table of Contents

1 Introduction 1

2 Related work 3

2.1 Benchmarking continuous optimizers . . . . . . . . . . . . . . . . . . 3

2.2 Empirical performance measures . . . . . . . . . . . . . . . . . . . . 5

2.3 Algorithm selection and configuration . . . . . . . . . . . . . . . . . 6

3 Research questions 8

4 Algorithm portfolio 10

4.1 Portfolio composition . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Algorithm details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.1 BFGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.2 MLSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.3 PSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2.4 CMA-ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.5 DE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Re-implementation study . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . 20

4.3.2 Implementation challenges . . . . . . . . . . . . . . . . . . . . 22

4.3.3 Running algorithms on BBOB suite . . . . . . . . . . . . . . 22

4.3.4 Comparison with previous BBOB submissions . . . . . . . . . 23

4.4 Performance and search behaviour analysis . . . . . . . . . . . . . . 24

5 Experimental setup 28

5.1 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Identifying use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Switch routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4 Warmstarting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Experimental findings 32

6.1 BFGS to CMA-ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1.1 Warmstart mean of the population distribution . . . . . . . . 32

6.1.2 Step size prediction . . . . . . . . . . . . . . . . . . . . . . . 34



6.1.3 Warmstart covariance matrix . . . . . . . . . . . . . . . . . . 35

6.1.4 Validate results . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 CMA-ES to BFGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2.1 Warmstart initial point . . . . . . . . . . . . . . . . . . . . . 42

6.2.2 Warmstart approximate inverse Hessian matrix . . . . . . . . 44

6.2.3 Validate results . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3 MLSL to PSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3.1 Warmstart particle swarm . . . . . . . . . . . . . . . . . . . . 47

6.3.2 Impact of clustering and local search . . . . . . . . . . . . . . 51

6.3.3 Warmstart particle velocities . . . . . . . . . . . . . . . . . . 51

6.3.4 Compare to MLSL-CMAES and MLSL-DE . . . . . . . . . . 52

6.3.5 Validate results . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.4 PSO to DE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.4.1 Impact of population distribution radius . . . . . . . . . . . . 56

6.4.2 Validate results . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4.3 Impact of switch point . . . . . . . . . . . . . . . . . . . . . . 59

6.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Discussion of results 62

8 Conclusion and future work 66



Section 1: Introduction

1 Introduction

Optimization problems arise in many disciplines, ranging from engineering and natu-
ral sciences to economics, logistics and production planning. The common challenge
is to determine which input variables lead to the best possible output for a given
problem, such as finding the best hyperparameter configuration for a machine learn-
ing model or designing a fuel-saving car body. In many applications, the function
that maps solution candidates to a quantitative rating of their quality is not explic-
itly given, so that the optimum cannot be derived analytically. In this black-box
scenario, evaluating the objective function is only possible through simulations or
real-world experiments, both of which can be time-consuming and expensive. Thus,
randomly searching for the optimal configuration of problem variables typically leads
to high costs, especially for problems with large search spaces.

To find the optimum with less resources, substantial research e↵ort is spent on
engineering e�cient optimization algorithms. Through stochastic models and self-
adapting search parameters, these algorithms require fewer function evaluations to
approach the optimum compared to random searching. Even if the global optimum
cannot ultimately be found, optimization algorithms are designed to find su�cient
solutions within only a few evaluations.

Over the last decades, various di↵erent algorithms from di↵erent algorithm classes
have been developed. These algorithms di↵er considerably in their internal search
procedures, such as maintaining di↵erent adaptive parameters during the optimiza-
tion. Moreover, they show di↵erent search behaviours. For example, some algo-
rithms perform better in the initial part of the optimization, called exploration,
while others converge quicker in the final part, called exploitation. Therefore, algo-
rithms typically show complementary performances on di↵erent problem instances.
An algorithm that performs well on low-dimensional, unimodal problems may at the
same time perform poorly on high-dimensional, multimodal problems.

Consequently, for each individual problem instance, the single best algorithm needs
to be selected to achieve superior performance. This is commonly referred to as al-
gorithm selection problem (Rice 1976). Even though the selection can be performed
manually, it is a challenging task that requires profound expert knowledge. There-
fore, various algorithm selection models have been developed to assist users with the
decision on the most suitable solver. Widely known approaches are parallel algo-
rithm portfolios and automated selection models that compute solution landscape
features with a small proportion of the available evaluation budget.

While these static approaches have been proven to be e↵ective, combining multi-
ple algorithms on a single optimization run may lead to even greater performance
gains. The concept of dynamic algorithm selection (dynAS) proposes to switch be-
tween di↵erent algorithms throughout the optimization to benefit from their distinct
strengths during di↵erent search phases. Recent work by Vermetten, Wang, et al.
(2020) showed that, in theory, even a single-switch dynAS approach may lead to sig-
nificant performance improvements. Contrary to typical hyperheuristics that chain
algorithms after a specified amount of function evaluations, their study assumes
running the first algorithm until it reaches a certain function value, to then continue
the optimization with the second algorithm until it reaches the final target value.
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Section 1: Introduction

The work at hand aims to extend this research by implementing dynAS for a small
portfolio of continuous black-box optimizers. The main objective is to examine if
switching between algorithms is actionable, that is, if the predicted performance
gains can be realized when implementing an algorithm switch. In particular, this re-
search is focused on the switch method, or in other words, how information collected
during the initial optimization phase can be passed on from one algorithm to the
other, given the distinctions between di↵erent algorithm classes. This is based on
the notion that the second algorithm needs to be warmstarted, meaning its adaptive
parameters need to be reasonably set to realize performance improvements. Follow-
ing a data-driven approach similar to the one presented in Vermetten, Wang, et al.
(2020), this study zeros in on particular use cases that consist of selected problems,
algorithm combinations and switch points.

The remainder of this work is structured as follows: In Section 2, previous work
related to dynamic algorithm selection and continuous black-box optimization will
be reviewed. The research question will be outlined in more detail in Section 3.
Then, the algorithm portfolio assembled for this research will be described in Sec-
tion 4, including implementation details and challenges. Afterwards, the approach
to switch between these di↵erent algorithms will be explained and tested in a series
of experiments on selected use cases, summarized in Sections 5 and 6. Finally, this
report will discuss the results in Section 7 and provide an outlook for future work
on dynamic algorithm selection in Section 8.

2



Section 2: Related work

2 Related work

2.1 Benchmarking continuous optimizers

The algorithms studied here follow the logic of iterative search heuristics (IOH).
Once initialized, an IOH typically performs an iterative search routine until it reaches
a pre-defined termination criterion. In a generalized approach, this routine consists
of query-based sampling, evaluation, and selection operators. The search history is
utilized to update internal parameters and distributions that determine how new
solution candidates are sampled. A generic IOH scheme is shown in Algorithm 1.

A common challenge when developing new optimization algorithms is how to assess
their performance. On a single data set or function, a particular algorithm may find
the optimum within just a few function evaluations. However, iterative heuristics of-
ten employ randomization when generating or selecting solution candidates. Thus,
their performance can only be assessed empirically by aggregating multiple algo-
rithm runs. Another question is how this performance generalizes to other types of
problems. After all, the algorithm may be highly tuned on the problem at hand. To
evaluate its search behaviour reliably, the algorithm needs to be tested on multiple
di↵erent problems and problem classes.

Therefore, a procedure called benchmarking is applied. A benchmark consists of a
fixed set of problems. Any new algorithm is tested on exactly the same functions to
allow performance comparisons between the di↵erent solvers. In the domain of nu-
merical optimization, a platform called COCO (COmparing Continuous Optimizers)
(Hansen, Auger, Mersmann, et al. 2016) has been established for this purpose over
the last years. The COCO platform o↵ers interfaces to run solvers on various test
suites that consist of multiple benchmark functions. Moreover, the COCO platform
provides methods to trace and process performance data. The work at hand will
focus on the COCO test suite Black-Box Optimization Benchmark (BBOB), which
comprises 24 noiseless, single-objective test functions of the form f : [�5, 5]d ! R
that need to be minimized (Hansen, Finck, et al. 2009). The functions are com-
monly grouped into five di↵erent problem classes, as shown in Table 1. The range
of functions contains di�culties that are expected to occur frequently in the contin-
uous domain, such as the presence of many local optima. The dimensionality, i.e.
the number of problem variables, is commonly set to d 2 {2, 3, 5, 10, 20, 40} in the
BBOB context. Furthermore, di↵erent problem instances are available based on ran-
domized optima locations and transformations in the problem’s function value and
variable space (Hansen, Finck, et al. 2009). Three exemplary solution landscapes of
BBOB functions in dimension 2 are shown in Figure 1.

Table 1: BBOB functions grouped into di↵erent problem classes

Function IDs Problem class
f1 – f5 separable functions
f6 – f9 functions with low conditioning
f10 – f14 unimodal functions with high conditioning
f15 – f19 multimodal functions with adequate global structure
f20 – f24 multimodal functions with weak global structure

3
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Algorithm 1 Generic algorithm design for IOHs on continuous functions, taken
from Wang et al.(2020)

1: procedure IOH
2: t 0 . iteration counter
3: H(0) ; . search history information
4: choose a distribution ⇤(0) on N . distribution of the number of samples
5: while termination criterion not met do
6: t t+ 1
7: sample �(t) ⇠ ⇤(t� 1)
8: based on H(t� 1) choose a distribution D(t) on S

�(t)
. search space S

9: sample (x(t,1)
, ..., x

(t,�(t))) ⇠ D(t) . solution candidates
10: evaluate f(x(t,1)), ..., f(x(t,�(t))) . function evaluation
11: choose H(t) and ⇤(t)
12: end while
13: end procedure

Figure 1: Exemplary functions from the BBOB test suite. Left: f1, the simple Sphere function
from the class of separable functions. Middle: f14 is a unimodal function with high conditioning.
Right: f20, a multimodal function with weak global structure. Illustrations taken from Hansen,
Finck, et al. 2009.

The BBOB test suite has been used for workshops and competitions at academic
conferences since 2009. So far, 232 di↵erent optimization algorithms1 have been
submitted to the BBOB platform. The corresponding performance data has been
analyzed to calculate the potential of dynamic algorithm selection in Vermetten,
Wang, et al. (2020). In the report at hand, the data will be studied further to
identify use cases for algorithm switches as well as to assess the quality of algorithm
implementations.

The IOHprofiler tool (Doerr et al. 2018) will be used for analysing algorithm per-
formance in more detail. It consists of multiple components: The IOHexperimenter
component can be used to benchmark algorithms on the BBOB test suite, similar to
the COCO platform. The IOHanalyzer2 component provides a convenient way to
inspect empirical performance data. It takes in data files such as the ones created
with COCO or IOHexperimenter and o↵ers detailed insights into various metrics
(Wang et al. 2020).

1Algorithm overview available at https://coco.gforge.inria.fr/doku.php?id=algorithms-bbob (as of
15th April 2021)

2available at https://iohprofiler.liacs.nl/
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2.2 Empirical performance measures

In the domain of numerical black-box optimization, performance is usually associ-
ated with the number of applied objective function evaluations. Yet, several em-
pirical metrics are available that can take either a fixed-budget or fixed-target per-
spective. Fixed-budget metrics assume a situation where computational resources
are scarce. The lower the function value drops within a limited budget of function
evaluations3, the better is the algorithm’s performance.

In fixed-target approaches, the question is how many function evaluations an al-
gorithm requires to reach a certain target. The hitting time T (A, f, d,�) of algo-
rithm A on function f in dimension d measures how many function evaluations are
performed until the target precision � = fopt � fbest-so-far is reached. If the algo-
rithm did not find the target within the allocated budget, the hitting time is set to
T (A, f, d,�) =1.

Since algorithms may not always reach the defined target precision, previous work on
continuous black-box optimization commonly refers to the Expected Running Time
(ERT) (e.g. Hansen, Auger, Ros, et al. 2010, Kerschke and Trautmann 2019, Boks,
Wang, and Bäck 2020). Assuming algorithm restarts for unsuccessful runs, the ERT
estimates the expected hitting time of this restarting strategy by summing up the
number of function evaluations to reach target precision for all runs and dividing it
by the number of successful runs:

ERT(A, f, d,B,�) =

P
i=1

min {(Ti(A, f, d,�)), B}P
i=1

(Ti(A, f, d,�) <1)
(1)

where i denotes the algorithm’s i-th run on the problem and stands for the charac-
teristic function. The budget B is still required in the ERT equation to define after
how many evaluations without reaching target precision the algorithm restarts. Even
though the ERT has been established as standard metric in numerical optimization,
it has been criticized by researchers, among other things, for unrealistically relaxed
budget allocations (Bartz-Beielstein and Preuss 2011), using an absolute precision
for varying objective function values (Kerschke and Trautmann 2019), and the lack
of distinction between di↵erent problem instances (Kerschke and Trautmann 2019).
Another weakness is that even though ERT is a fixed-target measure, changing the
evaluation budget may have an influence on performance as it works as penalty
term whenever an algorithm run does not reach target precision. Nonetheless, to
ensure comparability with previous work, this report will focus on ERT as main
performance measure.

Comparing algorithm performances based on the absolute number of function calls
may be in some cases misleading, since the amount of evaluations is dispropor-
tionally elevated in higher dimensions and on more di�cult-to-solve functions. To
improve comparability between algorithms within our portfolio, we will also refer to
the relative ERT (relERT). This metric is obtained by normalizing an algorithm’s
absolute ERT with the ERT of the best performing solver from the portfolio on the
respective function and dimension. If an algorithm never reaches target precision
on a certain function-dimension pair, its ERT is not defined. In such cases, we ap-

3in minimization
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ply a PAR10 penalty score, meaning that we set the relERT to the tenfold of the
portfolio’s highest relERT on the respective function and dimension.

Moreover, this report will refer to the Empirical Cumulative Distribution Function
(ECDF) to compare algorithms with each other. For a number of independent
runs r, the ECDF is defined as proportion of runs where an algorithm A reaches
target precision � within a budget of function evaluations B over all runs.

F̂T(B;A, f, d,�) =
rX

i=1

(T (A, f, d,�, i)  B)/r (2)

The ECDF curve can be aggregated over multiple functions and dimensions. In
IOHanalyzer, multiple target values can be included in the ECDF calculation to
provide more insights on an algorithm’s performance even before the target precision
is reached. In this case, equation (2) is aggregated over a set of target values �:

F̂T(B;A, f, d,�) =
1

r|�|

X

�2�

rX

i=1

(T (A, f, d,�, i)  B) (3)

The ECDF curve depicts the proportion of solved problems p(f, d,�), consisting of
function-dimension-target pairs, based on the available budget. Thus, it is a useful
way to compare the overall performance of di↵erent algorithms.

2.3 Algorithm selection and configuration

The algorithm selection problem was first formalized by John R. Rice in 1976. Given
a portfolio of algorithms A and a performance measure m for a set of problems P,
the task is to find a mapping S(x) : x 2 P 7! A 2 A that assigns algorithms to
members of the problem class so that algorithm performance m is maximized (Rice
1976). A metaheuristic that would always select the best performing algorithm for
a new problem instance is called virtual best solver (VBS). However, in the context
of black-box optimization, prior knowledge about the problem characteristics is not
available without additional function evaluations. Thus, the VBS only represents
the theoretically ideal performance level for algorithm selection models. Moreover,
the no free lunch theorem predicates that any solver performs exactly the same if
averaged over all possible problems (Wolpert and Macready 1997). This also applies
to algorithm selection metaheuristics. Nonetheless, these models still hold potential
to improve performance if assumptions about the problem class can be made, which
is often the case in real-world applications.

Dynamic algorithm selection extends the approach outlined above by selecting an
algorithm not only for each problem instance, but for each time step of the opti-
mization. Based on the assumption that di↵erent algorithms are better suited for
certain search phases, e.g. exploration or exploitation, dynAS routines switch be-
tween di↵erent solvers online, that is, during the optimization process for a single
problem instance. A recent study by Vermetten, Wang, et al. (2020) demonstrated
that significant performance improvements are theoretically feasible with a single-
split dynAS model, based on an extensive analysis of BBOB performance data. In
their work, dynAS is defined as finding a policy ⇡ : S ! A that selects an algo-
rithm at each time step t of the optimization process, given the current internal
state description of the algorithm st 2 S. The work at hand extends their research

6
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by studying if and how the theoretic performance gains can be materialized when
applying dynAS to a small algorithm portfolio.

DynAS is closely linked to the problem of dynamic algorithm configuration (dynAC)
that aims to find an optimal algorithm configuration at each time step of the op-
timization. Speck et al. (2020) define dynAC as finding an optimal control policy
⇡̃
⇤ : N0 ⇥ S̃ ⇥ I ! ⇥̃ that realizes an algorithm configuration ✓ 2 ⇥̃ based on its

current internal state s̃t 2 S̃, given a problem instance i 2 I and a time step t 2 N0.
According to Biedenkapp et al. (2019), algorithm selection can be seen as special
case of dynAC where the algorithm selected per problem instance is defined as cat-
egorical hyperparameter. Recent studies have demonstrated that approaches based
on reinforcement learning are suitable to learn e�cient algorithm control policies
(Biedenkapp et al. 2019, Speck et al. 2020).

Unlike online switching approaches in dynAS and dynAC, Kerschke and Trautmann
(2019) propose to use a machine learning model to automatically select algorithms
for new problem instances. The model is trained with problem features extracted by
Exploratory Landscape Analysis (ELA), a technique that computes solution land-
scape properties, such as convexity or curvature, with a small proportion of the
available function evaluations. On the BBOB test suite, their best selection model
continuously outperforms the algorithm portfolio’s single best solver. However, this
approach is only viable if performance data on similar problem classes is available for
each algorithm in the portfolio. Furthermore, automated algorithm selection leaves
the theoretic potential of a dynamic VBS over a static one untapped.

Previous work on realizing the potential of dynAS has been focused on algorithms
from the same algorithm class. For example, Vermetten, Rijn, et al. (2019) imple-
mented a switch between di↵erent configurations of the modular CMA-ES framework
(Rijn et al. 2016). Switching between algorithms that belong to di↵erent classes has
so far only been realized in hybrid models. They either combine algorithm methods
within their main iteration loop (e.g. Boks, Wang, and Bäck 2020, Pál 2013) or per-
form a local search algorithm at the end of an optimization run with a fixed number
of function evaluations (e.g. Voglis et al. 2012). On the contrary, the approach pre-
sented here aims to switch between algorithm from di↵erent algorithm classes outside
of their main iteration loop, after they have reached a certain function value. That
is, the first algorithm (A1) runs until a switch point ⌧ , at which the second algo-
rithm (A2) continues with the optimization. The main challenge associated with
this approach is how to hand-over information collected during A1’s run to A2 to
initialize its self-adapting parameters in a reasonable way, called warmstarting.

7



Section 3: Research questions

3 Research questions

In this work, we aim to implement a single-switch dynamic algorithm selection
routine for a small portfolio of algorithms on selected function-dimension pairs.
To begin with, we focus our research on assembling a suitable set of optimization
algorithms. With that portfolio, we will investigate the e↵ects of actually switching
between the di↵erent solvers. Eventually, we will zoom in on di↵erent warmstarting
approaches and their ability to realize the aspired performance gains of dynAS.

Figure 2 summarizes our main research focus in one graphic. It illustrates mock-
up ERT curves of two algorithms in a dynAS process. The first algorithm, A1,
shows superior performance in the beginning. After reaching a precision of approx-
imately 10�5, the ERT curve leaps. If at that point, we switched to the second
algorithm, A2, we could improve performance significantly. The two main research
questions are:

(1) How does the actual ERT curve of such a switch look like, i.e. does it follow the
same course as A2, shifted downwards to continue at the A1 ERT curve, or will we
see a mismatch due to not yet learned internal parameters?

(2) How do we resume the optimization run when switching to A2, without re-
starting the search from scratch, and how do we initialize internal parameters in a
reasonable way?

In particular, we aim to investigate the following more detailed sub-questions:

� How do we assemble a diverse algorithm portfolio that is suitable for research
on dynAS?

� How do we identify use cases, that is, algorithm combinations on certain
function-dimension pairs, and the respective switch points?

� What is the e↵ect of switching between two algorithms on the overall perfor-
mance?

� How do we warmstart the second algorithm in a reasonable way? How can
we use information obtained during the first algorithm’s run for warmstarting,
given the distinct ways to handle information in diverse algorithmic designs?

� What are the use cases where dynAS shows superior performance compared
to the portfolio’s single best algorithm, and why?

� How do we ensure to switch at the desired switch point? What is the e↵ect of
switching at di↵erent switch points on performance?

8
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Figure 2: Mock-up ERT chart illustrating this work’s research target. The blue line shows a
typical A1 ERT curve, the green line A2, respectively. The pink line shows the aspired ERT curve
of an algorithm combination where the second algorithm continues after the first algorithm reached
a pre-defined switch point ⌧ . The pink and blue lines are only slightly dislocated to make them
both visible.

9
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4 Algorithm portfolio

In this work, we focus on a small, yet diverse algorithm portfolio, rather than includ-
ing the entirety of available solvers. This allows a more detailed research on dynamic
algorithm selection and the associated warmstarting procedures. The following sec-
tions will outline which algorithms are included in the portfolio, why they have been
selected, and how they work. Finally, particulars on the algorithm implementations
and their respective empirical performance will be presented.

4.1 Portfolio composition

A key interest of this research is to study the warmstarting procedure when switching
between algorithms that di↵er considerably with regards to their internal processes
and adaptive parameters. Therefore, a portfolio should consist of algorithms from
di↵erent algorithm classes. This report adopts the taxonomy proposed by Stork,
Eiben, and Bartz-Beielstein (2018). Algorithms are grouped into di↵erent classes
based on similarities in their initialization, generation, and selection methods as well
as their control parameters. Table 2 shows how the di↵erent algorithm classes are
characterized.

Table 2: Algorithm classes based on new taxonomy for optimization algorithms proposed by
Stork, Eiben, and Bartz-Beielstein (2018). For each class, initialization, generation, and selection
strategies are outlined, as well as its typical control parameters. Surrogate and hybrid algorithms
have been omitted from the overview, since they are not considered in this work.

Algorithm
class

Initialization Generation Selection Control
Parameters

1. Hill-Climbing Single solution
at random in
the valid search
space or based
on prior
knowledge

Variation of the
last observed
candidate, e.g.
with
gradient-based
or stochastic
methods

Elitist selection,
greedy - does
not accept
inferior
solutions

Step size that
controls speed
of convergence

2. Trajectory
(exploring)

Typically single
solution at
random in the
valid search
space

Variation of the
last observed
candidate

Allow inferior
solutions by
parameter-
driven
acceptance
function

Control
acceptance
function, e.g.
temperature

3. Trajectory
(systematic)

Typically single
solution at
random in the
valid search
space

Variation of the
last observed
candidate in
attractive
sub-spaces

Define
attractive or
avoidable
sub-spaces

Definition of
sub-spaces

4. Population
(classic)

Multiple
individuals
(population) at
random

Cross-over and
mutation

Di↵erent
selection
methods, e.g.
tournament
selection

Several, e.g.
population size,
crossover-
probability

5. Population
(model-based)

Multiple
individuals
(population) at
random

Cross-over and
mutation with
respect to
distribution

Di↵erent
selection
methods

Several, often
self-adaptive,
e.g. evolution
paths

10
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As a starting point, this overview reveals interesting algorithm combinations for de-
tailed research. For example, when switching from a hill climbing algorithm that
only maintains a single solution, how can we initialize multiple individuals for a
population-based algorithm? How can we hand-over information about interesting
sub-spaces that has been generated by running a systematic trajectory algorithm
to another algorithm? How can we reasonably set control parameters, such as step
size, if these parameters are not maintained in a di↵erent algorithm class? Con-
sequently, the portfolio contains representatives from di↵erent algorithm classes to
allow research on a diverse set of algorithm combinations.

Another source of information to compose the algorithm portfolio is the data that
has been generated by Vermetten, Wang, et al. (2020). In their work, the authors
analysed algorithms that have been previously submitted to the BBOB competition.
From the set of 226 possible algorithms, only the ones that had complete data files,
performed at least 15 runs on a function, and reached at least a target precision of
� = 10�8 were considered. Then, a split policy was applied to all possible algorithm
combinations and a set of split points, given by (A1, A2, ⌧) 2 A ⇥ A ⇥ �, where
� = {102�0.2i

|i 2 {0, ..., 50}} denotes the set of split points, A1 denotes the first
algorithm that runs until a split point ⌧ , and A2 denotes the second algorithm
that runs from ⌧ until it reaches the target � = 10�8. The performance of such a
single-split dynamic solver was then calculated by:

T (f, d,A1, A2, ⌧,�) = ERT (A1, f, d, ⌧) + ERT (A2, f, d,�)� ERT (A2, f, d, ⌧) (4)

For each function-dimension pair, the best performing combination (A1, A2, ⌧) has
been identified, called Virtual Best Dynamic Solver :

VBSdyn(f, d) = argmin
(A1,A2,⌧)2(A⇥A⇥�)

T (f, d,A1, A2, ⌧,�) (5)

This analysis highlights which individual algorithms appear frequently in one of the
best performing combinations, such as the hybrid algorithm HMLSL that is part of
15 combinations as A1, or the DE-AUTO algorithm that appears 8 times as A2.

However, most algorithms on the BBOB platform belong to a higher level algo-
rithm family. For example, the algorithms PSA-CMA-ES and IPOP-CMA-ES-2019
are both variants of the covariance matrix adaption evolution strategy (CMA-ES).
Findings on the warmstarting procedure for the overall algorithm family will pre-
sumably be transferable to its variants as well, as long as they maintain similar
internal parameters, such as the covariance matrix in CMA-ES. Therefore, the fre-
quency of di↵erent algorithm families to be included in VBSdyn as either A1 or A2 is
of higher interest for this research than just the frequency of individual algorithms.
Figure 3 builds on the previously mentioned data while enriching it with information
on the corresponding algorithm family for each solver that is part of a VBSdyn. It
shows that CMA-ES appears most frequently, both as A1 and A2. The Multi-Level
Single Linkage (MLSL) algorithm and Quasi-Newton methods occur frequently as
A1, while Di↵erential Evolution (DE) seems to be a good choice for A2.
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Figure 3: Number of appearances as A1 and A2 in best performing single-switch algorithm com-
binations VBSdyn for di↵erent algorithm families, based on the data provided in Vermetten, Wang,
et al. (2020). Hybrid algorithms are omitted from this overview as they consist of multiple algorithm
families.

This work’s portfolio consists of the five algorithms highlighted below. Each algo-
rithm will be briefly introduced in the following section.

1. Broyden-Fletcher-Goldfarb-Shanno (BFGS)

2. Multi-Level Single Linkage (MLSL)

3. Particle Swarm Optimization (PSO)

4. Covariance Matrix Adaption - Evolution Strategy (CMA-ES)

5. Di↵erential Evolution (DE)

4.2 Algorithm details

4.2.1 BFGS

BFGS is an optimization algorithm named after Broyden (1970), Fletcher (1970),
Goldfarb (1970), and Shanno (1970) who all derived the BFGS update formula
independently from each other at around the same time. BFGS belongs to the
family of Quasi-Newton methods that approximate the Jacobian or Hessian instead
of actually computing it. The optimum is located by finding the roots of the first-
order derivative of the objective function following the iterative process of Newton’s
method. This is based on the assumption that the region around the optimum can
be approximated as quadratic function. The algorithm is included in the portfolio
due to the high number of appearances of Quasi-Newton methods as A1 in the
previously outlined analysis.
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Algorithm 2 Broyden-Fletcher-Goldfarb-Shanno (BFGS)

1: procedure BFGS
2: Set initial x0

3: B0  I . approximate inverse Hessian matrix
4: k  0 . iteration counter
5: while termination criterion not met do
6: pk = �Bk · Of(xk) . search direction
7: ↵k  argmin f(xk + ↵k · pk) . line search to find step size
8: sk  ↵k · pk

9: xk+1  xk + sk

10: evaluate Of(xk+1) . gradient at xk+1

11: yk  Of(xk+1)� Of(xk) . gradient di↵erence

12: Bk+1  (I � yks
T
k

yT
k sk

)T ·Bk(I �
yks

T
k

yT
k sk

) + sks
T
k

yT
k sk

. Bk update
13: xk  xk+1

14: k  k + 1
15: end while
16: return best xk

17: end procedure

The optimization procedure of BFGS is shown in Algorithm 2. The algorithm starts
by initializing a single solution candidate x0 and setting the initial approximate
inverse Hessian matrix B0 as identity matrix. Then, the main iteration loop is
initiated by determining the search direction pk = �Bk · Of(xk). The gradient
at the current point Of(xk) is approximated by the finite di↵erence method as it
cannot be directly computed for black-box functions. Afterwards, the step size ↵k is
determined by line search. This can be done exact by solving argmin f(xk +↵k · pk)
or inexact with respect to the Wolfe conditions. The new solution candidate xk+1 is
obtained by taking a step sk = ↵k · pk in the search direction. After evaluating the
gradient at the new point and calculating the gradient di↵erence yk = Of(xk+1) �
Of(xk), the approximate inverse Hessian matrix is updated by the BFGS formula:

Bk+1 = (I �
yks

T
k

y
T
k sk

)T ·Bk(I �
yks

T
k

y
T
k sk

) +
sks

T
k

y
T
k sk

(6)

Finally, the iteration procedure starts again until a termination criterion is met.
The algorithm returns the best solution xk that has been observed during the opti-
mization run.

4.2.2 MLSL

The Multi-Level Single Linkage (MLSL) algorithm combines global search phases
based on clustering with local search routines. It belongs to the class of systematic
trajectory algorithms. The key idea is to only start a local search in previously
unexploited areas of attraction. The algorithm has been proposed by Kan and
Timmer in 1987. As shown in the algorithm family appearance analysis depicted
in Figure 3, MLSL and its variants seem to perform exceptionally well in the early
part of optimization, which is why this algorithm is included in the portfolio.
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Figure 4: MLSL search routine on BBOB function 3 in dimension 2. Triangles (blue and red) show
initial sample in the search space. Red triangles highlight points included in the reduced sample.
Points that fulfill distance condition are clustered (dotted black lines). A local search routine is
started at the best cluster points, with results depicted by green disks. The star icon shows where
the global optimum is located.

Algorithm 3 Cluster method Multi-Level Single Linkage (MLSL)

1: procedure MLSL
2: X  ; . Population
3: X

⇤
 ; . Points returned by local search

4: k  0 . iteration counter
5: while termination criterion not met do
6: k  k + 1
7: Add N random points to the population X

8: Xr  best �kN best points from X . reduced sample
9: for i 1 to length(Xr) do

10: if NOT (there is such a j that f(xj) < f(xi) and kxj � xik < rk) then
11: Start a local search method (LS) from xi

12: x
⇤
 LS(xi)

13: X
⇤
 X

⇤
[ {x

⇤
}

14: end if
15: end for
16: end while
17: return best observed x

⇤

18: end procedure

Algorithm 3 and Figure 4 show the detailed search routine for MLSL. To start with,
N points are sampled in the search space and then evaluated. The best �kN points
are stored in the reduced sample Xr, where � is a constant that determines the
sample size. Afterwards, a local search routine is initialized for each xi 2 Xr, as
long as there is no point xj within a critical distance rk that has a lower function
value. This procedure is essentially implementing clusters. The critical distance rk

is given by:

rk(x) =
1
p
⇡
(�(1 +

d

2
) · �(X) ·

⇣ln(kN)

kN
)1/d (7)
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where �(X) denotes the Lebesgue measure of the search space X, � denotes the
gamma function, and ⇣ is a constant. In the BBOB context, the Lebesgue measure
is given by �(X) =

p
100d. If ⇣ > 2, the probability of starting a local search is

decreasing to 0 with an increasing number of iterations (Kan and Timmer 1987).
The solutions x⇤ that are returned by the local search method are stored in X

⇤. In
the next iteration, another N points are added to the population and the outlined
routine repeats. Once the stopping criterion is met, the best solution candidate in
X

⇤ is returned.

4.2.3 PSO

Particle Swarm Optimization (PSO) is a nature-inspired algorithm that simulates
the behaviour of animals aggregating in swarms, such as birds or fish. The parti-
cles move around the search space based on their individual velocity, determining
both speed and direction. The change in velocity is influenced by the particle’s best
found position so far, called cognitive component, and the best position found by its
neighbours, called social component. Thereby, the swarm iteratively converges to
the optimum. The algorithm has been first introduced by Kennedy and Eberhart
in 1995. It is included in the portfolio to experiment with a classic population-
based algorithm which internal parameters are presumably simpler to warmstart
compared to a model-based population algorithm. Moreover, in our initial experi-
ments PSO showed advantageous exploitation behaviour on some di�cult-to-solve
BBOB functions, such as function 19 or function 24.

The algorithmic procedure of PSO with global best neighbourhood topology is shown
in Algorithm 4. During initialization, a swarm of particles with random positions
and velocities is created. Then, the iteration loop starts by updating the inertia
weight, a parameter that controls the influence of the previous particle velocity in
the velocity update and decreases over time. For each particle in the swarm, the
velocity vk is updated based on its current velocity, its best so far position xbest,k,
and the best so far position found by the entire swarm xgbest:

vk = ! · vk + U1⌦ (xbest,k � xk) + U2⌦ (xgbest � xk) (8)

where Ui is a random vector in [0,�i]d and ⌦ denotes element-wise vector multiplica-
tion. Afterwards, the particle’s position is updated by xk+1 = xk + vk. This update
procedure is also shown in Figure 5. Finally, the solution candidate at the new
position is evaluated to check if xbest,k or xgbest have to be updated. The algorithm
repeats this procedure until a stopping criterion has been met and returns the best
observed position.
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Figure 5: Velocity update procedure in PSO. The initial particle position is xi(t). It moves with
velocity vi(t). The green arrow indicates the cognitive force, pulling the particle in the direction of
its best so far position at pi(t). The blue arrow shows the social force, pulling the particle in the
direction of the global best position so far gi(t). By adding all three vectors, the particle updates
its velocity to vi(t+ 1) and arrives at its new position xi(t+ 1).

Algorithm 4 Population algorithm Particle Swarm Optimization (PSO)

1: procedure PSO
2: xgbest  ; . global best position
3: fgbest  1 . global best fitness
4: for i 1 to swarm size do . Initialize swarm
5: Add particle i to the swarm
6: xi  random vector in [xmin, xmax]d . particle position
7: vi  random vector in [vmin, vmax]d . particle velocity
8: if fi < fgbest then
9: fgbest  fi

10: xgbest  xi

11: end if
12: end for
13: while termination criterion not met do
14: Update inertia weight !
15: for k  1 to swarm size do
16: Ui  random vector in [0,�i]d

17: vk  ! · vk + U1⌦ (xbest,k � xk) + U2⌦ (xgbest � xk) . Update velocity
18: xk  xk + vk . Update position
19: if fk < fbest,k then . Update personal best
20: fbest,k  fk

21: xbest,k  xk

22: end if
23: if fk < fgbest then . Update global best
24: fgbest  fk

25: xgbest  xk

26: end if
27: end for
28: end while
29: return best observed x

30: end procedure
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4.2.4 CMA-ES

The Covariance Matrix Adaption Evolution Strategy (CMA-ES) is a widely known
optimizer from the class of population-based algorithms. It follows methods inspired
by biological evolution, such as mutation, recombination, and selection. Solution
candidates are sampled from a multivariate normal distribution N (m,C), where m

denotes the distribution mean and C denotes the covariance matrix that adapts and
rotates the distribution. The pair-wise dependencies between variables stored in
the covariance matrix are continuously updated by incorporating previous evolution
paths. The idea behind this approach is that both parallel and anti-parallel correla-
tion of consecutive mutation steps would be ine�cient, while no correlation would
be ideal (Hansen and Ostermeier 1996). The algorithm works derivative-free and
performs especially well on ill-conditioned and non-separable problems (Hansen and
Ostermeier 2001). It is included in this work’s algorithm portfolio due to the high
number of appearances as both A1 and A2, its state-of-the-art performance, and the
variety of internal strategy parameters available for research on the warmstarting
procedure.

Algorithm 5 Model-based population algorithm Covariance Matrix Adaption Evo-
lution Strategy (CMA-ES)

1: procedure CMA-ES
2: Set � . population size
3: Set � . step size
4: Initialize m . distribution mean
5: C  I . Initialize covariance matrix
6: p�  0, pc  0 . Initialize evolution paths
7: while termination criterion not met do

Sample new points
8: for k  1 to � do
9: zk ⇠ N (0, I) . Sample from normal distribution

10: yk  BDzk ⇠ N (0, C) . Apply eigenvectors B and eigenvalues D of C
11: xk  m+ �yk ⇠ N (m,�

2
C)

12: end for
13: hyiw  

Pµ
i=1 wiyi:� where

Pµ
i=1 wi = 1, wi > 0 for i = 1...µ

14: m m+ cm�hyiw . Shift distribution mean

Step size update
15: p�  (1� c�)p� +

p
c�(2� c�)µeffC

� 1
2 hyiw . Update evolution path

16: �  � ⇥ exp( c�d�
( kp�k
EkN (0,I)k � 1))

Covariance matrix update
17: pc  (1� cc)pc + h�

p
cc(2� cc)µeff hyiw . Update evolution path

18: w
�
i  wi ⇥ (1 if wi � 0 else n/kC

� 1
2 yi:�k

2)

19: C  (1 + c1�(h�)� c1 � cµ
P

wj)C + c1pcp
T
c + cµ

P�
i=1 w

�
i yi:�y

T
i:�

20: end while
21: return best observed x

22: end procedure
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Figure 6: Procedure of the CMA-ES algorithm. Left: New individuals are sampled around the
distribution mean (plus symbol). The distribution is isotropic. Center: The best individuals are
selected for shifting the distribution mean. The distribution is adapted to an ellipsoid shape with
information about evolution paths. Right: Distribution is centered around the new distribution
mean for next generation. Taken from Hansen (2016).

The CMA-ES algorithm, as shown in Algorithm 5, starts by initializing step size �,
population size �, and distribution mean m as well as setting the constants c1, cc,
c�, cµ, cm and weights wi. The covariance matrix C is initialized as identity matrix.
The iteration loop starts with sampling mutation vectors yk from N (0, C). New
individuals are generated by xk = m + �yk. The distribution mean is updated by
m m+cm�hyiw, where hyiw is the weighted average of the best µ new individuals.
Next, the step size � is updated with the evolution path p�. Both evolution paths
p� and pc are updated by cumulation. Finally, the covariance matrix is adapted
by combining a rank-one update with a rank-µ update. In the next iteration, the
updated distribution mean, step size, and covariance matrix determine the distri-
bution for sampling new individuals from N (m,�

2
C). The algorithm runs until a

termination criterion is met and returns the best individual observed so far.

4.2.5 DE

Di↵erential evolution is a population-based algorithm first proposed by Storn and
Price in 1997. Inspired by biological evolution, it applies methods like mutation,
recombination, and selection. Unlike gradient-based algorithms, the key idea in
DE is to sample new solution candidates purely based on numerical di↵erences be-
tween existing population members. Thus, the algorithm is applicable even for
non-di↵erentiable functions. The di↵erence method also enables DE to automat-
ically adapt from global to local search. However, if the algorithm is trapped in
a local optimum, it does not automatically scale back. Due to its high number
of appearances as A2 in the analysis depicted in Figure 3, di↵erential evolution is
included in this work’s algorithm portfolio.
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Figure 7: Mutation and cross-over procedure in di↵erential evolution. A mutation vector vi,g
is generated by applying xr0,g + F · (xr1,g � xr2,g) to three randomly selected members from the
population. The distinct trial vector ui,g is created by cross-over of vi,g and the parent vector xi,g.

Algorithm 6 Classic population-based algorithm Di↵erential Evolution (DE)

1: procedure DE
2: Initialize population of N � 4 points
3: while termination criterion not met do
4: for i 1 to N do
5: vi,g = xr0,g + F · (xr1,g � xr2,g) . Generate mutation vector
6: for j  1 to d do . Create trial vector ui,g

7: if randj(0, 1)  Cr or j = jrand then
8: uj,i,g  vj,i,g

9: else
10: uj,i,g  xj,i,g

11: end if
12: end for
13: if f(ui,g)  f(xi,g) then . Selection
14: xi,g+1  ui,g

15: else
16: xi,g+1  xi,g

17: end if
18: end for
19: end while
20: return best observed x

21: end procedure

Algorithm 6 shows the detailed procedure of di↵erential evolution. A population of
N � 4 random solution candidates is initialized. The cross-over rate Cr 2 [0, 1] and
the scaling factor F 2 [0, 1] are set. The iteration loops starts with generating a
mutation vector vi,g for each population member xi,g by applying xr0,g +F · (xr1,g�
xr2,g), where xri,g are random members from the population distinct from xi,g. Then,
the cross-over operator creates a trial vector ui,g where each value j is taken from the
mutation vector with a probability of Cr, and from its parent xi,g otherwise. Finally,
the trial vector’s fitness is compared to the parent’s fitness, and only accepted for
the next generation if it is superior. This scheme of mutation and cross-over is also
shown in Figure 7. The algorithm stops once the termination criterion has been met
and returns the best found solution.
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4.3 Re-implementation study

4.3.1 Implementation details

For each algorithm from the just defined portfolio, we require an implementation
to start experimentation on dynamic algorithm selection. We orientate ourselves
towards existing algorithm submissions on the BBOB platform. In cases where the
authors do not provide the code - or at least not in Python - we fall back on a di↵erent
implementation while employing algorithm settings and parameters similar to the
ones outlined in the respective submissions. This pragmatic approach is motivated
by two factors: First, this work is mainly focused on the e↵ects of chaining within
a diverse set of algorithms, rather than achieving the highest possible performance
with highly tuned solvers. Second, referring to previous BBOB submissions allows
us to compare their performances and search behaviours to the data obtained while
running our own implementations, e↵ectively conducting a re-implementation study.

For BFGS, we use the implementation within Scipy’s optimize module4 (Virtanen
et al. 2020). Similar to Baudis (2014), we keep the algorithm’s default settings. The
major di↵erence to their implementation is that we refrain from basin hopping as
a restart strategy. The gradient tolerance parameter gtol, a threshold to terminate
the algorithm run based on the norm of the current gradient vector, is changed
from 10�5 to 10�10 to reach even lower target precision values. The initial guess x0
is sampled randomly in [�5, 5]d. Line search is performed inexact with respect to
Wolfe conditions. Finally, it is worth noting that in the Scipy version, thus in our
implementation as well, BFGS does not handle boundary constraints.

MLSL has been implemented anew.5 The algorithmic parameters are set based on
the BBOB submission from Pál (2013), with � = 0.1, N = 50d, ⇣ = 2, and a budget
allocation for local search of 10% of the overall function evaluation budget. The ma-
jor di↵erence in our Python implementation is that we use the Powell method from
Scipy’s optimize module for the local search routine rather than MATLAB’s fmincon
interior-point method. We use the default settings to run the Powell method, except
from a reduced fitness tolerance parameter ftol = 10�8 to reach even lower target
precision values, as well as fixed bounds according to the BBOB definition.

For PSO, we use our own implementation6 that is largely based on an existing
Python implementation on Github.7 Design choices are made in line with the BBOB
submission from El-Abd and Kamel (2009). The neighbourhood topology is set
to global best, that is, a particle’s social component during the velocity update is
influenced by the best position found by any other particle. The swarm size accounts
for 40 particles, while the velocity update constants are set to �1 = �2 = 1.4944. In
terms of boundary handling, particles that violate a constraint are positioned on the
respective boundary, and their velocity is reset to a zero vector. Particle velocities
are bounded to [vmin, vmax] = [�5, 5].

4Scipy version 1.5.2., available at https://github.com/scipy/scipy/blob/master/scipy/optimize/
optimize.py, as of 3rd February 2021

5available at https://github.com/Schroedo1994/Realizing dynAS, as of 20th February 2021
6see footnote 5
7available at https://gist.github.com/tstreamDOTh/4af1d6b5a641deda16641181aa1e9ee8, as of 23rd

February 2021
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The inertia weight is iteratively updated based on the number of already performed
function calls, ! = 0.9 � 0.8 ·

function evaluations

evaluation budget
. While El-Abd and Kamel (2009)

initialize particle velocities as uniform random vectors in [�5, 5]d, in our implemen-
tation, we initialize vi,0 in [�1, 1]d to favour exploiting search behaviour.

The modular CMA-ES framework8 as proposed by Rijn et al. (2016) et al. represents
the CMA-ES algorithm family in our portfolio. An updated version has recently
been published by Nobel et al. (2021). The modular structure simplifies access
to internal parameters and allows switching between di↵erent algorithm options,
such as turning on or o↵ an increasing population size behaviour. Consequently, by
employing the modular CMA-ES implementation, we expect advantages for handing
over information during the warmstarting procedure. The population size is set
depending on the dimensionality of the problem at hand, with � = 4 + b3 · log dc.
The modules for additional features, such as an increasing population size, are all
turned o↵. The learning rates are kept in their default settings, that is:

cs = (µe↵ + 2)/(d+ µe↵ + 5)

cc = (4 + (µe↵/d))/(d+ 4 + (2µe↵/d))

c1 = 2/(d+ 1.3)2 + µe↵

cµ = min((1� c1), (2 · ((µe↵ � 2 + (1/µe↵)))/((d+ 2)2 + µe↵)))

where µe↵ = (
Pµ

i=1
wi)2/

Pµ
i=1

w
2

i . The step size is initially set to � = 0.5. Lastly,
the initial centre of mass m is sampled randomly with mi 2 [0, 1).

As DE implementation, we employ the version that is available via Scipy’s optimize
module9 (Virtanen et al. 2020). Most parameters are left in their default settings,
such as the cross-over rate Cr = 0.7. We set the population size to N = 5d and
change the convergence tolerance parameter tol from 0.01 to tol = 10�12. The
mutation scaling factor F is sampled from the interval [0.5, 1] at each generation.
In the Scipy implementation of di↵erential evolution, the mutation update follows
a best-1 strategy, that is, the best point found so far is used for mutation instead
of a random point xr0,g from the population. The mutation update is thus given by
vi,g = xbest+F · (xr1,g�xr2,g). Finally, we set the option polish to False. Otherwise,
we would essentially operate a hybrid algorithm that runs a few iterations of Scipy’s
L-BFGS-B algorithm after DE has converged. Posik and Klema (2012) also run
the Scipy version of di↵erential evolution on the BBOB suite. Except from an
adapted cross-over probability of Cr = 0.5, they do not explicitly state how certain
parameters are set but refer to the respective default settings. We thus assume a
population size of N = 15d and an active polish feature in their implementation.

8We used the pre-release version 1.0.8. of the configurable CMA-ES framework, now available as
modCMAES with new versioning at https://github.com/IOHprofiler/ModularCMAES, as of 23rd

February 2021
9Scipy version 1.5.2., available at https://github.com/scipy/scipy/blob/master/scipy/optimize/
di↵erentialevolution.py, as of 23rd February 2021
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4.3.2 Implementation challenges

As part of our research, we also learned about the challenges and di�culties attached
to re-implementing existing algorithmic approaches. A widely known credo in almost
all sciences is that research should be reproducible. Only then, scientific results can
be validated and extended by other researchers. Therefore, we devote this section
to a brief discussion of challenges that we observed over the course of this project.

First and foremost, re-implementing an existing algorithm would be easiest if the
actual code was made available. Even though the experimental data is provided
alongside algorithm submissions on the BBOB platform, the overview table10 does
not link to the code that generated it. This complicates understanding details like
design choices, parameter settings and experimental setup.

Researchers often provide the required implementation details within the corre-
sponding publication. However, there are two major problems with that. Firstly,
publications from di↵erent authors and di↵erent publication channels follow distinct
designs. As a consequence, details like parameter settings can be found in various
sections, for example algorithm presentation or experimental setup, so that they are
potentially missed by readers. Secondly, in many cases, not all parameters and set-
tings are stated in the publications. For example, Posik and Klema (2012) simply
state that ”[f]or most parameters of DE [...], default values from the literature were
used”. This makes it di�cult for us to replicate their results, since we cannot be
certain whether modules like the polish have been turned on or not, or what the
exact population size accounted for.

Another problem observed during implementation is the adaptability of existing ap-
proaches that have been coded in di↵erent programming languages. For our project,
we required Python code to operate both the switching between algorithms and the
experiments on IOHexperimenter. Often, existing implementations were only avail-
able in C++ or MATLAB, hindering an immediate application within our project.

In conclusion, reproducability could be significantly improved if the algorithmic
and experimental code was made available alongside with publications more fre-
quently. A standardized and agreed-upon publication framework to mention design
choices and parameter settings would help to easily spot the relevant sections as a
reader. Eventually, providing interfaces or versions in multiple programming lan-
guages makes existing algorithms more accessible.

4.3.3 Running algorithms on BBOB suite

We test our algorithm portfolio on the BBOB suite. All five algorithms run on
the 24 noiseless BBOB functions. We set the dimensionality to d 2 {2, 3, 5, 10, 20}.
Similar to a large part of existing research, the algorithms run on the first five
problem instances, i 2 {1, 2, 3, 4, 5}. We perform 5 runs on each instance, resulting
in a total of 25 runs per function-dimension pair. The experiment budget accounts
for 10,000d. Lastly, we set the target precision to � = 10�8. The generated data

10available at https://coco.gforge.inria.fr/doku.php?id=algorithms-bbob, as of 2nd March 2021
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Figure 8: ERT charts for our implementation of BFGS (red) in comparison with the one from
Baudis (2014) (pink). Left image shows ERT chart for function 15 in dimension 2, right image
shows ERT chart for function 20, dimension 5.

forms the basis for various analyses throughout this report. It can be accessed and
reviewed at Schröder (2021).

4.3.4 Comparison with previous BBOB submissions

To begin with, we use the empirical performance data to assess the quality of our
implementations by comparing it with data from previous submissions on the BBOB
platform. It must be noted that this comparison is only partly valid, given deviating
parameter settings and experimental designs. For example, Posik and Klema (2012)
run DE only once on 15 di↵erent instances with a budget of 50, 000d, while we
employ 5 runs on 5 instances with an evaluation budget of just 10,000d. Nonetheless,
comparing the resulting data provides us with an indication about the quality of our
implementations and the e↵ect of di↵ering design choices.

Reviewing ERT charts helps us to understand how our implementations compare
with existing BBOB submission. Appendix 1 shows the ERT charts of our algorithms
side by side with the algorithms mentioned in Section 4.3.1 for all 24 functions in
two di↵erent dimensions. Just a comparison for CMA-ES is missing in this overview,
since performance data for the modular CMAES framework is not yet available on
the BBOB platform.

With our implementation of BFGS, we achieve similar performance on many BBOB
functions, for instance on functions 1, 2, or 8 in dimensions 2 and 5. Figure 8 (left)
illustrates this finding, with resemblant ERT curves for function 15 in dimension 2.
On the other hand, Figure 8 (right) shows one example of a function-dimension pair
where our implementation is inferior. More such examples originate from multimodal
functions like 17, 18 or 23. This is probably caused by the lack of basin hopping in
our version, leading BFGS to be trapped in local optima more frequently.

As depicted in Figure 9 (left) for the example of function 3 in dimension 2, both
versions of PSO show a highly similar search behaviour on most functions. Only
in higher dimensions, the di↵erences become more evident. This is likely caused
by the alternative way of initializing the particle velocities, leading to advantageous
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Figure 9: ERT charts to compare this work’s algorithm implementation with the related BBOB
submission. Left image shows our implementation (’PSO new’, dark blue) and the one from El-
Abd and Kamel (2009) (’PSO’, light blue) on function 3, dimension 2. Right image shows our
implementation of DE (’DE alonepopsize 5D’, orange) in comparison with Posik and Klema (2012)
(’DE’, brown) on function 19, dimension 2.

performance of our implementation on some functions, like function 22 in dimension
10, yet unfavourable behaviour on other functions, e.g. function 16 in dimension 10.

The data shows that our version of DE performs similar to the related BBOB sub-
mission for most functions. For example, Figure 9 (right) shows the matching ERT
curves of both algorithms on function 19 in dimension 2. While our implementation
performs better in higher dimensions, such as on f11–f14 in dimension 10, the BBOB
submission is superior on some functions in lower dimensions, for example functions
15 or 24 in dimension 2. Possible explanations for this observation are the di↵ering
population size and cross-over probabilities in both versions.

For MLSL, we observe significant di↵erences between our implementation and the
one from Pál (2013). The change of the local search method from fmincon to the
Powell algorithm is likely causing these distinct performances. Nevertheless, our
version of MLSL o↵ers multiple opportunities to improve performance as part of an
algorithm switch, as will be shown in the following sections.

To conclude, comparing the empirical performance data of our algorithm implemen-
tations with data from existing BBOB submissions demonstrated that our portfolio
is suitable for further experiments on dynAS. While search behaviour and perfor-
mance are similar for most function-dimensions pairs, both versions exhibit advan-
tages on particular functions or dimensions. The di↵erences originate largely from
design choices and parameter settings, although di↵ering experimental settings must
be taken into account as well.

4.4 Performance and search behaviour analysis

With the performance data described in Section 4.3.3, we can not only evaluate the
quality of our portfolio, but also develop a better understanding of each algorithm’s
search behaviour on certain functions and dimensions. Furthermore, the first use
cases for dynAS emerge from analysing the data.
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Table 3 highlights the relative ERTs for each algorithm in di↵erent dimensions,
aggregated per function group. This helps us to better understand algorithmic search
behaviour on certain function-dimensions pairs, while quantifying the variation of
performances within our portfolio. For example, we can observe that CMA-ES
outperforms the other algorithms in the function groups f6–f9 and f10–f14 in all
dimensions. However, DE and PSO achieve the lowest relERT in other use cases.
Especially the good performance of PSO for functions f15–f24 in lower dimensions is
notable, since hill-climbing methods as employed by BFGS and MLSL were expected
to excel compared to population algorithms. It is also worth noting that BFGS
achieves the best relERT only once, while MLSL’s performance lags behind on every
function group-dimension pair. Nevertheless, the performance measure applied here
is based on the algorithm’s ability to approach a target precision of 10�8. That
said, it is still possible that any algorithm performs extremely well in the first part
of the optimization, making it a suitable candidate as A1 algorithm in a dynamic
algorithm selection model.

Table 3: relERT per function group and dimension for all five algorithms in the portfolio. The best
performing algorithm for the respective function group is highlighted in bold green font. The relERT
for algorithms that did not reach target precision in any of their runs on a certain function-dimension
pair was set to the tenfold of the highest relERT within that function group and dimension. Values
for f15-f19 are not defined because none of the algorithms reached target precision for that function
group in dimension 20.

Dimension Functions BFGS MLSL PSO CMA-ES DE

f1-f5 858.36 1717.84 106.17 30.88 15.14

f6-f9 158.61 27.61 179.57 3.15 5.55

f10-f14 1510.60 204.68 4594.73 1.33 4.09

f15-f19 543.08 300.19 1.32 140.22 147.14

2

f20-f24 1345.61 1348.97 9.33 61.87 460.66

f1-f5 4156.34 4367.73 103.94 28.39 29.94

f6-f9 3308.18 48.08 3709.61 4.48 11.71

f10-f14 3990.81 1484.01 5439.09 1.00 1.76

f15-f19 46.11 46.11 2.40 2.51 1.63

3

f20-f24 950.86 990.36 17.63 571.79 488.30

f1-f5 1763.63 2648.38 96.35 1771.89 35.32

f6-f9 2993.33 3199.64 5985.66 2.83 3005.46

f10-f14 1133.16 1188.87 1885.81 1.00 4.92

f15-f19 22.00 22.00 18.04 13.61 9.40

5

f20-f24 179.79 136.24 94.87 96.08 48.10

f1-f5 2007.56 3014.67 2130.04 2017.02 1096.10

f6-f9 222.88 444.76 444.76 3.93 238.84

f10-f14 853.22 1065.87 1065.87 1.00 874.01

f15-f19 10.00 10.00 10.00 10.00 8.20

10

f20-f24 40.57 25.36 24.85 24.82 17.05

f1-f5 4096.80 6151.21 4439.86 4105.76 6205.40

f6-f9 1260.32 2519.65 2519.65 634.11 1332.56

f10-f14 10.00 10.00 10.00 1.00 10.00

f15-f19 not defined not defined not defined not defined not defined

20

f20-f24 35.65 28.98 29.23 35.65 28.72

Reviewing the algorithms’ ECDF charts as depicted in Figure 10 sheds light on
their performance throughout the optimization process. It becomes apparent that
BFGS solves the most function-dimension pairs in the lower range of available bud-
get, an indication for suitability as A1 algorithm. Likewise, DE seems to perform
exceptionally well if more budget is available, particularly in lower dimensions, while
CMA-ES shows similar advantages in higher dimensions. Thus, we hypothesize that
both DE and CMA-ES are good candidates when switching towards an A2 algo-
rithm. Yet the question that remains open is whether the search behaviour outlined
in the ECDF chart is a result of aggregating vastly di↵erent performances on vari-

25



Section 4: Algorithm portfolio

Figure 10: Empirical Cumulative Distribution Function (ECDF) curves, aggregated over 24 BBOB
functions in dimensions 2 (top left), 5 (bottom left), 10 (top right), and 20 (bottom right). The
bbob targets option in IOHprofiler has been turned on, which includes 51 log-linear targets between
102 and 10�8. The vertical axis shows the proportion of function-dimension-target pairs that the
algorithm has solved, given the respective budget on the horizontal axis.

ous functions, or if similar behaviour can be actually observed when zooming in on
single function-dimension pairs.

As an example, Figure 11 illustrates the ERT charts for CMA-ES and BFGS on
function 14 in dimension 5 (left) and dimension 20 (right). The figures show that
BFGS indeed performs better in the early part of the optimization, that is, the
algorithm reaches a target precision of the magnitude 10�5 to 10�6 with less func-
tion evaluations than CMA-ES. But from that point onward, CMA-ES requires less
function evaluations to reach the final target precision of 10�8. If we started the
optimization with BFGS and switched to CMA-ES at the optimal switch point,
we could reach target precision faster. Again, the question is whether these gains
materialize, given that up to the switch point, CMA-ES has continuously adapted
its internal parameters, thereby obtaining information about the solution landscape
that may not be available from the parameters maintained by BFGS. This is in
essence what we like to study with our experiments in the following sections.

Figure 12 shows another example that emerges from the data, a potential use case for
the algorithms MLSL and PSO. Prior to implementing a switch between the di↵erent
solvers though, we will identify more such use cases of algorithm combinations on
particular function-dimension pairs, following a data-driven approach.
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Figure 11: ERT charts for CMA-ES and BFGS on function 14 in dimension 5 (left) and 20 (right).
All algorithms were run according to the setting outlined in Section 4.3.3.

Figure 12: ERT charts for MLSL (brown) and PSO (blue) on function 24 in dimension 2 (left)
and function 21 in dimension 20 (right). All algorithms were run according to the setting outlined
in Section 4.3.3.
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5 Experimental setup

5.1 Experimental settings

If not otherwise stated, we employ the same experimental settings on the BBOB test
suite as outlined in Section 4.3.3 for all subsequent experiments, that is, five runs per
instance on the first five instances, a target precision of � = 10�8, the dimensionality
set to d 2 {2, 3, 5, 10, 20}, and a budget of 10,000d function evaluations.

5.2 Identifying use cases

Based on the previously generated performance data (see Section 4.3.3), we follow
the approach by Vermetten, Wang, et al. (2020) to identify use cases for dynAS
within our portfolio. The approach is described in more detail in Section 4.1. For
each function-dimension pair, we obtain VBSdyn(f, d), that is, a combination of A1

and A2 algorithms and the respective switch point ⌧ that is expected to yield the
highest ERT improvement, compared to the portfolio’s static virtual best solver
VBSstatic. For a target precision of � = 10�8, the analysis results in 87 potential
algorithm combinations, out of the total 120 function-dimension pairs11. For the
remaining pairs, no combination is available because none of the algorithms reached
target precision, or none of the combinations outperformed VBSstatic.

Table 4 shows the number of resulting use cases for each algorithm combination in
our portfolio. Interestingly, almost half of the use cases are based on the combination
of BFGS and CMA-ES. The remaining use cases are evenly spread across other
combinations. It is worth noting that all five algorithms appear at least once as A1

and A2 algorithm. Another observation from the data is that the calculated switch
point ⌧ varies widely within the range [102, 1.58 · 10�8], depending on the respective
function-dimension pair.

Figure 13 depicts the potential ERT improvements within our algorithm portfolio
for all functions and dimensions. In lower dimensions, potential ERT improvements
are detected for almost all functions, with up to 92% for switching from PSO to DE
on function 22 in dimension 2. Moreover, the function group of unimodal functions
with high conditioning, f10–f14, seems particularly interesting with substantial im-
provement potential across all dimensions. In higher dimensions, we observe less use
cases to improve performance with VBSdyn, which is partly caused by less algorithms
reaching target precision12. However, on functions 17, 21, and 22 in dimensions 5
to 20, the data shows the highest improvement potential within our portfolio, with
up to 97% improvement when switching from BFGS to CMA-ES.

11resulting from 24 functions times 5 dimensions
12potentially larger improvements can be observed if we ease the target value. However, this is not
our interest in this context.
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Figure 13: Potential ERT improvements of VBSdyn over VBSstatic within our portfolio for all
functions and dimensions. Percental improvement is calculated as (ERT(VBSstatic) - ERT(VBSdyn))
/ ERT(VBSstatic).

Table 4: The number of use cases VBSdyn for each algorithm combination in our portfolio. The
target precision has been set to � = 10�8. For more details, please refer to Appendix 4.

A1 A2

Number of
use cases

Functions and dimensions

CMA-ES DE 3 f16, f19, f23 [d5]
CMA-ES PSO 0 -
CMA-ES MLSL 0 -
CMA-ES BFGS 12 f1 [d10, d20], f8, f9 [all dimensions]
PSO CMA-ES 8 f3, f4, f15-f17 [d2], f19 [d2, d3], f5 [d5]
PSO DE 5 f3, f7, f17, f22 [d2], f7 [d3]
PSO MLSL 0 -
PSO BFGS 1 f22 [d3]
MLSL CMA-ES 4 f7 [d5], f16 [d2], f23 [d2, d3]
MLSL DE 1 f21 [d2]
MLSL PSO 3 f18, f24 [d2], f20 [d5]
MLSL BFGS 6 f1 [d5], f2 [d20], f15 [d2], f20 [d2, d3], f21 [d3]
DE CMA-ES 3 f5, f13 [d2], f18 [d3]
DE PSO 4 f3, f4, f17 [d5], f24 [d3]
DE MLSL 0 -
DE BFGS 2 f1 [d3], f4 [d2]
BFGS CMA-ES 30 f5, f6, f10-f14, f21, f22 [various dimensions]
BFGS DE 0 -
BFGS PSO 0 -
BFGS MLSL 4 f2, f10, f11 [d2], f21 [d20]

5.3 Switch routine

To realize a single switch dynAS process, we have developed an algorithmic routine
illustrated in Algorithm 7. We run the first algorithm, A1, until a pre-defined target
precision ⌧ is reached. Meanwhile, we store the observed search history, such as the
trajectory of sampled points or the progression of internal parameters. Together
with A1’s current state st(A1) at the switch point t = ⌧ , the search history works
as input for warmstarting the second algorithm, A2. That is, we predict its state
s
⇤
t (A2) at t = ⌧ and set the internal parameters accordingly. Afterwards, we run the
second algorithm until the final target precision � has been reached.

For practical reasons during experimentation, we also include a maximum function
evaluation budget as stopping criterion. While we limit ourselves to a single-switch
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Algorithm 7 Single-switch dynamic algorithm selection

1: procedure Switch routine
2: Set target �, switch point ⌧ , budget B
3: t 0 . iteration counter
4: Initialize A1, st=0(A1) . Algorithm 1
5: Ht=0  ; . Search and parameters history
6: while not (�best-so-far  ⌧ or evaluations � B) do
7: Run one iteration of A1

8: Update Ht

9: Update st(A1) . Internal state description at time step t

10: t t+ 1
11: end while
12: Initialize A2 . Algorithm 2
13: s

⇤
t (A2) warmstarting(A1, A2,Ht, st(A1)) . State prediction for A2

14: st(A2) s
⇤
t (A2) . Initialize A2 with s

⇤
t (warmstarting)

15: while not (�best-so-far  � or evaluations � B) do
16: Run one iteration of A2

17: Update Ht

18: Update st(A2)
19: t t+ 1
20: end while
21: return best found solution x

22: end procedure

model in this work, the outlined routine can be easily extended by repeating lines
10 to 17 for various switch points ⌧i and algorithms Ai.

5.4 Warmstarting

As mentioned previously, this work aims to explore how we can switch between
vastly di↵erent algorithms, and if we can realize the aspired ERT improvements
derived from performance data. In doing so, warmstarting procedures are primarily
developed per use case, that is, specific combinations of A1 and A2 algorithms. We
leave a more generalized approach that implements warmstarting from any solver
to any other open for future work on dynAS. Nonetheless, the algorithm specific
routines presented here will establish a first step in this direction.

As a preparation for our experiments, we analyse each algorithm from our portfolio
in detail with regards to their internal parameters. If the algorithm is set as A1, we
are interested in the information that is maintained during search to potentially use
it as input for our warmstarting routine. While the common information carried
by all algorithms are the trajectory of points and their respective fitness values,
some algorithms maintain additional parameters. For example, BFGS maintains
an approximate inverse Hessian matrix, whereas CMA-ES includes the estimated
correlation between search variables.

From an A2 perspective, the critical question is which parameters need to be warm-
started to resume search without performance loss. While answering this question
is only possible with thorough experimentation, the table in Appendix 2 provides
us with first indications by highlighting the parameters relevant for warmstarting in
each algorithm. In many cases, parameters do not need to be warmstarted, since
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they are re-calculated in the algorithm’s main iteration loop before actually being
applied. Examples are the step size ↵k in BFGS or the critical distance rk in MLSL.
Other parameters however, such as the covariance matrix C in CMA-ES or particle
velocities in PSO, are eligible for warmstarting. The table also reveals that initial-
izing the population, or the first point in BFGS respectively, is a key element in
warmstarting any algorithm within our portfolio.

5.5 Limitations

An unbiased view on our experimental results requires a brief discussion on the lim-
itations associated with the dynAS approach presented in this work. To begin with,
our approach is based on analysing empirical performance data for each algorithm
in our portfolio. Naturally, this data is not always available in a real-world black
box optimization scenario. This a↵ects the selection of A1 and A2 as well as the
pre-defined switch point ⌧ . An operational dynamic algorithm selector would ideally
determine the subsequent algorithm as well as the moment to switch automatically.
Nevertheless, the BBOB suite contains optimization problems that typically occur
in real-world applications as well. Therefore, our findings might still be actionable
on other optimization tasks.

Another limitation related to relying on empirical performance data is the stochastic
nature of iterative search heuristics. The high variability of hitting times for individ-
ual algorithm runs may result in a substantial variance of the recorded ERT values,
depending on the respective experiment. Consequently, the data-driven selection of
A1, A2, and ⌧ may not always be ideal.

Next, we only consider a single-switch model in this work. However, the data reveals
that on some use cases, switching multiple times and between multiple di↵erent
algorithms could potentially lead to even higher performance improvements.

An additional limitation is the lack of tuning hyperparameters within our approach.
Since we are more focused on a general proof of concept for warmstarting, rather than
optimizing performance, we do not tune the algorithms’ hyperparameters. Likewise,
we refrain from tuning hyperparameters introduced in the warmstarting procedure.
However, automatic hyperparameter tuning often impacts algorithm performance
significantly, which could alter the selection of A1 and A2 algorithms and the per-
formance of algorithm switches if applied to our portfolio.

Our fixed-target approach predicates that once a certain target precision is hit, an
algorithm switch leads to advantageous search behaviour. This is based on the
assumption that the first algorithm has already found an interesting region within
the solution landscape, but fails to converge to the optimum as fast as the second
algorithm. Especially for use cases with early switch points, this assumption may
be flawed. After all, the first algorithm could be trapped in local optima, while
the global optimum is located somewhere else. This is a direct consequence of the
fixed target perspective, since target precision does not contain any information on
proximity in the feature space. Moreover, target precision values may not always
be available in real-world applications, since the exact location of the optimum and
the respective function value are typically unknown.
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6 Experimental findings

6.1 BFGS to CMA-ES

The highest number of use cases within our portfolio has been identified for switching
from BFGS to CMA-ES (see Section 5.2). Out of the total 30 use cases for this
algorithm combination, 22 include a unimodel, ill-conditioned function from the
group f10–f14. Therefore, we start our experiments on a specific function from this
group, namely f14 in dimension 2. The solution landscape is depicted in Figure 1.
Based on our previous data analysis, we expect an ERT improvement of 48% when
switching from BFGS to CMA-ES on this function-dimension pair, compared to
VBSstatic.

Reviewing the ERT charts of both algorithms as shown in Figure 17 provides us
with a first intuition why dynAS may improve performance in this case. Initially,
BFGS requires fewer evaluations to reach a target precision of ⌧ = 3.98 · 10�6. Be-
yond that point however, the ERT curve leaps drastically. Further analysis reveals
that most BFGS runs terminate after reaching ⌧ , with only 6 out of 25 runs arriv-
ing at the final target precision � = 10�8. CMA-ES on the other hand converges
more reliably, with all 25 runs reaching target precision. That is, CMA-ES shows
advantageous exploitation behaviour compared to BFGS, which is likely caused by
the ill-conditioned solution landscape around the optimum. With the subsequent
experiments, we will examine if and how the outlined di↵erences in search behaviour
can be utilized in a dynAS process in order to improve performance.

6.1.1 Warmstart mean of the population distribution

To begin with, we develop a method to initialize the population in CMA-ES. Without
warmstarting, CMA-ES would sample a new population at random in the search
space, which contradicts our idea of resuming search where the first algorithm ended.
As outlined in Section 4.2.4, CMA-ES samples its population around the distribution
mean m. By setting the distribution mean at the switch point m(⌧) to the best point
found by A1, xopt,BFGS, we e↵ectively create a population in the neighbourhood of
that point. Note that xopt,BFGS is also the last point sampled in BFGS, since we
terminate the algorithm after reaching ⌧ .

We run the combination BFGS-CMAES with warmstarted m
(⌧) according to the

settings outlined in Section 5.1. The blue line in Figure 17 depicts the resulting
ERT curve. It follows the ERT curve of BFGS up to the switch point ⌧ , after which
it leaps. Eventually, it reaches and matches the ERT curve of CMA-ES. The final
target precision � = 10�8 is hit by all 25 runs, but the resulting ERT value is slightly
worse than ERT(VBSstatic).

To understand why we cannot realize the calculated ERT improvements with this
method alone, we visualize the mutation distribution of CMA-ES right after the
switch by sampling 10,000 additional points according to the algorithm’s mutation
operator, thereby depicting the shape of the distribution. As illustrated in Figure 14,
the distribution is centred around xopt,BFGS, as we intended. However, the plot
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Figure 14: Contour plot of running dynAS(BFGS, CMA-ES, f14, d2, ⌧ = 3.98 · 10�6, � = 10�8).
Darker green-blue colors indicate smaller function values, that is, better target precisions. The
initial distribution meanm(⌧) in CMA-ES has been set to xopt,BFGS. The purple diamonds are points
sampled by CMA-ES right after the switch, plotted by increasing population size to � = 10,000.
The plot has been created by 1 run on instance 1.

reveals that the mutation distribution is isotropic with a large diameter that even
covers areas previously explored by BFGS.

We compare this plot to an ideal-typical13 mutation distribution of CMA-ES at the
switch point. We retrieve this by running CMA-ES until ⌧ and saving all internal
parameters. Then, we warmstart CMA-ES with the saved parameters and increase
the population size again to � = 10,000, while setting m

(⌧) = xopt,BFGS. Figure 15
(left) shows that the ideal-typical distribution of CMA-ES at the switch point is much
narrower than the mutation distribution we obtained in Figure 14. By zooming in,
Figure 15 (right) reveals that the distribution is anisotropic, that is, shaped like an
ellipsoid. Moreover, it is rotated to match the contour lines of increasingly small
function values.

In CMA-ES, the mutation distribution’s size, shape and rotation are influenced
mainly by the parameters step size � and covariance matrix C. Without warm-
starting at the switch point, they are initialized as �

(⌧) = 0.5 and C
(⌧) = I in our

implementation. Based on the contour plot comparison, we have to include both
parameters in our warmstarting routine to achieve the aspired performance gains.

13By ideal-typical, we mean a distribution that is typical for an ideal distribution, which does not
mean that it is ideal for every problem or problem instance.
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Figure 15: Contour plot of running dynAS(BFGS, CMA-ES, f14, d2, ⌧ = 3.98 · 10�6, � = 10�8).
Darker green-blue colors indicate smaller function values, that is, better target precisions. The
initial distribution mean m(⌧) in CMA-ES has been set to xopt,BFGS. All other parameters have
been initialized according to saved internal parameters when running CMA-ES until ⌧ . The purple
diamonds are points sampled by CMA-ES right after the switch, plotted by increasing population
size to � = 10,000. The plot has been created by 1 run on instance 1. Left image shows the entire
search space, while the right image zooms in on the area of the optimum.

6.1.2 Step size prediction

BFGS and CMA-ES both maintain step size as an internal parameter. Consequently,
the intuitive procedure is to initialize the step size in CMA-ES with the equivalent
value observed in BFGS at the switch point. However, the step sizes in both al-
gorithms vastly di↵er in their meaning and the way they are calculated. While ↵k

in BFGS scales the gradient vector and results from independently performed line
searches in each generation, � in CMA-ES regulates the length of a multi-variate
Gaussian mutation and is an adaptive parameter that is learned over time. Fig-
ure 16 highlights how both parameters evolve throughout the optimization process:
In BFGS, ↵k fluctuates strongly and does not converge to a particular value. On
the other hand, � in CMA-ES increases initially, but then steadily decreases and
converges to � < 0.1.

Based on these observations, we include a threshold parameter ✏ in the procedure to

warmstart �. If ↵(⌧)
k is below this threshold, we set �(⌧) = ↵

(⌧)
k . Otherwise, we set

�
(⌧) = ✏. This way, we can still use the available information from runs where the

final ↵k value is very low, without passing on undesirably high values in other runs.

We initialize m
(⌧) as outlined in the previous section and set ✏ = 0.01. Running

BFGS-CMAES with this warmstarting routine on function 14 in dimension 2 results
in a 6% improved ERT compared to ERT(VBSstatic). The ERT curve is indicated
by the dark green line in Figure 17. Even though a small ERT improvement can
be realized, it is still far o↵ the calculated potential improvement of 48% for this
function-dimension pair. Another problem is that ✏ has been arbitrarily selected,
making it unlikely to be transferable to other functions and dimensions.
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Figure 16: Step size evolving over the number of evaluations on function 14 in dimension 2. Left
image shows ↵k in BFGS. Right image shows � in CMA-ES. Both charts have been generated by
1 run on instance 1. In our experiments, additional runs resulted in similar charts.

Therefore, we develop an alternative warmstarting routine to predict �(⌧) that does
not rely on ↵k or a threshold value. For this method, we hand-over the trajectory of
all points sampled by BFGS. Note that this only includes points evaluated as xk, not
the ones evaluated by performing line search or the finite di↵erence method (more
details in Section 4.2.1). We calculate the average Euclidean distance between the
last n points in the trajectory and set this as our prediction for �(⌧), given by:

�
(⌧) =

Pn�2

j=0
kxj � xj+1k

n� 1
(9)

where xj is the j-th element in the trajectory of points Xhist, sorted so that x0 is
the last point sampled by BFGS. The idea behind this approach is that the closer
BFGS converges to ⌧ , the smaller is typically the distance between sampled points,
which may predict an appropriate scaling for CMA-ES started at the switch point.

We set the number of points n = 3 and initialize m
(⌧) = xopt,BFGS. Indicated by

the bright green line in Figure 17, the ERT of running BFGS-CMAES with this
step size prediction method is slightly worse than both VBSstatic (�2%) and the
threshold method (�8%). Nonetheless, this method is less dependent on function-
specific threshold values and might therefore be advantageous when applied to more
function-dimension pairs. After all, the small di↵erences in performance could be
caused by the algorithms’ stochastic nature.

Even though both methods to warmstart step size in CMA-ES slightly improve per-
formance compared to just warmstarting the distribution mean, we still experience
a significant leap in ERT when switching from BFGS to CMA-ES.

6.1.3 Warmstart covariance matrix

The next experiment is focused on warmstarting the covariance matrix in CMA-
ES. For convex-quadratic functions, the covariance matrix directly relates to the
objective function’s inverse Hessian matrix. That is, setting C = H

�1 is equivalent
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to optimizing a simple sphere function (Glasmachers and Krause 2020), which has
been demonstrated to yield the optimal progress as it is one of the most extensively
studied functions (Hansen 2016). Shir and Yehudayo↵ (2020) provide proof that in
(1,�)-evolution strategies on quadratic functions, the learned covariance matrix C

is proportional to a scaled version of H�1 with increasing population size �.

Obviously, not all BBOB functions belong to the class of convex-quadratic functions.
However, if the mutation distribution only samples in a small neighborhood of the
current search point, the local landscape will usually resemble that of a convex-
quadratic functions, given some continuity assumptions on the objective function
(e.g. Lipschitz continuity). This approach, called active encoding, is outlined in
more detail in Hansen, Finck, et al. (2009).

Consequently, we hypothesize that the covariance matrix in CMA-ES can be warm-
started by setting C = �H

�1, where � is a scaling factor. Moreover, we suggest
that this approach only yields performance improvements on non-convex-quadratic
BBOB functions if the step size at the switch point is su�ciently small, meaning
that the optimization process is local enough to validate our assumptions above.
This directly relates to our switch approach as well, because we expect the search
behaviour of A2 to be more localized the later we switch, or for smaller values for ⌧ ,
respectively. For this particular algorithm combination, we can obtain the local
Hessian matrix at the switch point directly from BFGS, as the algorithm main-
tains an approximate inverse Hessian matrix Bk ⇡ H

�1(see Section 4.2.1). We test

this approach by setting C
(⌧) = �B

(⌧)
k . The scaling factor is set to � = 0.1 based

on our intuition from prior experiments with alternating values. Additionally, we
implement the previous warmstarting routines, namely m

(⌧) = xopt,BFGS and the
prediction method for �(⌧) with n = 3. As indicated by the pink line in Figure 17,
this approach yields a significant ERT improvement (61%) compared to VBSstatic,
which is even 13 percentage points higher than the anticipated improvement for this
use case.

By reviewing Figure 18, it becomes apparent that with the outlined warmstart-
ing routine, the ellipsoid mutation distribution of CMA-ES right after the switch
matches the ideal-typical distribution from Figure 15. The ellipsoid seems to be
correctly sized, shaped, and rotated to find the optimum, indicated by the pink di-
amond, e�ciently. Yet, the contour plots have been created by only one run on the
first instance. Therefore, we need to test this approach with more runs on several
instances and apply it to di↵erent use cases.
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Figure 17: ERT chart for BFGS, CMA-ES and BFGS-CMAES with di↵erent warmstarting rou-
tines on function 14, dimension 2. All algorithms were run according to the experimental settings
outlined in Section 5.1.

Figure 18: Contour plot of running dynAS(BFGS, CMA-ES, f14, d2, ⌧ = 3.98 · 10�6, � = 10�8).
Darker green-blue colors indicate smaller function values, that is, better target precisions. CMA-
ES has been warmstarted according to the settings outlined in Section 6.1.3. The purple diamonds
are points sampled by CMA-ES right after the switch, plotted by increasing population size to
� = 10,000. The plot has been created by 1 run on instance 1.
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6.1.4 Validate results

We run the combination BFGS-CMAES with the warmstarting routine outlined
in Algorithm 8 on all 30 identified use cases (see Section 5.2). Thereby, we aim
to validate the promising results from applying this procedure on function 14 in
dimension 2. Table 5 shows the corresponding ERT values for a selection of function-
dimension pairs. It highlights that our warmstarting routine performs exceptionally
well within the function group f10–f14. With 83%, the highest improvement is
recorded for functions 10 and 11 in dimension 20.

On some functions, such as f13 or f14 in dimension 10, the actual ERT is even bet-
ter than the expected ERT value derived from the data analysis. In a few other
cases, the improvement is not as high as expected, such as for function 12 in dimen-
sion 2. Averaged over all 22 use cases within the function group f10–f14, the actual
ERT(VBSdyn) is 60% better than ERT(VBSstatic) and 5% better than the expected
ERT(VBSdyn).

On functions that do not belong to this group, the results are mixed. On function 6,
our approach yields a 45% improvement in dimension 2, while performance deteri-
orates by 8% in dimension 3. On functions 21 and 22, the ERT of switching from
BFGS to CMA-ES is considerably worse than ERT(VBSstatic). A possible explana-
tion is that ⌧ in the respective function-dimension pairs is comparatively large, i.e.
the switch happens early during the optimization. This is problematic considering
our earlier claim that initializing the covariance matrix with the approximate Hes-
sian matrix from BFGS only works if the optimization is already zoomed in on a
narrow area on the solution landscape. Another reason could be the multimodality
of functions 21 and 22, leading BFGS to approach a local rather than the global
optimum as it reaches ⌧ .
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Algorithm 8 Warmstarting routine BFGS-CMAES

1: procedure Warmstart CMA-ES(st(BFGS), Ht)

2: Save xopt,BFGS, Xhist, B
(⌧)
k . Observed by running BFGS

3: n 3 . Number of points for sigma prediction
4: �  0.1 . Scaling factor for approximate inverse Hessian
5: m

(⌧)
 xopt,BFGS . Warmstart distribution mean

6: �
(⌧)
 

Pn�2
j=0 k(xj�xj+1)k

n�1 . Warmstart step size

7: C
(⌧)
 �B

(⌧)
k . Warmstart covariance matrix

8: end procedure

Table 5: ERT values for switching from BFGS to CMA-ES on selected function-dimension
pairs. The target precision has been set to � = 10�8. Percental improvements are calculated as
(ERT(VBSstatic) - actual ERT(VBSdyn)) / ERT(VBSstatic), and (expected ERT(VBSdyn) - actual
ERT(VBSdyn)) / expected ERT(VBSdyn), respectively.

A1 A2 f d ⌧
ERT

(VBSstatic)

Expected

ERT

(VBSdyn)

Actual

ERT

(VBSdyn)

ERT impr.

actual vs.

VBSstatic

ERT impr.

actual vs.

expected

BFGS CMA-ES 6 2 6.31 · 10�8
589.56 324.33 327.2 45% -1%

BFGS CMA-ES 6 3 1.58 · 10�7
942.56 672.32 1018.36 -8% -51%

BFGS CMA-ES 10 3 1.58 · 10�5
1135.92 267.18 267.36 76% 0%

BFGS CMA-ES 10 20 2.51 · 10�5
19825.48 3096.4 3341 83% -8%

BFGS CMA-ES 11 10 2.51 · 10�4
5797.32 1072.12 1226.2 79% -14%

BFGS CMA-ES 11 20 1.58 · 10�4
15457 2540.52 2553.4 83% -1%

BFGS CMA-ES 12 2 1.58 · 10�6
1237.07 791.6 1032.04 17% -30%

BFGS CMA-ES 12 20 6.31 · 10�5
26711.84 16854.47 15785.28 41% 6%

BFGS CMA-ES 13 5 2.51 · 10�3
3938.08 2294.00 2111.24 46% 8%

BFGS CMA-ES 13 10 2.51 · 10�3
15987.36 11193.2 9209.24 42% 18%

BFGS CMA-ES 14 2 3.98 · 10�6
705 364.72 271.64 61% 26%

BFGS CMA-ES 14 10 3.98 · 10�6
6750.84 3414.2 2399.08 64% 30%

BFGS CMA-ES 21 5 1 49843.62 2258.5 1184041.5 -2276% -52326%

BFGS CMA-ES 21 10 1 294066.29 9924.00 732071 -149% -7277%

BFGS CMA-ES 22 10 1.58 318490.5 12056.5 563100.88 -77% -4571%

Figure 19 shows two more examples of how the warmstarting procedure a↵ects
performance when switching from BFGS to CMA-ES. In both function-dimension
pairs, f10 in dimension 20 (left) and f13 in dimension 5 (right), the ERT curve
of VBSdyn follows the ERT curve of BFGS up to the switch point. Instead of
leaping after the switch, as observed for warmstarting without initialized C matrix
in Figure 17, the ERT curve follows the course of CMA-ES in the range from ⌧ to �.
It is important to note the logarithmic scaling of the y-axis in these charts, which
may lead to the conclusion that the ERT curve of BFGS-CMAES rises faster than
the ERT curve of CMA-ES after the switch, which is not the case.
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Figure 19: ERT charts for BFGS, CMA-ES and BFGS-CMAES with warmstarting routine ac-
cording to Algorithm 8 on function 10, dimension 20 (left) and function 13, dimension 5 (right).
All algorithms were run according to the experimental settings outlined in Section 5.1.

6.1.5 Conclusion

We have developed a warmstarting routine that realizes substantial performance
gains when switching from BFGS to CMA-ES on several di↵erent function-dimension
pairs. Our approach seems to perform especially well on unimodal, ill-conditioned
functions (f10–f14). We have learned that from all examined parameters, warm-
starting the covariance matrix had the largest e↵ect on ERT. However, setting C to
an estimated local inverse Hessian matrix may become exceedingly di�cult in algo-
rithm combinations where the A1 algorithm, unlike BFGS, does not maintain this
parameter. Moreover, the selection of parameters introduced in the warmstarting
methods, like the number of points n in our sigma prediction method, or the inverse
Hessian scaling factor �, still needs to be investigated. We expect that tuning them
would allow even higher performance gains.

6.2 CMA-ES to BFGS

Inspecting the use cases for switching the other way round, i.e. from CMA-ES to
BFGS, leads to a notable finding. For all function-dimension pairs that involve ei-
ther function 8 or 9, this algorithm combination is expected to yield the highest
performance gains over VBSstatic. Figure 20 depicts function 8 (Rosenbrock func-
tion), where the optimum is located on a bent ridge. Function 9 is a rotated version
of the Rosenbrock function. To help us explain this finding, we run each algorithm
individually on function 9 in dimension 2 and plot all sampled points during search
together with the solution landscape’s contour lines of uniform target precision val-
ues.

As illustrated in Figure 21, BFGS follows the course of the ridge. However, many
points are sampled on an indirect route towards the optimum as the algorithm’s
search direction aligns with the bend of the ridge. CMA-ES on the other hand, as
shown in Figure 22, quickly approaches an area of the ridge closer to the optimum,
but then samples many points before reaching the final target. This is likely caused
by continuously updating and rotating the mutation distribution, determined by
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Figure 20: Solution landscape for BBOB function 8 (Rosenbrock function) in dimension 2. Image
taken from Hansen, Finck, et al.(2009).

Figure 21: Contour plot of running BFGS on function 9, dimension 2, � = 10�8. Darker green-
blue colors indicate smaller function values. Darker red color indicates higher generation numbers
of points xk sampled by the algorithm. The target precision has been hit at xopt,BFGS, highlighted
in magenta. The plot has been created by 1 run on instance 1.
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Figure 22: Contour plot of running CMA-ES on function 9, dimension 2, � = 10�8. Darker
green-blue colors indicate smaller function values. Darker purple color indicates higher generation
numbers of points sampled by the algorithm. The target precision has been hit at xopt,CMAES,
highlighted in cyan. The plot has been created by 1 run on instance 1. Left image shows entire
search space, while right image zooms in on the area of the optimum.

the covariance matrix, to sample solution candidates on the thin path of the ridge.
Based on these learnings, we infer the following hypothesis: Switching from CMA-ES
to BFGS on the Rosenbrock function improves performance, compared to VBSstatic,
because CMA-ES (A1) reaches the area of the ridge that contains the optimum faster,
while BFGS (A2) converges to the optimum quicker as it requires less evaluations
to follow the course of the ridge.

6.2.1 Warmstart initial point

The first parameter we consider for warmstarting BFGS is x0, which is the initial
point where BFGS starts its search. We set x0 to the best point found by CMA-ES,
xopt,CMAES. We run this configuration on function 9 in dimension 2 with ⌧ = 1.58
and on function 8 in dimension 10 with ⌧ = 102, according to the experimental
settings outlined in Section 5.1. Figure 24 depicts the resulting ERT charts. On
both use cases, switching from CMA-ES to BFGS results in improved ERT values,
accounting for 52% improvement on function 9 in dimension 2 (left image), and 37%
on function 8 in dimension 10 (right image). The ERT curve of VBSdyn, indicated
by the light blue line, matches the ERT curve of CMA-ES up to the switch point,
after which it continues similar to the course of the ERT curve of BFGS.

To test if the observed performance gains can be explained by our hypothesis, we
again plot all sampled points during search together with the contour lines of equal
target precision values, this time for the combination CMAES-BFGS. As shown in
Figure 23 (left), CMA-ES requires three iterations to sample a point (cyan diamond)
on the ridge that is already close to the optimum. Starting there, BFGS only samples
very few points that are all positioned on the ridge, until it arrives at the target
precision. Figure 23 (right) highlights this behaviour in more detail as it zeros in on
the area of the optimum. Even though the plots presented here have been generated
by only one run on the first instance, we observed the outlined behaviour on several
independent runs on di↵erent instances throughout our experiments. Therefore, we
rate these findings as support of our initial hypothesis.
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Figure 23: Contour plot of running CMAES-BFGS on function 9, dimension 2, � = 10�8, ⌧ = 1.58.
Darker green-blue colors indicate smaller function values. The target precision has been hit at
xopt,BFGS, highlighted in magenta. The plot has been created by 1 run on instance 1. Left image
shows the entire search space, while right image zooms in on the area of the optimum.

Figure 24: ERT charts for CMA-ES, BFGS and CMAES-BFGS with warmstarting routine for
x0 on function 9, dimension 2 (left) and function 8, dimension 10 (right). All algorithms were run
according to the experimental settings outlined in Section 5.1.

43



Section 6: Experimental findings

6.2.2 Warmstart approximate inverse Hessian matrix

Another parameter in BFGS that is available for warmstarting is the approximate
inverse Hessian matrix Bk. Without warmstarting, it will be initialized as Bk = I.
Based on the relation between the covariance matrix and the inverse Hessian ma-
trix as outlined in Section 6.1.3, we set the approximate inverse Hessian matrix at

the switch point to B
(⌧)
k = C

(⌧). We run this configuration on selected function-
dimension pairs according to the experimental settings outlined in Section 5.1. Fig-
ure 25 depicts how the hitting times to reach target precision for individual runs
di↵er on various function-dimension pairs, depending on whether or not Bk has been
warmstarted. It becomes apparent that warmstarting Bk with this method does not
have a large impact on hitting times. Only on function 9 in dimension 20, the ERT
of CMAES-BFGS with initialized Bk is slightly better than without initialization.

This observation can be explained by the early switch, that is, large values for ⌧ in
all use cases. Prior to the switch, CMA-ES has only performed very few iterations.
Consequently, the covariance matrix has not yet been learned properly, which results
in a rather isotropic mutation distribution. As this is similar to setting Bk to the
identity matrix, there is little e↵ect on the performance of BFGS after the switch.
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Figure 25: Hitting times to reach � = 10�8 for individual runs of CMAES-BFGS. Blue plus
signs indicate hitting time for runs of CMAES-BFGS with initialized approximate Hessian matrix.
Red cross signs indicate hitting time for runs of CMAES-BFGS with approximate Hessian matrix
initialized as identity matrix. The resulting ERT values are highlighted with light blue discs (with
initial Bk) and orange discs (without initial Bk), respectively.

6.2.3 Validate results

We run the switch from CMA-ES to BFGS with warmstarted x0 on all 12 use
cases derived from the data analysis outlined in Section 5.2. On functions 8 and 9
combined, we achieve an average ERT improvement of 30% over VBSstatic, 13% over
the expected ERT, respectively. The highest improvement has been achieved on
function 9 in dimension 2, accounting for 52%. Only on function 8 in dimension 5,
the actual ERT is worse than ERT(VBSstatic) (-16%).

On the two use cases that involve function 1, our approach shows inferior perfor-
mance. A possible explanation is that as quadratic function, f1 is the ideal case
for which BFGS, or generally Newton’s method, is designed for, leading to a super-
linear convergence rate without any restarting mechanism. Therefore, starting the
optimization with CMA-ES does not yield the calculated improvements.
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Table 6: ERT values for switching from CMAES to BFGS on selected function-dimension pairs.
The target precision has been set to � = 10�8. Percental improvements are calculated as
(ERT(VBSstatic) - actual ERT(VBSdyn)) / ERT(VBSstatic), and (expected ERT(VBSdyn) - actual
ERT(VBSdyn)) / expected ERT(VBSdyn), respectively.

A1 A2 f d ⌧
ERT

(VBSstatic)

Expected

ERT

(VBSdyn)

Actual

ERT

(VBSdyn)

ERT impr.

actual vs.

VBSstatic

ERT impr.

actual vs.

expected

CMA-ES BFGS 8 2 10 155.08 131.68 87.52 44% 34%

CMA-ES BFGS 8 3 3.98 277.32 242.16 204.92 26% 15%

CMA-ES BFGS 8 5 100 500.83 472.11 580.26 -16% -23%

CMA-ES BFGS 8 10 100 1963.2 1771.28 1234.21 37% 30%

CMA-ES BFGS 8 20 100 4746.16 4145.44 4282.82 10% -3%

CMA-ES BFGS 9 2 1.58 175.24 93.92 84.64 52% 10%

CMA-ES BFGS 9 3 2.51 259.24 184.8 163.36 37% 12%

CMA-ES BFGS 9 5 100 551.8 428.56 301.42 45% 30%

CMA-ES BFGS 9 10 100 1645.09 1270.73 1080.77 34% 15%

CMA-ES BFGS 9 20 6.31 4994.96 3745.76 3502.26 30% 7%

CMA-ES BFGS 1 10 100 35.76 22.00 47.52 -33% -116%

CMA-ES BFGS 1 20 100 74.92 30.84 117.4 -57% -281%

6.2.4 Conclusion

On the Rosenbrock function, we are able to realize performance gains when switch-
ing from CMA-ES to BFGS. Our warmstarting procedure simply starts the search
of BFGS at the best point found by CMA-ES. Thereby, dynamic algorithm selection
enables us to combine distinct advantages of both algorithms, that is, advantageous
exploration behaviour by CMA-ES and superior exploitation behaviour by BFGS.
However, the performance gains can potentially also be realized by a more e�cient
sampling method in BFGS to begin with. On most use cases, warmstarting the
approximate inverse Hessian matrix Bk in BFGS with the covariance matrix main-
tained by CMA-ES does not lead to performance improvements.

6.3 MLSL to PSO

Switching from MLSL to PSO accounts for three use cases according to our data
analysis from Section 5.2. However, only on function 24 in dimension 2, we expect a
substantial ERT improvement when combining both algorithms (69%).14 Therefore,
we focus our experiments on this function-dimension pair, with the switch point set
to ⌧ = 1.58.

As shown in Appendix 3, f24 is a multimodal function where the optimum is located
within a separate funnel in the solution landscape’s global structure. We hypothesize
that switching from MLSL to PSO improves ERT compared to VBSstatic because
MLSL finds this funnel more e�ciently, while PSO is better suited to converge
towards the optimum once the swarm arrives at the funnel.

14On function 18, dimension 2 the expected ERT improvement accounts for only 1%, on function 20,
dimension 5 only 2%, respectively.
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Figure 26: Contour plot of running MLSL on function 24, dimension 2. The algorithm has been
stopped after reaching ⌧ = 1.58. Each triangle is a point sampled by MLSL over the course of
optimization. The best point found, xopt,MLSL (cyan), is also part of the points returned by local
search (green triangles), which in turn are included in the best 40 points, i.e. the points with the
lowest function values (brown triangles). The pink star indicates the location of the global optimum.
Darker green-blue colors indicate smaller function values. The plot has been created by 1 run on
instance 1.

6.3.1 Warmstart particle swarm

When switching to the population-based algorithm PSO, we have to initialize the
swarm of particles. Without warmstarting, particle positions would be sampled at
random in the search space, which is similar to restarting the optimization (see
Section 4.2.3). Based on the available information from running MLSL until the
switch point, we devise three di↵erent approaches to warmstart the particle swarm:
(1) set particle positions according to the best n points found by MLSL, where n

equals the swarm size, (2) initialize the swarm in the neighbourhood of the best point
found by MLSL, xopt,MLSL, or (3) initialize swarm particles in the neighbourhood of
the points returned by local search in MLSL, stored in X

⇤ (see Section 4.2.2).

We run both algorithms individually on function 24 to learn more about their search
behaviour. Figure 26 illustrates the state of MLSL at the switch point ⌧ . The
best point found so far, xopt,MLSL, is located near the global optimum. The points
returned by local search X

⇤ as well as the best n = 40 points are distributed across
the entire search space. As shown in Figure 27 (left), at the switch point, the swarm
in PSO is similarly dispensed over the entire search space. However, when reaching
target precision, at least part of the swarm accumulates in the area of the global
optimum, depicted in Figure 27 (right). Based on these observations, we suggest
that the second approach, initializing the swarm in the neighbourhood of xopt,MLSL,
yields the highest ERT improvement.
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Figure 27: Contour plot of running PSO on function 24, dimension 2. The blue downward triangles
indicate the particle positions of the final swarm after reaching ⌧ = 1.58 (left image) and � = 10�8

(right image). Darker green-blue colors indicate smaller function values. The plot has been created
by 1 run on instance 1.

To test this hypothesis, we implement the neighbourhood method according to Al-
gorithm 9. The particle positions are initialized around xopt,MLSL within a radius ⌘.
Early experiments provided us with the intuition to set ⌘ = 0.1. The particle veloci-
ties are set randomly in [�1, 1]d, equivalent to the settings outlined in Section 4.3.1.
We run MLSL-PSO with this configuration on function 24 in dimension 2 according
to the experimental setting outlined in Section 5.1. As indicated by the orange line
in Figure 29, the resulting ERT is considerably lower than ERT(VBSstatic) (86%
improvement), which is even 55% better than the expected ERT. A notable obser-
vation from the data is that this improvement can be explained by the number of
successful runs, which accounts for 18 out of 25 for the switch, but only 4 for PSO,
and 0 for MLSL, respectively. Therefore, combining MLSL and PSO with the out-
lined warmstarting procedure does not only reduce the number of required function
evaluations, but also increases the probability to reach target precision.

Figure 28 illustrates the contour plot for switching from MLSL to PSO. Within two
iterations, MLSL reaches the switch point close to the global optimum. The swarm
is subsequently initialized in the same area. In the first few PSO iterations, some
swarm particles move to distant areas in the search space. However, the majority
of particles stay near the global optimum and iteratively converge closer to it, until
target precision is hit. Compared to Figure 27 (right), it becomes apparent that
in MLSL-PSO, the entire swarm exploits the basin of attraction at convergence,
rather than just part of the swarm when running PSO individually. This could
explain the increased success probability to hit target precision when combining
both algorithms.

We compare this result with warmstarting the swarm according to the best n points
found by MLSL. For this method, the particle positions xi are set to the respective x-
values of the n = 40 points with the lowest function values returned by MLSL (brown
triangles in Figure 26). Even though we achieve an improved ERT on function 24,
dimension 2 (75%), indicated by the light green line in Figure 29, the improvement
is not as high as with the neighbourhood method.
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Figure 28: Contour plot of running MLSL-PSO with the warmstarting procedure outlined in
Algorithm 9 on function 24, dimension 2, ⌧ = 1.58, � = 10�8. Upward triangles indicate points
sampled by MLSL, while downward triangles indicate points sampled by PSO. Darker yellow-brown
and blue colors indicate higher generation numbers. Darker green-blue colors indicate smaller
function values. The plot has been created by 1 run on instance 1. The target precision has been
reached at the magenta colored point.

Algorithm 9 Warmstarting routine MLSL-PSO

1: procedure Warmstart PSO(st(MLSL), Ht)
2: ⌘  0.1 . population distribution radius
3: for i 1 to swarm size do
4: xi  xopt,MLSL+ random vector in [�⌘, ⌘]d . particle position
5: vi  random vector in [v0,min, v0,max]d . particle velocity
6: if fi < fgbest then
7: fgbest  fi

8: xgbest  xi

9: end if
10: end for
11: end procedure
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Figure 29: ERT charts for MLSL, PSO and MLSL-PSO with di↵erent warmstarting routines on
function 24, dimension 2, ⌧ = 1.58. All algorithms were run according to the experimental settings
outlined in Section 5.1.
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6.3.2 Impact of clustering and local search

A possible explanation for the observed performance improvement is that MLSL
finds the basin of attraction, or funnel, more e�ciently than PSO. However, it is
also imaginable that the same results can be achieved by an improved initialization
method in PSO. Put di↵erently, the question is if the unique features of MLSL
contribute to the performance advantages of this particular algorithm combination
on function 24 in dimension 2. Therefore, we conduct the following experiments.

First, the local search routine in MLSL (Algorithm 3, lines 9–15) is disabled. E↵ec-
tively, MLSL in this configuration just iteratively samples N = 50d random points
in the search space until a target precision of ⌧ is hit. We run the combination
MLSL-PSO with this configuration and the warmstarting procedure outlined in Al-
gorithm 9. The resulting ERT curve is depicted by the dark green line in Figure 29.
Even though ERT is improved by 46% compared to ERT(VBSstatic), it is almost
four times higher than running MLSL-PSO with local search routine turned on.

Second, we deactivate the clustering mechanism in MLSL by setting rk = 0. As a
result, a local search routine starts at every point included in the reduced sample Xr,
not only at the best point in each cluster. Then, we run MLSL-PSO with the
outlined warmstarting procedure on function 24 in dimension 2. The resulting ERT,
as illustrated by the light blue line in Figure 29, only slightly deviates from the ERT
we achieved with MLSL-PSO where clustering is turned on.

Based on these observations, we conclude that the local search routine in MLSL is
contributing to the performance gains obtained when switching from MLSL to PSO,
while the clustering mechanism does not seem to have a substantial impact on ERT.

6.3.3 Warmstart particle velocities

Another aspect to consider when warmstarting PSO is how to set the initial particle
velocities. Without warmstarting, particle velocities are set randomly in [�1, 1]d

(see Section 4.3.1). Our previous experiments on function 24 have shown that when
switching from MLSL to PSO, the swarm is initialized within the basin of attraction.
Therefore, the first intuition is to set lower particle velocities after the switch as
compared to running PSO individually, since slower particles are more likely to stay
within that area.

We run MLSL-PSO with the warmstarting procedure outlined in Algorithm 9 on
function 24 in dimension 2, while changing the initial velocities determined by
[v0,min, v0,max]. Table 7 lists the resulting ERT values. Setting lower particle veloc-
ities after the switch, e.g. v0 2 [�0.1, 0.1], leads to an increased ERT compared to
our default settings. A possible explanation is that even though slower particles stay
within the basin of attraction, the likelihood to hit target precision is diminished.
Higher initial particle velocities, e.g. v0 2 [�5, 5], yield increased ERT values as
well.
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Table 7: ERT values for di↵erent initial velocity settings in MLSL-PSO on function 24, dimension
2, ⌧ = 1.58, � = 10�8. All algorithms were run according to the experimental settings outlined in
Section 5.1.

[v0,min, v0,max] ERT(10�8)
[�0.1, 0.1] 44067.44
[�0.5, 0.5] 20149.69
[�1, 1] 16435.78
[�2, 2] 28554.92
[�5, 5] 27795.31

6.3.4 Compare to MLSL-CMAES and MLSL-DE

When switching from MLSL to PSO on function 24, the basin of attraction is found
by MLSL, which enables us to initialize the population in PSO in the respective
neighbourhood. Based on these properties, it is reasonable to assume that similar
results can be obtained when switching to another population-based algorithm with
good convergence properties. In other words, by switching from MLSL to other algo-
rithms on the same use case, we can examine if the previously observed performance
improvements are related specifically to the algorithmic procedure in PSO.

To begin with, we experiment with switching from MLSL to CMA-ES. Similar to
our approach in Section 6.1.1, we set the distribution mean at the switch point
m

(⌧) = xopt,MLSL. By default, CMA-ES will sample the initial population around m.
The other parameters are kept in their original settings, that is, �

(⌧) = 0.5 and
C

(⌧) = I. We run this configuration on function 24 in dimension 2, with ⌧ =
1.58 and � = 10�8. With only 2 successful runs, the resulting ERT is worse than
ERT(VBSstatic) (-103%), thus far worse than the ERT when switching from MLSL
to PSO. Depicted in Figure 30 (left), during successful runs, CMA-ES is able to
stay within the area of the global optimum while reaching target precision after a
few iterations. However, in most of the runs, CMA-ES departs from that area and
performs many iterations, repeatedly updating the covariance matrix and step size
without hitting target precision, as illustrated by Figure 30 (right).

Next, we combine MLSL with DE. Similar to the neighbourhood method outlined in
Section 6.3.1, we initialize the population in DE around the optimal point found by
MLSL with xi = xopt,MLSL+ random vector in [�⌘, ⌘]d. We set ⌘ = 0.1 and run
this configuration on function 24 in dimension 2, with ⌧ = 1.58 and � = 10�8. The
resulting ERT is twice as high as ERT(VBSstatic) (99.9% performance deterioration),
thus again inferior to setting PSO as A2. Figure 31 shows a successful MLSL-DE
run. The initial population is sampled around the best point found by MLSL, as we
intended, and target precision is hit a few iterations after the switch. The problem in
unsuccessful runs, as illustrated by Figure 32, is that xopt,MLSL is not located on the
same ridge of decreasing function values as the global optimum. As a consequence,
DE does not reach the correct ridge and samples a multitude of points in an incorrect
location, until the evaluation budget runs out. This observation could explain the
unique advantages of switching to PSO on this use case: Due to the initially high
particle velocities and the resulting vibrant swarm behaviour, the correct ridge is
found, even if the center of the initial population, determined by xopt,MLSL, is located
elsewhere.

52



Section 6: Experimental findings

Figure 30: Contour plot of running MLSL-CMAES on function 24, dimension 2, ⌧ = 1.58,
� = 10�8. Triangles indicate points sampled by MLSL, while diamonds indicate points sampled
by CMA-ES. Darker yellow-brown and purple colors indicate higher generation numbers. Darker
green-blue colors indicate smaller function values. The plot has been created by 1 run on instance
1. Left image shows a successful run, i.e. target precision has been reached at the magenta colored
point. The right image shows an unsuccessful run.

Figure 31: Contour plot of running MLSL-DE on function 24, dimension 2, ⌧ = 1.58, � = 10�8.
Triangles indicate points sampled by MLSL. Squares indicate points sampled by DE. Darker yellow-
brown and orange colors indicate higher generation numbers. Darker green-blue colors indicate
smaller function values. The plot has been created by 1 run on instance 1. Left image shows entire
search space, while right image zooms in on the area of the best sampled point. Target precision
has been hit at the magenta colored point.
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Figure 32: Contour plot of an unsuccessful run of MLSL-DE on function 24, dimension 2, ⌧ = 1.58,
� = 10�8. Triangles indicate points sampled by MLSL. Squares indicate points sampled by DE.
Darker yellow-brown and orange colors indicate higher generation numbers. Darker green-blue
colors indicate smaller function values. The star indicates the location of the global optimum. The
plot has been created by 1 run on instance 1.

6.3.5 Validate results

To validate our findings, we run MLSL-PSO on additional use cases. Since our
data analysis did not return more than the previously mentioned function-dimension
pairs, the procedure outlined in Section 5.2 is repeated while limiting the algorithm
portfolio to only include MLSL and PSO. It must be noted that as a result, VBSstatic
is either MLSL or PSO instead of any of the five algorithms within our portfolio.

Table 8 lists the ERT values for running MLSL-PSO according to the warmstart-
ing procedure outlined in Algorithm 9 on selected use cases. Averaged over all
function-dimension pairs, the ERT is improved by 45%. A notable observation is
that improvements are achieved for various functions from di↵erent function groups,
such as multimodal functions with weak global structure (e.g. f23) and multimodal
functions with adequate global structure (e.g. f16). On function 21 in dimension
5, the highest improvement is recorded, accounting for 89%. Only on function 15
in dimension 2 and function 24 in dimension 3, ERT(MLSL-PSO) is worse than
ERT(VBSstatic), which may be related to the high values for ⌧ in these use cases.

Compared to the expected improvement, the results are mixed. On some use cases,
the actual improvement is substantially better than the expected value, such as on
function 23 in dimension 2 or on function 21 in dimension 5. On other use cases, we
are not able to achieve the predicted ERT improvement. For example, on function 21
in dimension 20, the actual ERT(VBSdyn) is 83% better than ERT(VBSstatic), but
97% worse than the expected ERT. This raises the question how accurately a data-
driven approach based on ERT values is able to predict the empirical performance
of dynamic algorithm selectors.
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Table 8: ERT values for switching from MLSL to PSO on selected function-dimension pairs. The
target precision has been set to � = 10�8. The data analysis has been limited to PSO and MLSL.
Therefore, VBSstatic is either of the two algorithms. Percental improvements are calculated as
(ERT(VBSstatic) - actual ERT(VBSdyn)) / ERT(VBSstatic), and (expected ERT(VBSdyn) - actual
ERT(VBSdyn)) / expected ERT(VBSdyn), respectively.

A1 A2 f d ⌧
ERT

(VBSstatic)

Expected

ERT

(VBSdyn)

Actual

ERT

(VBSdyn)

ERT impr.

actual vs.

VBSstatic

ERT impr.

actual vs.

expected

MLSL PSO 2 3 2.51 · 10�4
8003.16 2176.36 6061.08 24% -178%

MLSL PSO 2 20 3.98 · 10�4
203640.71 7418.79 50493.52 75% -581%

MLSL PSO 12 2 3.98 · 10�5
17320.85 14447.14 9139.72 47% 37%

MLSL PSO 15 2 1.58 6016.24 5532.4 6340 -5% -15%

MLSL PSO 16 2 1.00 · 10�2
7030.21 4829.68 5829.67 17% -21%

MLSL PSO 17 2 1.58 · 10�1
7639.88 7213.4 7443.16 3% -3%

MLSL PSO 20 2 3.98 · 10�1
7647.52 5706 5038 34% 12%

MLSL PSO 21 5 6.31 · 10�1
49843.62 12614.84 5322.32 89% 58%

MLSL PSO 21 20 6.31 · 10�5
1507443 133682.63 263427.17 83% -97%

MLSL PSO 22 5 3.98 · 10�1
42582.86 12528.71 11127 74% 11%

MLSL PSO 23 2 2.51 · 10�1
92379.4 87941.44 21294.72 77% 76%

MLSL PSO 24 2 1.58 116140.75 36253.11 16435.78 86% 55%

MLSL PSO 24 3 2.51 749916 662482.46 893445 -19% -35%

6.3.6 Conclusion

By warmstarting the initial population in the neighbourhood of the best point found
by A1, we achieve substantial ERT improvements when switching from MLSL to
PSO on several use cases. This neighbourhood method is not only applicable when
A1 maintains a population, but for single solution algorithms like BFGS as well.
Moreover, it is potentially transferable to other population based algorithms. With
the warmstarting procedure outlined in Algorithm 9, we improved ERT up to 89%
compared to ERT(VBSstatic). In particular, our approach proved to be e↵ective on
function 24, which poses the special challenge for an algorithm to converge within
a certain funnel in the global solution landscape. Therefore, this approach may be
practicable on problems with similar solution landscape structures.

For the warmstarting procedure, the distribution radius parameter ⌘ has been in-
troduced. We expect that tuning this parameter will further improve performance.
According to our experiments, particle velocities have to be considered for warm-
starting to achieve optimal performance as well. However, for the use cases presented
here, the default settings already resulted in the highest ERT improvements.

Another key finding is that MLSL appears often as A1 algorithm in dynAS combina-
tions (see Section 4.1) because the algorithm is able to identify areas worth exploiting
in the solution landscape, especially by performing its local search routine. Finally,
our experiments revealed that ERT improvements in dynamic algorithm selection
may not only be related to a reduction in required function evaluations, but also to
an increased success probability to reach target precision for individual runs.
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6.4 PSO to DE

From all algorithm combinations that include DE as A2 algorithm, switching from
PSO to DE accounts for the highest number of use cases (see Section 5.2). We start
our experiments on the multimodal function 17 in dimension 2 with the switch point
set to ⌧ = 2.51 · 10�5.

6.4.1 Impact of population distribution radius

Since all other parameters are constants or based on per-iteration calculations, the
only parameter to consider for warmstarting DE is the initial population. Again,
we employ the neighbourhood method introduced in Section 6.3.1. That is, initial
solution candidates are sampled around the best point found by PSO, xopt,PSO,
within a radius ⌘. We set ⌘ = 0.1 and run PSO-DE on function 17 in dimension 2
according to the settings outlined in Section 5.1. As illustrated in Figure 35, the
resulting ERT curve (dark green) leaps after the switch point, such that the empirical
performance to reach target precision is worse than both PSO and DE run separately.

Further data analysis reveals that PSO-DE in this configuration reaches target pre-
cision only in 3 out of 25 runs. By comparing the contour plots of successful and
unsuccessful runs, we learn why the current warmstarting procedure leads to inferior
performance. As depicted in Figure 33, during successful runs, the DE population
is initialized around xopt,PSO and stays within that area, reaching target precision
within a few generations. In most of the runs however, DE fails to hit target preci-
sion despite initialization in the correct area. As shown in Figure 34, in unsuccessful
runs, DE repeatedly samples points in an area close to the global optimum, exploit-
ing a local optimum instead. As outlined in Section 4.2.5, being trapped in a local
optimum is a known weakness of di↵erential evolution. On this specific use case,
this is likely caused by the highly asymmetric shape of the solution landscape of
function 17.

Figure 34 also highlights that the best point found by PSO is sampled in the basin
of attraction. Therefore, by lowering the population distribution radius ⌘, the DE
population is initialized closer to that point, thus exploiting this specific area rather
than diverging to an immediate neighbourhood. We set ⌘ = 10�5 and repeat the
previous experimental procedure. With the adapted distribution radius, the switch
PSO-DE reaches target precision in all 25 runs. The resulting ERT, as indicated by
the red line in Figure 35, is 24% better than ERT(VBSstatic), which is 2 percentage
points better than the expected ERT improvement.
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Figure 33: Contour plot of a successful run of PSO-DE on function 17, dimension 2, ⌧ = 2.51·10�5,
� = 10�8. Downward triangles indicate points sampled by PSO. Squares indicate points sampled
by DE. Darker orange and blue colors indicate higher generation numbers. Darker green-blue colors
indicate smaller function values. The plot has been created by 1 run on instance 1. Left image
shows the entire search space, while rights image zooms in on the area of the global optimum.

Figure 34: Contour plot of an unsuccessful run of PSO-DE on function 17, dimension 2, ⌧ =
2.51 · 10�5. The target precision of � = 10�8 has not been reached. Downward triangles indicate
points sampled by PSO. Squares indicate points sampled by DE. Darker orange and blue colors
indicate higher generation numbers. Darker green-blue colors indicate smaller function values. The
plot has been created by 1 run on instance 1. Left image shows the entire search space, while rights
image zooms in on the area of the global optimum.
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Figure 35: ERT charts for PSO, DE and PSO-DE with warmstarting the initial population in
the neighbourhood of xopt,PSO, ⌘ = 0.1 (dark green line) and ⌘ = 10�5 (red line) on function
17, dimension 2, ⌧ = 2.51 · 10�5. All algorithms were run according to the experimental settings
outlined in Section 5.1.

6.4.2 Validate results

To verify that warmstarting DE with the outlined procedure results in ERT improve-
ments, we run PSO-DE on all five uses cases with di↵erent values for ⌘. Table 9 lists
the resulting ERT values. On all use cases in dimension 2, we achieve performance
improvements, with up to 92% improvement on function 22. Compared to the ex-
pected improvements, the results only slightly deviate, i.e. in the range between
�6% and 8%.

On function 7 in dimension 3 however, switching from PSO to DE does not yield
the predicted performance gains. Even with di↵erent values for ⌘, i.e. ⌘ = 0.01 and
⌘ = 0.5, the ERT of PSO-DE is higher than ERT(VBSstatic).
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Table 9: ERT values for switching from PSO to DE on selected function-dimension pairs. The tar-
get precision has been set to � = 10�8. Percental improvements are calculated as (ERT(VBSstatic)
- actual ERT(VBSdyn)) / ERT(VBSstatic), and (expected ERT(VBSdyn) - actual ERT(VBSdyn)) /
expected ERT(VBSdyn), respectively.

A1 A2 f d ⌧ ⌘
ERT

(VBSstatic)

Expected

ERT

(VBSdyn)

Actual

ERT

(VBSdyn)

ERT impr.

actual vs.

VBSstatic

ERT impr.

actual vs.

expected

PSO DE 3 2 6.31 · 10�1
10

�1
5668.56 1894.23 1735.88 69% 8%

PSO DE 7 2 3.98 · 10�3
10

�1
2752.12 1254.65 1208.08 56% 4%

PSO DE 7 3 1.00 · 10�2
10

�1
4518.76 3488.29 8739.14 -93% -151%

PSO DE 7 3 1.00 · 10�2
10

�2
4518.76 3488.29 10548.14 -133% -202%

PSO DE 7 3 1.00 · 10�2
5 · 10�1

4518.76 3488.29 10435.4 -131% -199%

PSO DE 17 2 2.51 · 10�5
10

�1
7639.88 5930.37 152803 -1900% -2477%

PSO DE 17 2 2.51 · 10�5
10

�5
7639.88 5930.37 5844.04 24% 1%

PSO DE 22 2 6.31 · 10�1
10

�1
3343.28 256.03 270.84 92% -6%

6.4.3 Impact of switch point

We further examine the performance data obtained from running PSO, DE and
PSO-DE on function 7 in dimension 3 to understand why the previous approach did
not return the expected improvements. In particular, we zoom in on the individual
runs for DE and PSO, illustrated in Figure 36. It becomes apparent that within
the range of target precisions � 2 [10�2

, 10�6], the blue lines, indicating hitting
times of individual PSO runs, progress horizontally. That is, even after hitting the
calculated switch point ⌧ = 10�2 for this use case, PSO only requires very few
function evaluations to reach lower target precision values. Only after approaching
� = 10�6, hitting times in PSO leap, whereas in DE, target precision is reached
without a vast amount of additional function evaluations. The only reason why
ERT(DE) is worse than ERT(PSO) is that DE reaches target precision with only 22
out of 25 runs, while PSO hits target precision with every run.

Keeping in mind that DE is prone to being trapped in local optima, these observa-
tions lead to the idea that switching later than the calculated switch point, that is,
lowering the value of ⌧ , may improve the performance of PSO-DE on this use case.
Without many additional function evaluations, a lower target precision is reached by
PSO, such that DE is more likely to be initialized near the basin of attraction. On
the other hand, since proximity to the optimum in function value does not necessar-
ily relate to the respective proximity in the variables space, DE might still exploit a
local optimum instead.

We test this approach by running PSO-DE on function 7 in dimension 3 while
decreasing the switch point to ⌧ = 10�5 and setting ⌘ = 0.1. As illustrated by
the red line in Figure 37, switching later indeed exhibits a positive e↵ect on ERT.
The ERT(PSO-DE) with ⌧ = 10�5 accounts for 3865.68, which is 56% better than
the same combination with ⌧ = 10�2, and even accounts for a 14% improvement
compared to ERT(VBSstatic).
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Figure 36: Hitting times for individual runs of PSO and DE on function 7, dimension 3. All
algorithms were run according to the experimental settings outlined in Section 5.1.

Figure 37: ERT charts for PSO, DE and PSO-DE with warmstarting the initial population in the
neighbourhood of xopt, PSO, with ⌘ = 0.1, on function 7 in dimension 3. The switch point is set to
⌧ = 10�2 (green line), ⌧ = 10�5 (red line), respectively. All algorithms were run according to the
experimental settings outlined in Section 5.1.
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6.4.4 Conclusion

By initializing the population in DE in the neighbourhood of the best point found by
PSO after the switch, we were able to realize substantial performance improvements
for all five function-dimension pairs obtained from the data analysis in Section 5.2.
The experiments have demonstrated that setting warmstarting parameters like the
distribution radius ⌘ is key to achieve these improvements, which underscores the
importance of tuning.

As expected from the data analysis in Section 4.1, DE performs well as A2 algorithm
in a dynAS combination, mainly due to its exploiting search behaviour. Therefore,
we suspect that di↵erential evolution will prove e�cient in algorithm combinations
with other A1 algorithms as well. Likewise, it is imaginable that similar results can
be achieved when switching from PSO to other algorithms with good convergence
properties.

Finally, our experiments show that the selection of the switch point ⌧ a↵ects the
performance of a dynAS model. In some cases, it may prove useful to switch earlier
or later compared to the switch point derived from the empirical performance data.
Inspecting individual algorithm runs revealed that the optimal switch point probably
even di↵ers depending on the optimization progress during each run.
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7 Discussion of results

In this work, a diverse portfolio of five algorithms has been assembled and run on the
BBOB test suite. Afterwards, 87 use cases, consisting of function-dimension pairs
and the respective switch points, have been derived from the empirical performance
data. By examining four algorithm combinations in more detail, we have realized
ERT improvements of up to 92% and developed warmstarting procedures for all al-
gorithms but MLSL. The experiments have revealed that warmstarting algorithmic
parameters after the switch is crucial to realize performance improvements, espe-
cially initializing the population, or first sample point, respectively. Furthermore,
this work has shown that on several use cases, chaining algorithms with a fixed-
target approach returns a merged ERT curve, following the course of A1 until the
switch point, after which it resumes the course of A2. Our experiments have also
highlighted that hyperparameter tuning as well as changing the switch point impact
the performance of a dynamic algorithm combination.

The complete experimental results from running dynAS on all identified use cases can
be found at Schröder (2021). Appendix 4 provides a summary of the most important
performance metrics for each use case. Out of the 87 use cases (see Section 5.2),
we run a single-switch algorithm combination on 83 function-dimension pairs. The
remaining four use cases include MLSL as A2 algorithm, for which no warmstarting
routine has been developed yet.

Figure 38 depicts the resulting ERT improvements of VBSdyn over VBSstatic. It
shows that for the functions f8–f14, substantial improvements were achieved across
various dimensions, based on the bidirectional combination of BFGS and CMA-ES.
However, the same combination did not reach the calculated performance improve-
ments on multimodal functions, such as f21 and f22 in dimensions 5 and 10, which
is likely related to the large value for ⌧ in these use cases. The early switch point
does not only lead to an isotropic covariance matrix at the switch, but also increases
the risk of BFGS to reach the switch point at a local optimum.

On other multimodal functions, for example f15–f19, dynAS led to superior perfor-
mance only in lower dimensions. As discussed in Section 4.4, a possible explanation
is that the algorithms within our portfolio have di�culties to reach target precision
on this particular function group in higher dimensions.

By comparing the actual to the potential improvements shown in Figure 13, we can
identify examples of function-dimension pairs where an algorithm switch performed
either better or worse than expected. For instance, on f19 in dimension 3, switching
from PSO to CMA-ES led to a 70% ERT improvement, which is 19 percentage points
higher than the calculated improvement. Likewise, on function 4 in dimension 5,
switching from DE to PSO resulted in a 33% improvement, which is eleven times
better than the expected value. In both examples, the positive results were achieved
even though we did not investigate these algorithm combinations (in this order) in
more detail, which means the warmstarting procedures presented here are applicable
for more algorithm combinations than just the ones outlined in Section 6. As a
negative example, switching from PSO to CMA-ES on function 16 in dimension
3 resulted in a 10% performance decrease, compared to an expected improvement

62



Section 7: Discussion of results

Figure 38: Actual ERT improvements of VBSdyn over VBSstatic within our portfolio for all func-
tions and dimensions. Percental improvement is calculated as (ERT(VBSstatic) - ERT(VBSdyn)) /
ERT(VBSstatic). Improvements are capped at 0. Boxes with ’x’ indicate function-dimension pairs
where ERT(VBSdyn) decreased performance, or ERT = 1. Grey boxed indicate function-dimension
pairs that were not part of any use case according to Section 5.2. Algorithms were warmstarted
according to the settings outlined in the validation sub-sections of Section 6, except for CMA-ES,
where we applied the threshold method with ✏ = 0.1.

of 49%. In total, the dynAS procedure outperformed the portfolio’s virtual best
static solver on 45 use cases.

Figure 39 sheds light on the performance of di↵erent combinations of A1 and A2

algorithms. Unsurprisingly, the ERT speed-up peaks for the algorithm combinations
that we have investigated in more detail in Section 6. We assume that studying the
remaining algorithm combinations and use cases in more depth will lead to similarly
positive results. As a promising example, switching from PSO to CMA-ES already
leads to an average speed up larger than 1, even though we have only applied the
warmstarting routine developed for a di↵erent combination.

From Figure 39, we cannot infer which algorithms are generally favorable candidates
as A1 or A2 algorithms, since the data for each combination is not only limited to
certain functions and dimensions, but also di↵ers in the amount of available use
cases. However, it is worth noting that from all combinations that include BFGS as
A2, only CMAES-BFGS resulted in improvements. Thus, switching towards BFGS
in our fixed-target approach is not as straightforward as in fixed-budget approaches,
where similar algorithms are applied at the end of optimization to further exploit the
optimum. For switching from MLSL to BFGS this finding matches our expectations,
since MLSL already runs a similar algorithm within its local search phase. Further
data analysis shows that for the remaining use cases, i.e. when switching from PSO
or DE, the switch happens early, with ⌧ > 1.0. This is problematic due to the
already discussed weakness of BFGS to be trapped in local optima.
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Figure 39: Heatmap indicating the ERT speedup (ERT(VBSstatic) / ERT(VBSdyn)) per A1–
A2 algorithm combination, averaged over all available function-dimensions pairs for the respective
combination (see experimental results in Appendix 4). Grey boxes indicate combinations where no
experimental results are available.

Lastly, Figure 40 provides an overview of the performance of VBSdyn over VBSstatic
across all BBOB functions in dimensions 2 (top) and 10 (bottom). Moreover, the
charts indicate the di↵erence between calculated ERT values (see Section 5.2) and
the actually achieved values from our experiments. It becomes apparent that on
some function-dimension pairs, the actual results almost perfectly match the ex-
pected values, for example on f6, f7 and f22 in dimension 2, and on f10 in dimen-
sion 10. However, on most use cases, we observe a discrepancy between both values.
For instance, on f4 and f15 in dimension 2, the ERT of VBSdyn is much higher than
the calculated ERT, while on f14 and f24 in dimension 2, it is lower. In conclu-
sion, even though performance improvements were achieved for various use cases
and the respective algorithm combinations and switch points, the accuracy of the
data-driven approach applied in this work needs to be further investigated.
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Figure 40: ERT values for VBSstatic (green plus), VBSdyn actual (blue tri) and VBSdyn expected (red tri) on
all BBOB functions in dimension 2 (top image) and dimension 10 (bottom image). Algorithm combinations and
respective switch points can be found in Appendix 4. All algorithms were run according to the settings outlined in
Section 5.1.
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8 Conclusion and future work

In this thesis, we have shown that implementing a single-switch dynAS routine for a
small portfolio of continuous black-box solvers leads to performance improvements
over the portfolio’s virtual static best solver on various function-dimension pairs. In
that regard, this work serves as a proof of concept for the approach to switch between
algorithms after a certain function value has been reached, as previously suggested by
Vermetten, Wang, et al. (2020). On approximately half of the identified use cases, we
were able to realize at least the theoretical performance improvement derived from
analyzing the corresponding empirical performance data. For these use cases, the
resulting ERT curve against target values often resembles a continuation of the static
ERT curve of the first algorithm with that of the second one, matching our initial
expectations. However, if the second algorithm is not properly warmstarted, the
ERT curve of an algorithm combination leaps after the switch point. Therefore, our
experimental findings confirm the importance of warmstarting to realize performance
improvements with dynAS.

We have demonstrated that performance improvements result from combining the
advantages of di↵erent algorithmic search behaviours. For example, on unimodal,
ill-conditioned functions, BFGS requires less evaluations to approach the optimum,
whereas CMA-ES is faster to converge within the basin of attraction. We expect
that further research on di↵erent algorithm combinations and the associated search
behaviours will reveal similar mechanics. In addition, our experiments illustrated
that the observed performance improvements are not only related to a more e�cient
search behaviour, but also to an increased success probability to hit target precision.

Following a data-driven approach, we were able to identify algorithm combinations
and related switch points that lead to performance improvements over VBSstatic.
However, the predictions were not always accurate, so that we observed large dis-
crepancies, both positive and negative, between actual and predicted improvements.
Consequently, it is possible that other algorithm combinations within our portfo-
lio perform even better than the combinations identified in Section 5.2. Adding
to the discussion of limitations of the approach (see Section 5.5), we experienced
di�culties related to the performance metric ERT. Especially on di�cult-to-solve,
high-dimensional problems, the absolute ERT values are very large, which can be
explained by the low number of successful runs. As a result, only one additional
successful run has a large impact on ERT. Given the stochastic nature of IOHs, we
conjecture that repeating the experiments may lead to di↵erent algorithm combina-
tions and switch points for the aforementioned problems. In the future, this problem
can be mitigated by investigating several algorithm combinations and switch points
per function-dimension pair.

To process and evaluate experimental data, we made use of the IOHprofiler tool.
Especially the feature to inspect ERT curves for di↵erent algorithms and their indi-
vidual runs proved to be useful. Moreover, visualizing the search history of individual
algorithms and algorithm combinations with contour plots helped us to understand
the course of optimization in detail. Thus, utilizing the IOHprofiler and extend-
ing it with features for search history visualization, especially for high-dimensional
problems, is recommended for further research on dynAS.
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In the near term, this work can be extended by including additional algorithms in
the portfolio. In particular, it would be worth investigating if the findings presented
here can be transferred to other algorithms from the same class, such as di↵erent
versions of CMA-ES or other Quasi-Newton methods. Likewise, the portfolio could
be extended by algorithms from di↵erent algorithm families, such as Nelder-Mead
or Variable Neighbourhood Search. Moreover, as more warmstarting procedures be-
come available, an advanced switch procedure would allow switching from any to any
other algorithm on multiple di↵erent switch points. Thereby, future research could
investigate the e↵ect of varying values for ⌧ on performance, as well as examining
the performance of all algorithm combinations within the portfolio.

As previously discussed, we expect that tuning algorithmic hyperparameters as well
as parameters for warmstarting, such as the scaling factor � for warmstarting the
covariance matrix, will have a large impact on the performance of dynAS. Initially,
tuning will lead to di↵erent ERT values for the individual algorithm in the portfolio,
changing the choice of A1 and A2 algorithms and the respective switch point per
function-dimension pair. Improved warmstarting parameters will probably lead to
even better performances of algorithm combinations. Another interesting research
direction for tuning would be to adapt algorithmic parameters that influence search
behaviour based on the algorithm’s assignment as first or second algorithm in a
dynAS process. For example, in the modular CMA-ES framework, the parameter
ps factor determines if the algorithm favours exploitation or exploration behaviour.
If CMA-ES is set as A2, it may be beneficial to change this parameter in favour of
exploitative behaviour.

In this work, we applied our approach to the problems available within the BBOB
test suite. Even though it contains various continuous functions with di↵erent prop-
erties, our findings need to be further validated. For instance, the approach presented
here could be tested on the Nevergrad platform, an optimization and benchmarking
library provided by Facebook AI (Rapin and Teytaud 2018). Another option would
be to test dynamic algorithm selection on real-world problems.

By investigating selected algorithm combinations in more detail, we have developed
warmstarting routines that in some cases rely on information that is only available
from running specific A1 algorithms. Thus, it is questionable if our warmstarting
routines can be applied to other algorithm combinations as well. We expect that
some routines can be generalized, such as the neighbourhood method to initialize
the population in DE and PSO (see Section 6.3.1). However, other routines need
to be refined to make them less dependent on the parameters that are maintained
by the A1 algorithm. For instance, initializing the covariance matrix in CMA-ES
as outlined in Section 6.1.3 depends on the availability of the local inverse Hessian
matrix at the switch point. If BFGS is set as first algorithm, we can directly obtain
this parameter, since the algorithm maintains an approximate inverse Hessian matrix
over the course of optimization. To warmstart the covariance matrix in algorithm
combinations with di↵erent A1 algorithms, the local inverse Hessian needs to be
supplied in a di↵erent way. The approach outlined by Mohammadi, Riche, and
Touboul (2015), where the Hessian matrix and step size are calculated based on
a Gaussian process model of the already sampled points, seems to be a promising
direction for further research in that regard.
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Section 8: Conclusion and future work

Another focus area for future research on dynAS is the selection of the switch point.
In this work, we have only investigated single-switch algorithm combinations. How-
ever, reviewing the ERT charts showed that switching multiple times between al-
gorithms may improve performance even more (e.g. Figure 17). Moreover, our
experiments revealed that the right switch point may di↵er depending on individual
runs. Therefore, initiating the switch automatically, e.g. based on the current search
progress of A1, could prove to be an interesting research direction.

Finally, this work is based on the assumption that the algorithms involved in a
dynAS process are determined prior to the optimization. In the long term, a true
dynamic algorithm selector may not only initiate the switch automatically, but also
select which algorithm to switch to. For example, this could be based on knowledge
about the solution landscape, obtained from computing landscape features from the
points already sampled by A1.
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Appendices

Appendix 1 - ERT comparison charts

Figure 1: ERT charts for our BFGS implementation (red) compared to Baudis 2014 (pink) on all
24 BBOB functions in dimension 2.
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Figure 2: ERT charts for our BFGS implementation (red) compared to Baudis 2014 (pink) on all
24 BBOB functions in dimension 5.
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Figure 3: ERT charts for our MLSL implementation (brown) compared to Pál 2013 (green) on all
24 BBOB functions in dimension 2.
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Figure 4: ERT charts for our MLSL implementation (brown) compared to Pál 2013 (green) on all
24 BBOB functions in dimension 10.
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Figure 5: ERT charts for our PSO implementation (dark blue) compared to El-Abd and Kamel
2009 (light blue) on all 24 BBOB functions in dimension 2.
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Figure 6: ERT charts for our PSO implementation (dark blue) compared to El-Abd and Kamel
2009 (light blue) on all 24 BBOB functions in dimension 10.
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Figure 7: ERT charts for our DE implementation (orange) compared to Posik and Klema 2012
(brown) on all 24 BBOB functions in dimension 2.
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Figure 8: ERT charts for our DE implementation (orange) compared to Posik and Klema 2012
(brown) on all 24 BBOB functions in dimension 10.
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Appendix 2 - Parameters for warmstarting

Algorithm Available informa-

tion

Parameters available

for warmstarting

Parameters not
relevant for warm-

starting

All algorithms - best point found so far
xopt

- fitness value for best
point fopt

- trajectory of sampled
points Xhist

- trajectory of fitness val-
ues fhist

- iteration counter k

BFGS - step size ↵k

- inverse Hessian approx-
imation matrix Hk

- gradient vector at best
point so far Of(xopt)

- inverse Hessian approx-
imation matrix Bk

- initial point x0

- step size ↵k

MLSL - critical distance mea-
sure rk

- reduced sample Xr

and corresponding fit-
ness values fr

- best points found by lo-
cal search, X

⇤ and cor-
responding fitness values
f
⇤

- initial population X -
iteration counter k

- critical distance
measure rk

CMA-ES - current distribution
mean m

- step size �
- covariance matrix C

- recent evolution paths
pc and ps

- distribution mean m

- step size �
- covariance matrix C

- recent evolution paths
pc and ps

PSO - particle velocities vi

- inertia weight !
- initial swarm positions
xi

- particle velocities vi

- inertia weight !

DE - initial population of
points xi
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Appendix 3 - BBOB functions solution landscapes

Figure 9: Solution landscapes for all 24 BBOB functions depicted by 3D surface plots in dimension
2, taken from Hansen et al. 2009.
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function dimension tau VBS_static
ERT 
(VBS_static) A1 A2

ERT(VBS_dyn) 
expected

ERT(VBS_dyn) 
actual

Expected 
improvement

Improvement vs. 
VBS_static

1 2 1.00E+01 BFGS 9.64 CMA-ES BFGS 5.2 22 46% -128%
2 2 3.98E-08 BFGS 60.96 BFGS MLSL 59.76 n.a. (MLSL as A2) 2% n.a.
3 2 6.31E-01 PSO 5668.56 PSO DE 1894.23 1735.88 67% 69%
4 2 6.31E+00 BFGS 2172 DE BFGS 1308.6 146864.33 40% -6662%
5 2 1.58E+01 CMA-ES 35.6 DE CMA-ES 12.6 50.6 65% -42%
6 2 6.31E-08 CMA-ES 589.56 BFGS CMA-ES 324.33 327.2 45% 45%
7 2 3.98E-03 PSO 2752.12 PSO DE 1254.65 1208.08 54% 56%
8 2 1.00E+01 BFGS 155.08 CMA-ES BFGS 131.68 87.52 15% 44%
9 2 1.58E+00 BFGS 175.24 CMA-ES BFGS 93.92 84.64 46% 52%

10 2 1.00E-05 MLSL 512.52 BFGS MLSL 77.74 n.a. (MLSL as A2) 85% n.a.
11 2 1.00E-04 MLSL 603.84 BFGS MLSL 167.88 n.a. (MLSL as A2) 72% n.a.
12 2 1.58E-06 BFGS 1237.07 BFGS CMA-ES 791.6 1032.04 36% 17%
13 2 1.00E-02 CMA-ES 986.84 DE CMA-ES 850.84 1238.2 14% -25%
14 2 3.98E-06 CMA-ES 705 BFGS CMA-ES 364.72 261.64 48% 63%
15 2 1.58E+00 BFGS 2295 MLSL BFGS 624.08 18759.15 73% -717%
16 2 1.00E-02 PSO 7030.21 MLSL CMA-ES 2923.94 6073.77 58% 14%
17 2 2.51E-05 PSO 7639.88 PSO DE 5930.37 5844.04 22% 24%
18 2 1.00E+00 PSO 17718.72 MLSL PSO 17576.2 13147.18 1% 26%
19 2 1.00E-03 PSO 8142 PSO CMA-ES 5400.98 4688.52 34% 42%
20 2 1.00E+00 BFGS 1171 MLSL BFGS 842.38 5774.5 28% -393%
21 2 6.31E-01 BFGS 486.67 MLSL DE 229.61 565.52 53% -16%
22 2 6.31E-01 PSO 3343.28 PSO DE 256.03 270.84 92% 92%
23 2 6.31E-01 CMA-ES 3418.24 MLSL CMA-ES 1504.24 4232.04 56% -24%
24 2 1.58E+00 PSO 116140.75 MLSL PSO 36253.11 16435.78 69% 86%

1 3 1.58E+01 BFGS 13.16 DE BFGS 8.08 39.48 39% -200%
2 3 6.31E+00 BFGS 124.08 BFGS BFGS 124.08 n.a. (self-switch) 0% n.a.
3 3 6.31E-01 PSO 9608.13 PSO CMA-ES 5728.21 6051.29 40% 37%
4 3 1.58E+00 PSO 17943.7 PSO CMA-ES 4529.98 349526.5 75% -1848%
5 3 1.00E+01 BFGS 27.33 BFGS CMA-ES 19.92 Inf 27% n.a.
6 3 1.58E-07 CMA-ES 942.56 BFGS CMA-ES 672.32 1018.36 29% -8%
7 3 1.00E-02 PSO 4518.76 PSO DE 3488.29 8739.14 23% -93%
8 3 3.98E+00 BFGS 277.32 CMA-ES BFGS 242.16 204.92 13% 26%
9 3 2.51E+00 BFGS 259.24 CMA-ES BFGS 184.8 163.36 29% 37%

10 3 1.58E-05 CMA-ES 1135.92 BFGS CMA-ES 267.18 267.36 76% 76%
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11 3 1.00E-04 CMA-ES 1257 BFGS CMA-ES 278.52 260.76 78% 79%
12 3 2.51E-05 CMA-ES 3907.8 BFGS CMA-ES 1728.4 1877.76 56% 52%
13 3 1.58E-03 CMA-ES 1722.44 BFGS CMA-ES 994.16 1105.68 42% 36%
14 3 2.51E-06 CMA-ES 1225.12 BFGS CMA-ES 539.95 434.64 56% 65%
15 3 6.31E-01 PSO 66221.78 PSO CMA-ES 56086.07 69934.38 15% -6%
16 3 2.51E-01 CMA-ES 21897.59 PSO CMA-ES 11168.86 24126.38 49% -10%
17 3 6.31E-06 PSO 29942.44 PSO CMA-ES 20210.11 362341 33% -1110%
18 3 1.00E-05 DE 160478 DE CMA-ES 122482.8 722747 24% -350%
19 3 1.58E-02 DE 79498.86 PSO CMA-ES 39273.11 23854.88 51% 70%
20 3 6.31E-01 BFGS 4192 MLSL BFGS 1156.92 53574.33 72% -1178%
21 3 6.31E-01 BFGS 3028 MLSL BFGS 687.12 1925.78 77% 36%
22 3 2.51E+00 BFGS 999.33 PSO BFGS 683.37 345377 32% -34461%
23 3 1.00E+00 CMA-ES 10859.12 MLSL CMA-ES 7662.4 12969.83 29% -19%
24 3 6.31E-02 PSO 749916 DE PSO 358100 Inf 52% n.a.

1 5 3.98E+01 BFGS 20.92 MLSL BFGS 15.52 279 26% -1234%
2 5 1.00E+02 BFGS 319.96 BFGS BFGS 319.96 n.a. (self-switch) 0% n.a.
3 5 3.98E+00 PSO 54564.14 DE PSO 47473.12 52535.43 13% 4%
4 5 1.00E+01 PSO 122262.25 DE PSO 118712.69 82144.18 3% 33%
5 5 6.31E+01 CMA-ES 65.56 PSO CMA-ES 32.52 137.96 50% -110%
6 5 1.00E-01 CMA-ES 1893.64 CMA-ES CMA-ES 1893.64 n.a. (self-switch) 0% n.a.
7 5 1.58E+00 CMA-ES 180029.33 MLSL CMA-ES 175356.12 Inf 3% n.a.
8 5 1.00E+02 BFGS 500.83 CMA-ES BFGS 472.11 580.26 6% -16%
9 5 1.00E+02 BFGS 551.8 CMA-ES BFGS 428.56 301.42 22% 45%

10 5 2.51E-04 CMA-ES 2263.28 BFGS CMA-ES 574.16 533.68 75% 76%
11 5 2.51E-04 CMA-ES 2259.44 BFGS CMA-ES 526.35 506.08 77% 78%
12 5 3.98E-05 CMA-ES 5345.48 BFGS CMA-ES 2966.4 3427.64 45% 36%
13 5 2.51E-03 CMA-ES 3938.08 BFGS CMA-ES 2294.00 2111.24 42% 46%
14 5 3.98E-06 CMA-ES 2434.08 BFGS CMA-ES 1158.56 825.44 52% 66%
15 5 1.00E+02 BFGS Inf DE BFGS Inf Inf n.a. n.a.
16 5 2.51E-04 DE 268768.5 CMA-ES DE 188280.15 622592.5 30% -132%
17 5 2.51E-04 DE 268535.5 DE PSO 21092.5 1218152 92% -354%
18 5 1.00E+02 BFGS Inf MLSL BFGS Inf Inf n.a. n.a.
19 5 6.31E-03 CMA-ES 1222586 CMA-ES DE 589411.00 Inf 52% n.a.
20 5 1.00E+00 PSO 172439.33 MLSL PSO 168235.45 405181 2% -135%
21 5 1.00E+00 MLSL 49843.62 BFGS CMA-ES 2258.5 1184041.5 95% -2276%
22 5 2.51E-05 BFGS 6348 BFGS CMA-ES 1876.54 110732.79 70% -1644%
23 5 1.58E-01 DE 127277.25 CMA-ES DE 93415.64 144316.43 27% -13%



24 5 1.00E+02 BFGS Inf DE BFGS Inf Inf n.a. n.a.
1 10 1.00E+02 BFGS 35.76 CMA-ES BFGS 22 47.52 38% -33%
2 10 1.00E+02 BFGS 771.6 BFGS BFGS 771.6 n.a. (self-switch) 0% n.a.
3 10 6.31E+01 DE 1175326.5 MLSL DE 1174760.9 n.a. (no improv.) 0% n.a.
4 10 1.00E+02 BFGS Inf MLSL DE Inf Inf n.a. n.a.
5 10 3.98E+01 CMA-ES 123.64 BFGS CMA-ES 57.32 175.4 54% -42%
6 10 1.00E+02 CMA-ES 4254.52 CMA-ES CMA-ES 4254.52 n.a. (self-switch) 0% n.a.
7 10 6.31E+00 CMA-ES 2461972 MLSL CMA-ES 2461920.76 n.a. (no improv.) 0% n.a.
8 10 1.00E+02 BFGS 1963.2 CMA-ES BFGS 1771.28 1234.21 10% 37%
9 10 1.00E+02 BFGS 1645.09 CMA-ES BFGS 1270.73 1080.77 23% 34%

10 10 2.51E-05 CMA-ES 6151.32 BFGS CMA-ES 1267.4 1310 79% 79%
11 10 2.51E-04 CMA-ES 5797.32 BFGS CMA-ES 1072.12 1226.2 82% 79%
12 10 2.51E-05 CMA-ES 11082.4 BFGS CMA-ES 6270.12 6956.28 43% 37%
13 10 2.51E-03 CMA-ES 15987.36 BFGS CMA-ES 11193.2 9209.24 30% 42%
14 10 3.98E-06 CMA-ES 6750.84 BFGS CMA-ES 3414.2 2399.08 49% 64%
15 10 1.00E+02 BFGS Inf DE DE Inf Inf n.a. n.a.
16 10 1.00E+02 BFGS Inf DE BFGS Inf Inf n.a. n.a.
17 10 2.51E+01 DE 2442482 MLSL DE 2442479.68 n.a. (no improv.) 0% n.a.
18 10 1.00E+02 BFGS Inf MLSL BFGS Inf Inf n.a. n.a.
19 10 1.00E+02 BFGS Inf MLSL BFGS Inf Inf n.a. n.a.
20 10 1.58E+00 DE 2414838 MLSL DE 2410938.92 n.a. (no improv.) 0% n.a.
21 10 1.00E+00 MLSL 294066.29 BFGS CMA-ES 9924.00 732071 97% -149%
22 10 1.58E+00 CMA-ES 318490.5 BFGS CMA-ES 12056.5 563100.88 96% -77%
23 10 1.00E+02 BFGS Inf BFGS BFGS Inf Inf n.a. n.a.
24 10 1.00E+02 BFGS Inf DE DE Inf Inf n.a. n.a.

1 20 1.00E+02 BFGS 74.92 CMA-ES BFGS 30.84 117.4 59% -57%
2 20 3.98E-04 BFGS 2280.28 MLSL BFGS 1651.88 37063.44 28% -1525%
3 20 1.00E+02 BFGS Inf MLSL DE Inf Inf n.a. n.a.
4 20 1.00E+02 BFGS Inf MLSL DE Inf Inf n.a. n.a.
5 20 1.00E+02 BFGS 76.6 BFGS BFGS 76.6 n.a. (self-switch) 0% n.a.
6 20 1.00E+02 CMA-ES 10800 CMA-ES CMA-ES 10800.00 n.a. (self-switch) 0% n.a.
7 20 1.00E+02 MLSL Inf MLSL MLSL Inf Inf n.a. n.a.
8 20 1.00E+02 BFGS 4746.16 CMA-ES BFGS 4145.44 4282.82 13% 10%
9 20 6.31E+01 BFGS 4994.96 CMA-ES BFGS 3745.76 3502.26 25% 30%

10 20 2.51E-05 CMA-ES 19825.48 BFGS CMA-ES 3096.4 3341 84% 83%
11 20 1.58E-04 CMA-ES 15457 BFGS CMA-ES 2540.52 2553.4 84% 83%
12 20 6.31E-05 CMA-ES 26711.84 BFGS CMA-ES 16854.47 15785.28 37% 41%



13 20 2.51E-03 CMA-ES 76107.2 BFGS CMA-ES 43279.43 37254.64 43% 51%
14 20 3.98E-06 CMA-ES 22488.8 BFGS CMA-ES 12252.64 7291.48 46% 68%
15 20 1.00E+02 BFGS Inf DE DE Inf Inf n.a. n.a.
16 20 1.00E+02 BFGS Inf DE BFGS Inf Inf n.a. n.a.
17 20 1.00E+02 BFGS Inf DE BFGS Inf Inf n.a. n.a.
18 20 1.00E+02 BFGS Inf MLSL BFGS Inf Inf n.a. n.a.
19 20 1.00E+02 BFGS Inf BFGS BFGS Inf Inf n.a. n.a.
20 20 1.00E+02 BFGS Inf BFGS BFGS Inf Inf n.a. n.a.
21 20 1.58E-08 DE 654998.67 BFGS MLSL 23500.00 n.a. (MLSL as A2) 96% n.a.
22 20 1.00E+02 BFGS Inf BFGS BFGS Inf Inf n.a. n.a.
23 20 1.00E+02 BFGS Inf BFGS BFGS Inf Inf n.a. n.a.
24 20 1.00E+02 BFGS Inf DE DE Inf Inf n.a. n.a.
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