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Abstract

Horticulture is an area of human knowledge that has been in development since the
literal human prehistory. Trial and error and empirically derived knowledge allowed
us to thrive in almost any area on Earth. In modern day society horticulture has
moved out of the public eye as food production has become very efficient, and as
a result is now the domain of very few, very specialized people. With most of the
population in developed countries not being involved in food production at all. Despite
this, horticultural development and research has only accelerated. Processes to probe,
monitor and develop plants have become a real science with ample supply of data about
seeds. Optimizing plants for the production of food and medicine is the current goal. A
recently developed method of assessing seeds is by directly monitoring their respiration.
This respiration data can then be used to characterize the behavior of the seeds in
question and provide us with an understanding of their vigor. We will show that we can
use these characteristics to reliably predict their germination rate, as well as identify
interesting statistical relations. This is encapsulated in an easy-to-use tool, in order to
provide anyone in the horticultural industry access to this kind of analysis about seeds
of their interest.
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1 Introduction

1.1 Background

In horticulture, the specific species and type of seed used for planting depends greatly on
the climate, soil and other characteristics of the local ecosystem. For a given harvesting
goal, knowing the characteristics and quality of seed is very important as this is essential
for maximizing harvesting yield. The characteristics that make the seed thrive in given
conditions are known as the vigor. These characteristics include, for example, the chance of
successful germination or the resistance to cold or drought. Ideally, given a batch of seeds, we
can test these characteristics to know where and when the batch can be maximally utilized.
In practice, this is not quite so simple. One way of assessing the vigor of a seed batch, we
should simply plant them in the intended soil under the intended conditions and monitor
the germination. This can be done at a small scale with a representative sample of the
batch. This sample would be planted, watered and kept under supervision to identify radicle
emergence of the seed to then infer the vigor of the batch statistically. Radicle emergence
means the exact moment that the husk of the seed breaks and the root of the seed comes out.
Unfortunately, this method is very slow and labor-intensive, as each individual seed must be
under constant supervision in order to identify germination.

An alternative to this labor-intensive method of manual seed tracking is to record
the phenomenological characteristics with a machine. These properties are then used to
estimate the vigor of the seeds. Certain statistical relations have been established in the
past, such as the relation between seed respiration and germination [4]. This respiration
can be recorded by, for example, the SRA1 which is developed by the company Fytagoras2.
This machine records the respiration and outputs this data in a format that can then be
automatically analyzed by computer programs. This approach eliminates the need for manual
supervision of the seeds and, given sufficiently accurate statistical approaches, is reliable in
estimating the actual radicle emergence of given seeds.

Various assays have been described to estimate seed vigor in the literature such
as measuring the electrical conductivity or recording the dehydrogenase activity [2]. These
methods, however, take time and are less practical than directly measuring the oxygen
respiration during germination.

Although oxygen respiration and total germination have been directly linked be-
fore [1], there are few specific results. Furthermore, these results only indicate a positive
correlation between well-shaped oxygen consumption curves and odds of germination. For
further respiration analysis we need more knowledge on what we can infer from specific
characteristics of these curves.

1Seed Respiration Analyzer
2https://www.fytagoras.com/nl/
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1.2 Seed Respiration

1.2.1 Seed Respiration model

The model we use for seed respiration has the following assumptions:

1. Each seed is enclosed in an airtight capsule.

2. Each seed has a limited amount of air to use for respiration in the capsule.

3. Each seed is ungerminated before being entered into the capsule.

4. During germination each seed will only consume oxygen as they have not yet formed
any chlorophyll. As a result the oxygen level will drop monotonically.

When these seeds are put inside the capsule they slowly increase their respiration to begin
the germination process. After the oxygen level inside the capsule drops to the level where
the seed cannot effectively respire anymore the respiration slows and the seed slowly stops
its germination process. This process leads to a distinctive curve, reminiscent of a sigmoid
curve, see Figure 1 for an example of this likeness.

Our model takes into account earlier work by the IIRB work group ’Seed Quality
and Testing’ [3] by using the so-called ASTEC values. These are values that represent
characteristics of oxygen curves and are considered indicators of a seed’s vigor. As the
seed begins to repair the molecular germination mechanisms it slowly increases its oxygen
consumption. After this repair is mostly completed the oxygen consumption of the seed
is greatly increased and we call this moment the Increased Metabolism Time (IMT).
The critical level of oxygen where seed respiration drops off relatively rapidly is called the
Critical Oxygen Pressure (COP). The minimal value of the derivative is called the
Oxygen Metabolism Ratio (OMR). The IMT and COP are used for the prediction of
germination time by using a linear equation that crosses both these points. The x-intersect
of this line is taken as the Relative Germination Time (RGT).

1.2.2 Seed Respiration Analyzer

The Seed Respiration Analyzer mentioned in Section 1.1 is a machine developed by Fytagoras
that automates the tracking of oxygen level over a given timeframe. It can be loaded with
a large number of seeds that are individually contained in capsules. It then automatically
measures the oxygen level in each capsule over a specified period of time with a given interval
between measurements. It outputs the recorded data as a file that can be analyzed by a
computer program. This data then consists of the oxygen level at the timepoints of the
measurements and this is categorised per seed.
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Figure 1. An example of 4 sigmoid-shaped oxygen curves over time showing the similarity to an
ideal sigmoid curve.

1.3 Data and Acquisition

The data consists of two parts: the oxygen measurements of given seeds over time and the
germination data of the same seeds. The latter data set is used to verify the accuracy of our
trained model and is not necessary to produce for a batch of seeds we want to process.

The oxygen measurements are usually made with the SRA and contain the in-
formation for 2 trays containing 96 seeds each. The germination process is recorded over
several days and consists of the oxygen level at certain timepoints. These measurements
inevitably involve a small error that differs for every measurement, we can see this in Figure 2.
This measurement noise must be ameliorated to allow us to obtain reliable measurements
from the curves. We can also see that the oxygen measurements roughly follow a sigmoid
curve, as the theory in 1.2 describes. Furthermore we will use the term curves for a given
oxygen measurement time series. The data set containing the manually verified germination
information for a given batch is used to train our predictive model, in order to establish the
reliability of the approach. This is simply a file containing seed names and a boolean value
indicating whether that seed germinated or not at any point in the recorded time.

1.4 Research question

We will show that we can reliably extract descriptive statistics from the oxygen-over-time
curves of the SRA. These statistics are used to expand on the ASTEC values used in earlier
experiments [3]. These can be used to predict germination percentage to a high degree and
provide an accurate picture of the vigor of seeds in a given batch. This process is automated
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Figure 2. The Oxygen level over time for a certain seed.

and provided by means of a Jupyter notebook in a Colaboratory file and was written in
Python 3. This notebook can be easily reconfigured and adapted to new statistical analyses,
tests or visualizations.

More concretely the research questions are as follows:

1. What type of tool is necessary for the aid in analysis of oxygen data from seed
germination?

2. How can this tool be used to analyze this oxygen data with minimal programming
proficiency?

3. Which parameters and characteristics are useful indicators for the prediction of germi-
nation chance through the analysis of oxygen respiration?

The tool is detailed in the Section 5. The methods of answering these questions will
be described in Section 2 and answered in Section 3.
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Figure 3. Linear interpolation applied to an oxygen curve.

2 Methods

2.1 Preprocessing

As mentioned in Section 1.3 we have input data that consists of a csv file with the oxygen
concentration of every capsule for each timepoint as well as some information about the
testing that we won’t use in our program. We reformat the data to produce a csv file of
shape M ×N where M is the number of measurements and N is the number of seeds. Each
element is a float that represents the oxygen concentration of a specific seed at a specific time.
This data then represents the raw oxygen level data from the curve. The distances between
timepoints of the measurements are not completely uniform. Generally there are 600 seconds
between the measurements, but this varies somewhat, mostly by only a few seconds. We
apply linear interpolation to get uniform timepoints in the data. This is the method of choice
as it allows us to get uniform times while not applying too much transformation, which could
perturb our data for the actual analysis. An example is in Figure 3.

2.2 Curve Model Selection

The oxygen data is noisy so filtering must be applied before we can use it properly. Especially
the first and second derivative, which we use to calculate characteristics of our curves, are
not usable when calculated from the data directly. This can be seen in Figure 4. There are a
number of ways we can apply noise reduction to our curves, most of them involve fitting a
curve to our data.
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The data from an example curve. The derivative of this curve.

The second derivative of this curve.

Figure 4. An example curve to show how a little noise in the original data is amplified in the
derivatives.

The goal of this noise reduction is to remove the noise from our curves while not
removing the fluctuations that are present in them. After all, these represent information
present in the curve. A way to assess the quality of the noise reduction is to see how well the
resulting curve fits to the original line, while not having a positive derivative anywhere. This
is in line with assumption 5 from Section 1.2.1. The options experimented with were:

1. Applying gaussian (or other) filters

2. Rolling means

3. Fitting sigmoid curves

4. Fitting a high-degree polynomial function

5. Fitting B-splines3

3B-splines are piece-wise polynomial functions that constrain these functions to be continuous across a
number of their derivatives across each knot.

9



Figure 5. The interpolated data from a curve as well as 5 different models fitted to the data.

Fitting B-splines was chosen as an option for noise reduction. This method filtered
out erroneous noise to a degree that allowed proper use of the derivatives calculated from the
data, while also preserving the fluctuations in the oxygen level that might represent usable
information. These splines have degree 4 and have 15 knots over the entire length of the curve.
An example of all applied methods, as well as the chosen spline application is in Figure 5.
These B-splines were then used to calculate the characteristics of the individual seed curves.

2.3 Descriptive statistics

When we have a curve fitted to the data, we can begin calculating statistics from it. We
calculate a large number of descriptive statistics that function as the characteristics of the
curve. This way we can forgo using the curve itself and instead use the descriptive statistics
to attempt to find relations between the curve shape and the seed vigor. For this reason
we calculate an exhaustive number of values in addition to the ASTEC values defined in
Section 1.2.1. These additional values are:

• Curve maximum value

• Curve minimum value

• Curve average value

• Average derivative value

• Minimum derivative value

• R75, the first time the oxygen reaches 75%
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• R50, the first time the oxygen reaches 50%

• R25, the first time the oxygen reaches 25%

• Maximum value of the curve’s integral

• Average value of the curve’s integral

• I50, the first time the curve integral reaches 50% of its maximum

• I25, the first time the curve integral reaches 25% of its maximum.

2.4 Seed vigor-curve shape relation

The overarching goal of this process is to be able to quantitatively relate the shape of the
oxygen curve of a germinating seed to its vigor. Mainly, vigor is about the odds of germination
of a seed. To do this we will attempt to relate the descriptive statistics of a curve to the
information of whether a seed has germinated or not. Using a data set consisting of oxygen
curves and manually verified germination statistics we can attempt to train a model to find
this relation.

For the model, we use logistic regression as our dependent variable is binary and we
intend to identify a linear combination of the input features that predicts the germination
result. As we use a decision rule that maps the output to 1(True) or 0(False) this regression
model effectively becomes a classification model. However, we will continue referring to
the model as Logistic Regression as it is technically more correct. We will use 2 variations.
The first is a plain logistic regression model that we will train on a training subset of our
data. The second is a regularized logistic regression model that uses L1 regularization. L1
regularization has a tendency to set variables to 0 if they have a minute impact on the
prediction accuracy. This way, varying the regularization parameters allows us to identify
the significantly predictive properties of the curve. Combining this with a correlation matrix
will allow us to identify relations in and between the descriptive statistics. We will use a
Spearman’s correlation coefficient rs as our correlation measure as our variables are not all
normally distributed. This value tells us when variables are monotonically related. The
formula for Spearman’s correlation coefficient is

rs = ρrgX ,rgY =
cov(rgX , rgY )

σrgXσrgY
(1)

Where ρ is the Pearson correlation coefficient applied to the rank variables, cov(rgX , rgY ) is
the covariance of the rank variables and σrgX and σrgY are the standard deviations of the
rank variables.

Having identified relations in our data, we will use significance testing to check the
statistical significance of our findings. This will also tell us about the generalizability of these
relations.
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2.5 Software

The aforementioned operations are written in a software tool called a Jupyter Notebook. This
is a program that runs a Python script interactively in a browser window without having
to use the command line. All parts of this software tool are written in Python and most of
the processing is done with Numpy, Pandas, Scipy and scikit-learn, which are software
libraries for Python. The Jupyter Notebook in question is uploaded to a Google Colaboratory
file, which makes running the code even easier. It allows any user with access to open the
link to the file in a browser, upload the data (which also protects its privacy) and run the
program without installing anything. This methodology makes this program widely usable
by any authorized user, even those without extensive programming experience.

3 Results

3.1 Parameters

For the model we used the Sklearn.linear_model LogisticRegression class to create a Lo-
gistic regression model with the following parameters for the regularized model: C = 6,
penalty = l1, random_state = 0. The parameters for the unregularized model: penalty
= none, random_state = 0. For the C parameter we use the value 6, which is calculated
as optimal by testing all values from 0.1 to 10 with increments of 0.1 in this regularized
model. This model tests each value by doing 10-fold cross validation, with the KFold class
in Sklearn.model_selection. The Mean Accuracy of these 10 splits are averaged and that is
used as an indicator for the C value tested.

3.2 Training and testing data

For the training and testing subsets of the data we use the complete dataset of Tataros seeds,
consisting of 384 oxygen curves. For the training and testing splits we use the train_test_split
class in Sklearn.model_selection. The test size is set to 0.25 so 25% of the dataset will be
used as a testing set and the remaining 75% will be used for training. We also shuffle the
training and testing data by setting the shuffle parameter in the aforementioned class to
True.

3.3 Linear model results

Training the non-regularized and regularized logistic model on our data gives us the coefficients
visible in Table 1. These coefficients are obtained after fitting the model on a training subset
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of the data. These coefficients tell us how much influence each characteristic has on the
germination prediction result. In turn we can use this as a way of selecting curve characteristics
that might represent an interesting biological property relating to the chance of germination.

The Mean Accuracy for the L1-regularized Logistic regression model was 0.885.

The Mean Accuracy for the unregularized Logistic Regression model was 0.865.

These accuracies are calculated over the test set as this gives a reasonably reliable idea of the
accuracy for a different data set.

Model L1-regularized Logistic Regression Logistic Regression
Max value 0.35 10.16
Min value 4.91 28.12
Mean value 0 -10.99

Max derivative value 0 -21.42
Mean derivative value -4.63 -6.18

R75 0 -8.41
R50 -1.96 -4.23
R25 -1.79 -1.68
IMT 0.97 0.39
OMR -4.85 -6.18

OMR timepoint 1.11 1.41
COP -0.04 -1.18

RGT timepoint -1.87 -4.04
Max integral value 0 -11.01
Mean integral value 0 3.26

Integral R50 0 11.87
Integral R25 0 10.07

Table 1. The coefficients for the separate characteristics of the trained logistic models.
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Figure 6. The Spearman’s rs correlation matrix calculated over the curve statistics that are found
to be significant in the linear model.
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3.4 Significant correlations

When we select these characteristics and plot the Spearman’s rs correlations of the entire
dataset in a matrix we get the result we see in Figure 6. We will limit our analysis to the
correlations ≥ 0.5 as correlations below this value are so weak they are not interesting for
further analysis. These are the following:

1. Max curve value and R50 timepoint with rs = 0.73.

2. Minimal curve value and OMR value with rs = 0.59.

3. Minimal curve value and RGT timepoint with rs = 0.56.

4. R50 timepoint and R25 timepoint with rs = 0.71.

5. OMR value and RGT timepoint with rs = 0.92.

Figure 7. The Histograms of the variables found to have significant Spearman’s rs correlations.

We need to know if these variables are normally distributed and for that we plot the
histograms of these values in Figure 7. We see that they are not normally distributed so to
find out accurately what the correlation is and the significance thereof we will use Spearman’s
correlation coefficient instead of Pearson’s correlation coefficient. We take our null hypothesis
to be that there’s no statistically significant correlation between these variables, so rs = 0.
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Our alternative hypothesis will be rs 6= 0 and we will set our α = 0.05. We calculate our test
statistic for each correlation. T1 refers to the first significant correlation found in Section 3.4
(between max curve value and R50 timepoint), T2 refers to the second correlation, etc. We
then calculate our test statistics.

Ti =

√
n− 2

1− rsi2
(2)

T1 = 28.6 (3)
T2 = 24.21 (4)
T3 = 23.59 (5)
T4 = 27.76 (6)
T5 = 49.87 (7)

(8)

We have df = 384− 2 = 382 and find, with the help of a table of t-distribution values, that
we have P < 0.05 for all correlations that we found. The test statistic is so far above the
critical value that we can reject all the null hypotheses and conclude that we have found
clear statistically significant relations in this data. Specifically, we have found that we have
monotonic relations between the variables named in Section 3.4.
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4 Conclusion

We have seen that a relatively simple tool intended for the analysis of oxygen data can make
the analysis itself trivial. With the help of my program, a few lines of code can make a large
body of data accessible and easy to analyze. This way the programmatical burden of analysis
is removed from researchers who don’t have the time or capability to develop such things
themselves. And while tools like these help research, the horticultural industry also thrives
by tools that speed up research and development work.

This tool was not only developed in an accessible language (Python), it is also fully
usable and accessible in any modern browser. The code is encapsulated in a Jupyter notebook
which is hosted on Google’s Colaboratory website. This allows any user to go to this notebook
via a link, upload data with drag and drop and run everything with a command that is as
simple as pressing Control + F9.

The only development our analysis needed was to upload data, run the main program
pipeline and then some simple numpy and Pandas commands to visualize our data and
calculate things like statistics. We made a simple module containing the statistics we wanted
to calculate about every seed and put it in place in the pipeline. These statistics could then
be used to identify some statistical relations in the data (Section 3.4) and show that we could
easily fit a simple model to reliably predict germination based on nothing but seed respiration
data (Section 3.3).

5 Program documentation

The program expects files in the comma-separated value format. In files containing oxygen
curves a column should hold the oxygen information for a single seed in a header at the top
of the file. In files containing germination data every row should contain a seed name and
corresponding boolean value and no header at the top of the file. Using the Colaboratory
interface is the easiest way of uploading data to the environment of the notebook. After
uploading the files can be referenced by using the filename and extension in a string and
running the appropriate function.
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