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Abstract

In this Master’s Thesis research project, an automated machine learning pipeline for time series
regression problems is proposed and applied to a number of real-world data sets in areas such
as earthquake strength regression (based on seismic data), age regression (based on neuro-
logical data), and mental condition regression (based on neurological data). The automated
pipeline consists of a set of modules comprising data pre-processing and feature extraction
(using tsfresh python package), feature selection (using RFECV ) and modeling regres-
sion algorithm (using Random Forest Regressor) with hyperparameter optimization (using
Optuna software framework). The problem addressed in the study consists in developing an
effective automated time-series regression pipeline that could serve as an accurate model to
predict an output variable, with a specific focus on its potential application in the medical
domain, for predicting mental conditions from EEG measurements. We validate the effective-
ness of the resulting tuned model with two different datasets (seismic signals and EEG data)
and achieve a coefficient of determination R2 0.56 with seismic signals in comparison with the
previous results obtained by other researchers. Moreover, using the EEG dataset from Leiden
University Medical Center, the approach results in a model with an R2 of 0.432. Not being
able to provide a high enough precision for these predictions despite the experience gained
from previous experiments of the pipeline, probably due to the small size of the dataset. Also,
results indicate the values in the extremes of the range are much less correlated than the rest.
We conclude that the large datasets used in some of the experiments include sufficient variable
resolution to predict with better performance and less noise, avoiding the heteroscedasticity
and multicollinearity in contrast to small datasets in time-series models, and that the auto-
mated machine learning approach for time series regression can be a first step towards mental
condition prediction based on EEG data.

Keywords: Random Forest Regression,Machine learning, Supervised Learning
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1 Introduction

Artificial intelligence (AI) will be increasingly used in society, business, industrial applications,
and the medical domain due to the constant increase of data density and complexity.[13] AI al-
gorithms and machine learning are already being used by healthcare providers, medical research
institutions, as well as life sciences firms. Many of AI uses in medicine field involve diagnostic
and therapy recommendations as well as patient engagement and adherence.[13] The vast
amount of AI category applications in the field of medicine involve diagnosis and treatment
recommendations; patient engagement and adherence; and administrative activities.[13] How-
ever, involving the issue of automation and work in healthcare, there is an ongoing discussion
about ethical issues related to the application of AI, as it is expected that it can replace hu-
mans in a wide range of activities in the medical domain within a very short period.[13]
As a statistical approach, machine learning (ML) to fit models according to the data and to
learn by training them with data. Because of this, ML has gotten perhaps the most normally
utilized type of AI in the medical domain. In the field of healthcare, image analysis is the most
widely recognized application for ML. Although this study is about precision medicine, for the
optimal fit, a patient’s characteristics and the treatment setting are taken into account to
determine whether treatment procedures are likely to be successful. It is termed supervised
learning that most machine learning and precision medicine applications require a training
dataset that includes a known outcome variable (e.g. the beginning of illness).[13]
The continuous interest in resolving the medical problems that combines time series prediction
utilizing AI (e.g. EEG) has posed a major challenge for medical researchers, data analysts, and
biologists who are keen to develop the best prediction methods. Their main focus is put on how
the efficient algorithms and technologies may be introduced for managing and analyzing large
time-series datasets with multiple variables to characterize a patient’s health. The following
research question will be studied in this Thesis: Can we develop efficient time series regression
approach by using feature-based techniques for applications in the medical domain?
To make predictions, we employ regression equations. After fitting a model, regression equa-
tions are a significant component of the statistical output. According to the coefficients in the
equation, each independent variable and the dependent variable have a specific relationship.
Thus, Supervised Learning algorithms include regression and classification techniques. Both
methods are used in Machine Learning to make predictions and deal with labeled datasets. It
is the form of application of each of the different methods that characterized them within the
automatic learning of the algorithms.
Thus, the main difference between regression and classification algorithm is that regression is
used to predict continuous values such as price or age, while classification algorithm is used
to predict/sort discrete values, such as true or false, disease or not.
Regarding time-series datasets, ML can be applied to solve the problems where a numeric
or categorical value must be predicted, and the rows of data are ordered by time. There are
two different types of time series datasets, univariate and multivariate. When the time series
datasets only have one variable is called univariate datasets, for instance, sales or demography
datasets. On the other hand, the multivariate datasets are composed of various variables. For
instance, meteorology or monitoring datasets.
As result, it became necessary to implement machine learning (ML) methods, as a result of
a huge variety of required knowledge needed for developing medical research projects. Due to
this variety of knowledge combined with the lack of biodata scientists experts in the medical
industry often calls for simple but good performing modeling techniques which can also be ap-
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plied by clinicians with some knowledge of data science. In other words, the biomedical sector
requires simple, comprehensible, and reliable ML techniques which solve real-world problems
with good performances in an automated manner. Such automated methods belong to the
group of so-called Automated Machine Learning (AutoML), in particular, an automated ML
pipeline consists of feature extraction, feature selection, modeling algorithm, and optimization.
Hence, Random Forest Regressor (RFRs) is the chosen model algorithm because it offered great
robustness as well as benefits in cost and time[41]. Thus, RFRs providing variable importance
measures that properly rank the selected features according to their predictive power.
Most research efforts, [29] have traditionally been done to extract suitable features. Unlike
deep learning procedures and GPU calculations [45], where relevant features can be discovered
in the training process. It is important to understand the discovered features because we can
learn something new about the area in which our model works or be sure that the model
extracts features without high computation cost [43].
This work discusses and applies the leading edge algorithms of variable selection methods [21]
such as recursive feature elimination cross-validated (RFECV) or recurrent relative variable im-
portant measure (r2VIM). The thesis’ main contribution is an automated regression pipeline
for time series which includes an efficient feature extraction and feature selection method to
be used in the prediction of various variables related to the medical domain and real-world
domain applying regression with Hyperparameter optimization. To synthesize, the relevance
of values for each feature is calculated on its observed minimal value of score importance
from several runs of RF; to understand the accuracy of the prediction it is important to eval-
uate the predictions. Therefore, before several runs of RFR, only efficient features selected by
r2VIM or RFECV and previously extracted by tsfresh are selected as important for modeling
the prediction. Finally, the predictions’ objective with real EEG labeled data sets, is to develop
a predictive model with the highest accuracy using random forest regression.

1.1 State of Research

The following research will be the focus of this thesis: (a) building an automated regression
pipeline for time-series in the medical domain, (b) an assisted feature selection optimization
method, (c) comparing the performance of different feature selection algorithms in three dif-
ferent data-sets, and (d) presenting the results for predicting the selected variable and an
efficient selection feature method.

1.2 Outline

The thesis structure is organized as follows: Section 2 will introduce some related work on
time series pipelines, regression techniques, and the evolution of variable selection methods
for random forests. This section will also introduce what has taken place in other academic
papers by acknowledging the relationship between the previous work and current topics. Also,
it will give some definitions, explanations, and examples of the automated regression pipelines
used in this thesis. Section 3, will present the pipeline with the different modules of feature
extraction, feature selection, and Random forest regression (RFR) alongside the datasets used.
In Section 4, the discussion takes place about the problem statements and some hypotheses
within this research. Also, includes four kinds of different experiments which can provide
experiment results. To conclude, future work will be discussed in Section 7.
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2 State of the art

In this chapter, we will present some work that has been done on the topic of machine
learning regression pipelines (specifically time series pipelines) and predicting algorithms. We
will also present some work that has been done concerning the Leiden University Medical
Center (LUMC) dataset which contains real EEG recordings of 125 patients. Thereafter, we
will mention the aspects regarding the regression, feature extraction and feature selection.

2.1 General Work

We begin with a short literature review placed to highlight previous research undertaken in the
field of predictions using classification and regression. In ML, a machine learning algorithm is
applied to automatically construct a model from data. This research focuses on regression in
Machine Learning (ML) through Random Forest. Nevertheless, ML-based predictions can be
modeled in one of two approaches: Classification, which can predict the possibility of several
features on n-number of features calculated from the selected features; Regression, which can
predict the remaining features until the variable appears. The independent feature (variable)
- used to predict the value of the dependent feature (variable) - in both modeling approaches
is categorical. Dependent features for Classification are categorized and discrete, while depen-
dent features for regression are numerical and continuous. ML method object of study in this
work is RF and is demonstrated from a regression approach. In many cases, a preprocessing
step may be applied to the data, before using an ML algorithm. This preprocessing can help
the machine learning algorithm to learn faster or better. When dealing with imperfect data
several techniques may be used to deal with the processing of features that involve missing or
inadequate data, or data that is in a format incompatible with the machine learning estima-
tor being used. For instance, in this work is a given dataset with the Electroencephalography
(EEG) signals of patients, and a set of annotated labels, one can automatically construct a
model predicting the possibility of having a disease in the patients based on the annotated
labels applying regression techniques. A previous predictive model based on classification, as
comparison of the present study, is the Automated Machine Learning for EEG-Based Classifi-
cation of Parkinson’s Disease Patients.[27] The use of Boruta algorithm (feature selection step
in machine learning pipelines) is an elegant wrapper method built around the Random Forest
model. The use of a Boruta model determines feature importance by comparing the relevance
of the real features to that of the random probes, it provides accurate and stable results of
feature selection to perform the classification on multi-variate time series input. Previously
there are several works in this field such as the work of Hansen et al[18], which focused on
the classification of Peptides using random forests and genetic algorithms to conduct feature
selection.
Similarly, the Automated machine learning classification pipeline for Parkinson’s disease [27],
which focuses on Boruta, as the feature selection algorithm used with the LUMC dataset with
the EEG recordings of 125 patients. It creates a random forest model based on the real features
and so-called shadow features provided by arbitrarily shuffling values for each actual feature.
All applicable features are contained in the algorithm (compare with the minimum-optimal
set). The Boruta algorithm is a wrapper algorithm over the random-forest classification algo-
rithm, not just a stand-alone algorithm.
In the regression, pipeline performed this step moves forward in the feature selection algorithms
(r2vim, RFECV) for the implementation of regression.
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2.2 Regression analysis

Regression is a statistical tool used to evaluate the relationship between variables and to predict
scores on the variable given and scores on other variables. It is a method for fitting a curve
across a set of points (measurements) by applying some criterion to determine how well a
curve fits to the points. Based on our chosen regression method and criterion, a regression
function produces a curve that best fits the points using our chosen regression method. There
are several types of regressions that may be performed depending on what we anticipate the
relationship to be: if we expect it to be linear, for instance, we conduct some kind of linear
regression, if we expect it to be quadratic, for instance, we do some kind of quadratic regression,
and so forth.[44] We employ several additional regression-related terms that the reader may
be unfamiliar with, we explore the specific regression method used in this Thesis reference
following, and we clarify two generic concepts here using Figure 1. Looking at this diagram,
we can observe a line with the equation y = ax + b. We can see that b is the junction of the
line with the y − axis, which is known as the intercept. In the image, we can also observe
that as the x − coordinate of the line increases by one, the line rises in the y − direction
by a [17]. As a result of traversing a distance of one in the x− axis, the slope of the line is
defined as the difference in y − axis that the line travels through.

Figure 1: Graph with an equation of the line included, to introduce the terms ‘slope’ and
‘intercept’.

Regression analysis is capable of handling a wide range of situations [17].For instance, utilize
regression analysis to perform different tasks:

• Model curvilinear and linear relationships.

• Include categorical and continuous variables.

• Model multiple independent variables.

• Determine if the influence of one independent variable depends on the value of another
independent variable by evaluating interaction terms.

In a regression analysis, each independent variable changes are correlated with those of the
dependent variable. As a result, every variable in the model is statistically controlled using
regression [17]. A residual is another important regression concept to understand how well
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the model fits the data, assessing the differences between the observed values and the fitted
values.These differences indicate the model’s error.There is no perfect model. As a result, the
observed values and the fitted values will never be identical.

Residual = Observed value - Fitted value
The equation 1 below shows how to calculate the residuals:

ei = yi − yi (1)

Related to regression analysis, the following terminologies are included[17]:

• Multicollinearity: It occurs when the independent variables are highly correlated with
each other.

• Heteroscedasticity:It occurs when a dependent variable’s variability does not match
across values of an independent variable.

• Outliers: It is an extreme value in the dataset (a very high or a very low).

• Overfitting: It occurs when the algorithm performs well on the training set, but not on
the test set. The problem of high variance is another name for it.

• Underfitting: It occurs when the algorithm performs so poorly that even a training set
is unable to be properly fitted. The problem of high bias is another name for it.

2.3 Decision Tree - Regression

In this work, the research on decision trees has also been explored in detail. Decision tree builds
regression models in the form of a tree structure. Algorithms for the decision tree consist of
trees categorizing data with feature values. Each node in a decision tree shows a feature to
be classified and the branches show values to be taken into account by such a node. Thus,
any internal node tests a feature, the output of the test is on the branch, and the class label
is on the leaf node as a result. The largest decision node is referred to as the root node, and
it is the parent of all nodes. As the root node, the feature that can filter the data the most
efficiently is chosen. This technique is repeated for each subset of the training data before all
data has been separated into specific class batches.[38]
Every decision tree has high variance, although when we mix all of the decision trees in paral-
lel, the resultant variance is minimal since each decision tree is fully trained on that particular
sample data, and therefore the output doesn’t depend on one decision tree but combining
multiple decision trees instead of a single one. In the regression problem, aggregation is the
part where the final output is the mean of all outputs.[44]
In addressing building decision trees the core algorithm is called ID3 is based on a top-down,
greedy search across the space of potential branches, with no backtracking.[40]
In this Thesis we used Random Forest Regressor is an ensemble technique able to execute more
than one decision tree using a technique called Bootstrap and Aggregation, broadly called bag-
ging. Combining multiple models into a single, highly reliable model is the goal of ensemble
techniques. Boosting, bagging, and stacking are the most prevalent ensemble techniques. As
a result of reducing bias and variance, ensemble techniques are suitable for regression and
classification problems.[52]
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2.4 Feature Engineering

The term feature engineering describes the process of using domain expertise to extract features
(properties,attributes,characteristics) from raw data and is a very important aspect of ML. The
main goal of Feature engineering is to get the best possible results from a predictive model.To
analyze or predict something, it will be done using the features (numeric representation of raw
data) that are properties shared by independent units.[54] The dependencies are:

• The raw data selected and prepared.

• The predictive models using.

• The framing of the problem.

• The performance measures.

Predictive models rely on features to influence results. The efforts of feature engineering mainly
focus:

• Creating a suitable input dataset, compatible with the ML algorithm requirements.

• Improving the performance of ML models.

The importance of feature engineering is described because the features in the data will have a
direct impact on the predictive models that are deployed and the results that can be achieved.
Thus, several properties influence the results, therefore it needs great features that describe
the inherent structures of the data. [36] Great features mean:

• The flexibility of the good ones, employ less complex models that are faster to run,
easier to understand, and easier to manage.

• Simpler models, there is a representation of all accessible data that might be used to
better characterize that underlying problem.

• Better results, as a result of choosing the right models and optimized parameters.

Fundamental methods used in the feature engineering process are discussed below [54]:

• Imputation: It is necessary to remove rows or columns or impute values using the column
medians when there are missing data.

• Extracting date:In most cases, date columns give significant information regarding the
model’s target, but because dates might be presented in a variety of forms, standard
extraction is essential.

• Scaling:Normalization or standardization is required since most numerical features of the
dataset do not have a defined range.

• Handling Outliers: Outliers can be handled in two ways. Using standard deviation and
percentiles to determine whether to drop or cap, these will discover them.

• Binning:It is used to make the model more resilient and to prevent overfitting.
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• Logarithm transformation:It is a mathematical transformation to handle skewed data,normalize
the magnitude differences and reduces the effect of the outliers.

• One-Hot encoding: When categorical data is converted to a numerical format, the values
in each column are split across multiple flag columns.

• Feature split:It depends on the characteristics of the column, how the split function is
applied.

• Grouping Operations:By categorical column grouping or by numerical column grouping,
the aggregation functions of the features must be determined.

Using the above fundamental methods of feature engineering the prediction accuracy is greatly
increased, proceeding with others methods of data preparation such as feature selection,train/test
splitting, and sampling used below.
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3 Methods

This section provides a detailed overview of the used steps to build the Automated Regression
Pipeline for Time-Series developing the different methods employed below.

Figure 2: Pipeline Configuration

3.1 Data preparation and feature extraction

Several methods can be used to deal with missing or inadequate data.The machine learning
estimator is used to handle inaccurate data or data which is incompatible with. Sometimes,
the problem of missing values within features or targets must be tackled when dealing with
datasets of any size from the real world.
The magnitude of this problem could range from a large number of missing values (sparse
data) to only a few missing values across a number of features. Thus, different ML algorithms
and specialized implementations have a variety of awareness to missing data, such as Näıve
Bayes, deal smoothly with missing values as it is linear and its features are handled separately,
still others can not allow for missing values, especially nonlinear methods, such as random
forests[7]. In this case, we presented the method used for dealing with missing data in this
Thesis. This consists of either remove some or all of the observations that include missing data
(complete-case analysis) or alternately by imputing the missing values by using a mathematical
or stochastic process [47]. This approach is possible only with large datasets or very few missing
data columns, as it removes observations and thus limits the effectiveness of a supervised
algorithm to train successfully [31]. A shortcoming of the approach is that observations with
missing data may not be uniformly distributed across all target classes, and instead may be
more highly correlated with certain outcomes; thus, removing observations may skew the overall
results and thus the predictive strength of the model.
Instead, a second alternative consists of interpolating the feature values based on an algorithm
that can range from easy use of the mean of non-missing data to so sophisticated that other
machine learning strategies like logarithmic regression are used to calculate the missing value.
However, imputation of too many values can lead to weaknesses in the model as well[9]. For
simplicity,in this Thesis we imputed missing values, using the mean of other data from the
same feature, despite this approach having the potential of inducing bias [20].
To address the feature selection problem with the identification of all strongly and weakly
relevant attributes. It is hard to solve for time series regression and classification, for which each
label or regression target is connected with several time series and metadata at the same time
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[11]. We used tsfresh , which is an efficient and scalable feature extraction algorithm for time
series based on a Python package. The mentioned algorithm joined feature importance filter
with the feature extraction methods.Thus, the features extracted will be used for describing
or clustering time series depending on the extracted characteristics with a scalable feature
selection based on non-parametric hypothesis tests and the Benjamini-Yekutieli procedure
[11]. Furthermore, tsfresh is compatible with the pandas and scikit-learn libraries and can be
used to construct models that perform classification/regression tasks on time series [12].
Loosely speaking, the use of tsfresh is imposed because there are a variety of features that are
significant depending on the domain and the various datasets used in this Thesis. To create
an automatic and generic approach to generate the features for the time series datasets, it is
used to extract a large number of features and then select the most important features for the
overall regression task.
The tsfresh combines the components from the hypothesis tests with the feature significance
testing[12], given by the following three steps:

• Perform a set of all tested null hypotheses

• For each generated feature vector

• Perform the Benjamini-Yekutieli procedure

For instance, when we evaluated the LUMC EEG dataset, for each pair of patients and epoch,
tsfresh extraction procedure gives us for each feature function, 1023 features computed for
each EEG time series, in total (21 electrodes per patient, resulting in 21 recorded time series)
composed by 21 x 1023 = 21483 features.
Hence, the FRESH algorithm extracts all features in step 1. which are then individually inves-
tigated by the hypothesis tests in step 2. and finally in step 3. the decision about the extracted
features is made.

3.2 Feature selection

The goal of the feature selection phase is to pick the set of features that are most relevant to
the regression problem, having said that feature selection is also known as Variable selection or
Attribute selection. Essentially, it is the selection mechanism for the most important/relevant
Features of a dataset. There is a major role in developing a successful data mining method
by choosing suitable features. It is best to recognize when a feature collection is significant
if you have a dataset with a large number of features. This kind of data set is also called a
high-dimensional dataset. For this high dimensionality, there are some complications such as
the training time of the machine learning model can increase dramatically, making the model
very complex, leading to overfitting.
Manual feature selection involves a full understanding of the data and the data domain.
Oversight of features can lead quickly to results with poor predictive capability because the
model does not know the key information in the dataset that could show an important pattern.
On the other hand, the use of contrasting features may also lead to a substandard model as the
model can cause overfitting and excessive noise, also generally reduce the speed at which the
estimator in a supervised learning environment trains and predicts.With this in mind, proper
feature selection is crucial to training classifiers or regressors that provide the highest predictive
capability [21].
An overview of the algorithms used is explained following [14]:
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Recursive feature elimination and cross-validated selection (RFECV), aims to find the best and
minimal collection of variables, that contribute to a good cross-validated prediction model. It
begins with an RF constructed on all variables.[34] A certain proportion of the least important
variables is then deleted and a new RF is generated using the remaining variables. These stages
are iteratively applied until a single variable is left as input. At each stage, the performance
of the prediction is assessed based on the out-of-bag samples that were not used for model
construction. The collection of variables that leads to the RF with the smallest error or an
error within a small range of the minimum is picked. The original method as implemented in
the R package varSelRF calculates variable importance only once based on the RF with all
variables. RFECV is often applied to analyze high-dimensional molecular data sets generated,
e.g. in transcriptomics, proteomics and metabolomics experiments [33].
Recurrent relative variable importance, the idea of r2VIM is based on the assumption that
genome-scale datasets usually contain many unimportant variables, which can be used to
estimate the importance values of null variables[14]. Several RFs are generated based on
the same data set and parameter values differing only in the seed of the random number
generating process. Each RF is used to calculate importance values, which are divided by
the absolute minimal importance value observed in each run resulting in relative values that
can be interpreted more easily. In case the minimal observed importance is exactly zero in a
specific RF run, the minimal importance value overall runs are used as a denominator. Variables
with a minimal relative importance value greater or equal to a specified factor are selected
and defined as important variables.[50] To identify genetic variants that are associated with
complex diseases, r2VIM has been developed. Compared with standard statistical methods,
such as logistic regression, the power to detect causal variants is only slightly decreased. The
method can also be applied to identify gene-gene interactions.
Vita algorithm proposed by Janitza et al.[23] is similar to r2VIM, as it uses only the existing
data without any permutations to estimate the null distribution of variable importance scores.
The observed non-positive variable importance scores are used to construct a distribution that
is symmetric around zero. The authors showed that variable importance values of null variables
that are calculated using out-of-bag samples are positively skewed and asymmetric distribution
is only achieved using a special cross-validation procedure (called the hold-out approach). The
overall data set is divided into two equally sized subsets, and two RFs are trained using either
one of the sets. Variable importance is then estimated based on the other, independent set.
The final importance values, called hold-out importance, are calculated by averaging the two
estimated scores per variable. Based on the resulting empirical distribution, p-values can be
calculated [23].
After we evaluated the previous feature selection methods [14] in preliminary experiments,
we realized in the comparison that the feature cost minimization,less expensive and time-
consuming method is recursive feature elimination and cross-validation (RFECV),this selected
feature technique that fits our model and deletes the weakest feature(s) until the specified
number of features is attained. Features are ordered by the model’s coefficients or feature
importances attributes, and RFE tries to reduce dependencies and collinearity that might exist
in the model through the recurrent elimination of a small number of features in each loop.
RFE must retain a specific amount of features, however, but it is not known in advance how
many are legal features. Cross-validation with RFE is used to find the optimum number of
features for determining various feature subsets and selecting the best collection of features.
In addition to their cross-validated test score and uncertainty, the RFECV visualizer plots the
number of features in the model and visualizes the selected number of features [3].
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3.3 Stratified cross-validation

In stratified K-fold cross-validation, the output variable is stratified first and the dataset is
randomly split into K-folds to ensure each fold comprises about the same proportion of dif-
ferent strata. Despite the fact that several studies [8] observed no significant benefits from
using stratified cross-validation in regression situations. Notwithstanding, [28] analyzed model
selection and classification problems evaluation and showed that a stratification is usually a
good approach to cross-validation folding.
For several repetitive cross-validations, when a model has been selected the stratification’s
problem becomes redundant, thus stratified cross-validation is wise to be used in the evalua-
tion of the model and when a class imbalance occurs the stratification can lead to unstable
performance measures. We want to point out that there is no clear consensus on the use of
stratified cross-validation or any other splitting approach which takes into account the values
of the output variable. Furthermore,the 10-fold and 5-fold cross-validations are the most widely
used stratified K-fold CVs for evaluating ML models [32].Thus,the 5-fold cross-validation was
employed in models of building the experiments of this Thesis to offer an un-biased prediction.
To prevent the following effects the use of the aforementioned technique is necessary:

• Overfit Model: Overfitting happens when the noise of the data is captured by a statistic
model or machine learning algorithm. It happens by default if the model or algorithm
fits the data well.

• The overfitting of a model leads to good accuracy for training data, but poor performance
in new data sets. Such a model is not of practical use because it cannot predict results
for new cases.

• Underfit Model: Underfitting happens when the underlying trend of the data is not cap-
tured by either a statistical model or machine learning algorithm. Intuitively, it happens
if the model or algorithm does not sufficiently fit the results. Often, underfitting is a
consequence of a model that is too simple which means that the missing data is not
handled properly, therefore the removal of unnecessary features or features that don’t
add anything to the predictor variable is not done properly.
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3.4 Hyperparameter Optimization (HPO)

Finding the hyperparameter settings that optimize the efficiency of an algorithm concerning
a specific performance measure is known as hyperparameter optimization. Many aspects con-
tribute to the difficulty of configuring hyperparameters for machine learning algorithms [53]:

• Hyperparameters can exhibit nonlinear and non-convex behavior. Having a very small
k in the k-nearest neighbor algorithm may overfit, reducing performance. On the other
hand, having high k may underfit, again reducing performance. Somewhere in-between
is where performance is most likely to be best. Even then, in some cases varying k by
small amounts has no measurable impact on performance.

• Hyperparameters can be an integer, continuous or non-numeric. Examples of integer
hyperparameters are the value of k in k-nearest neighbors and the maximum depth of
a decision tree. Continuous hyperparameters include regularization for Support Vector
Machines and the learning rate for neural networks. Finally, non-numeric hyperparameters
exist in e.g. the k-nearest neighbor algorithm there can be multiple ways to calculate
distance, such as the ‘Manhattan Distance’ and ‘Euclidean Distance’. For decision trees,
there are multiple ways to measure the quality of a split, like ‘Gini impurity’ and ‘Entropy’.

• Learning algorithms may have conditional hyperparameters. For instance, with the use
of the Logistic Regression in scikit-learn, the solver used must be specified, in order to
restrict the possible options available for the penalty parameter.

• Function evaluations can be expensive. The evaluation of multiple distinct hyperparam-
eters may be costly, depending on the size of the dataset and the ML algorithm or its
setup. Some models might take days or weeks, others only take several minutes to train.

While feature selection and dealing with incomplete or inaccurate data before feeding to an
estimator are critical, other factors may also influence the regressor or classifier’s final per-
formance [53]. For instance, a hyperparameter for random forest classifiers is the number of
decision trees the random forest will generate, and another is the number of features per
decision tree in the forest that will be considered when generating a new node and split; hy-
perparameter optimization is the process of tuning the parameters that define the estimator’s
functioning, rather than the values learned by the estimator. Unlike values that are learned by
the estimator during training, hyperparameters are generally user defined and passed to the
estimator upon initialization. While some hyperparameters potentially impact the estimator’s
scoring performance, others are provided more for the speed with which the classifier may be
trained [39].
To determine the highest scoring set of hyperparameters sampled, the automated processing
technique for the hyperparameter tuning function is used by running multiple iterations of the
estimator with different combinations of the parameter sets and a scoring function backed by
cross validation [39]. Some implementations are exhaustive, testing every possible combination
of parameters against the model; however, this approach, while likely to find an optimal or
near-optimal solution, nonetheless suffer from being very performance demanding situation,
in which the classifier or regressor can be trained, particularly for estimators for which many
hyperparameters exist. As an alternative, randomized grid search, works instead by randomly
sampling from the provided parameter set a predetermined number of times and returning the
best scoring parameter set found after cross-validation, as above. Note that hyperparameters
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must be tuned at the same time as feature selection occurs, as certain feature combinations
may perform differently with certain combinations of parameters.
A more advanced method for hyperparameter optimization is Bayesian Optimization iteratively
chooses sample points based on earlier results, balancing between exploration and exploitation
[53]. It constructs a surrogate model for the optimization function. It models the likelihood of
various optimization functions so that the expected performance based on the hyperparameter
configuration can be determined. There are many possible surrogate models, but a Gaussian
process is often used [53].
These surrogate models are updated based on evidence of the true objective function. This
evidence comes from performing a function evaluation (machine learning experiment). This
evaluation allows the construction of a distribution of values the optimization function is likely
to have. Then, an acquisition function will determine which hyperparameter settings to try
next, based on the outcome about the optimization function. The acquisition function has to
balance exploration and exploitation. On the one hand, it should explore areas that are likely
to contain good hyperparameter settings. At the same time, it should make sure not to leave
areas with possibly bigger improvements unexplored [53]. Hence, Bayesian Optimization is a
Sequential Model-Based Optimization (SMBO) because it uses a model of possible objective
functions to determine what good hyperparameter values may be, and sequentially updates
this model based on new findings. Originally SMBO techniques were not suitable for algorithm
selection due to limitations, such as only supporting numerical parameters. Although SMBO
was readapted to solve the problem mentioned, and for this purpose two methods were in-
troduced, Random Online Aggressive Racing (ROAR) and Sequential Model-based Algorithm
Configuration (SMAC) that are having a very good performance optimizing hyperparameters
[53]. Following we described the Hyperparameter Optimization Framework used in this Thesis
because its efficient and allowing the optimization program to run faster.

Table 1: Hyperparameter search space for optimizing the random forest regressor.

Parameter Range
Number of trees {1,2,.......,100}
Max depth of each tree {1,2,.......,100}
Min number of samples required to split a node {2, 3, . . . , 20}
Max number of features when splitting a node {auto, sqrt}
Min number of samples required in the leaf node {1, 2, . . . , 10}
Use bootstrap training samples? {True, False}

3.5 Optuna (Hyperparameter Optimization Framework)

Optuna [1], is an open-source next-generation optimization platform with the following inno-
vative features:

• User customization is feasible as it is versatile,lightweight,efficient and implemented with
optimized pruning and sampling algorithms.

• Using define-by-run programming, allowing the user to dynamically build the hyperpa-
rameter search space.
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• A flexible and easy-to-setup architecture that can be used for a wide range of tasks,
from simple trials to complex distributed system experiments.

Figure 3: Overview of Optuna’s system design.
In each study,each worker performs one instance of an objective function. The Objective

function uses Optuna APIs to conduct the trial.When the API is used, the objective
function logs in the shared storage and receives information from previous studies from

the storage when is required. Each worker executes the objective function separately and
shares the progress present study using the storage [1].

Therefore, breaking down to the previous points, the power of define-by-run API consists in
how Optuna defines hyperparameter optimization as an objective function using a maximiza-
tion or minimization process that collects a set of hyperparameters as input and returns its
validation score. Optuna alludes to each process of optimization as a study and each assess-
ment of objective function as a trial. Thus, Optuna progressively builds the objective function
through the interaction with the trial object [1]. Optuna is also compatible with modular pro-
gramming and able to work on complex scenarios such as optimizing the hyperparameters of
stochastic gradient descent (SGD) and the topology of a multilayer perceptron. The efficiency
of the search strategy that selects the set of parameters to investigate is addressed by an
efficient sampling and pruning mechanism. Optuna implements relational sampling and inde-
pendent sampling methods, each method respectively operates on the correlations through
the parameters and the sampling of each parameter independently, hence Optuna can handle
diverse algorithms including Tree-structured Parzen Estimator (TPE) [4] or Covariance Matrix
Adaptation of Evolution Strategies (CMA-ES) [19].
In addition, the cost-effectiveness of the hyperparameter optimization framework is determined
by the efficiency of searching strategy and the performance estimation strategy. For ensuring
the ”cost” part of the cost-effectiveness the pruning algorithm is used in two phases [1]:

• It systematically checks the intermediate function objective values.

• Closes a trial that does not meet the prearranged conditions.

Moreover pruning algorithm includes Asynchronous Successive Halving(ASHA) as an extension
of successive halving [22]. The algorithm is fully oriented for applications in a distributional
environment. The pruning algorithm is implemented with the following details:
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Algorithm [1] is Optuna’s current pruning algorithm. The algorithm inputs include the trial
liable to pruning, reduction factor, number of steps, a minimum resource to utilize before
pruning, and minimal early stopping rate. The algorithm begins with the computing of the
current trial, which is the number of times the trial remains the pruning.If the provisional
ranking is in the top 1/η, it is permitted to enter the next round of the competition. If the
number of trials with a similar rung is smaller than η ,it promotes the best trials between
the trials with the same rung.This solution does not allow repechage to prevent the need
to record a massive number of checkpointed configurations (snapshots). Another important
criteria of design is the scalable, versatile and easy-to-setup architecture design that allows to
manage different types of tasks and a wide variety of applications, such as high computational
experiments with many threads or lightweight computational via web interface, even it is
possible the integration with docker-containers techniques [1].

3.6 Random Forest Algorithm

Namely, Random Forest (RF) is an ensemble learning algorithm based on the ‘bagging’ method
of trees. The trees are independently built using samples from the dataset, and a majority vote
is taken for the prediction. This means that it operates by creating multiple decision trees
during training and outputs the class or the mean prediction for regression. Each node is split
based on the best predictors from a randomly chosen subset of trees. The algorithm draws
bootstrap samples from the data, grows a classification or regression tree, and then predicts
new data by aggregating predictions from the developed forest of trees. The results include
a measure of feature importance (i.e., the value gained by including a certain feature) and
a confusion matrix displaying the accurate and inaccurate predictions. Intuitively, for each
decision tree constructed during training, the classification or prediction is based on averaging
the result of each decision tree. Therefore, it is suitable for both classification and regression
tasks[30]. An ensemble approach is a methodology that incorporates several machine learning
algorithms’ predictions to create predictions that are more reliable than any other model. An
Ensemble model is considered a model consisting of many models [6]. Ensemble learning is
two types:
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• Boosting means the use of weighted averages of a group of algorithms to allow poor
learners to become more stronger. Collaboratively boosting fits, so that each running
model decides in what the next model will focus on features.

• Bootstrap Aggregation (Bagging) means random sampling with replacements. Bootstrap
enables one to consider the bias and volatility of the data set better. Bootstrap consists
of a random sampling of a small subset of data from the dataset.

Generally, decision-trees algorithm is a generic method that may be utilized to minimize the
variation of this highly variant. Bagging allows each model to operate separately before aggre-
gating the outputs without regard for any model. As we will see below, decision trees present
some problems and in consequence sensitive to the specific data on which they are trained. If
the training data is altered, the resultant decision tree and, as a result, the predictions might
be substantially different.
In addition, decision trees are computationally expensive for training, have a high risk of over-
fitting, and tend to find local optimum since after splitting they cannot retrace.[52]
A random forest is a meta-estimator, which incorporates several decision trees with some
helpful changes, (i.e. it combines the result of many predictions).[55]

• The node probability can be determined by the number of samples that reach the node,
divided by the total number of samples.

• When generating splits, each tree draws a random sample from the original data set,
which adds a random element that prevents overfitting. The above-mentioned modifi-
cations avoid too highly correlation between the trees.

Advantages of Random Forest:

a) It is one of the most accurate learning algorithms available, and for several data sets it
provides an extremely accurate classifier.

b) It can handle thousands of input variables without variable deletion.

c) It provides an unbiased internal assessment of the generalization error in the forest
building.

d) It has an accurate way of estimating missing data and preserves accuracy when a signif-
icant part of the data is missing.

Disadvantages of Random Forest:

a) Random forests have been identified as overfitting some datasets with noisy classifica-
tion/regression tasks.

b) Random forests prefer specific features with higher data levels,particularly categorical
variables with various levels. For these type of data, the variable importance values are
not trustworthy from RF values.

Regarding the regression tree used in this study,it is constructed via a process known as binary
recursive partitioning. This is an iterative process splits the data into partitions or branches and
divides every partition into smaller groups as the method progresses through each branch. The
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splitting of regression trees is done according to the squared residuals minimization algorithm
which involves the predicted sum variances for two resulting nodes should be minimized. Then
each of the new branches applies this splitting rule. It continues until the maximum tree is built,
which ensures that the splitting has been completed with the final observations in the training
set. Because the maximum tree may become substantially big, pruning could be necessary to
delete irrelevant nodes in the case of the regression trees.[46] Moreover, it is known that the
Random Forest model is powerful and accurate, it usually performs great on many problems,
including features with non-linear relationships. Furthermore, RF corrects the prediction of
each tree and therefore tries to prevent the data overfitting that may easily occur. However, it
comes with high variability in the results. We use Random Forest Regressor for each dataset,
and the metric used to evaluate the algorithm is mean squared error (MSE) based on the best
hyperparameter settings.[5]

3.7 Performance Evaluation

The method of determining how effectively the pipeline is fulfilling the regression analysis in
order to obtain the most reliable predictions is known as performance evaluation. For a better
understanding, a brief introduction to correlation is needed before embarking on performance
evaluation. Correlation is a proportion of the relationship between two variables and indicates
that when one variable’s value varies, the other continues to shift in a specific direction. Two
variables are said to correlate if an adjustment in one of them is joined by a predictable change
in the other.[48]
Understanding the relationship is useful, since we can use one variable’s value to predict
the other.The idea of correlation is usually experienced in the scope of techniques used in
modeling and business forecasting. Correlation describes the association in a way that allows
the researcher to easily interpret the strength of the association. Correlation is, in essence,
standardized covariance and it is defined as the covariance divided by the standard deviations
of each variable:

ρ(X, Y ) =
cov(X, Y )

σXσY
(2)

Dividing the standard deviations serves the purpose of rescaling the statistic so that the max-
imum and minimum values are always 1.0 and -1.0, respectively. Thus, a correlation of 0.6
means the same thing in terms of strength, regardless of the standard deviation of the vari-
ables. There are various forms of correlation equations, but for this thesis, the Pearson Product
Moment Correlation (PPMCC) (2) will be used, which summarizes the intensity and orienta-
tion of the relationship between two variables in a single number, the correlation coefficient,
also known as the Pearson coefficient or R score. As a result, a positive coefficient denotes
a positive relationship, while a negative coefficient denotes a negative relationship. A zero
correlation means that between the two variables there is no interaction. The proximity of
the coefficient to +1 or -1 indicates the frequency of the variable’s relationship. The idea
that both correlation and regression analysis will approximate correlations between different
variables is a function that they share. However, the researcher indulging in regression usually
wants to find out the causal effect of one variable upon another. To explore such issues, data
on the variables of interest are assembled and regression techniques are applied to estimate
the effect of the causal variables upon the variable that they influence. Regression analysis
includes several techniques for modeling and analyzing several variables when the focus is on
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the relationship between a dependent variable (target variable) and one or more independent
variables (predictors).

3.7.1 Evaluation with R2

The predictions of each model are evaluated with the coefficient of determination (R2) metric,
see equation (3), whereby T denotes the true values and P the predicted values. R2 describes
the proportion of variance that is explained by the model.It has no lower limit and the upper
limit is 1, which expresses a perfect fit of the model.[49]

R2 = 1−

∑
i=1

(Ti − Pi)
2

∑
i=1

(Ti − T )2
(3)

A dataset with n values marked T1,...,Tn, each related with a predicted value P1,...,Pn, the
residuals as Ti-Pi and T is the mean of observed data [49]. Therefore, with two square sums
the validity of the data set is measured (the sum of squares and the residual sum of squares).

3.7.2 Evaluation with Spearman

The Spearman ranking correlation is widely used to evaluate the degree of association between
two variables. Therefore, it is a non-parameter test that must be ordinary and the scores for
one variable must be monotonically linked to the other variable, with n indicating the num-
ber of observations and d is the difference in the ranking among two ranks of each observation:

di = rg(Pi)-rg(Ti).

ρ = 1−
6
∑

d2i

n(n2 − 1)
(4)
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3.7.3 Evaluation with Pearson

The frequency of a relationship between two variables is measured by Pearson’s correlation
(Truevalue and Prediction value). Both the strength and the weight of this relationship should
be assessed. While it is determined by the coefficient of determination r2, the correlation
coefficient r indicates the strength of a relationship. The weightiness of the relationship is
noted in probability measures p. The value p expresses how unlikely is a given correlation
coefficient r when no relationship exists in the population. Therefore, the larger correlation r,
the stronger relationship exists,while a more significant relationship is determined by a smaller
p.[37]

rP T =

n∑
i=1

(Pi − P )(Ti − T )√
n∑

i=1

(Pi − P )2

√
n∑

i=1

(Ti − T )2

(5)

3.7.4 Evaluation with MAE

The mean absolute error is the measurement of absolute errors between a set of observations,
which means, the average magnitude of errors within predicted versus observed values.

MAE(T, P ) =
1

n

n∑
i=1

|Pi − Ti| (6)

3.7.5 Evaluation with MSE

The mean-squared error is a measure of the average squared error, which means, the average
squared difference within the predicted values and the observed values.It measures model
quality, bringing the value closer to zero results in the best models.

MSE(T, P ) =
1

n

n∑
i=1

(Ti − Pi)
2 (7)

The above evaluations are a good indicator of average model performance. They are easy to
compute and to understand. It can be computed with any kind of variable be it independent
or dependent.
On the other hand, performance evaluation can be very time-consuming to determine the
strengths and limitations of the model before comparing it with a model performer. If the
model performer is overly good, it will be difficult to achieve the same performance evaluations.
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4 Experiments

The three datasets (LANL Earthquake, LUMC, and EEG for Age Prediction) were carefully
selected to be used in the training and testing stages for performing the experiments. There are
multivariate time series datasets, specifically LANL Earthquake and EEG for Age Prediction
are part of the Kaggle dataset repository, selected as validity datasets because the prediction
methods are aligned with our prediction method design. The models are trained and tested
with normalized features. This set-up will result in a total of 3 (datasets) * 5 (variables to
predict) using the regression model performed based on the Scikit-Learn library. To validate the
results of the automated regression pipeline and, its modules, metrics, and other characteristics,
a set of prediction experiments were performed with different time series data sets to cross-
validate the results obtained with the coefficient determination for the target prediction. These
experiments prove a good validation and the reliability necessary for having good criteria of
the pipeline functioning and the approach taken. Thus, the experiments are divided into three
sections: (1) Performance on the LANL Earthquake dataset, (2) performance on the EEG
for Age Prediction dataset, and (3) performance on the LUMC dataset case study. In our
experiments, all methods are run using the k-fold cross-validation scheme, with k set to 5.
This is chosen for a good balance between computational cost and solution accuracy.

4.1 Study case: Predicting the time to failure in LANL Earth-
quake Prediction

The prediction of earthquakes is one of the most important topics in seismology [25]. Three
important aspects are key points on earthquake predictions: when, where, and magnitude.
So, when the earthquake will take place, we will address it. In particular, the study analyze a
snapshot of the continuous seismic signals recorded in a fault shear zone to predict the failure
time (unconnected decision tree models have been created to predict the instantaneous fault
shear stress or displacement).The problem, given as a regression, employs the seismic data
continuously recorded by Los Alamos National Laboratory as the input and the fault time to
failure as the target. Thus,the shear stress signal measured on the device is used to predict
the time to failure. [42]
The data fields are:

• acoustic data - the seismic signal.

• time to failure - the time (in seconds) before the next displacement will occur.

• seg id - the test segment ids to be predicted (one prediction per segment).

Hence, applying ML to the dataset can predict the remaining time with precisely before it
fails.These forecasts are based just on the physical features of the sound signal instantaneously
and don’t utilize its history [25]. To the best of our knowledge, ML is used for the first time in
acoustic/seismic continuous data to infer failure times and we demonstrate the exact failure
forecast ML applied in this experiment, based on instantaneous acoustic signal analysis at any
time during a slipped cycle and revealing a previously unidentified signal. For this reason it
has been used as validation dataset because of the good results of the ML analysis of earth
seismic data. While there are 2624 test signals provided by Kaggle, only 341 are used for the
experiments of public leader board [35]. From the original results [35], a näıve model that is
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just based on the periodicity of the events (average interevent time) only gets a coefficient
determination R2 of 0.3. The time to failure of the RF tuned model in comparison is highly
exact with an R2 value of 0.89. Surprisingly, the RF tuned model accurately predicts failure not
just when failure is imminent, it also demonstrates that the system is progressing continuously
towards failure.

Figure 4: Explaining how a RF model tree prediction works e.g. earthquake experiment
Averaging the predictions of a number of decision trees (e.g. 10000) for the next failure,
the RF model predicts the time left until the next failure. On top, each tree produces its

prediction after a number of judgments (colored nodes) depending on the earthquake
acoustic signal characteristics. On the bottom, the RF (blue line) prediction on unseen

data (testing data) with confidence intervals of 90 per cent (blue shaded region).[42]
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4.2 Study case: Predicting the age from EEG

The dataset is retrieved from the publicly accessible EEG Corpus Temple University and is
part of the ”TUH Abnormal EEG Corpus” in particular. The initial dataset is primarily in-
tended to differentiate between normal and pathological EEG signals. However, we would like
to examine normal EEG alone as the purpose of this experiment is to predict patient’s age
from the person’s normal EEG signal. Because the corpus consists of EEG, fMRI, and fNIRS
[16]- as a whole, to make accurate predictions about individuals’ brain maturity across de-
velopment the EEG is the most recommended. [16]. Historically, EEG was used to diagnose
epilepsy, thus the majority of the time the work was about processing and interpreting the
abnormalities. Researchers began addressing the standard EEG signal for numerous applica-
tions recently, as machine learning techniques flourished[2]. The data contains 1297 patients’
recordings of slightly various lengths. The original data consists of an EEG signal with the
patient’s information including the age information. Thus the files contain the age in the first
row and the second row contains the EEG channels’ names used in the recording, and the
signal data follows from the third row. In the original study [2], a crucial step to achieving the
best age estimate was the selection of appropriate ML algorithms to offer a better age predic-
tion, various ML methods were tested. Realizing the following regression algorithms: Elastic
Net (ENet), Vector Regression Support (SVR), Random Favor (RF), Extreme Gradient Boost
Tree (XgbTree), and Polynomial Kernel Gaussian Process (gaussprPoly). This study gives us
a clear view to compare with our RF results in the next section.

Figure 5: Models performance searching the best accuracy.
The individual performance for each ML method was calculated. Error bar represents
the standard deviation of performances across the outer loop of Dataset. The results

showed that stack-ensemble improved the overall performance with R2 = 0.37 (0.064),
MAE = 6.87(0.69) years, and RMSE = 8.46 (0.59) years. Followed by SVR that

achieved the coefficient determination R2 = 0.34 (0.056), MAE = 7.01(0.68) years and
RMSE = 8.7(0.63) years. On the other hand, RF algorithm was the last of this

comparison in the evaluation performance [2].

The age and predicted age correlation was r = 0.6. The feature importance revealed that
age predictors are spread out across different feature types. When testing on 50 samples, the
overall coefficient determination was R2 = 0.26, which shows that there is no linear relation
between the features and the target age from the small number of samples [15].

22



4.3 Study case: Predicting the neurological mental state from
EEG

The data utilized in this thesis contain EEG records of 125 LUMC patients (Leiden University
Medical Center) [27]. Three labels have been selected for prediction among those individuals
with distinct clinical conditions (apathy, depression, anxiety). Each patient’s EEG has been
collected from five distinct epochs (EEG segments). The data were recorded with a 500 Hz
(Analog to Digital) sample rate, a 16 bit AD conversion, and a 0.16 70.0 Hz band filter.
Due to the sample rate and 8,192 seconds length, 4096 data points are contained in the EEG
Epoch. All epochs per patient originate from the same recording (total EEG lasts roughly
15-20 minutes), but we selected 5 epochs of 8.192 seconds from the total EEG to ensure all
time-series are artifact-free [27]. Every patient’s epoch is based on the same record, but we
have picked 5 epochs of about 8,192 seconds from the entire EEG to guarantee that all-time
series are artifact-free. Unfortunately, we do not have previous results of regression to compare
on these patient’s datasets to validate the good performance of the pipeline performed.

Figure 6: Typical EEG recordings e.g.five sets of the Bonn EEG database.
For showing the spectral information of the EEG signal concerning epilepsy is showed
above.There are defined a number of spectral thresholds, and each frequency sub-band

combination is generated [51].

Clinicians label the neurological mental state which means, the variables Anxiety, Depression
and Apathy (range 0 - 30) are reflected on a scale after routine neuropsychological assessments
of patients [27].
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5 Results and discussion

In this section, we discuss the results, our research goals and remark on different implemen-
tation aspects. We also compare our findings with the related studies and emphasize the
discrepancies in several respects. The main objective of this thesis is to validate for the time
series of aforementioned data sets the good performance of the automated regression pipeline.
The performance evaluation techniques utilized during these experiments have been explained
in the Methods section.The experiments that have been carried out can be found in table 2,
which provides a summary of studies that specifically reported the results performance from
the experiments.

LANL Earthquake

Time to failure
Test data R2-score:0.559
Test data Spearman:0.584
Test data Pearson:0.748

LUMC

Apathy
Test data R2-score:0.317
Test data Spearman:0.510
Test data Pearson:0.907

Depression
Test data R2-score:0.297
Test data Spearman:0.480
Test data Pearson:0.526

Anxiety
R2-score:0.207
Spearman:0.332
Pearson:0.364

EEG for Age Prediction

Age
Test data R2-score:0.431
Test data Spearman:1.266
Test data Pearson:1.249

Table 2: A summary of experiments performed in this Thesis

5.1 Experiment 1 Results

Our objective in this empirical study is to make a comparative performance evaluation between
the obtained and the original results, as previously described in section 4.1, the basic model
only gets an R2 of 0.3. instead a RF tuned model reached an R2 value of 0.89.

Rˆ2 Spearman Pearson

0.559 0.584 0.748

0.517 0.581 0.721

0.508 0.582 0.694

0.497 0.617 0.707

Table 3: Experiments 1: Earthquake testing error metrics.

The testing error metrics results for experiment 1 are shown in table 3, which displays the
metrics of section 3.7 to evaluate the performance of the regression pipeline. Each column
corresponds to an error metric and each row refers to each of the four experiments models.
A relationship plot to see the relation between a given variable and target variable, acoustic
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data (displayed in blue) against the time to failure (displayed in yellow) is shown by Figure
bellow.

Figure 7: Representation of Acoustic data and time to failure.
Representation of 1% of the earthquake acoustic data -blue- and time to failure -yellow-
(in the y-axis) over different samples i.e. time (x-axis). The probable time for the next

earthquake can be determined by the value of the top spikes in the time to failure graph
(e.g. in sample no. 50000 time to failure is 1500, and the time to the next earthquake
in sample no. 10500 is significantly higher than in the previous occurrence, where time

to failure was 900), which was obtained from the previous real-time acoustic data.
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A scatter plot of the testing predictions (displayed in y axis) against the actual values (displayed
in x axis) is shown in Figure 8. The reader might find useful this figure to appreciate a bit
of positive correlation. Although it is possible to fit the regression when one of the variables
takes discrete values, however, the simple Scatterplot produced by this dataset is not optimal.

Figure 8: Scatter plot for earthquake time-to-failure predictions.
(time predicted for the next earthquake event) vs actual time events (629,145,481

samples). A positive correlation can be easily observed in the main group of values. We
can also observe that predictions for time-to-failure events in the extremes (i.e. close to
0 / imminent, or close to 16 / happening very late) are much less correlated than the

majority of predictions for time-to-failure values between those extremes.

On the whole, the accuracy achieved with our regression pipeline in this set of experiments is
acceptable compared to previous works mentioned above, however, we observed different issues
that have prevented far higher accuracy, one of them is the data has strong multicollinearity,
that occurs when independent variables in the regression model are correlated, which is a
problem because the variables should be independent and the correlation degree between
them should be less, this can cause problems when we fitting the model and interpreting the
results. Another problem is caused by the overfitting, hyperparameter tuning was performed by
Optuna to reduce overfitting automatically[17]. Such as the number of leaves was decreased
and the minimum data in a leaf increased. Also tried was increasing the number of data rows
to 200,000. This resulted in worse overfitting and a lower R2 score. Because this made a
computationally intensive approach to the problem even more computationally difficult, this
effort was quickly dropped. It is a well-known fact that Random Forest Regressor has low
performance compared to LightGBM[26] or XGBoost[10], which would be a definitive method
to boost the accuracy.
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5.2 Experiment 2 Results

Our aim in this second study is to make again a comparative performance evaluation between
the obtained and the original results, as previously mentioned the overall accuracy when testing
on 50 samples,was R2 = 0.26 and the best accuracy achieved was R2 = 0.34 in overall.

Figure 9: The effect of the number of samples on the age prediction by using the coefficient
of determination.
We can observe that from 200 samples there is a linear relation between features and age.

The testing error metrics results for experiment 2 are shown in table 4, which displays the
metrics of section 3.7 to evaluate the performance of the regression pipeline. Each column
corresponds to an error metric and each row refers to each of the four experiments models.

Rˆ2 Spearman Pearson

0.139 0.423 0.402

0.231 0.678 0.669

0.334 0.881 0.968

0.431 1.266 1.249

Table 4: Experiments 2: Age Prediction testing error metrics.

The findings of the experiments suggested the aging alters the EEG signals in the brain. Thus,
feature extraction is required from EEG signals to capture the relationship between the signals
and the age predictors.To represent the impact of the features extraction part (tsfresh), we
selected the best features (EfficientFCParameters) to improve the performance and reduce the
complexity of the model. In this way, we eliminated the correlated features to select the best
features, which improve the overall R2. As a comparative using the MinimalFCParameters the
results are very poor and a very low R2. From table 4, we realize the best results were achieved
R2 = 0.431 and were slightly improved the results from [2], which shows the ability of our model
to predict the age. Regarding the Pearson correlation coefficient of 1.249, the possible range
of values for the correlation coefficient is -1.0 to 1.0. In other words, the values cannot exceed
1.0 or be less than -1.0.Therefore a correlation of -1.0 indicates a perfect negative correlation,
and a correlation of 1.0 indicates a perfect positive correlation. Due to multicollinearity the
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standardized regression weight can be exceed the bounds of (-1,1).Accordingly, it is a clear
indication of strong multicollinearity present among the set of independent variables, and the
correlation of each of the independent variables with the dependent variable. Consequently,
it will be greater than one if there are 2 or more predictors that are correlated, positively or
negatively, then the Beta values may exceed those bounds (-1, +1).[24]
A better modeling approach is needed. Therefore, the results show that additional samples
may be possible for a potential improvement.

Figure 10: Scatter plot for age prediction vs actual person age (40 samples).
We can observe some degree of positive correlation. We can also observe some tendency

of overestimating the lowest age ranges (below 23 years), and under estimating the
higher age ranges (above 67 years)

Figure 10 shows an absolutely high positive correlation, the closer the data points come when
plotted to make a straight line, the higher the correlation between the two variables, or the
stronger the relationship, and we were able to offer a reasonable age forecast with an unbiased
prediction of age.

5.3 Experiment 3 Results

The last experiment, as we mentioned above utilized the EEG records of 125 LUMC patients
and we are not able to validate the good performance with previous metric outcomes. The
testing error metrics results for experiment 3 are shown in table 5,6 and 7 which display the
metrics of section 3.7 to evaluate the performance of the regression pipeline. Each column
corresponds to an error metric and each row refers to each of the four experiments models.
In figure 11 we can observe some degree of positive correlation, although the smallest eigen-
value is indicating that there are strong multicollinearity problems, which means the coefficient
estimates can swing wildly based on which other independent variables are in the model and
the precision of the estimated coefficients are reduced, weakening the regression model.
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Rˆ2 Spearman Pearson

0.109 0.176 0.193

0.147 0.237 0.261

0.178 0.288 0.315

0.207 0.332 0.364

Table 5: Experiments 3: Anxiety testing error metrics.

Figure 11: Scatter plot for mental anxiety predictions vs actual anxiety values.

Figure 12 shows positive correlation, especially in depression values below the higher range
(above 25), where we can observe an underestimation of mental depression.

Figure 12: Scatter plot for mental depression predictions vs actual depression values.
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Rˆ2 Spearman Pearson

0.139 0.225 0.247

0.208 0.346 0.369

0.217 0.351 0.375

0.297 0.480 0.526

Table 6: Experiments 3: Depression testing error metrics.

Rˆ2 Spearman Pearson

0.127 0.205 0.364

0.203 0.317 0.580

0.308 0.485 0.880

0.317 0.510 0.907

Table 7: Experiments 3: Apathy testing error metrics.

Figure 13: Scatter plot for mental apathy predictions vs actual apathy values.

Figure 13 shows a positive correlation, we also observed in the results overfitting indicating
that a statistic model begins to describe a random error in the data instead of the relationship
between variables[17]. In our regression pipeline, overfitting produced misleading R-squared
values and regression coefficients. One of the problems is that the data has collinearity, and
another problem is caused by the predictors, because of too many predictors chasing too little
information.

30



6 Conclusion

The main insight of this Thesis is to propose an automated time-series regression pipeline
as an effective and innovative model for predicting different time-series variables in unrelated
domains, and for this purpose specifically tackling in the domains of medical (mental conditions
prediction), earthquake and age predictions.
This task was undertaken to facilitate the resolution of problems present in predictions using
time series regression, and the review of the outcomes from the pipelines and experiments
developed show novelty problem solving approaches in this field.
The use of tsfresh proposes an effective approach to cover the feature extraction capabilities
required for time series. As an example, its use with the EEG data was seeking to obtain a min-
imal or efficient set of features or variables due to the very large dataset utilized. Additionally,
feature selection implemented through RFECV provides an additional layer of discrimination in
the pipeline to pinpoint and extract the most relevant features. Moreover, the combination of
the Hyperparameter optimization methodology Optuna and efficient modeling technique with
the use of Random Forest Regressor introduced a novel blended technique.
Three different experiments were implemented to determine the suitability and validity of the
automated regression pipeline, and also which combinations may offer the best precision. As
a result, high prediction metrics were obtained in the first two experiments that indicate the
effectiveness of the regression-based prediction model proposed. The experiments previously
presented with their respective results in Section 5, give the reader a visual idea of the different
experiments that were developed. The so-called experiments 1 (earthquake time-to-failure pre-
diction) and 2 (age prediction) showed overall better prediction results and “goodness of fit”
than experiment 3 (mental condition). Experiment 3 is a real data experiment from LUMC,
where no data cleaning or data adjustments were performed before providing the data into the
pipeline, with the except for dropping all the highly correlated variables identified.
From the outcome, it is reasonable to say that, even though some degree of correlation is
obtained in experiment 3, the models built out of this experiment may be less robust than the
ones built in experiments 1 and 2. Another reason for obtaining less correlated values may
be the very nature of the data, as the process of obtaining mental condition values (anxiety,
apathy and depression) over a large scale (0-25) may be less objective than e.g. using sensors,
because these values come from clinician registries of responses to predefined questions in
patient interviews that may be subjectively responded. Additionally, when it comes to the
overall coefficient of determination results, it can be seen that the model achieves significantly
better results than the experiments for LUMC, being evident that the best results overall are
achieved by experiment 1 in terms of error metrics. The overall conclusion from the obtained
metrics is that the models used in experiments 1 and 2 may be harder to use for predictions
in the medical domain, at least with values obtained through interview questions, i.e. this
may not be the case with accurate values provided by sensors such as in ECG studies.

More specific observations from the outcomes of the proposed pipeline are that, overall, values
in the extremes of the range (e.g. earthquake predictions close to 0 i.e. imminent, or close
to 16 i.e. happening in a long time; age predictions below 23 or over 67 years; and mental
conditions estimated in the extremes of the scale e.g. above 25 when the maximum is 30) are
much less correlated than the rest. This may be due to shortcomings of the pipeline proposed,
or to the inherent data these values represent (as extreme values are more difficult to predict
depending on the domain, such as age, or, in the case of earthquakes, estimating times that
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goes to the extreme e.g. imminent or very late, which occurs less often). As the initial proposal
of this study was to find an effective and novel automated time-series regression pipeline that
could serve as an accurate model to predict real-world data specifically covering the medical
domain, the research could not provide high enough accuracy for these predictions. However,
the medical domain where the data was obtained (unlike in experiment 1) was psychiatry,
i.e. values were not sensor-based as opposed to medical domains such as cardiology and ECG
values. As indicated above, the possible subjectivity introduced in responses to interview ques-
tions may have an effect, so the application of our pipeline to other medical domains may be
possible.
In summary, this automated time-series regression pipeline is an efficient and innovative re-
gression analysis technique that can be implemented in a number of domains. A lot of these
implementations are used in machine learning to predict numerical values in different areas,
such as predicting sales or house prices, also to predict the number of sensor’s failures, or even
to predict medical conditions. Moreover, the large datasets utilised in some of the experiments
include sufficient variable resolution to predict with better performance and less noise, avoiding
the heteroscedasticity and multicollinearity in time-series models. Therefore, we figured out
that time-series problems may require the identification of additional alternative approaches
instead of a Random Forest Regressor that may generalize better in a wider variety of domains,
such as Stack-Ensemble or Vector Regression Support (Figure 5). Also, it may be interesting
to check the effect of the isolated relationship between each independent variable and the
dependent variable also if the dependent variable changes significantly from the beginning to
the end of the time series, which could not be considered in this study due to time constraints.

7 Future Work

Further work can be foreseen to improve the performances reported in the results of this Thesis.
Given the nature of the indicated pipelines and datasets, additional experiments may be readily
performed by simply employing more complex approaches for data sampling, feature selection
or regression algorithms. Due to the time constraints in this study, and the computation times
required for testing the present and discarded elements and techniques in the pipeline, we
were not able to explore additional or more complex techniques. Based on the results, it would
be advisable for future work to explore additional and more complex prediction models to
better handle complex domains such as mental conditions from observed and annotated data
of patient responses to interview questions. We further propose two different approaches for
this: First, reconsidering some modules of the regression pipeline, specifically the part of the
model that combines the feature selection with the Hyperparameter optimization; both are
directly related to the best performance of the pipeline and therefore impacts directly on the
metrics of the experiments, as this could provide major improvements in the outcomes of the
metrics.
Our second proposition is to introduce a ”black-box” based on an ensemble model, for example,
Catboost or SHAP. The characteristics and dynamics of both approaches are open for the
reader to work on. CatBoost has a high reputation and it is a contemporary gradient boosting
engine. The author had little time to fully investigate it, and may have been impeded by a lack
of familiarity with the algorithm. Spending time on Random Forest Regressor, Support Vector
Machines or Nearest Neighbors Regression algorithms is probably not worth it; compared to
other regression models, in the author’s view, these are not state-of-the-art and appear to
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underperform newer gradient boosting decision tree-based approaches such as LightGBM or
XGBoost. The approach that we have developed can also be applied as a regression pipeline
performing a quick Catboost with hyperparameter tuning to generate an accurate model that
could later be used in complex domains such as the specific medical domain tested (mental
conditions) or other applications.
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A Appendix

All experiments in this thesis were run on the following system:

• Operating system: Ubuntu 20.04 LTS 64-bit

• Processor: Intel CoreTMi9©8950HK 2.9GHz

• Memory: 32 GiB DDR4 2933Mhz Non-ECC Memory

• Graphics: NVIDIA®Quadro P620

Here we provide the source code of the Automated Regression Pipeline for Time-Series, used
in all experiments utilized in this Thesis as the main code, although the data cleaning part may
differ, we will only include one of the variables predicted (Anxiety), hence the rest variables
differ in their respective code sections.

# importing modules

import pandas as pd

import time

from datetime import datetime

import pickle as pkl

import numpy as np

import logging

import seaborn as sns

import optuna

import sklearn

from sklearn import ensemble

import matplotlib.pyplot as plt

from sklearn.metrics import confusion_matrix

from sklearn.metrics import r2_score

from scipy.stats import spearmanr, pearsonr

from sklearn.model_selection import train_test_split, cross_val_score

from sklearn.impute import SimpleImputer

from sklearn.preprocessing import LabelEncoder
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from sklearn.utils.multiclass import type_of_target

from sklearn.ensemble import RandomForestRegressor

from sklearn.ensemble import RandomForestClassifier

from RFECV_feature_selection import RFECV_feature_selection

from sklearn.model_selection import GridSearchCV

from sklearn.model_selection import StratifiedKFold

from sklearn.metrics import r2_score, explained_variance_score, accuracy_score,

max_error, mean_absolute_error, mean_squared_error,

mean_squared_log_error, median_absolute_error

def objective(trial):

X = data # RFECV extracted data

y = target # labels

# Invoke suggest methods of a Trial object to generate hyperparameters.

rf_min_samples_leaf = trial.suggest_float('rf_min_samples_leaf', 0.01, 0.5,

log=True)

rf_min_samples_split = trial.suggest_float('rf_min_samples_split', 0.01, 1,

log=True)

rf_n_estimators = trial.suggest_int("rf_n_estimators", 10, 1200, log=True)

rf_max_depth = trial.suggest_int("rf_max_depth", 10, 1200, log=True)

regressor_obj = ensemble.RandomForestRegressor(max_depth=rf_max_depth,

n_estimators=rf_n_estimators,
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min_samples_split=

rf_min_samples_split,

min_samples_leaf=

rf_min_samples_leaf)

# Step 3: Scoring method:

score = sklearn.model_selection.cross_val_score(regressor_obj, X, y, n_jobs=-1,

cv=3)

accuracy = score.mean()

return accuracy

# Setting up the log file

suffix = time.strftime("%Y%m%d_%H%M%S")

logfile = './test/log_' + str(suffix)

logger = logging.getLogger('EEG')

logger.setLevel(logging.DEBUG)

formatter = logging.Formatter

('- %(asctime)s [%(levelname)s] -- ''[- %(process)d - %(name)s] %(message)s')

if logfile is not None:

fh = logging.FileHandler(logfile)

fh.setLevel(logging.DEBUG)

fh.setFormatter(formatter)

logger.addHandler(fh)

# Setting up the file for performance measure
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# set suffix of filename:

description = '_log'

# Name of data set

name_dataset = 'EEG'

file_name = str(suffix) + '_' + name_dataset + '_performance_' +

description + '.txt'

file_name_inc = str(suffix) + '_' + name_dataset +

'_performance_incremental' + description + '.txt'

folder_name = 'experiments'

f_performance = open(folder_name + '/' + file_name, 'w+')

f_performance_inc = open(folder_name + '/' + file_name_inc, 'w+')

# Number of random forest iterations and CV

start_time = time.time()

iterations_rfr = 1

cv = 5 # Cross Validation 5.

counter = 0

cv_counter = 0

logger.info('Parameters are: CV=' + str(cv) + ', random forest iterations='

+ str(iterations_rfr))

# Loading data

logger.info('Loading data...')

X = pd.read_csv('eeg_ANX_extracted_TS.csv',index_col=[0]) # Tsfresh extracted data

X.fillna(X.mean(), inplace=True)
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X.replace([np.inf, -np.inf], np.nan, inplace=True)

print(X)

X_RFECV = X

RF_SEED = 13

y = pd.read_csv('LABEL_ANX.csv', index_col=[0]) # labels

print(y)

def split_data_train_model(labels, data):

# 20% examples in test data

train, test, train_labels, test_labels = train_test_split(data,

labels,

test_size=0.2,

random_state=RF_SEED)

# training data fit

return train, test, test_labels, train_labels

y_data = y

X_data = X

RFECV_features_per_split = []

feature_importance_per_rfr = []

data = X

target = np.isnan(y)

logger.info('Starting the cross-validation')
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best_params_all = []

# Stratified split

skf = StratifiedKFold(n_splits=cv, random_state=np.random, shuffle=True)

best_params_all = []

for train_index, test_index in skf.split(X_RFECV, y['Anxiety']):

cv_counter += 1

logger.info('CV counter: {cv_counter}')

logger.info('Started Feature Selection on the split')

# print("Outer CV, TRAIN:", train_index, "TEST:", test_index)

X_train, X_test = X_RFECV.iloc[train_index], X_RFECV.iloc[test_index]

y_train, y_test = y['Anxiety'].iloc[train_index], y['Anxiety'].iloc[test_index]

X_train, X_test, features_list = RFECV_feature_selection(X_train, X_test, y_train)

feature_importances_ = RFECV_features_per_split.append(features_list)

data = X_train

target = y_train.values

# Step 4: Running it

study = optuna.create_study(direction="maximize")

study.optimize(objective, n_trials=100)

print(study.best_trial)
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best_params_all.append(study.best_trial)

print(best_params_all[-1])

print(best_params_all[-1].params["rf_n_estimators"])

print()

for i in range(0, iterations_rfr):

counter += 1

logger.info('Counter is ' + str(counter))

print('Counter is ' + str(counter))

n_estimators = best_params_all[i].params["rf_n_estimators"]

max_depth = best_params_all[i].params["rf_max_depth"]

min_samples_leaf = best_params_all[i].params["rf_min_samples_leaf"]

min_samples_split = best_params_all[i].params["rf_min_samples_split"]

# We used the bestparams obtained in the objective

# function in RandomForestRegressor

rfr = RandomForestRegressor(n_estimators=n_estimators,

max_depth=max_depth, bootstrap=False,

min_samples_leaf=min_samples_leaf,

min_samples_split=min_samples_split)

rfr.fit(X_train, y_train)

predictions_train = rfr.predict(X_train)

print(predictions_train)
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predictions_test = rfr.predict(X_test)

print(predictions_test)

test_score = r2_score(y_test, predictions_test)

spearman = spearmanr(y_test, predictions_test)

pearson = pearsonr(y_test, predictions_test)

print(f'Test data R-2 score: {test_score:>5.3}')

print(f'Test data Spearman correlation: {spearman[0]:.3}')

print(f'Test data Pearson correlation: {pearson[0]:.3}')

print('MSE: ', mean_squared_error(y_test, predictions_test))

print('MAE: ', mean_absolute_error(y_test, predictions_test))

confusion_matrix = pd.crosstab(y_test, predictions_test, rownames=['Actual'],

colnames=['Predicted'])

sns.heatmap(confusion_matrix, annot=True, vmin=0, vmax=40, linewidths=.2,

cmap="YlGnBu")

plt.show()

plt.savefig('confusion_matrixAnxiety.png')

fig, tx = plt.subplots()

tx.scatter(y_test, predictions_test)

tx.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--',

lw=4, color='green')

tx.set_xlabel('Actual')

tx.set_ylabel('Predicted')

plt.show()
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plt.savefig('PLOTpredictAnxiety.png')

fig, tx = plt.subplots()

tx.scatter(y_train, predictions_train)

tx.plot([y_train.min(), y_train.max()], [y_train.min(), y_train.max()],

'k--', lw=4, color='green')

tx.set_xlabel('Actual')

tx.set_ylabel('Predicted')

plt.show()

plt.savefig('PLOTpredictAnxiety.png')

# predict y from the data

x_new = y_test

y_new = predictions_test

# plot the results

plt.figure(figsize=(4, 3))

ax = plt.axes()

ax.scatter(x_new, y_new)

ax.plot(x_new, y_new)

ax.set_xlabel('Actual')

ax.set_ylabel('Predictions')

ax.axis('tight')

plt.show()

plt.savefig('PLOTpredictAnxiety.png')

# regression plot using seaborn
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fig = plt.figure(figsize=(10, 7))

sns.regplot(x=y_test, y=predictions_test, color='green', marker='+')

# legend, title, and labels.

plt.legend(labels=['Anxiety Test'])

plt.title('Prediction VS Actual', size=24)

plt.xlabel('Actual', size=18)

plt.ylabel('Predicted', size=18)

plt.show()

plt.savefig('RelationshipAnxiety.png')
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